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Abstract

Background: The general population is exposed to Radio-Frequency Electromagnetic Fields (RF-EMFs) used by
telecommunication networks. Previous studies developed methods to assess this exposure. These methods will be
inadequate to accurately assess exposure in 5G technologies or other wireless technologies using adaptive
antennas. This is due to the fact that 5G NR (new radio) base stations will focus actively on connected users,
resulting in a high spatio-temporal variations in the RF-EMFs. This increases the measurement uncertainty in
personal measurements of RF-EMF exposure. Furthermore, a user’s exposure from base stations will be dependent
on the amount of data usage, adding a new component to the auto-induced exposure, which is often omitted in
current studies.

Goals: The objective of this paper is to develop a general study protocol for future personal RF-EMF exposure
research adapted to 5G technologies. This protocol will include the assessment of auto-induced exposure of both a
user’s own devices and the networks’ base stations.

Method: This study draws from lessons learned from previous RF-EMF exposure research and current knowledge
on 5G technologies, including studies simulating 5G NR base stations and measurements around 5G NR test sites.

Results: To account for auto-induced exposure, an activity-based approach is introduced. In survey studies, an RF-
EMF sensor is fixed on the participants’ mobile device(s). Based on the measured power density, GPS data and
movement and proximity sensors, different activities can be clustered and the exposure during each activity is
evaluated. In microenvironmental measurements, a trained researcher performs measurements in predefined
microenvironments with a mobile device equipped with the RF-EMF sensor. The mobile device is programmed to
repeat a sequence of data transmission scenarios (different amounts of uplink and downlink data transmissions).
Based on simulations, the amount of exposure induced in the body when the user device is at a certain location
relative to the body, can be evaluated.

Conclusion: Our protocol addresses the main challenges to personal exposure measurement introduced by 5G NR.
A systematic method to evaluate a user’s auto-induced exposure is introduced.
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Introduction
The growth of wireless telecommunication technolo-
gies has raised public concern about potential health
effects of personal exposure to the radiofrequency
electromagnetic fields (RF-EMFs) that are emitted by
these networks and their users. In general, this ex-
posure is divided in exposure caused by one’s own
usage of mobile devices, so-called auto-induced ex-
posure, and exposure caused by the network and
other users nearby, so-called environmental exposure
[7, 9, 21]. Various methods have been developed
with the aim to assess this exposure such as: spatio-
temporal maps [3], personal microenvironmental
measurements [32, 35], spot measurements [17, 36],
geospatial modelling [5, 18], survey studies [11, 37],
and simulations [4, 29]. In the study of Röösli et al.
[19] a protocol was developed that can reduce
dependency on the used method of measurement
results in different studies.
Röösli et al. [19] identified two basic types of RF-EMF

exposure dosimetry studies: population surveys (using
measurements) and microenvironmental measurements.
In a population survey, participants selected from the
general public are given a personal exposure meter
(PEM) to carry with them for a certain amount of time.
They are instructed to keep a diary of their activities and
based on this, summary statistics on population expos-
ure are obtained. In microenvironmental studies, a
trained researcher performs the measurements in a way
that represents the typical behaviour in the environment
of interest. However, in both cases it has proven difficult
to quantify the RF-EMF exposure induced within the
user by their own devices. This auto-induced uplink (a-
UL) exposure is very dependent on the location of the
device relative to the body, the emitted frequency, and
the power of the transmission, while the measured ex-
posure level depends on the same factors, but has an
additional dependency on the distance between the user
device and the PEM. This creates a high measurement
uncertainty on a-UL exposure. In microenvironmental
studies this is often avoided completely by not using a
personal device during measurements and limiting the
research to environmental exposure. In populations sur-
veys, the problem is often circumvented by relying on
self-reported usage of personal devices obtained using
questionnaires or personal usage diaries [11].
However, the up and coming 5th generation of tele-

communications technologies (5G) is set out to funda-
mentally change the RF-EMFs the public is exposed to
[2]. The methods used to measure human exposure to
sources from legacy technologies (2G – 4G) will be inad-
equate to representatively quantify RF-EMF exposure
from 5G sources [23]. This is mainly because 5G NR
(new radio) base stations equipped with the enabling

