
IEEE INTERNET OF THINGS JOURNAL, VOL. X, NO. Y, MARCH 2021 1

LoRaWAN Scheduling:
From Concept to Implementation

Celia Garrido-Hidalgo, Jetmir Haxhibeqiri, Bart Moons, Jeroen Hoebeke, Teresa Olivares,
F. Javier Ramirez, and Antonio Fernández-Caballero

Abstract—While the Internet of Things continues to grow,
the LoRaWAN standard is generating special interest due to
its open-source nature, ultra-low power consumption and long-
range connectivity. Recent works have explored the challenges
of implementing LoRaWAN, with scalability being considered
one of the major bottlenecks imposed by its Aloha-based MAC
layer. Despite much on-going research on LoRaWAN scheduling
aimed at alleviating this concern, experimental approaches are
rarely found in the literature. In this work, we describe the
steps taken and the technical issues overcome to move from a
low-overhead synchronization and scheduling concept to its real-
world implementation on top of LoRaWAN Class A. Accordingly,
an end-to-end architecture was designed and deployed on top
of STM32L0 MCUs, which communicate with a central entity
responsible for providing synchronization metrics and allocating
transmission slots on demand. The clock drift of devices was
measured in a temperature-controlled chamber, which served as
a basis to define slot lengths in the network. As a result, an
operational end-to-end system was implemented and evaluated
for different setup scenarios, with 10-millisecond accuracy being
achieved. Our experimental results show significant improve-
ments in packet delivery ratios with respect to Aloha-based
setups, especially under high network loads (up to 29% for SF12),
thereby demonstrating the feasibility of the presented approach.

Index Terms—LoRa, LoRaWAN, scheduling, synchronization,
clock skew, clock drift.

I. INTRODUCTION

AS the Internet of Things (IoT) continues to expand,
forecasts point to 22 billion connected devices by 2025

(excluding daily-life gadgets), of which nearly 2 billion will
be fully operated by Low Power Wide Area Networks (LP-
WANs) [1]. In the LPWAN domain, LoRaWAN [2], which
leverages ultra-low power consumption and long-range com-
munication on top of Semtech’s LoRa PHY layer [3], has
attracted special interest. Similarly to how Wi-Fi technology
is considered the major privately-operated competitor for cel-
lular technologies, LoRaWAN has become a feasible private
alternative to other LPWANs. While being highly suitable for
battery-powered devices, it also features low deployment and
operational costs by using the unlicensed frequency bands.

C. Garrido-Hidalgo, T. Olivares and A. Fernández-Caballero are with
Instituto de Investigación en Informática de Albacete and Departamento de
Sistemas Informáticos, Universidad de Castilla-La Mancha, 02071 Albacete,
Spain (e-mail: celia.garrido@uclm.es).

J. Haxhibeqiri, B. Moons and J. Hoebeke are with IDLab, Department of
Information Technology at Ghent University - imec, 9052 Ghent, Belgium.

F.J. Ramirez is with Escuela Técnica Superior de Ingenieros Industriales,
Departamento de Administración de Empresas, Universidad de Castilla-La
Mancha, 02071 Albacete, Spain.

Copyright (c) 2021 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

Being oriented towards infrequent machine-type communi-
cation, LoRaWAN relies on Aloha, which guarantees cost-
effective communications by avoiding Medium Access Con-
trol (MAC) overhead [4]. While suitable under low traffic
loads, reliability is significantly compromised in large-scale
deployments leading to a network collapse [5], [6]. To tackle
this, several scheduling schemes exist but most have only been
validated in simulators, thus not considering the issues related
to implementing an operational end-to-end system.

To fill this gap, this work extends a recent contribution [7]
where a low-overhead synchronization and scheduling tech-
nique was presented. Slots were assigned on demand by the
Network Synchronization and Scheduling Entity (NSSE) using
space-efficient probabilistic data structures. Synchronization
energy overhead resulted to be much lower than the required
to retransmit collided packets in unsynchronized setups.

The current work addresses a detailed implementation and
experimental validation, highlighting the effort required to
move from simulation to a real end-to-end system. To this
end, the system architecture is first proposed and deployed,
with the hurdles overcome being discussed as design choices.
Furthermore, a methodology was designed to measure the
clock drift of devices in different environmental conditions,
which served as a basis to define guard times mitigating the
effect of device desynchronization over time. The resulting
system was evaluated for high network loads in terms of
synchronization accuracy and communication reliability.

To the best of our knowledge, this is the first end-to-end
solution providing experimental clock drift measurements and
validation of a LoRa-based synchronization and scheduling
scheme. As major contributions, first, a measurement method-
ology is designed and validated under temperature-controlled
conditions. Second, the design choices and hurdles overcome
are described in-depth, including: clock source selection, ar-
chitecture constraints, error compensation, traffic priorities,
and asymmetric network delays, among others. Finally, the
end-to-end system is validated on top of LoRaWAN hardware,
with a mean synchronization accuracy of 10 milliseconds, and
delivery ratios close to 100% under high network loads, that
is, 29% higher than those of unsynchronized setups.

The remainder of this paper is structured as follows. Sec-
tion II reviews LoRaWAN and related works. In Section III,
the architecture and algorithm’s fundamentals are detailed.
Section IV describes the implementation process, challenges
and lessons learned. Section V presents the experimental
evaluation of the system and discussion. Lastly, Section VI
provides the conclusions and explores the future research.

IEEE INTERNET OF THINGS JOURNAL, VOL. X, NO. Y, MARCH 2021 2

II. BACKGROUND

A. LoRa and LoRaWAN

LoRaWAN [2] defines the MAC-layer for LoRa’s PHY-
layer by Semtech [8]. LoRa is based on a proprietary spread
spectrum modulation derived from Chirp-Spread Spectrum
(CSS), where data rates (DRs) depend on the spreading factor
(SF), bandwidth (BW) and coding rate (CR). The SF can
be set to six values (SF7 to SF12), with 2SF being the
number of chirps per symbol. Each chirp consists of a linear
frequency sweep covering a typical BW of 125 kHz (up-chirps
for increasing frequencies and down-chirps for decreasing
ones). LoRa signals using different SFs are quasi-orthogonal
and, hence, not expected to interfere with each other when
transmitted over the same channel and BW. The lower the
SF, the higher is the DR, thereby shortening packet air times
at the expense of a more limited range. Conversely, higher
SFs allow the receiver to discern signals with lower Signal-
to-Noise Ratios (SNR). LoRa modulation performs forward
error correction, which increases redundancy at the expense of
longer transmission air times. The CR is computed as the data-
word length (k, equal to 4) divided by the code-word length
(n, in the range [5, 8]), which is set to 4/5 by default. Higher n
values will therefore improve robustness against interference.

The LoRa packet comprises the preamble, an optional
header and the frame payload. The time on air of a LoRa frame
is based on the length of these fields and symbol duration,
according to formulae provided in [3]. The preamble is used
to synchronize the receiver with the transmitter, which consists
of an optional programmable part followed by four fixed
symbols encoding the synch word. As long as the receiver and
transmitter have similar Signal Strength Indicators (RSSIs),
the reception of the last six symbols of the preamble typically
suffices for the receiver to synchronize [9].

LoRaWAN operates in the unlicensed frequency bands of
433, 868 and 915 MHz. In Europe, there are three mandatory
125 kHz channels (868.1, 868.3 and 868.5 MHz) [10]. It
uses a star-of-stars topology, where gateways are responsible
for forwarding uplink frames from end devices to a network
server via a back-haul, such as Ethernet or 4G. Downlink
communication is also possible but not encouraged to sustain
scalability, given the half-duplex nature of gateways and the
duty-cycle limitations [11]. The duty cycle is the maximum
time percentage a device can occupy a channel, and is regu-
lated by the EN300.220 standard [12] in the 868-MHz band.

The standard defines three classes of end devices according
to the application being pursued. Class A, supported by any
LoRaWAN device, achieves the lowest power consumption by
opening two receive windows only upon uplink completion
(after 1 and 2 seconds, respectively). This behavior allows the
end device to save energy by remaining in low-power modes
for long periods of time but, consequently, downlink traffic
should be accordingly scheduled at the network-server side.

The LoRaWAN channel access strategy relies on pure
Aloha, with devices transmitting asynchronously without per-
forming any carrier sensing [4]. This has some disadvantages
in terms of reliability, especially when high network loads
exist, as collision rates greatly increase [13].

B. LoRaWAN scheduling

While there is much on-going research on LoRaWAN
scheduling aimed at alleviating related scalability concerns,
only a few experimental approaches exist in the literature.

