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Abstract—Diagnosing foot complaints using plantar pressure videos is complicated by the
presence of confounding factors (e.g. age, weight). Outlier detection could help with diagnosis,
but these confounding factors result in data that is not independent and identically distributed
(IID) with respect to a specific patient. To address this non-IID problem, we propose the modeling
of confounding factors using metric learning. A distance metric is learned on the confounding
factors in order to model their impact on the plantar pressures. This metric is then employed to
weight plantar pressures from healthy controls when generating a patient-specific statistical
baseline. Statistical parametric mapping is then used to compare the patient to this statistical
baseline. We show that using metric learning reduces variance in these statistical baselines,
which then improves the sensitivity of the outlier detection. These improvements in outlier
detection get us one step closer to accurate computer-aided diagnosis of foot complaints.

Keywords– computer vision, medicine and science, machine learning, computer-aided
diagnosis, plantar pressure.

IN DIAGNOSTIC MEDICINE, it is well-
established that a health condition can often
produce different symptoms in different people.

Therefore, it can be challenging or inappropriate
to model a patient population as a single ho-
mogeneous group. Instead, an outlier detection
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approach is preferred. This is equally the case
when assessing foot complaints [2]. When assess-
ing foot complaints, a gait analysis is performed
with pressure-sensing plates [11], wearable sen-
sors [1], or cameras [13] recording the patient’s
walk. In this work, we consider videos of the
plantar pressures measured from the bottom of
a person’s foot as they walk over a pressure-
sensing plate. While previous works have de-
scribed anomalies from these plantar pressures at
the group level, it is also known that different
patients have different abilities to cope with foot
complaints [11], suggesting that plantar pressure
anomalies are likely patient-specific. Outlier de-
tection is therefore desired to identify whether
anomalies exist in an individual’s plantar pressure
video, and if so, when and where. By localizing
these abnormalities, it is hoped that a better
diagnosis of foot complaints can be achieved [2].

One popular approach to outlier detection
in the medical domain is to statistically model
healthy controls, then use this model as a baseline
to which individual patients can be compared [6].
Patients that are significantly different from this
baseline are identified as having an anomaly.
For medical imaging applications like our plantar
pressure video analysis, outlier detection is reg-
ularly combined with statistical parametric map-
ping (SPM) to localize anomalies in both space
and time [2], [4]. SPM-style outlier detection
typically follows an established workflow. First,
the plantar pressure videos brought into spa-
tiotemporal alignment [3]. At each pixel in each
frame, the plantar pressures are then statistically
modeled using Normal distributions, resulting in
a statistical baseline defined by a mean plantar
pressure video and a standard deviation video.
Subsequently, a patient’s plantar pressure video is
spatiotemporally aligned to the baseline’s mean
video, and single-sample t-tests are then com-
puted as the outlier scores at each pixel. Finally,
Random Field Theory is used to identify whether
the patient’s plantar pressures are statistically sig-
nificant outliers of the baseline distributions [10].
This SPM-style outlier detection allows for the
localization of anomalies to specific anatomical
structures and specific time points in the footstep.

While this approach to outlier detection has
shown promising results in other applications [4],
one property that limits its application to plan-

tar pressure videos is that the computation of
mean and standard deviation videos assumes each
healthy control is independently and identically
distributed (IID) from the same population as the
patient under examination. Unfortunately, this is
not the case for plantar pressures. It has been well
established that demographic factors like weight,
age, sex, height, and shoe size, impact plantar
pressures in ways that are unrelated to known foot
complaints [7]. As a result, we have a contextual
outlier detection problem where the demographic
features define the context under which plan-
tar pressures normality should be judged. While
multiple contextual outlier detection techniques
exist [2], [8], [15], they are either limited to linear
regression models [2], or have yet to show com-
patibility with the SPM framework. Specifically,
SPM requires that the contextual outlier detection
algorithm produce a statistical measure (e.g. t-
statistic, F-measure) as its outlier score. That
way, Random Field Theory can still be used to
establish the threshold at which a pixel becomes
an outlier.

In this paper, we propose the integration of
contextual outlier detection into SPM for the
purpose of detecting outliers in plantar pressure
videos. We base our approach on the idea that
the plantar pressures from our non-IID healthy
controls should be weighted based on the de-
mographic similarities that those control sub-
jects have with the patient under examination.
As in [15], these similarities are modeled using
metric learning in order to manage the relative
importance of each demographic factor on the sta-
tistical baseline. We hypothesize that this metric
learning approach will produce more numerically
accurate statistical baselines to which patients can
be compared, resulting in more reliable anomaly
detection.