Massive Multiple-Input Multiple-Output (MaMIMO)
technology will be able to continuously adapt their pre-
coding to optimize the signal-to-noise ratio at the spe-
cific locations of the user devices it services [15]. This
results in rapidly changing fields, both in space and time,
and thus a higher measurement uncertainty. Further-
more, a person’s exposure to base stations (i.e., downlink
(DL) exposure) will be much more dependent on
whether they act as a user or not. Thus, a person’s auto-
induced exposure will no longer be limited to the UL ex-
posure from their own devices, but will also include DL
exposure from 5G NR base stations [4]. Moreover, it is
expected that the auto-induced fraction of the DL expos-
ure will be the dominant component [4]. Therefore, the
need to include the assessment of auto-induced expos-
ure in measurement campaigns is apparent. Additionally,
5G NR networks will also use new channel access
methods [29], frequency bands [16], and network archi-
tectures [31]. All these factors will alter the general pub-
lic’s exposure to RF-EMFs and warrant a need for an
updated protocol for measurements of personal expos-
ure to RF -EMFs.
The objective of this paper is to develop a general

study protocol for future personal RF-EMF exposure re-
search adapted to 5G technologies. This protocol will in-
clude the assessment of auto-induced exposure of both a
user’s own devices and the networks’ base stations, and
will cover both survey studies as well as microenviron-
mental research. The proposal will be developed using
lessons learned from previous RF-EMF exposure re-
search and current knowledge on 5G technologies, in-
cluding studies simulating 5G NR base stations and
measurements around 5G NR test sites.
In Section 2, the necessary background information is

given to understand the challenges 5G NR presents in
terms of personal exposure measurements. This includes
a review of the protocol currently used in personal ex-
posure studies, an explanation of how and why the RF-
EMFs in 5G NR behave differently compared to legacy
technologies, and a reiteration of why a new research
protocol is needed. In Section 3 describes the proposed
research protocol including the necessary features of
new measurement devices, the measurement procedure,
and the data processing. Finally, in Section 4, we will
discuss how this procedure is adapted to the challenges
listed in Section 2 and what future research will be ne-
cessary to optimize the protocol.

Background
Review of the current exposure dosimetry protocol
As stated in the introduction, this study focuses on
developing a protocol for survey studies [11] and micro-
environmental studies [22] of personal exposure to RF-
EMFs. Both types of research have different qualities in
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terms of assessing personal exposure to RF-EMFs in the
population. The advantage of a population measurement
survey is that the results represent human behaviour
throughout full 24-h cycles [37]. The advantage of mi-
croenvironmental studies, on the other hand, is that cer-
tain exposure-related parameters are more controlled,
e.g. a fixed, calibrated position of the PEM on the body
and no use of own mobile devices [33].
In survey studies, the goal is to assess personal expos-

ure in certain parts of the population [11]. These parts
are typically defined by parameters such as age, living
area, type of job, etc. From each group a number of par-
ticipants is selected, which all are given a measurement
device, such as a PEM [8, 34]. Other studies have been
performed where the participants installed an applica-
tion on their own smartphone, or replaced their own
smartphone with an alternate that is equipped with an
application, logging the transmitted power of the device
and certain parameters quantifying the connectivity to
the network, such as the Received Signal Strength Indi-
cator (RSSI) [6]. The participants have to carry the
measurement device (PEM or smartphone) with them
for a number of days and keep a diary of their activities
[34]. Furthermore, the measurement device often tracks
GPS data [34]. The main requirements are that partici-
pants are randomly selected, representative for their part
of the population, and that the sample of participants is
large enough [11].
Currently, a-UL exposure is already the biggest source

of measurement uncertainty in survey studies [37]. This
uncertainty is mainly caused by a discrepancy between
the measured personal exposure and the actually
induced personal exposure during a-UL. An explanation
for this measurement uncertainty can be found in the
difference in location where the exposure is measured
(location of the PEM) and where the exposure is induced
(location on the human body near the user device [20]).
An alternative technique to register a-UL exposure is
the use of personal diaries. However, these are subject to
human error, recall bias and, more importantly, the
exposure is dependent of the power output of the device,
which cannot be assessed by participants of a survey
study. The emitted power depends (amongst other fac-
tors) on the connectivity of the phone, which cannot be
deduced from measured PEM data.
In microenvironmental studies, the goal is to assess