Reynders et al. [14] presented a two-step scheduling
scheme, validated through the NS-3 simulator, where end de-
vices select their desired channel, SF and transmission power
based on information provided by gateways on demand. Sim-
ilarly, Abdelfadeel et al. [15] used the LoRaFREE simulation
tool to demonstrate the benefits of allocating simultaneously
transmissions over different SFs and sequentially single-SF
ones, for which a two-step synchronization mechanism was
implemented and evaluated. While these approaches fully rely
on LoRaWAN Class A, Rajab et al. [6] provided a Matlab
simulation model where end devices synchronize over Class
C and, immediately, switch to Class A to save energy. In this
case, SFs are assigned by gateways based on the distance to
end nodes. Finally, a Time-Division Multiple Access (TDMA)
scheme built on top of Class B is presented in [5]. In this
work, the so-called Class-S is evaluated in terms of energy
efficiency and throughput compared to legacy Class A using
the LoRaWAN-Sim ad-hoc simulation environment.

The scheduling concept presented in [7], whose real-world
implementation is pursued in this work, fully adheres to the
LoRaWAN standard. It is built on top of Class A specification
while most LoRa-based scheduling works require modifica-
tions of the standard itself or rely on different classes. For
instance, the authors in [14] include beacons for synchroniza-
tion purposes, which breaks the concept of using Class A
devices. In [15] and [6], the use of an initial broadcast phase
at the gateway-side might overuse the duty-cycle limitations
imposed to gateways. Finally, the so-called Class S presented
in [5] fully operates on top of Class B, which is not mandatory
to be implemented by LoRaWAN-compliant end devices.

To date, some studies addressing the real-world evaluation
of LoRaWAN applications exist in the literature. By covering
different areas such as agriculture [16], urban monitoring [17],
supply chain management [18], or earthquake detection [19],
these typically evaluate the performance of legacy LoRaWAN
with no meaningful improvements being provided on top of
its MAC layer. Only two experimental approaches addressing
LoRa-based scheduling have been presented in the literature
to date. In the first, Zorbas et al. [20] proposed dividing time
frames in slots, which were pre-assigned to end devices based
on their extended unique identifier (EUI). The proposal was
validated in a LoPy4 testbed. Their mechanism consisted of
using a dedicated slot per frame to handle synchronization
and acknowledgments. However, the synchronization signaling
overhead led to a 50% increase in energy consumption, which
should be accordingly addressed. The scheduling mechanism
pursued in this work, conversely, requires no additional ra-
dio interfaces other than LoRaWAN. The second experimen-
tal approach [21] consisted of a LoRa on-demand TDMA
scheme, which was evaluated experimentally in a testbed of 11
MSP430-based nodes. Although scheduling was targeted for
LoRa communication, the nodes were equipped with a short-
range receiver based on PIC12LF1552 Microcontroller Units

IEEE INTERNET OF THINGS JOURNAL, VOL. X, NO. Y, MARCH 2021 3

(MCUs) to perform synchronization with 0.1-ms accuracy and
initiate the slot-allocation mechanism. This was done through
a cluster head, also consisting of a dual-radio interface to
enable short-range communication with end devices and long-
range with gateways. This solution, however, considerably
increases the complexity of the hardware required. The target
scheduling approach was evaluated in this sense, where the
authors demonstrated a low-overhead feature with respect to
other approaches where gateways need to perform an initial
broadcast phase to schedule end nodes. For the aforementioned
reasons, moving from the scheduling concept presented by
Haxhibeqiri et al. [7] to its real-world implementation is one
of the main motivations in this work.

It is important to note that, in order to successfully ad-
dress time-division scheduling approaches in practice, both
synchronization accuracy and clock-drift measurement are key.
Even if two clocks were accurately synchronized in time,
differently-drifting clocks will provoke their desynchronization
over time. Clock drift, however, received scant attention in
most studies despite being an important design aspect to this
end. In fact, none of them provides any measurements in this
regard, typically assuming ±15 to ±30 ppm for all devices
in the network, which might be unrealistic in real large-scale
deployments. Furthermore, network latencies and hardware-
related limitations are usually neglected when using simulation
environments, whose influence can hinder the performance of
scheduling proposals that need to rely on synchronization. This
work addresses the practical synchronization and scheduling
of Class A end devices, providing and validating a clock
drift measurement methodology to alleviate desynchronization
concerns arising in real-world network deployments.

C. Clock synchronization over LoRaWAN

First, we present some key notions on clock synchroniza-
tion. The behavior of a clock over time can be characterized
based on its offset, skew, and drift, used hereafter following
the terminology provided in [22] and defined as follows:

• Clock offset: time difference between two clocks.
• Clock skew: difference between a given clock’s frequency

and its nominal value, f0. It is the first derivative of a
clock value with respect to time and provides a measure
of how much a clock is incremented per time unit. Clock
skew can also be referred to as clock rate.

• Clock drift: difference in rates of a given clock and
a reference clock (second derivative), usually due to
environmental factors such as temperature, humidity,
pressure, and orientation. Of these, quartz crystals are
known to present the highest sensitivity to drastic temper-
ature changes [23], which presents a parabolic frequency
dependence over time given by:

∆f/f0 = β · (T − T0)
2 (1)

where β is a temperature coefficient (ppm/◦C2), and T0
the turnover temperature in the range 25 ± 5◦C.

Clock synchronization, despite being a challenging task due
to low-cost embedded oscillators and environmental uncer-
tainties, is known to enhance the reliability of large-scale

LoRa networks. In [24], a synchronization mechanism used
to develop a slotted-Aloha LoRaWAN variant was presented,
with transmission success rates improving from 7% to 33%.

Different LoRa-based synchronization approaches are found
in the literature. Polonelli et al. [25] achieved a mean accuracy
of 10 milliseconds using STM32L4 MCUs by computing a re-
ceived timestamp and the processing and air-times elapsed. A
similar method was conducted by Tessaro et al. [26] on top of
STM32L073 MCUs. Despite reaching ±4.5-millisecond syn-
chronization accuracies, clock-register resolution was limited
to 1024 ticks per second. Using the same hardware platform,
the authors in [27] presented a GPS-based proposal, where the
desired synchronization accuracy threshold, considering the
uncertainty caused by frequency instability of oscillators, was
achieved by adapting resynchronization periods. For instance,
resynchronization was performed every 70 seconds if less than
13-millisecond accuracy was needed, at the expense of higher
power consumption. Likewise, the authors in [28] achieved
a 0.3-millisecond accuracy on top of STM32L476RG, using
DCF77 and GPS timestamping. In this case, synchronization
was carried out through beacon flooding in a LoRa mesh
network testbed, thus not prioritizing low-power operation.

While none of the previous studies considers clock desyn-
chronization over time, a clear trade-off between achievable
accuracy and energy consumption is present in all of them. The
use of power-demanding hardware such as GPS is, therefore,
only justifiable for strict real-time applications.

III. LORAWAN SCHEDULING ARCHITECTURE

A. Network architecture
The proposed end-to-end architecture is depicted in Fig. 1.

For the end-device logic implementation, we selected B-
L072Z-LRWAN1 discovery kits, which include a 32-bit Arm-
based STM32L072CZ MCU (192 KB Flash, 20 KB RAM,
6 KB EEPROM) and an SX1276 transceiver on a stand-alone
module. These devices were programmed with the OSS7 open-
source software stack, governed by a flexible framework that
comprises a lightweight scheduler [29]. The stack follows a
modular design and supports different communication stan-
dards, of which Semtech’s LoRaWAN stack v1.0.2 was used
to implement the desired end-device functionality.

Data packets are forwarded from end devices to the Lo-
RaWAN backend, through a multichannel gateway. ChirpStack
is an open-source backend that features a network server, an
application server, and a gateway bridge that communicates
with Semtech’s UDP packet forwarder [30].

The NSSE functionality was implemented using the Click
Router framework [31], which subscribes to ChirpStack’s
MQTT broker to receive synchronization requests and pub-
lishes replies to be forwarded to end devices. Hence, data
packets received via MQTT go through processing mod-
ules (so-called elements) responsible for classifying packets,
processing requests and scheduling transmissions from all
devices joining the network based on their communication
requirements. To this end, the five baseline elements at the
back-end side are: (i) MQTT subscriber, (ii) packet classifier,
(iii) data-packet manager, (iv) NSSE, and (v) MQTT publisher.
Further implementation details are provided in Section IV-A.

IEEE INTERNET OF THINGS JOURNAL, VOL. X, NO. Y, MARCH 2021 4

Fig. 1. End-to-end LoRaWAN scheduling architecture.

B. Synchronization and scheduling algorithm

The fine-grained synchronization and scheduling scheme
proposed is built on top of LoRaWAN MAC layer, intended
for Class A devices that trigger communication. Although the
algorithm was presented in [7], some design aspects of the
initial algorithm were changed to deal with hardware limi-
tations encountered during implementation (further addressed
in Section IV). Fig. 2 shows a finite state machine describing
the set of stages that LoRaWAN devices go through once they
initiate the on-demand synchronization mechanism.