METHODS
Consider a set of plantar pressure videos

{V1, · · · ,VN} sampled non-IID from N healthy
controls. For each healthy control, we also as-
sume that we have measured the confounding
factors of age, sex, weight, height, and shoe size.
Let {y1, · · · ,yN} be column vectors contain-
ing these demographics. Similarly, let Vtest and
ytest be the plantar pressure video and demo-
graphics for the patient to be evaluated. We will
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Figure 1: The creation of a statistical baseline for a patient’s plantar pressure video. Much like mixing
different paints to produce a new color, previously collected plantar pressure videos are also mixed to
produce a statistical baseline. The inclusion of a video in the baseline is controlled by the demographic
characteristics that are contextual factors for plantar pressure measurements. Metric learning is used
to estimate how much each demographic factor should impact the creation of the statistical baseline.

assume that these plantar pressure videos have
already been spatially and temporally aligned
using STAPP [3].

Patient-Specific Baselines
In previous works [4], healthy controls are

assumed to be sampled IID from the same pop-
ulation of the patient. As a result, the baseline
mean, M, and standard deviation, S, videos are
constant for all patients and given by:

M(x, t) =
1

N

N∑
i=1

Vi(x, t), (1)

S(x, t) =

√√√√ 1

N − 1

N∑
i=1

[Vi(x, t)−M(x, t)]
2
,

(2)

where x is a pixel location, and t a time frame,
in the video. In practice, however, each healthy
control is not an IID sample. Instead, we know
that a person’s age, weight, height, sex, and
shoe size all influence their plantar pressures.
Therefore, we propose to model this problem
as a contextual outlier detection problem where
these demographic factors provide the necessary
context.

To address these concerns, we propose to
weight each healthy control differently in the cre-
ation of the statistical baseline. The demographic
factors will be used to define these weights in
order to address the non-IID sampled healthy
controls. This approach takes inspiration from
how an artist would mix different amounts of
different paints in order to produce a new color
(Figure 1). It should be noted that Serag et al. pro-
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posed a similar idea where a single demographic
measurement (age) was used [12], but their use
of a single demographic factor results in a trivial
way of defining similarity between individuals.

In contrast to the IID outlier detection ap-
proach in Equations (1) and (2), we construct the
baseline pixel-by-pixel normal distributions using
a global weighted kernel regression, resulting in
mean and standard deviation videos defined as,

Mtest(x, t) =

∑N

i=1w(yi,ytest)Vi(x, t)∑N

i=1w(yi,ytest)
, (3)

Stest(x, t) =√√√√∑N

i=1w(yi,ytest) [Vi(x, t)−M(x, t)]
2∑N

i=1w(yi,ytest)−
∑N

i=1 w(yi,ytest)2∑N
i=1 w(yi,ytest)

,

(4)

where the weights are obtained from a Gaussian
kernel over the distances between the contextual
demographic factors:

w(yi,yj) = exp (−dist(yi,yj)). (5)

This kernel regression ensures that healthy
controls with similar demographics to the patient
receive higher weights for their plantar pressure
videos than other less similar healthy controls.
Unfortunately, this regression alone does not ex-
plain how distances should be measured between
demographics factors in order to define an ac-
curate statistical baseline for an individual. For
example, a person’s weight has a greater impact
on plantar pressures than a person’s age [7] and
this should be captured in the distance metric, but
to what degree? How do we place a number on
this?

Metric Learning
To address this question, we developed a high-

dimensional extension of the metric learning for
kernel regression (MLKR) algorithm initially pro-
posed by Weinberger and Tesauro [14]. MLKR
has been used for contextual outlier detection
before [15], but here we combine it with our
statistical baseline above in order to integrate it
within the SPM framework. Conceptually, MLKR
aims to define a distance metric that optimally

reconstructs the plantar pressure videos. This
objective is captured mathematically through a
leave-one-out regression loss function

L =
N∑
i=1

∑
x

∑
t∥∥∥∥∥Vi(x, t)−
∑

j 6=iw(yi,yj)Vj(x, t)∑
j 6=iw(yi,yj)

∥∥∥∥∥ ,
(6)

incorporating w(·), the kernel over demographic
distances defined in Equation (5). Effectively, this
approach aims to learn a distance metric that
emphasizes each demographic factor based on the
degree to which each factor influences the plantar
pressure videos. A Euclidean norm is used here as
each plantar pressure dataset is assumed to be an
equally reliable estimate of the gait of a healthy
individual.