personal exposure in certain geographical areas [28].
The areas under study are divided into microenviron-
ments. These are either smaller parts of the area defined
by the typical activity performed by the public (residen-
tial, commercial, industrial, etc.), or inside buildings (of-
fices, homes, schools, train stations, etc.), or while using
a certain means of public transportation (trains, busses,
etc.). The researcher then defines a path through the

microenvironment or certain public transportation lines
along which they perform a set of repeated measure-
ments, potentially divided into specific timeslots, by
wearing a PEM [28]. Currently microenvironmental
measurements are only performed in non-user scenarios,
and the measured exposure is catalogued as environ-
mental exposure. To get a representative measurement
of DL exposure in an environment, at least 15 min of
walking suffices [32]. Bolte [9] determines four factors
influence the measurement uncertainty of PEMs: mech-
anical errors, the measurement process due to hardware
of software filters, the anisotropy effect, and influence of
the body (shadowing, absorption, and reflection). The
last three can be reduced by performing (on-body) cali-
brations or wearing multiple devices. Thielens et al. [26]
found that the measurement uncertainty can be reduced
by 2.6 dB by wearing two PEMs simultaneous and by
performing an on-body calibration of the PEMs.

Behavior of RF-EMFs in MaMIMO technologies
Throughout this paper, different sources of RF-EMF ex-
posure are divided into five categories:

� Environmental broadcasting downlink (BC): In
many networks a control is sent out by the base
stations to find potential users.

� Auto-induced data transmission uplink (a-UL):
Data transmission from a user’s own device towards
a base station.

� Environmental data transmission uplink (e-UL):
Data transmission from devices of other, nearby
users towards a base station.

� Auto-induced data transmission downlink (a-
DL): In legacy technologies data transmission
happens over fixed, cell-wide beams. In LTE-
Advanced (4.9G) and 5G NR, narrow beams are
aimed from base stations to the user device (in non-
line-of-sight this results in a RF-EMF hotspot at the
user device).

� Environmental data transmission (traffic)
downlink (e-DL): Narrow beams and hotspots
aimed at and around other, nearby user devices.

A non-user is exposed to the first, third and fifth cat-
egories (i.e. only environmental sources), a user is ex-
posed to all five.
In 5G NR, downlink data transmission will occur over

adaptive channels in order to maximize the signal to
noise ratio at the intended user [15]. The technology en-
abling this is broadly referred to as (Ma)MIMO: each of
the base station antenna elements will configure its
phase and amplitude to ensure constructive interference
at the intended user equipment (UE, e.g., a smartphone)
and destructive interference at unintended users. This is
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also called spatial multiplexing. A user’s exposure from
data transmission DL depends on the position of the UE
relative to the base station: either the UE is in line-of-
sight of the base station or the UE is in non-line-of-sight
of the base station. In line-of-sight, the base station con-
figuration leads to narrow beams towards the UE [29].
In non-line-of-sight, the base station configuration leads
to an EMF hotspot at the UE [24]. This hotspot is cre-
ated by the interference of multiple reflected and/or
refracted paths. This is in contrast to legacy technolo-
gies, where data transmission DL occurs over a fixed
beam (typically with an opening angle of 120°) covering
a whole sector. This means that the fields transmitted by
a 5G NR base station will be much more dynamic and
more spatially diverse.
This also means that a big component of a user’s data

transmission DL exposure will be auto-induced (a-DL
exposure): by demanding data from the network, a user
will pull a beam or hotspot towards their UE. The power
density in this beam or hotspot will be correlated to the
downlink throughput [10]. Maximum ratio transmission,
the precoding algorithm used to create such RF-EMF
hotspots, is only one example of the many types of pre-
coding algorithms than can be applied on MaMIMO an-
tennas [15]. Other precoding algorithms use destructive
interference to create a zero at a user to reduce signal
interference with other users. In legacy technologies, a
user’s own activity has little influence on their DL expos-
ure [35], so all DL exposure was considered environ-
mental. The concept of a-DL exposure will be new for
5G NR.
Spatial multiplexing and focusing on users increase