Devices joining the network send a synchronization request
to the NSSE including their: (i) clock skew, (ii) request iden-
tifier, (iii) uplink periodicity needs, and (iv) resynchronization
period. To filter MAC packets at the network server, port
224 is reserved for synchronization traffic (both uplink and
downlink) while a generic port is used for periodic commu-
nication. These ports are configurable in the setup. Likewise,
synchronization can be performed in-band or out-of-band. In
the former, synchronization traffic shares the three LoRaWAN
mandatory standard channels with uplink data while, in the
latter, the 869.525 MHz channel (only used for downlink
traffic at receive window RX2) is reserved for synchronization
(typically known as high-power (500 mW), high-duty cycle
(10 %) channel [12]). If the network overloads, the NSSE will
not allocate more devices to prevent packet losses. In this case,
devices attempting to join in band using a 0.1-% duty cycle
will have a low impact on the network performance while
out-band synchronization will not have any impact.

The NSSE allocates time slots able to accommodate the
highest time-on-air in the network, using two mechanisms:

1) Fixed slot allocation: each device has a set of pre-assigned
slots that are hashed by the NSSE based on their EUI. The
payload includes the first transmission slot (after which
the device will follow its own periodicity) and a set of
forbidden slots (where other devices in the network are
expected to perform resynchronization).

2) Bloom filter allocation: it consists of using probabilistic
data structures where available slots are encoded and
decoded applying a double-hashing technique [7]. This
method, despite being a space-efficient alternative, has a
false-positive probability given by:

p ≈
(

1 + e−
k·n
m

)k
(2)

where p is the false-positive probability, k the number of hash
functions, n the number of entries, and m the filter size (bits).

Once the request is sent, the end device maps its local
timestamp with its identifier and schedules the next syn-
chronization retry (see Fig. 2). It then remains idle until a
downlink is received, which goes through a double-filtering
stage. Otherwise, the scheduled request will be triggered.

During the first filtering stage, the end device parses the
frame port and the packet identifier to check whether it corre-
sponds to the last request sent. Otherwise, it will automatically
discard the received downlink at hand and remain idle until the
next-scheduled retry. Since devices operate Class A, delayed
downlinks unable to reach any of the receive windows will
remain buffered at the network server following a FIFO queue
(addressed in Section IV). Thus, received packet identifiers can
be either equal to, or lower than the last-sent request.

Once the first filtering is performed to ensure identifiers
match, the device parses the remaining fields: (i) slot index,
(ii) offset at current slot index, (iii) resynchronization slot, and
(iv) available transmission slots. Assuming that network delays
are symmetric and negligible, the device can synchronize its
clock with the global timestamp provided by the NSSE. To do
this, the device computes the slot index (Si+n) and slot offset
(δed) at current time by considering the local time elapsed
since the identified request was sent, timestamp provided by
the NSSE, and uplink time on air consumed. An explanatory
time diagram showing the synchronization process between
the end node and the NSSE can be accessed in Fig. 2 from
[7]. Calculations are made according to Eqs. (3) and (4):

IEEE INTERNET OF THINGS JOURNAL, VOL. X, NO. Y, MARCH 2021 5

Fig. 2. Synchronization and scheduling finite state machine.

Si+n = Si + (∆t− tOA + δnsse) ÷ TSlen (3)

δed = ∆t− tOA + δnsse − Si+n · TSlen (4)

where Si is the slot index at the NSSE, ∆t is the time elapsed
since the request, tOA the uplink time on air, TSlen the slot
length, and δnsse the slot offset at the NSSE.

Once the device is synchronized with the NSSE, slots are
continuously incremented based on Real-Time Clock (RTC)
alarms. These are conceived as down-counters able to wake
up the MCU from to execute certain tasks. At every time slot,
the next slot is assessed to trigger uplinks in the assigned
slots, prioritizing resynchronization needs. If a transmission
slot is identified, the device will split the slot length, TSlen,
into three lengths as shown in (5): guard time (tguard) based
on its clock skew preventing overlaps between adjacent slots
(for the specified resynchronization period), time on air (tOA)
required for the longest transmission in the network, and
synchronization margin (tsynch) to mitigate the clock offset.

TSlen = tguard + tOA + tsynch (5)

The guard time length is based on the clock skew of
all the devices in the network, specifically, on the fastest
and slowest clocks. Assuming no guard time at the begin-
ning of synchronized slot boundaries, the worst-case scenario
(highest overlap of transmissions) depends on whether these
clocks drift in the same time direction or not. In the first
case, the highest-possible overlap will take place at the end
of the synchronization period, with devices simultaneously
synchronizing with the NSSE. This overlap, will ideally be
equal to the difference between the fastest and the slowest
clocks. Conversely, when all the clocks in the network drift
in the same direction, the highest overlap is also dependent
on the synchronization offset between them. In this case, the
worst scenario occurs when the device with the lowest drift

in absolute value synchronizes prior to the device with the
highest one. The resulting maximum relative drift is given by
(6), maximized when tδ tends to zero.

∆Cmax = max
[
Ci(Tsynch)

]
− min

[
Ci(tδ)

]
(6)

where ∆Cmax is the maximum relative drift, max[Ci] the
maximum clock skew, Tsynch the synchronization period,
min[Ci] the minimum clock skew, and tδ the time off-
set between synchronization events. ∆Cmax is part of the
implementation-related design choices that are introduced in
this work as an improvement with respect to the algorithm
in [7]. Not considering ∆Cmax in a real-world deployment
would imply a certain offset between devices synchronizing
at different times and drifting differently in time.

IV. IMPLEMENTATION AND LESSONS LEARNED

A. Hardware deployment

In order to validate the proposed algorithm on top of real
LoRaWAN hardware, a baseline setup with four B-L072Z-
LRWAN1 discovery kits was deployed (hereafter referred to
as devices A-D). These development boards are based on the
open CMWX1ZZABZ-091 Murata IC, which features ultra-
low-power STM32L072CZ MCU (Arm Cortex M0+ core), a
Semtech’s SX1276 transceiver and two external clock sources,
namely XTAL and TXCO (Temperature Compensated Crystal
Oscillator). It is important to note that the four Murata modules
used for the deployment belong to different series, which
means that manufacturing dates and conditions may differ
and, hence, influence experimental results. Specifically, each
pair of devices had a different inspection number: SS8516005
for devices A and C (manufactured in 2018, 005 serial no)
and SS7N25009 for devices B and D (manufactured in 2017,
009 serial no). Please consult to Murata’s packaging reference
specification for further information [32].

IEEE INTERNET OF THINGS JOURNAL, VOL. X, NO. Y, MARCH 2021 6

Once devices are synchronized with the NSSE, time is
incremented on a slot basis. To do this, two alternatives
were considered: (i) using the RTC to trigger alarms on slot
completion, and (ii) using the stack scheduler (system clock)
to register a task at every slot boundary. While the maximum
operational framework resolution is 1024 ticks per second,
the RTC register consists of a 15-bit down counter (32768
ticks per second) that enables higher accuracy. Furthermore,
the reliability of the RTC is expected to be higher since the
stack scheduler is shared by multiple resources in the system.
However, RTC-based slot transitions can considerably increase
the load of the system, generating time delays that depend on
the size of the interruption routine executed.

As an alternative, we opted for a hybrid solution: time
boundaries were implemented using consecutively-triggered
RTC alarms and, once the interrupt request was triggered,
a callback was used to register a maximum-priority task
in the framework scheduler to avoid blocking the algorithm
execution. Moreover, non-blocking resynchronization requests
in compliance with duty cycle were implemented using the
stack scheduler.

The RTC clock source selection was one of the key design
choices, which can be sourced by LSI (low-speed internal),
LSE (low-speed external) or HSE (high-speed external) oscil-
lators. While the LSI has limited accuracy for synchronization
purposes (-10% to 4%), the HSE oscillation frequency ranges
from 1 MHz to 25 MHz, which greatly increases power con-
sumption. As a result, the LSE crystal was selected to source
the RTC as a trade-off between power consumption (ultra-
low) and accuracy (±0.002% or ±20 ppm). The selected clock
source can trigger wake-up events from both stop and standby
modes, achieving the lowest-possible MCU power consump-
tion. However, this oscillator is designed and assembled by
Murata, who reserves the bill of materials as part of their
Intellectual Property. The fact that no characteristic curves are
provided makes clock drift measurement a key challenge in
the LoRaWAN scheduling scheme implementation.