While MLKR allows for a variety of distance
metrics, we follow the approach in [14] and
model the distances using a Mahalanobis-style
metric,

dist(yi,yj) = (yi − yj)
TP(yi − yj) (7)

where the positive semi-definite matrix P cap-
tures the relative influences of each demographic
factor to both the plantar pressure videos and
to each other. To estimate P, we first replace
it by its Cholesky decomposition P = LLT in
order to preserve its positive semi-definite struc-
ture. Subsequently, the decomposed matrix L is
then solved for by inserting it into Equation (7),
inserting Equation (7) into Equation (5), inserting
Equation (5) into Equation (6), and minimizing
the resulting regression loss function L with
respect to L. We note that this loss function is
convex and can be minimized using, among other
techniques, gradient descent. The gradient of L
with respect to L is,
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∂L
∂L

= 4L
∑
x

∑
t

N∑
i=1

([Mi(x, t)−Vi(x, t)]∑
j 6=i

[(Mj(x, t)−Vj(x, t))

w(yi,yj)(yi − yj)
T (yi − yj)

])
(8)

Using the plantar pressures and demographics
from our healthy controls, we employ gradient
descent to solve for the decomposition matrix
L. This matrix can then be used to generate
patient-specific baseline plantar pressures using
(3) and (4). Note that this optimization has no
hyperparameters that need to be fine tuned [14].

Outlier Detection
Once a distance metric is learned over the de-

mographics, patient-specific statistical baselines
are computed at each pixel of the plantar pressure
video and the SPM framework can then be used
to identify outliers. To do so, the plantar pressure
video of the patient under evaluation is checked
for anomalies using z-scores [4]:

Ztest(x, t) =
Vtest(x, t)−Mtest(x, t)

Stest(x, t)
. (9)

Pixel-by-pixel anomalies are then defined as
those whose z-scores are statistically significant,
at α = 0.05, following multiple comparison
correction using Random Field Theory [10].

EXPERIMENTAL SETUP
To evaluate the proposed outlier detection

technique, we employ three datasets of plantar
pressure videos. First, an internal dataset of 430
healthy controls is used as the training set to learn
the distance metrics over the demographic factors.
This dataset is also used to generate the base-
line mean and standard distribution videos. Sec-
ond, the CAD WALK healthy controls database
(http://doi.org/10.5281/zenodo.1265420) contains
plantar pressure videos from 55 healthy individ-
uals. These measurements are used to validate
how well the estimated baselines match real
plantar pressure videos from healthy individuals.
Finally, the CAD WALK hallux valgus database
(http://doi.org/10.5281/zenodo.2598496) is used
to evaluate how capable the proposed technique is

at identifying the plantar pressure anomalies that
are known to exist for this patient population [2].
This dataset consists of 69 hallux valgus cases
measured from the feet of 50 patients (19 of these
50 patients have both feet affected). All plantar
pressure videos were collected using calibrated rs
scan footscan® pressure-sensing plates (rs scan,
Paal, Belgium). The CAD WALK healthy con-
trols were measured at 500 Hz while the other
two groups were measured at 200 Hz. Also,
participants in both CAD WALK datasets were
measured using a 3-step protocol (i.e. the third
step of the walk is measured), while the internal
dataset was collected using an 8-step protocol [5].
The study was approved by the internal review
committee of the Sint Maartenskliniek and met
the requirements for exemption from the Medical
Ethics Committee review under the Dutch Med-
ical Research Involving Human Subjects. The
study was performed in accordance to the dec-
laration of Helsinki.

To test our proposed outlier detection tech-
nique (subsequently labeled FULL for full metric
learning), we compared our technique to five sim-
ilar competing approaches. The first competing
technique was a one-dimensional version of the
metric (subsequently labeled 1D) where P = σI
(σ is the unknown scaling parameter and I is the
identity matrix). The one-dimensional version is
conceptually equivalent to the approach of Serag
et al. [12]. The second technique was the IID
approach described in (1) and (2) and used in [4]
(subsequently labeled IID). The third technique
(subsequently labeled DIAG) uses a diagonal L
matrix for the metric. This approach serves as
a middle ground between our proposed FULL
metric approach and the 1D approach of Serag
et al. [12]. The fourth competing approach is
PAPPI [2], which uses linear regression to model
the impact the demographics have on the plan-
tar pressures. Finally, we also compare to Ro-
bust Contextual Outlier Detection (ROCOD) [8],
which combines the linear regression baseline of
PAPPI with an IID baseline calculated over a
local neighborhood defined by the demographics.
For ROCOD, the local demographic neighbor-
hoods were empirically defined to contain sam-
ples whose max-min normalized demographics
are within a Euclidean distance of τ = 0.25 of
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(a) Measured Plantar Pressure Video (aligned to baseline)