the signal-to-noise ratio. This increase in signal-to-noise
ratio will most-likely be accompanied with higher EMF
values at the user device than what can be achieved
using broad beams from the base station (the current
technology). This implies that a-DL exposure will likely
be higher than environmental DL exposure. The in-
creased signal-to-noise ratio also allows for the use of
higher frequencies (3.5 GHz, 26 GHz and 60 GHz are
candidates [25, 38]). These higher frequencies are less
used in current networks because of the increased path
loss and consequently low signal-to-noise ratio. How-
ever, using new precoding techniques the signal-to-noise
ratio at these frequencies can be increased and more
bandwidth can become available. Consequently, higher
throughputs are possible.
Another factor increasing the bandwidth of 5G NR is

the use of Time Division Duplexing (TDD) [4, 29]. This
means that the UL and DL to one or multiple users
share the same frequency resources, but are allocated
different time resources. This again adds to the dynamic
nature of 5G. Next to TDD, users may also be assigned
separate bandwidth parts, as is currently the case for e.g.

4G, increasing the options for a base station to optimize
its configuration [2].

Implications of 5G on personal exposure assessment
With 5G NR, the importance of auto-induced exposure
will increase. Currently, only auto-induced UL exposure
is important, since a-DL and e-DL are the same in the
current networks. However, in 5G NR, they will be sepa-
rated and a-DL will have a significant impact on the
user’s exposure as well, due to the beam towards or hot-
spot at the UE. Thus, auto-induced exposure will form a
bigger fraction of one’s total exposure. In this case, the
relevance of studies restricted to environmental expos-
ure becomes questionable in the 5G era. Therefore, a
protocol in which auto-induced exposure is accounted
for is needed.
Next, this also leads to a higher measurement un-

certainty of auto-induced exposure in survey studies
specifically. We discussed the current measurement
uncertainties of a-UL in section 2.1. Now, with the
narrow beam or hotspot focusing, not only the a-UL,
but also the a-DL exposure measurement will be
highly dependent of the location of the PEM. This
thus makes any measurement of auto-induced
exposure much more uncertain.
Additionally, in both survey and microenvironmental

studies, there will be an increased measurement uncer-
tainty on the assessment of e-DL exposure. We speculate
that many of the behaviours of e-UL exposure will also
be exhibited by e-DL exposure. This is because both of
them will be dependent of the proximity of other users
and the amount of data transfer going to and from these
users. In current microenvironmental studies, e-UL
exposure shows the highest uncertainty.
Lastly, there are some causes for increased measure-

ment uncertainty that apply to each of the five categories
of exposure sources: (1) Body-shielding is one of the
sources of measurement uncertainty. Due to the use of
higher frequency bands, the effect of body shielding can
be stronger [27]. (2) Due to the higher frequencies as
well as the use of TDD, the channel bandwidths will in-
crease. A larger bandwidth that has to be simultaneously
measured by a PEM, will be accompanied by more noise.
(3) Due to TDD and flexible bandwidth part configura-
tions, transmissions can be short and potentially highly
variable in the use of frequency domain and time do-
main resources. Since a PEM is not connected with the
network, it might sample the band at the wrong time.
(4) UL, data transmission DL, and broadcasting DL can
all occur in the same frequency band. Therefore, using
the current PEMs, it would be impossible to know what
the source of the exposure is. In Section 3.2 we propose
the design of a new PEM.
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Research protocol
Activity-based exposure assessment
A user has many options on how to use the network, in-
fluencing their auto-induced exposure. Two variables are
important here: (1) the location of the UE relative to the
user’s body and (2) the amount of data transmission in
both UL and DL cases. The location of the UE is import-
ant because the user’s exposure depends on the coupling
of EM energy in the user’s body, which depends on the
separation between the UE and the body. The relative
position of the user’s body will also affect the channels
from the base station to the UE. Therefore, it will also
affect the size and shape of the beam or hotspot aimed
at the UE. The DL and UL transmissions are important
because a higher EM power aimed at or emitted by the
UE, implies a higher exposure of the user.
Furthermore, users’ environmental exposure depends