The LSE oscillator has a nominal frequency of 32.768 kHz,
where programmable 7-bit asynchronous and 15-bit syn-
chronous prescalers were used to reach a trade-off between
speed and current consumption [33]. With the latter being
responsible for determining the sub-second RTC register res-
olution, different configurations were tested with occasional
time inaccuracies being found for high prescaler values. As a
result, the maximum RTC resolution achieved was 8192 ticks
per second (13-bit prescaler), which enables a granularity of
0.122 ms. It is important to note that LoRaWAN timing events
in the LoRaWAN MAC implementation used [34] are based
on RTC alarms (Alarm A). Thus, a new RTC alarm (Alarm B)
needed to be defined through the Hardware Abstraction Layer
(HAL) drivers to separately manage scheduling events, thus
not interfering with the LoRaWAN stack’s functionality.

While timing events at end devices were based on RTC
ticks to avoid conversion errors caused by fixed-point arith-
metic, NSSE timestamping was done in milliseconds. Hence,
a time-compensation mechanism was implemented in order to
mitigate accumulated errors causing desynchronization over
time. To do this, devices are provided with their required

compensation period according to the SF used, after which
an extra RTC tick needs to be subtracted or added (depending
on whether they are ahead or behind of schedule, respectively).

Finally, the LoRaWAN gateway used is based on the
multichannel iC880-A concentrator (SX1301 transceiver) and
serves as host where the packet forwarder runs to transmit RF
packets to the network server and vice versa. At the gateway-
side, minor modifications were made to the LoRa concentrator
HAL to enable listening to a newly-defined high-power high-
duty cycle channel centered at 869.525 MHz.

B. Backend implementation

ChirpStack’s network server v3.8.0 was installed in the same
virtual machine where Click Router framework was deployed
to minimize network delays affecting the evaluation. The
NSSE resides at Click Router and keeps track of the reference
timestamping used to synchronize all devices in the network.
The architecture of the developed central entity consists of the
following elements, which are sequentially interconnected:

• MQTT subscriber: subscribes to the application server
and pushes base64-decoded data to the packet classifier.
Pushed data consists of rx metadata (data rate, bandwidth,
channel, RSSI, SNR, etc.) and LoRaWAN PHY Payload
frames including device address, frame port and frame
payloads with synchronization-request parameters.

• Packet classifier: separates synchronization requests from
data traffic based on frame ports, pushing payload frames
to one of the following elements:
– Data manager: processes periodic uplink packets from

devices and serves as data sink in the NSSE.
– Synchronization and scheduling manager: keeps track

of slot indexes, assigns available slots on demand,
reserves resynchronization slots based on time-on-air
requirements, and pushes synchronization reply fields.

• MQTT publisher: publishes base64-encoded synchroniza-
tion replies to the LoRaWAN application server.

C. Challenges overcome

Once the baseline end-to-end deployment was carried out, a
clock drift measurement methodology was designed. This was
required to experimentally define guard times responsible for
mitigating the effect of devices’ desynchronization over time.
For this, we followed a workflow involving different stages.
First, a GPS module was connected via serial to an external
MCU, comparing, in the same machine, timestamps provided
on request by the external MCU with the target RTC. Second,
the measurement setup was optimized reducing the number
of serial connections by synchronizing the machine via NTP
(Network Time Protocol) and omitting the GPS. However,
several inconsistencies were found in both measurement setups
as a result of excessive serial connections. Finally, we devised
the third and definite setup, which consisted of monitoring
target devices toggling a GPIO pin at every slot boundary
(further details are provided in Section V-A).

The next hurdle to be overcome was related to synchro-
nization. Since LoRaWAN end devices operate under Class

IEEE INTERNET OF THINGS JOURNAL, VOL. X, NO. Y, MARCH 2021 7

Fig. 3. Asymmetric network delays buffering packets at the network server
and alternative synchronization mechanism.

A specification, the delivery of synchronization replies is
conditioned by the specific opening times of the two receive
windows. Thus, an occasional network delay can prevent the
network server from reaching any of the windows, which will
be queued and pushed after the next uplink frame received.
To overcome this issue, request and reply identifiers were
included in MAC payloads. As a result, devices are responsible
for mapping request timestamps with their corresponding
replies, discarding replies generated during high latency.

The worst-case scenario is shown in Fig. 3, where a network
delay occurs when forwarding the synchronization request
UL1. The network server is not able to deliver DL1 in any of
the receive windows, and is then buffered and sent upon the
next uplink, UL2. However, the end device will discard DL1

and schedule an additional request, UL3, aimed at receiving
the NSSE synchronization parameters corresponding to UL2

(when no unexpected network delays occurred). Although this
method would require a minimum of two synchronization
retries, it is important to note that this scenario is unlikely
to happen. Nevertheless, all possible scenarios needed to be
considered to ensure the desired synchronization performance.

Finally, the Bloom filter hashing technique needed to be
implemented in both ends (NSSE and LoRaWAN devices) to
enable scheduling. The implementation was based on the non-
cryptographic hash function Murmur3 [35], using a filter size
of 64 bits and 6 hashing functions. Since the available imple-
mentations (x86 and x64) are optimized for their respective
platforms with different output values, the x86 version was
used with minor modifications being made at the end-device
side to fit with fixed-point arithmetic constraints.

Divide operations were performed using an open-source
library for optimized integer division [36], which enabled
us to reduce the execution time and avoid overflow when
performing 64-bit by 32-bit divisions. To do this, all 64-bit
hashes were split into 32-bit words and divisions were only
based on multiply or shift operations, with latency being up
to 30 times lower than that of integer division.

V. RESULTS AND DISCUSSION

A. Experimental setup

The measurements were carried out using a logic analyzer,
the Saleae Logic Pro 16, which monitored in real-time toggling
GPIOs triggered at every end-device slot boundary. Specifi-
cally, 4 pins of each device were monitored simultaneously

during scheduling measurements (16 channels) – slot pin
(toggles on slot completion), guard pin (set to high during
the guard time), tx pin (set to high during the time on air) and
synch pin (set to high during the synch margin) – while only 4
where monitored for clock-skew and synchronization-accuracy
measurements. That resulted in sampling rates of 100 ns/s
and 400 ns/s, respectively, whose impact on the experiments
outcomes are measurement errors of ±5 ns in scheduling and
±1.25 ns in clock-drift and synchronization results (detailed
hereafter). The channel-to-channel skew introduced by the
analyzer was, at maximum, of 1 sample. These measurement
errors were, in all cases, more than five orders of magnitude
smaller than the magnitude being sensed. The measurement
time was 60 minutes, after which the output of the logic
analyzer was parsed offline to compute the time drifted at
devices with respect to the reference time. This offset can be
positive (meaning that a device is behind schedule) or negative
(the device is ahead of schedule).

The total number of RTC alarms triggered per unit of
time was found to influence the perceived time drift during
the measurements. As a result, we designed a preliminary
experiment to mitigate external sources of error and reach
separate results regarding: (i) the added error per RTC alarm
triggered, and (ii) the frequency drift of devices. To do so, 16
measurements were carried out per device varying the number
of alarm triggers during a fixed time of 60 minutes. The linear
regression results were computed according to (7):

ti(t0) = Ertci · nrtc + Ci(t0) (7)

where t0 is the measurement time reference, Ertci is the
unitary error per RTC alarm, nrtc is the number of alarms
triggered, and Ci is the total time drifted.

To vary the total number of RTC alarms triggered, we tested
four different uplink periods and numbers of slots per end
device (by setting different slot lengths). The longer the uplink
period, the more alarms were triggered due to transmission
slots being split into three time lengths. Likewise, the shorter
the slots, the more slot-boundary alarms there were per time
unit. Table I shows the configurations tested.

TABLE I
RTC ALARMS TRIGGERED FOR DIFFERENT UPLINK PERIODS AND TIME

SLOT LENGTHS (MEASUREMENT TIME IS 60 MINUTES).

TUL = none TUL = 50 s TUL = 30 s TUL = 10 s
TSlen = 0.25 s 14400 14544 14640 15120
TSlen = 0.50 s 7200 7344 7440 7920
TSlen = 1.00 s 3600 3744 3840 4320
TSlen = 2.00 s 1800 1944 2040 2520

After computing the linear regression results, the RTC error
was compensated and the time drifted by devices over the
measurement time was then obtained. Once compensated, two
sets of experiments were defined to obtain:

1) The clock skew of each device at room temperature: 10
measurements were carried out at approximately 20oC
and 60% of relative humidity (RH) calculating the max-
imum, minimum, mean and standard deviation (SD) of
each clock skew. These results were used then to design
the guard times in the scheduling measurements.

IEEE INTERNET OF THINGS JOURNAL, VOL. X, NO. Y, MARCH 2021 8

(a) Fitotron SGC097 chamber.

(b) Outside.

(c) Inside.