(b) Statistical Baseline Mean Video

(c) Statistical Baseline Standard Deviation Video

(d) Detected Outliers Colored by Z-Score

Figure 2: Example of proposed outlier detection algorithm at different percentages into the stance
phase.
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(a) Baseline Prediction Error (b) Baseline Standard Deviation (c) Percentage Outliers

Figure 3: Quantitative results on statistical baseline estimations. The proposed FULL metric learning
approach produced the most accurate baseline prediction with the lowest variance, resulting in among
the largest number of outliers detected. See text for further details.

the test patient.
To quantify the performance of each outlier

detection technique, we perform 3 experiments.
First, we compare the estimated baseline mean
plantar pressure videos to real measured plan-
tar pressures from healthy controls. Differences
between the two videos are quantified using the
average per pixel absolute error. We hypothesize
that our FULL metric learning approach will
achieve the lowest absolute errors. Second, we
measure baseline sensitivity using the average per
pixel magnitude of the baseline standard deviation
videos. We hypothesize that our FULL metric
learning approach will show the lowest variability
compared to the competing algorithms. Third,
we perform outlier detection on both the hallux
valgus patients and healthy controls. We hypoth-
esize that our FULL metric learning approach
will be more sensitive to outliers than competing
algorithms. Additionally, we hypothesize that the
Hallux Valgus patients examined with our FULL
metric learning approach will have plantar pres-
sures outliers that show better agreement with
previous Hallux Valgus studies than competing
approaches. Specifically, we expect to see outliers
around the hallux (i.e. big toe) where the foot
condition is present [2].

RESULTS
Figure 2 shows an example of our ML outlier

detection technique on a plantar pressure video
from one of our 69 Hallux Valgus cases. Note
that the estimated baseline plantar pressure video
shows a realistic pressure pattern and that the
detected outliers under the midfoot, toes, and
metatarsal 1 agree with what is commonly seen

in Hallux Valgus patients [2]. Similar figures for
all plantar pressure datasets and all algorithms are
provided as supplementary material.

Figure 3a shows the average per pixel absolute
error between the measured plantar pressures
from healthy controls and the baseline mean
images from each statistical baseline. Both the
DIAG and FULL metric learning approaches pro-
duced baseline mean images that were closest to
the real measured plantar pressures, each having
an average error of 26.56 kPa. These errors were
1.53% - 3.15% lower than competing algorithms.
Paired t-test showed that the FULL metric learn-
ing approach produced errors that were statis-
tically lower than the IID and 1D approaches
(p = 0.004 vs. IID, p = 0.009 vs. 1D).

Figure 3b shows the average per pixel stan-
dard deviations for each statistical baseline es-
timation technique. The inclusion of the demo-
graphic factors significantly reduced the vari-
ability in the baseline, with our FULL metric
learning approach showing the lowest variability
on average. These decreases in variability were
between 0.67% - 8.66% in magnitude. Paired t-
tests show that FULL metric learning produced
significantly lower baseline variability than IDD
(p < 1e−10), 1D (p < 1e−10), DIAG (p < 4e−4),
and PAPPI (p = 0.030).

For each dataset and outlier detection tech-
nique, the average percentage of pixels in the
plantar pressure videos that were identified as
outliers are shown in Figure 3c. As expected, the
Hallux Valgus patients showed more pressure out-
liers than the healthy controls. Also, the number
of outliers increased as the statistical baselines
became more accurate and contained less vari-
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(a) 25% into stance phase

(b) 50% into stance phase

(c) 75% into stance phase

Figure 4: Histograms of detected outliers for the Hallux Valgus patient dataset (left foot). Note that the
FULL and DIAG metric learning approaches show more outliers in the midfoot (at 50% into stance
phase), hallux (at 25% into stance phase), and metatarsal 1 (at 75% into stance phase), results which
agree best with previous Hallux Valgus studies.

ability, suggesting improved outlier sensitivity. In
this respect, both FULL and ROCOD show the
greatest number of outliers.

Figure 4 shows spatiotemporal histograms
(i.e. pixel-by-pixel counts) of the detected outliers
for each of the three outlier detection approaches
on the left feet of hallux valgus patients. Note
that for Hallux Valgus patients, abnormal plantar

pressures are expected at the location of the foot
condition: under the hallux (i.e. big toe) and
metatarsal 1 (i.e. at the base of the big toe).
The FULL and DIAG metric learning approaches
equally show the highest number of outliers in
these areas as shown by the red arrows in Fig-
ures 4a and 4c. Additionally, there is evidence
that Hallux Valgus patients are more likely to
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have flat feet [2]. The FULL and DIAG metric
learning approaches also equally identify outliers
in the midfoot in Figure 4b, showing that it is
identifying these flat feet. It is also worth noting
that the non-IID outlier detection algorithms were
better able to identify outliers under the expected
foot regions than IID.