on the time and location within a microenvironment
and the type of microenvironment. As an example we
refer to the measurements on train rides performed in
[35]: in a non-user case, the measured power density
Se-UL from e-UL sources during rush hours was highest
on train rides, while the Se-DL was lowest on train rides
(no distinction was made between e-DL and BC). During
rush hours (with more people on the train), the Se-UL
was about 12 times higher than during non-rush hours.
This shows how a microenvironment and the timeslot
influence environmental exposure. Now assume a user

in this scenario. They undergo the same environmental
exposure as a non-user and additionally the auto-
induced exposure from their own use. The specific
amount of auto-induced exposure is again influenced by
the microenvironment: during a train ride, the user
might be more inclined to use their personal device in a
specific way (e.g. for streaming), causing a specific Sa-DL
and Sa-UL. The quality of the connectivity also affects
their Sa-DL and Sa-UL. Lastly, the position of their mobile
device relative to their body influences Sa-DL and Sa-UL
as well.
Therefore, we propose to move towards an activity-

based exposure assessment. An activity j (1…J) has the
following eight attributes: the microenvironment m (1…
M), the timeslot t (1…T), the position of the device p
(1…P), and the measured power densities from each of
the five source categories: Sa-UL, Sa-DL, Se-DL, SBC, and
Se-UL. The position p is the area where the UE is likely
to be during activity j (e.g. against the air, in a handbag,
etc.). Figure 1 shows a flowchart of the proposed re-
search protocol. The study design assumes either a sur-
vey study or a microenvironmental study. The protocol
is specified for both survey and microenvironmental
studies.

Survey studies
In survey studies, exposure can be obtained directly
from activities. The selected participants are given a

Fig. 1 Flowchart of the measurement procedure for survey studies (left) and microenvironmental studies (right)
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mobile device, which tracks their GPS coordinates, tim-
ing of telecommunication-related activities, the move-
ment and proximity of the device relative to the body,
and the amount of power emitted (resulting in Sa-UL) by
the device. The device is also equipped with an (exter-
nal) RF-EMF sensor measuring Sa-DL, Se-DL, SBC, and
Se-UL. The technical requirements for this equipment are
discussed in Section 3.2. Lastly the participants can op-
tionally track their activities in a diary. The results are
then used as input to a clustering analysis [30] in order
to define J activities. For each activity j we then define
an activity specific power density vector aj:

aj ¼ SaUL; jSaDTDL; j SeDTDL; j SBCDL; j SeUL; j
� �T ð1Þ

with Ssource,j the measured power density from the spe-
cific source category during activity j. Next, the exposure
received by the user is dependent on the position p of
the device relative to their body. Therefore we introduce
a position coefficient βsource,j transforming the measured
power density from a specific source category to the re-
ceived power density on the body [12]. This is based on
simulations and will be discussed in Section 3.4. This
then leads to a five-dimensional position coefficient vec-
tor βj where the coefficients should be ordered in the
same manner as for aj based on which source they apply
to. Lastly, each activity has a duration fraction τj (dur-
ation of this activity relative to the total study duration).
The total exposure based on activities can then be calcu-
lated as:

Stot ¼
X J

j¼1
τ j β j:a j

� �
: ð2Þ

Microenvironmental studies
To include auto-induced exposure in microenvironmen-
tal studies, a mobile device (UE) will be needed. The UE
can download and upload data during the measurement
in a controlled manner, emulating a specific user activ-
ity. It is unrealistic to measure all possible activities J.
However, it is possible to measure extreme scenarios of
data transmission (maximum and minimum (while still
being connected)) for both UL and DL. Together with