Fig. 4. Setup of temperature-controlled measurements: (a) chamber, (b) logic
analyzer and laptop, (c) LoRaWAN devices.

TABLE II
LORAWAN TIME-ON-AIR BREAKDOWN (20-BYTE PAYLOADS) AND

UPLINK PERIOD OF END DEVICES IN THE NETWORK.

SF tsymb [ms] tpreamble [ms] tOA [ms] TUL [s]
SF7 1.024 12.544 56.576 6
SF8 2.048 25.088 102.912 10
SF9 4.096 50.176 185.344 19
SF10 8.192 100.352 370.688 37
SF11 16.384 200.704 741.376 74
SF12 32.768 401.408 1318.912 132

2) The clock drift of two of the devices in a temperature-
controlled environment: these devices (A and B) were
placed inside a temperature-controlled chamber (Fitotron
SGC097) to measure the clock drift of each one for differ-
ent temperature conditions. Fig. 4 shows the equipment
used and setup of devices, which remained isolated inside
the chamber for five consecutive hours at temperatures
ranging from 10oC to 30oC.

During all measurements, pressure was in the range of 935
to 945 hPa, and devices were parallel to the ground plane.

Having measured the clock skew of devices at room tem-
perature, the required time on air was calculated according
to [3], using a MAC payload size of 20 bytes (of which
7 bytes were reserved as the frame payload) and the following
LoRaWAN configuration: tpreamble was 8 symbols; header
was enabled (H equal to 0); low data rate optimization, DE,
was enabled for SF11 and SF12; CRC was activated; and the
CR was set to 4/5. The resulting time on air for each SF is
shown in Table II, where the preamble duration is included
for further discussion. Based on these times, the uplink period
of devices was minimized for each SF, using a duty cycle of
1%, also shown in Table II. In order to achieve an equivalent
air-time usage in unsynchronized scenarios without increasing
the number of devices, the uplink period was set to 4 ·TSlen.
Further discussion is provided in Section V-C.

To measure the synchronization accuracy of the end-to-end
implementation, a set of 20 measurements was carried out
for each SF and pair of devices (120 measurements per pair
of devices, that is, 720 samples in total). The methodology

consisted of using the logic analyzer to monitor the slot
boundaries of the four devices right after synchronization. The
time shift between each pair of devices was measured and
synchronization-accuracy statistics were then computed.

Finally, the time slot lengths were calculated based on the
measured clock skew of each device, the time on air, and
the mean synchronization accuracy. Taking these slot lengths
as reference, additional testing scenarios were proposed to
evaluate the performance of the scheduling proposal. Table III
shows all the scenarios tested, summarized as follows:

• Unsynchronized (slotted): time is divided in unsynchro-
nized slots. Note that, despite not being included in
Table III, a pure Aloha behavior was also tested. In both
scenarios, the uplink period of devices was computed as
4·TSlen, with 3 seconds being the lower threshold due to
Class A specification limitations. This results in 3-second
periods for SF7-10, and approximately 3.5-second and 6-
second ones for SF11 and SF12 respectively.

• Synchronized (TS0): this scenario represents the baseline
version of the scheduling proposal, where: the guard time
(tguard) is computed as twice the worst-case relative drift
in the network, that is, twice the difference between
the fastest and the slowest clock; the synchronization
margin (tsynch) is set to the maximum of its mean values.
Synchronization is performed in-band and transmission
slots are allocated adjacently based on each device’s EUI.

• Synchronized (TS1−4): uses the baseline configuration,
modifying the guard time (tguard) and synchronization
margin (tsynch): TS1 halves the guard time; TS2 bases its
guard time on the two most-similar clocks; TS3 removes
the guard time; and TS4 removes the guard time and sets
to the mean-of-means the synchronization margin.

• Synchronized (Bloom filter): baseline time slot lengths
are used, switching the slot-allocation mechanism to
Bloom filter probabilistic data structures. Hence, slots
will not necessarily be allocated adjacently and the false-
positive probability in Eq. (2) plays an important role.

• Synchronized (out of band): baseline time slot lengths are
used, increasing the resynchronization duty cycle to 10%.

To give an idea about MCU requirements towards imple-
mentation, the RAM and Flash memory usages for the baseline
scheduling setup were of 11.344 KB and 86.156 KB while,
for the unsynchronized, of 10.280 KB and 85.064 KB. That
is, the synchronization overhead in terms of RAM and Flash
memory occupation was of 5.32% and 0.57%, respectively.

The measurement time was 90 minutes in the scheduling
experiments, with 15-minute resynchronization periods. Thus,
guard time was defined as twice the time difference between
the fastest and the slowest clock after 15 minutes. Uplink
periods were maximized to achieve high network loads. In
the Aloha scenario, every new transmission was randomized
while, in the rest, randomization happened only before the first
transmission. Specifically, a random delay of up to 3 minutes
was added prior to sending synchronization requests. Hence,
repeated measurements were carried out in the unsynchronized
slotted scenario to widen the confidence interval.

In the current implementation, slots can be assigned in par-
allel taking advantage of orthogonality. Nevertheless, single-

IEEE INTERNET OF THINGS JOURNAL, VOL. X, NO. Y, MARCH 2021 9

TABLE III
SCHEDULING SCENARIOS ACCORDING TO TIME SLOT LENGTHS (TSL) AND SYNCHRONIZATION SETUPS (SYNCHRONIZATION BAND AND

SLOTS-ALLOCATION TECHNIQUE).

Scenario Unsynch (slotted) Synch (TS0) Synch (TS1) Synch (TS2) Synch (TS3) Synch (TS4) Synch (Bloom) Synch (OOB)
Synch band – In band In band In band In band In band In band Out of band

Slot allocation – Fixed Fixed Fixed Fixed Fixed Bloom filter Fixed
Synch duty cycle [%] – 0.1 0.1 0.1 0.1 0.1 0.1 10

tguard [ms] 145 145 72.5 3 0 0 145 145
tsynch [ms] 16 16 16 16 16 10 16 16

TSlen [ms]

SF7 218 218 146 77 73 67 218 218
SF8 264 264 191 122 119 112 264 264
SF9 346 346 274 204 201 195 346 346

SF10 532 532 459 390 387 361 532 532
SF11 902 902 830 760 757 751 902 902
SF12 1480 1480 1407 1338 1335 1329 1480 1480

TABLE IV
LINEAR REGRESSION RESULTS AND GOODNESS-OF-FIT MEASUREMENT

SHOWING THE ERROR ADDED PER RTC ALARM AND CLOCK SKEW.

Device Ertci [ms] Ci [ms] R2

A 0.122011 -375.129614 0.999990
B 0.122033 -91.117528 0.999992
C 0.122026 -360.174126 0.999984
D 0.122049 -84.829399 0.999994

SF setups were defined to reach independent conclusions about
guard time influence on packet losses. To enable a fairer
comparison, the two unsynchronized scenarios were tested as
well under a single-SF approach. Otherwise, packet delivery
ratios (PDRs) achieved would increase significantly.

B. Clock drift measurement

Table IV shows the linear regression results from the
preliminary clock-drift test, in addition to their goodness-of-
fit measure. This was intended to determine the time drifted
by devices due to the total number of RTC alarms triggered
and time elapsed. The analysis was based on (7), with the
dependent variable being the unitary error committed per RTC
alarm, Ertci and, the independent, the clock skew of devices
in milliseconds over a measurement time of 60 minutes (Ci).

As highlighted during the implementation, the end devices
operate in RTC ticks to mitigate conversion errors from
milliseconds to ticks due to their fixed-point arithmetic and
32-bit architecture. Hence, in view of the results, every new
RTC alarm trigger added an approximated delay of 0.122
milliseconds, that is, 1 tick under 8192 ticks-per-second reso-
lution. If not compensated, the perceived time drifted by a
device can increase considerably during long measurement
periods. For instance, in SF7 scenarios with 218-millisecond
slot lengths and 6-second uplink periods, the accumulated error
after 60 minutes rises to approximately 1.8 seconds. Therefore,
this error was compensated at the end-device side on each RTC
alarm trigger, influencing all the results provided hereafter.

After RTC error compensation, 10 measurements were
carried out at room temperature to measure the clock skew of
the concerned devices (see Table V). The results show the four
development boards drift in the negative time direction (ahead
of schedule). This means that their clocks oscillate faster than
their nominal frequency, with Device A having the highest
clock skew (approximately 375 milliseconds are lost after

TABLE V
CLOCK SKEW OF END DEVICES.

Device ∆ti,1h [ms] Max [ms] Min [ms] SD [ms] ∆fi [ppm]
A -376.532 -374.948 -378.21 0.989 105
B -92.297 -91.457 -93.699 0.744 26
C -361.292 -360.439 -362.608 0.691 100
D -86.525 -85.018 -87.283 0.906 24

0 10 20 30 40 50 60
Time [minutes]

400

350

300

250

200

150

100

50

0
Cl

oc
k

sk
ew

 [m
s]

Analyzer
Device A
Device B
Device C
Device D

Fig. 5. Clock skew of the devices over time.