Finally, Figure 5 shows the precision matrices,
P, learned for the 1D, DIAG, and FULL metric
learning approaches. We noticed that a person’s
weight has the largest impact on their plantar
pressures, and that notable interactions are present
between all demographic factors. These results
further emphasize the need for non-IID outlier
detection.

DISCUSSION
Overall, the estimations of statistical baselines

improved as the impact of the demographic fac-
tors were increasingly and more flexibly mod-
eled. Our FULL metric learning approach also
integrates well into the SPM framework in order
to perform outlier detection across whole plantar
pressure videos. As a result of these improved
statistical baselines, our approach was able to
identify more outlier plantar pressures and, more
importantly, have those outliers match better with
previously-reported results on Hallux Valgus pa-
tients. These results suggest that our proposed
outlier detection technique has improved the sen-
sitivity and reliability of outlier detection in plan-
tar pressure videos.

Nevertheless, there are results in our study that
suggest caution regarding the interpretation of the
detected outliers. First, the number of outliers de-
tected for the healthy controls was higher than we
would expect. When we qualitatively evaluated
the outliers for this dataset (see supplementary
materials), we observed that these outliers are
generally caused by two effects: errors in spa-
tiotemporal alignment between the baseline and
measured plantar pressure videos, and harder heel
strikes in the CAD WALK healthy control dataset
than in our internal healthy controls dataset. The
former of these effects is a limitation of all SPM-
style outlier detection algorithms and is some-
thing that should be manually checked each time
an algorithm like this is used [2], [3]. The latter
of these effects may be related to a difference
in data collection between the two datasets [5].

The CAD WALK dataset was collected using a
3-step protocol while our internal dataset used
an 8-step protocol. As a result, the CAD WALK
participants may have been in a less natural
walking rhythm at the time of measurement than
the participants in our model. Whether this is
indeed the case is something that we intend to
investigate.

Additionally, Figure 3b shows a number of
large outliers in our proposed estimation of base-
line standard deviations. We hypothesize that
the increased baseline variability for these in-
dividuals may be related to their demographic
similarity to the training database. Note that
the proposed algorithm creates statistical base-
lines through the interpolation of plantar pressure
videos in the database, and that this interpo-
lation is based on demographic factors. If an
patient with notably different demographic mea-
surements presents themselves, we do not have
similar individuals in the training database from
whom we can interpolate a good statistical base-
line. In such cases, extrapolation is required. Our
future work will look into whether recent work in
machine learning can provide this extrapolation
effect.

Finally, it is worth noting that the proposed
technique – incorporating contextual outlier de-
tection with SPM – has applications beyond the
analysis of plantar pressure videos. SPM has seen
extensive use in the field of biomechanics [10]
and the proposed technique could be used to
identify form breaks in athletes. Medical imaging
also makes extensive use of SPM [4], and the
proposed technique for computer-aided diagno-
sis. The geosciences also employ SPM for the
study of hyperspectral images [9]. The proposed
technique can also be used there to detect, for
example, groundwater contamination. These areas
remain as future work to be explored.

CONCLUSION
We have proposed herein an algorithm for the

statistical outlier detection, incorporated it into
the SPM framework, and applied the result to the
outlier detection in plantar pressure videos. Due
to the contextual effects of multiple demographic
factors, we employed metric learning to generate
patient-specific plantar pressures benchmarks for
each pixel of each frame of the plantar pressure
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(a) 1D (b) DIAG (c) FULL

Figure 5: Precision matrices, P, for the metrics learned in this study. Note that one’s weight has the
largest impact on plantar pressures and that interactions do exist between the demographic factors.
Our FULL metric learning approach appears the best-suited of the three to model these interactions.

videos. We observed that, for healthy individuals,
our proposed patient-specific benchmarks were
more comparable to measured plantar pressures
than an IID approach or linear models can pro-
vide. This leads to an outlier detection technique
that is more sensitive to pressure outliers and
appears to detect pressure outliers that show bet-
ter agreement with clinical literature. While more
study is needed, the introduction of this non-
IID outlier detection approach may ultimately
improve the ability to diagnose foot complaints
from plantar pressure videos.
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