the non-user case, this gives five data transmission situa-
tions. We listed these in Table 1 with examples of realis-
tic data transmission scenarios at three typical positions
of the UE around the body (against the ear, in front of
the body carried in a hand, and in a pocket (shirt, trou-
sers, vest, etc.)). The UE is typically against the ear when
performing a phone call, which is not an extreme UL or
DL data transmission case. During the measurement the
researcher should keep the UE at a fixed position, from
where the measured power density values can be trans-
formed to received power density values as discussed for
survey studies in Section 3.1.1. With this fixed position,
five scenarios remain, each with differing amounts of UL
and DL data transmission as shown in the first column
of Table 1. Due to the flexible allocation of frequency
and time domain resources by the base station, it is
probable that the amount of DL data transmission and
UL data transmission will influence the configuration of
these recourses allocated to the other direction of the
data stream. Assuming the a-UL allocations in (max UL)
stay the same independent of the amount of a-DL and
vice versa, the (max UL, min DL) situation(s) can be in-
ferred using a linear combination of the other three
situations:

max UL; min DLð Þ ¼ max UL; min DLð Þ - min UL; max DLð Þ
þ min UL; min DLð Þ

ð3Þ

This results in four scenarios we propose to perform.
These should be programmed in the UE to run each for
a certain amount of time (e.g. 1 s) in a sequence that will
be repeated throughout the measurement.
On the right side of Fig. 1 the flowchart of the pro-

posed procedure for microenvironmental studies is
shown. In each microenvironment m (1…M), timeslot t
(1…T), and scenario k (1…K) we define a scenario-
specific power density vector skmt:

skmt ¼ SaUL;kmt SaDTDL;kmt SeDTDL;kmt SBCDL;kmt SeUL;kmt
� �T

; ð4Þ
with Ssource,kmt the measured power density from the
specific source category during scenario k, in

Table 1 Positions of the UE near the body in each case of the amount of data transmission in UL and DL. Some typical activities are
given

Data
transmission

UE locations relative to body

Against ear In front In pocket

No connection n/a n/a n/a

(min UL, min DL) Reading No activity

(min UL, max DL) Video streaming (DL) Big file download

(max UL, min DL) Video streaming (UL) Big file upload

(max UL, max DL) Video call Operation requiring low latency and Cloud Computing
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microenvironment m and during timeslot t. These
scenario-specific power density vectors can be combined
using a weighted sum to estimate the total exposure per
microenvironment and timeslot. From survey studies,
the J relevant activities for microenvironment m and
timeslot t should be selected. For each activity-specific
power density vector amtj, a linear combination of
scenario-specific power density vectors with coefficients
γkmtj can be made:

amtj ¼
XK

k¼1
γkmtj°skmt ; ð5Þ

with γkmtj a vector of five dimensionless coefficients (for
each dimension of s and a) and ° the elementwise (or
Hadamard) product. As discussed in Section 3.1.1, the
total exposure is the sum of the exposure in each activ-
ity, weighted by the fraction of time spent in this activity
τj and the position coefficient vector of each activity βj.
We can apply this approach per microenvironment m
and timeslot t:

Stot;mt ¼
X J

j¼1
τmtj βmtj:amtj

� �
: ð6Þ

Equation 5 can be used to substitute amtj. This results
in an expression for the total exposure based on meas-
urement scenarios in microenvironment m and during
timeslot t:

Stot;mt ¼
XK

k¼1
wkmt :skml; ð7Þ

with wkmt the total weighting vector:

wkmt ¼
X J

j¼1
τmtj βmtj°γkmtj

� �
: ð8Þ

Measurement equipment
As shown in Fig. 1, a combination of two devices is pro-
posed: (1) a personal exposure meter (PEM) and (2) a
mobile device connected to the 5G NR network.
The novel PEM will be used to measure both environ-

mental and auto-induced 5G NR exposure. In the case
of TDD, it will not possible to separate UL and DL con-
tributions by frequency alone, as all of the 5G NR signals
(BC, DL, and UL) occur in the same frequency band.
However, mobile network operators will synchronize 5G
NR transmissions (at least per country). This means that
the TDD slot format will be fixed, which, in theory,
could be used to discern UL and DL exposure if the
sampling speed of the PEM can be fast enough. In other
words, to distinguish between at least the downlink (i.e.
a-DL + e-DL + BC) and the uplink (a-UL + e-UL) expos-
ure sources, the PEM should be able to measure the
root-mean-squared power per slot of the 5G NR radio
frame. For sub-6-GHz signals, the shortest slot duration
is 0.25 ms (i.e. in the case of a subcarrier spacing of 60