60 minutes). Fig. 5 provides a detail of one of the ten clock-
skew measurements performed, where the cumulative time
drifted by the four end devices is shown over the 60-minute
measurement period. The four clock skews are represented
with respect to the logic analyzer time reference.

It is important to note that the two pairs of devices used
(A–C and B–D) have similar clock skews (105–100 ppm and
26–24 ppm, respectively) which, as highlighted in Section IV,
belong to two different manufacturing series. This explains
the difference in the clock skew of the devices over time, in
contrast to the information provided by the IC manufacturer (≈
20 ppm). This fact corroborates the importance of measuring
the clock skew experimentally as part of the validation of the
scheduling proposal.

Based on these results, the guard time of devices was de-
fined in order to proceed with synchronization and scheduling
measurements. For this, considering a 15-minute resynchro-
nization period (t0 = 15), the guard time was computed as
2 · (CA(t0) − CD(t0)), that is, 145 milliseconds (see Ta-
ble III). The four devices used for the implementation having

IEEE INTERNET OF THINGS JOURNAL, VOL. X, NO. Y, MARCH 2021 10

10 20 30 40 50 60
Synchronization period [minutes]

0

2

4

6

8

10
Nu

m
be

r o
f s

lo
ts

x10²
SF7
SF8
SF9
SF10
SF11
SF12

(a) Heterogeneous network.

10 20 30 40 50 60
Synchronization period [minutes]

0

1

2

3

4

5

Nu
m

be
r o

f s
lo

ts

x10
SF7
SF8
SF9
SF10
SF11
SF12

(b) Homogeneous network.

Fig. 6. Maximum number of assignable slots per synchronization period for
(a) heterogeneous networks (clocks A-D) and (b) homogeneous (clocks B-D).

noticeable differences in clock skew underlines an important
design aspect of the implementation, since the definition of
slot lengths throughout the network is conditioned by the
difference between the fastest and slowest clock.

Based on the four clocks analyzed, Fig. 6 measures the
impact of heterogeneous clock sources on the maximum
number of assignable slots per synchronization period. The
heterogeneous scenario considers the coexistence of the fastest
and slowest clocks (Devices A and D) while the homoge-
neous considers the two lowest-skew devices (B and D).
As can be seen, there is a trade-off between synchroniza-
tion overhead and number of available slots: the longer the
synchronization period (lower overhead), the less available
slots per time unit due longer guard-time definitions. This
shows the consequences of moving from a simulator to a
real implementation where, even when using a few devices
with common specifications, heterogeneous clocks are found.
In single-gateway networks, an additional trade-off arises: the
higher the synchronization period, the less devices that can
be served due to duty cycle limitations. Co-located gateways,
however, will alleviate this effect. The optimal synchronization
period is determined by resolving the mathematical optimality
problem presented by Haxhibeqiri et al. [7].

Finally, the clock drift of Devices A and B was measured in
a temperature-controlled chamber. Fig. 7 shows these results,
measured after a 4-hour stabilization period of all the devices
inside the chamber. Despite the temperature coefficients of
the quartz crystals being unknown, the influence of different
temperatures on each of the clocks used is noticeable.

According to the parabolic frequency dependence of crystals
over temperature (with negative temperature coefficients), the
frequency of devices is expected to slow down at temperatures
below the turnover point, as shown in (1). Furthermore, a
higher RH (at lower temperatures) is also responsible for
increasing the capacitance of the oscillator circuit and reducing
the oscillation frequency [37].

The results confirm these hypotheses, but it is important
to note how the two boards present different responses to

10 15 20 25 30
Temperature [C]

100

102

104

106

108

110

Cl
oc

k
dr

ift
 (

f)
[p

pm
]

Device A
Device B

20

22

24

26

28

30

Cl
oc

k
dr

ift
 (

f)
[p

pm
]

Fig. 7. Steady-state clock drift vs. temperature.

A-B A-C A-D B-C B-D C-D
Pair of devices

0

10

20

30

40

50

Sy
nc

ho
ni

za
tio

n
er

ro
r [

m
s]

Fig. 8. Synchronization error for each pair of devices.

the same environmental changes. Device B not only has
lower skew, but also lower sensitivity to drastic temperature
changes. Conversely, Device A presented greater dependency
on temperature, with several instabilities being observable.
This highlights the importance of clock drift measurement
according to the end application pursued, which can signif-
icantly influence the behavior of devices. Please note that the
clock drift results cannot be directly compared to those at room
temperature, since these were measured at different RH levels.

C. LoRaWAN synchronization and scheduling

The distribution of the results for synchronization accuracy
is provided in Fig. 8, in the form of violin plots. The
measurements were carried out for each pair of devices at
different SFs but, since no significant difference was found
while synchronizing over different SFs, each column merges
20 synchronization-error results per SF, that is, 120 measure-
ments. With a sample size of 720, mean of 10.002 milliseconds
and a SD of 8.202 milliseconds, the error committed in the
synchronization-accuracy measurements was lower than 0.787
milliseconds (using a confidence interval of 99%).

Two accuracy indicators were used to define time slot
lengths in the scheduling measurements: the maximum arith-
metic mean of synchronization errors for each pair of devices
(worst case) and the arithmetic mean of synchronization-error
means (overall mean). As a result, tsynch in (5) was set to
16 or 10 milliseconds, respectively, depending on the scenario
setup. Please see Table III for further information.

IEEE INTERNET OF THINGS JOURNAL, VOL. X, NO. Y, MARCH 2021 11

SF7 SF8 SF9 SF10 SF11 SF12
60

70

80

90

100
PD

R
[%

]

TS
TS
TS
TS
TS

(a) PDR achieved using different time slot lengths (baseline setup is TS0).

SF7 SF8 SF9 SF10 SF11 SF12
60

70

80

90

100

PD
R

[%
]

Baseline (TS)
Out of band
Bloom filter
Unsynch (Aloha)
Unsynch (slotted)

(b) PDR achieved under different setups (synch vs. unsynch scenarios).

Fig. 9. PDR for different setups.

Finally, the end-to-end evaluation was carried out testing
all the scenarios defined in Table III. Fig 9a shows PDRs
using variable slot lengths (scenarios TS0−4). Despite TS1

consisting of half the guard time used in the baseline slot
length (TS0), both led to a similar ratio of packets delivered
for all SFs. The high PDR achieved for TS1 can be explained
according to (6), where the maximum offset between trans-
missions assigned to neighbor slots is quantified assuming the
same drifting direction. In our setup, however, δ was lower
than 3 minutes (given by the randomized delay performed
by devices prior to the first synchronization). Thus, for most
of the measurement time (Tsynch − tδ), the clock offset
between the fastest and the slowest clocks remained lower than
their relative drift, with the tguard defined in Table III being
sufficient to prevent overlapped transmissions. As a result, the
ratio of delivered packets was nearly 100%.

Likewise, the two devices with the most similar clocks
(B and D) achieved a successful PDR in the TS2 scenario,
even with the baseline guard time being reduced from 145 to
3 ms. Devices were assigned to adjacent slots, with Device
D being allocated in the first position to force its overlap
with Device B over time (worst-case scenario). The results
confirm that, in the case of having deployments based on
similar clock sources, the maximum number of assignable slots
can be considerably increased (see Fig. 6) without hindering
the reliability of the scheduling technique. Furthermore, the
higher density of slots in this setup validates the suitability
of the measured slot-length fields (clock skew of devices and
synchronization accuracy).

In contrast, PDRs for setups TS3 and TS4 were consider-
ably influenced by the absence of guard time. However, the
impact of using slightly different slot lengths is negligible
compared to that of a variable synchronization error (see
Fig. 8). Analyzing the results of both setups per SF, Fig. 9a
shows how the removal of guard time has a greater influence
at lower SFs. This is consistent with previous studies, such
as [38] and [9], where the authors evaluated the impact of

preamble symbols interfered with the successful reception of
a LoRa packet. For further discussion, Fig. 10 provides a
detailed comparison of the TS0 and TS3 setups, with the
cumulative number of packets lost being monitored (left-hand
axis) simultaneously with the overlap of transmissions in ms
(right-hand axis). The synchronization events of each device
are represented with markers, which show how every new
synchronization re-aligns slot boundaries preventing overlap.