kHz) [1]. This is much faster than any PEM today, which
sample only once every 3 to 4 s. The high sampling rate
will massively increase the data storage and battery life
needs of the required PEM. Furthermore, it may also be
possible to effectively distinguish between a-DL, e-DL,
and BC, as well between a-UL and e-UL by keeping an
accurate diary and additional post-processing, based on
the difference in the distributions of the received powers
per slot. Unfortunately, the difficulty to synchronize the
PEM sampling with the specific slot timing will also in-
duce additional measurement uncertainty.
In order to experimentally assess the exposure of a

user in a 5G NR network, user equipment is needed to
attract (a) beam(s)/hotspot(s). In survey studies, the mo-
bile device should act as the participant’s own user de-
vice with which they can conduct their normal mobile
activities, and in microenvironmental measurements, it
will be used to emulate different scenarios. Besides the
possibility of inducing a-DL and a-UL exposure, which
can then be measured with the PEM, the device can be
equipped with an application such as XMobiSense [14]
to log the Received Signal Strength Indicator (RSSI) from
which SBC could be derived (after calibration). Equipping
the mobile device with an RF-EMF sensor such as DEVI
N would further enable one to keep track of a-UL ex-
posure, which would make it easier to differentiate a-UL
and e-UL. It is possible to add a PEM to survey studies
as a complementary measurement device.
In the case of microenvironmental studies, the PEM(s)

and the mobile device should be fixed on the body and
should thus be on-body calibrated, so that the measure-
ments by the PEM(s) can be used to estimate the shape
of the hotspot or beam and help calculate βmtj.
In order to calculate βj per activity j from survey stud-

ies, the location of the mobile device (the UE) relative to
the body during the activity should be known. The loca-
tion p of the UE is representative for the area where the
UE can be during activity j (e.g. against the ear, in a
handbag…). This proxy should be a worst case (i.e. as
close as possible to the body) or a high percentile (e.g.
the 95th percentile) of a representative set of simulations
of positions in the area. The area where the mobile de-
vice is can be derived by using existing smartphone
proximity sensors, gyroscopes, alternative methods of
monitoring (such as motion tracking or external inertial
sensors), statistics on biomechanical movements (during
certain activities or in general during the day) and ques-
tionnaires or diary keeping.

Measurement procedure
For a microenvironmental study, first, the microenviron-
ments and timeslots to be assessed are identified. Then,
the scenarios which the mobile device should cycle
through are selected. Since more scenarios means less
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time that can be spent in each scenario, a total of four
scenarios were proposed in Section 3.1.2.
In each microenvironment a measurement path is

defined. Previous studies found that at least 15 min of
walking along such a path obtains reproducible results
within a microenvironment [28]. More scenarios will in-
crease the measurement time that is necessary to have
representable results for each scenario within the
microenvironment.
A good practical measurement setup, which also

reduces the measurement uncertainty, is measuring with
two on-body calibrated PEMs simultaneously, such as
on the left and right hips, and a mobile device on a third
fixed location. The calibration procedure as lined out in
[26] can be followed.

Data processing
From the survey studies, J activities should be defined
using clustering analysis. P discrete positions (locations
relative to the body), microenvironments and timeslots
should be defined and used as labels. Per position, the
factors βj should be calculated. Previously, a number of
simulation studies have assessed the exposure of a body
nearby a radiating EM source. Current work on numer-
ical simulations is being done to show the shape of a
local hotspot near a user, which depends on the loca-
tions of both base station and UE. Hence, by comparing
the powers received by the PEMs and by the UE, and
fixing the UE on a known position on the body, the
shape of the local hotspot, as well as the related expos-
ure of the body could be estimated based on those nu-
merical simulations.
The data from the microenvironmental measurements

should be weighted for each of the scenarios based on
the activities present in the specific microenvironment
and during the specific timeslot in order to obtain sum-
mary statistics on the exposure quantities in certain
activities. As discussed in 3.2, it may be possible to split
a-UL and e-UL, and a-DL, e-DL, and BC based on their
different distributions. These differences in distributions
are caused by the proximity of the source to the meas-
urement device and fundamental differences in data
transmission in UL, DL, and BC.
A discussion on data-cleaning (including dealing with

non-detects) was already included in [19] and can be
transferred to this protocol.

Discussion
The implementation of MaMIMO base stations with
adaptive precoding in the fifth generation of tele-
communication networks will lead to a high spatial
and temporal variability on the RF-EMFs. This will
be one of the sources of an increase in measurement
uncertainty on personal exposure measurements.

Furthermore, MaMIMO will introduce an auto-
induced downlink component to the personal RF-
EMF exposure in the population. In the current
protocol for personal exposure measurements, auto-
induced exposure is typically omitted. These two
factors present a challenge to the field of RF-EMF
dosimetry. In this paper, we aim to transform this
challenge into an opportunity to improve the assess-
ment an individual’s exposure by including auto-
induced exposure and by working with an activity-
based model.
As on the conception of this paper, there are no large-

scale roll-outs of 5G NR with millions of users, many
details of the protocol suggested in this paper are still
based on preliminary insights and may be subject to
adaptation taking into account results from future stud-
ies. Nevertheless, based on the public concern of RF-
EMF exposure, it is important to have a practical proto-
col ready by the time 5G NR will be rolled out.
In Eq. 1 we defined total exposure in terms of power

density aj during each activity j. With the evolution of
user data collection, it will be possible to calculate the
τj’s, the fraction of time spent in each activity, for many
users. The distribution of RF-EMF exposure in the
population can then be assessed on an individual level,
with survey studies providing βj and aj. This would be
extremely useful for epidemiological studies and for
relating potential long term health effects to RF-EMF
exposure. It is important to stress the different goals of
microenvironmental and survey studies. When a system-
atic analysis of exposure across time, different cities and
different countries is needed, e.g. in order to test the
implications of certain regulatory limits or to evaluate
the high daily temporal fluctuations on a train, microen-
vironmental measurements are preferred. When the goal
is to assess the exposure distribution in a certain popula-
tion group, survey studies are preferred.
This protocol encapsulates basic guidelines for the

conduct of personal exposure measurements. Parts of it
should be made more concrete, such as the selection of
a fixed set of scenarios, or may be adapted. Other fea-
tures might also be added, such as the use of this proto-
col to validate spatio-temporal exposure maps based on
measurement nodes, base station data, and surrogate
modelling [3].
This protocol can be used to measure exposure in

each frequency band. The goal of the RF-EMF sensor is
to measure at the UE, as such narrow beams that are
aimed at the UE can be measured as well. However, the
design of the RF-EMF sensor will be dependent on
which frequency bands are intended to be measured.
In Table 2, an overview of the main differences and

similarities between the proposed protocol and the
current protocol proposed by [19] is shown.
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Challenges to be addressed in future work include: (1)
the development of measurement equipment according
to the requirements described in this paper, (2) numer-
ical simulations validated by lab measurements in order
to calculate the position coefficient vectors βj, (3) trial
runs of the proposed survey study protocol in order to
specify the instructions to be given to the participants
and to have a data set to develop the clustering analysis
of the activities, (4) trial runs of the proposed microenvi-
ronmental measurements protocol in order to define the
specific parameters, such as the measurement duration,
specific scenarios and their duration, and the on-body
location of the measurement devices, and (5) the conver-
sion between power density and specific absorption rate
(SAR), which describes the amount of power absorbed
by parts of or the whole body. The advantage of SAR is
that under a-UL and a-DL exposure (from hotspots), the
exposure will be limited to part of the body. This type of
exposure can be more accurately described using SAR
than power density. In their guidelines for RF-EMF ex-
posure limits, ICNIRP [13] has extended the use of SAR
to frequencies over 6 GHz.

Conclusions
In this paper, the implications of the roll-out of 5G NR
(new radio) on personal exposure to RF-EMFs are iden-
tified. These present challenges for personal exposure
measurements. A new protocol based on the activities of
users is proposed in order to overcome these challenges.
This protocol includes the assessment of auto-induced
exposure, which is an important part of personal expos-
ure to RF EMFs that is currently not measured in most
studies. Based on the public concern of RF-EMF expos-
ure, it is important to have a practical protocol ready by
the time 5G NR will be rolled out.
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