Since no guard time is present in the TS3 scenarios (Figs.
10a to 10c), the clock skew of devices B (slower) and C (faster)
provokes the misalignment of slot boundaries over time. The
maximum theoretical overlap prior to resynchronization is
around 75 milliseconds, according to (6), but is influenced
by the synchronization error committed. Thus, the lower the
SF, the sooner the losses start, due to shorter preamble lengths.
This is especially harmful for SF7 and SF8 (Fig. 10), where
preamble lengths are lower than the maximum overlap (see
preamble-length definitions in Table VI). Conversely, Figs. 10d
to 10f show how the scheduling scheme with the baseline slot-
length definitions prevent LoRaWAN devices from colliding,
where practically no failed transmissions are found using the
highest-possible uplink periods under a 1% duty cycle.

Regarding PDR for a baseline slot length and different
setups (see Fig.9b), no noticeable difference is found while
synchronizing in-band (baseline scenario) versus out-of-band.
When fixed-slot allocation is performed, the NSSE appends a
set of forbidden slots to the synchronization reply so that de-
vices skip their periodicity so as not to interfere with scheduled
resynchronization requests. Thus, an improvement in PDR
will only be noticed for unassigned synchronization requests,
such as the first synchronization event or a synchronization
retry, which are negligible with respect to the total number of
packets transmitted (160 when using SF12 to 3500 using SF7).
In fact, the main difference between the in-band and out-band
results lies in this total number of transmitted packets. While
the 10-% duty cycle in out-band synchronization permits
constant traffic during the entire measurement time, in-band
synchronizes under 0.1-% duty cycle, provoking periods of
inactivity of the devices with failed synchronizations.

Likewise, PDRs achieved using Bloom filters are compara-
ble to those of the baseline scenario. Considering that, in the
former, end devices are not necessarily assigned to consecutive
slots, the chances of collisions caused by overlapped transmis-
sions are low. This is observed for SF8 to SF12. However, the
high uplink periodicity at lower SF (6 seconds) maximizes
the false-positive probability in (2) forcing some simultaneous
transmissions. This can be seen at SF7. It is important to note
that, despite the Bloom-filter implementation being aimed at
infrequent transmissions, traffic was maximized in our setups
to test the worst-case traffic load scenarios.

PDR results for unsynchronized scenarios cannot be directly
compared to those of the synchronized ones, since the unitary
air-time usage differs in both cases. For instance, our baseline
scenario allocates end devices to neighbor slots (fixed-slot
allocation) with air-time usages ranging from 26% to 89%
on a slot basis. These are even higher if lower guard times
are considered (as in scenarios TS1 and TS3). Table VI
compares the PDR results achieved for synchronized scenarios

IEEE INTERNET OF THINGS JOURNAL, VOL. X, NO. Y, MARCH 2021 12

0 1000 2000 3000 4000 5000
Time [s]

0

50

100

150

200

250
Pa

ck
et

s l
os

t

0

20

40

60

80

100

120

Tx
 o

ve
rla

p
[m

s]

packets lost B
synch_req B
packets lost C
synch_req C
overlap B-C

(a) SF7 with slot length TS3

0 1000 2000 3000 4000 5000
Time [s]

0

50

100

150

200

250

Pa
ck

et
s l

os
t

0

20

40

60

80

100

120

Tx
 o

ve
rla

p
[m

s]

(b) SF8 with slot length TS3

0 1000 2000 3000 4000 5000
Time [s]

0

50

100

150

200

250

Pa
ck

et
s l

os
t

0

20

40

60

80

100

120

Tr
an

sm
iss

io
ns

 o
ve

rla
p

(m
s)

(c) SF12 with slot length TS3

0 1000 2000 3000 4000 5000
Time [s]

0

2

4

6

8

10

Pa
ck

et
s l

os
t

0

5

10

15

20
Tx

 o
ve

rla
p

[m
s]

(d) SF7 with slot length TS0

0 1000 2000 3000 4000 5000
Time [s]

0

2

4

6

8

10

Pa
ck

et
s l

os
t

0

5

10

15

20

Tx
 o

ve
rla

p
[m

s]

(e) SF8 with slot length TS0

0 1000 2000 3000 4000 5000
Time [s]

0

2

4

6

8

10

Pa
ck

et
s l

os
t

0

5

10

15

20

Tx
 o

ve
rla

p
[m

s]

(f) SF12 with slot length TS0

Fig. 10. Packets lost (left-hand axis) and overlap of transmissions (right-hand axis) over time, for TS0 and TS3 setups.

TABLE VI
TIME ON AIR CONSUMED PER TIME UNIT AND PDR RESULTS FOR

UNSYNCHRONIZED AND SYNCHRONIZED SCENARIOS.

SF Unsynch slotted Synch scenarios
tOA [%] PDR [%] tguard [ms] tOA [%] PDR [%]

SF7 8 97.9
0 78 93.6

72.5 39 99.7
145 26 99.7

SF8 13 94.0
0 87 94.6

72.5 54 99.6
145 39 99.7

SF9 25 93.4
0 92 93.3

72.5 68 99.9
145 54 99.7

SF10 49 84.7
0 96 98.0

72.5 81 100
145 70 99.8

SF11 82 78.4
0 98 98.6

72.5 89 100
145 82 99.6

SF12 89 70.1
0 99 99.4

72.5 94 100
145 89 99.3

(TS0, TS1 and TS3) with those of unsynchronized scenarios,
including the air-time usage per setup.

In unsynchronized setups, the uplink period was increased to
4 ·TSlen to reach the same air-time usages as in synchronized
setups, on a slot basis. However, this was only possible for
SF11-12, since the resulting uplink period for the remaining
SFs was lower than the minimum threshold imposed by the
LoRaWAN Class A specification (3 seconds). This is, in fact,
one of the practical limitations of our setup, where a minimum
of 14 end devices would have been required to deploy an
unsynchronized scenario with traffic conditions equivalent
to that of the baseline. Nevertheless, even with higher air-
time percentages, the synchronized setup outperforms the

unsynchronized one. For unsynchronized SF7 to SF10, despite
having much lower air-time usages (8% to 49%) than those
of their equivalent synchronized scenarios (26% to 70%), the
PDRs were up to 16% worse. This is even more significant for
SF11 and SF12, where both scenarios had the same air-time
occupancy per SF. In this case, the scheduling technique led
to PDR improvements of 21.2% and 29.2%, respectively.

VI. CONCLUSION

This work describes the methodology and challenges over-
come towards implementing and evaluating a low-overhead
scheduling technique on top of LoRaWAN Class A devices,
where the NSSE receives synchronization requests from end
devices and assigns slots based on uplink periodicities. Since
the technique was previously designed but only validated in
a simulation environment, our major contribution lies in the
experimental deployment and validation of an operational end-
to-end system. This work fills a literature gap by providing a
methodology design and a real-world approach to clock drift
measurement, LoRaWAN synchronization and scheduling.

During implementation, several hurdles were overcome and
drawn together as a set of lessons learned. On the end-device
side, challenges overcome include: slot-transition mechanism,
clock source selection, error compensation, granularity, and
32-bit adaption of Bloom filter hashing for fixed-point con-
straints. Moreover, two sources of error were identified and
compensated: alarm-triggering delay on a slot basis, and
millisecond-to-tick accumulated conversion errors. Regarding
communication, a priority mechanism for synchronization
traffic was implemented based on LoRaWAN frame ports,
while buffering issues at the network server caused by asym-
metric network delays were also overcome. The result was an
operational end-to-end system.

IEEE INTERNET OF THINGS JOURNAL, VOL. X, NO. Y, MARCH 2021 13

A set of measurements was conducted achieving a mean
synchronization accuracy of 10 milliseconds, after which the
overall concept was validated. Our results, first, highlight the
benefits of such a scheduling entity, especially in high network
loads. PDR improvements of up to 29.2% were achieved with
respect to an analogous unsynchronized setup. Second, the
clock-drift measurement methodology is validated, with guard
times defined preventing an overlap of adjacent transmissions.
Nevertheless, even when guard times in the network are
removed, synchronization of end devices enables considerably
higher PDRs than those of an unsynchronized scenario.

This work provides practical insights and findings on LoRa-
based scheduling implementation. Even when using a few
devices with the same technical specifications, the noteworthy
differences found in their clock skew were key to define
time slot lengths. This implied the definition of longer-than-
expected guard times and, thus, a reduction of synchronization
periods with respect to those that were defined in the previous
simulation study. This practical insight might serve as a bench-
mark to define more realistic scenarios in future related works.
These lessons learned are of interest to researchers conducting
alternative real-world LoRa scheduling schemes, since most
of the barriers encountered were imposed by the constrained
nature of hardware and the LoRaWAN MAC behavior of Class
A. In addition, the feasibility of the scheduling concept was
demonstrated, resulting in an operational end-to-end system
able to synchronize LoRaWAN end devices over time and,
hence, enable larger-scale deployments with occasional colli-
sions. The achieved delivery ratios were close to 100%, with
air-time usages up to 89% and 99% (SF12), depending on
whether heterogeneous or homogeneous clock sources were
used. Such a LoRa scheduling scheme could be adopted in
a wide range of application domains to alleviate existing
scalability concerns. That is the case of asset tracking and
inventory monitoring in the logistics industry, where numerous
battery-powered devices are expected to transmit sensor data
periodically that needs to be accordingly scheduled.

To further improve the algorithm, we plan to focus on the
flexibility with which different nodes can start (or stop) being
part of the network, which might have different resynchro-
nization needs, tx configurations or payload lengths according
to their goal. In the current version, time-slot lengths are
assigned statically based on the worst clock. The lack of
a more dynamic scheme to measure their clock skew and
allocate slots in the network could become a barrier against
its adoption in scenarios consisting of mobile nodes which,
in fact, are likely to be involved in the aforementioned use
case. This feature will be improved in the future to conduct
a real-world deployment in the asset-tracking domain, with
all the implications this entails. For this, a preliminary study
of the influence of clock sources on the MCU, RTC and
transceiver would be highly desirable. Moreover, with a view
to reduce the effect caused by a limited amount of downlink
resources in single-gateway networks, the proposed scheme
will be extended to enable synchronization based on beacons
(following the Class B specification). Both approaches will
then be compared experimentally in terms of total energy
overhead, synchronization accuracy, and network capacity.

ACKNOWLEDGMENT

This work was partially supported by the Flemish FWO
SBO S004017N IDEAL-IoT (Intelligent DEnse And Longe
range IoT networks) project and by Spanish Ministe-
rio de Ciencia e Innovación (FEDER, EU funds) un-
der RTI2018-098156-B-C52 and ECO2016-75781-P projects.
Celia Garrido-Hidalgo holds 2019-PREDUCLM-10703 fel-
lowship from FEDER, EU, at Universidad de Castilla-La
Mancha (UCLM). We thank the Hydrogeology Group from
UCLM for providing SCG097 equipment.

REFERENCES

[1] K. L. Lueth, “State of the IoT & Short-term Outlook-Q1/Q2 2018,” IoT
Analytics GmbH, Hamburg, Germany, Tech. Rep., 2018.

[2] LoRaWANTM 1.0.3 Specification, LoRa Alliance, 6 2018, rev. 1.0.3.
[3] SX1272/3/6/7/8: LoRa Modem, Semtech, 7 2013, rev. 1.
[4] U. Raza, P. Kulkarni, and M. Sooriyabandara, “Low power wide area

networks: An overview,” IEEE Commun. Surveys Tuts., vol. 19, no. 2,
pp. 855–873, 2017.

[5] L. Chasserat, N. Accettura, and P. Berthou, “Short: Achieving energy
efficiency in dense LoRaWANs through TDMA,” in IEEE Int. Symp. a
World of Wireless, Mobile and Multimedia Netw. (WoWMoM), 2020.

[6] H. Rajab, T. Cinkler, and T. Bouguera, “IoT scheduling for higher
throughput and lower transmission power,” Wireless Netw., pp. 1–14,
2020.

[7] J. Haxhibeqiri, I. Moerman, and J. Hoebeke, “Low Overhead Scheduling
of LoRa Transmissions for Improved Scalability,” IEEE Internet Things
J., vol. 6, no. 2, pp. 3097–3109, 2019.

[8] O. Seller and N. Sornin, “Low power long range transmitter,” US Patent
20140219329 A, vol. 1, p. 2014, 2014.

[9] J. Haxhibeqiri, F. Van den Abeele, I. Moerman, and J. Hoebeke, “LoRa
scalability: A simulation model based on interference measurements,”
Sensors, vol. 17, no. 6, 2017.

[10] J. Haxhibeqiri, E. De Poorter, I. Moerman, and J. Hoebeke, “A survey of
LoRaWAN for IoT: From technology to application,” Sensors, vol. 18,
no. 11, p. 3995, 2018.

[11] D. Magrin, M. Capuzzo, and A. Zanella, “A thorough study of Lo-
RaWAN performance under different parameter settings,” IEEE Internet
Things J., vol. 7, no. 1, pp. 116–127, 2020.

[12] Short Range Devices (SRD) operating in the frequency range 25 MHz to
1 000 MHz, European Telecommunications Standards Institute (ETSI),
2 2017, rev. 3.1.1.

[13] F. Van den Abeele, J. Haxhibeqiri, I. Moerman, and J. Hoebeke,
“Scalability analysis of large-scale LoRaWAN networks in ns-3,” IEEE
Internet Things J., vol. 4, no. 6, pp. 2186–2198, 2017.

[14] B. Reynders, Q. Wang, P. Tuset-Peiro, X. Vilajosana, and S. Pollin,
“Improving reliability and scalability of lorawans through lightweight
scheduling,” IEEE Internet Things J., vol. 5, no. 3, pp. 1830–1842, 2018.

[15] K. Q. Abdelfadeel, D. Zorbas, V. Cionca, and D. Pesch, “FREE—Fine-
Grained Scheduling for Reliable and Energy-Efficient Data Collection in
LoRaWAN,” IEEE Internet Things J., vol. 7, no. 1, pp. 669–683, 2020.

[16] R. K. Singh, M. Aernouts, M. De Meyer, M. Weyn, and R. Berkvens,
“Leveraging LoRaWAN Technology for Precision Agriculture in Green-
houses,” Sensors, vol. 20, no. 7, p. 1827, 2020.

[17] G. Tresca, F. Vista, and P. Boccadoro, “Experimenting LoRa-compliant
solutions in Real-World Scenarios,” Internet Technology Letters, vol. 3,
no. 2, p. e136, 2020.

[18] C. Garrido-Hidalgo, T. Olivares, F. J. Ramirez, and L. Roda-Sanchez,
“An end-to-end Internet of Things solution for reverse supply chain
management in Industry 4.0,” Computers in Industry, vol. 112, p.
103127, 2019.

[19] P. Boccadoro, B. Montaruli, and L. A. Grieco, “Quakesense, a LoRa-
compliant earthquake monitoring open system,” in 2019 IEEE/ACM
23rd International Symposium on Distributed Simulation and Real Time
Applications (DS-RT). IEEE, 2019, pp. 1–8.

[20] D. Zorbas, K. Abdelfadeel, P. Kotzanikolaou, and D. Pesch, “TS-LoRa:
Time-slotted LoRaWAN for the Industrial Internet of Things,” Comput.
Commun., vol. 153, pp. 1–10, 2020.

[21] R. Piyare, A. L. Murphy, M. Magno, and L. Benini, “On-demand LoRa:
Asynchronous TDMA for energy efficient and low latency communica-
tion in IoT,” Sensors, vol. 18, no. 11, p. 3718, 2018.

IEEE INTERNET OF THINGS JOURNAL, VOL. X, NO. Y, MARCH 2021 14

[22] F. Tirado-Andrés and A. Araujo, “Performance of clock sources and
their influence on time synchronization in wireless sensor networks,”
Int. J. Distrib. Sens. Netw., vol. 15, no. 9, p. 1550147719879372, 2019.

[23] M. Lévesque and D. Tipper, “A survey of clock synchronization over
packet-switched networks,” IEEE Commun. Surveys Tuts., vol. 18, no. 4,
pp. 2926–2947, 2016.

[24] T. Polonelli, D. Brunelli, A. Marzocchi, and L. Benini, “Slotted ALOHA
on LoRaWAN: Design, Analysis, and Deployment,” Sensors, vol. 19,
no. 4, p. 838, 2019.

[25] T. Polonelli, D. Brunelli, and L. Benini, “Slotted ALOHA Overlay on
LoRaWAN: A Distributed Synchronization Approach,” in 2018 IEEE
16th Int. Conf. on Embedded and Ubiquitous Comput. (EUC). IEEE,
2018, pp. 129–132.

[26] L. Tessaro, C. Raffaldi, M. Rossi, and D. Brunelli, “Lightweight syn-
chronization algorithm with self-calibration for industrial LORA sensor
networks,” in 2018 Workshop on Metrology for Industry 4.0 and IoT.
IEEE, 2018, pp. 259–263.

[27] M. Rizzi, A. Depari, P. Ferrari, A. Flammini, S. Rinaldi, and E. Sisinni,
“Synchronization uncertainty versus power efficiency in LoRaWAN
networks,” IEEE Trans. Instrum. Meas., vol. 68, no. 4, pp. 1101–1111,
2018.

[28] C. Ebi, F. Schaltegger, A. Rüst, and F. Blumensaat, “Synchronous LoRa
mesh network to monitor processes in underground infrastructure,” IEEE
Access, vol. 7, pp. 57 663–57 677, 2019.

[29] Dash7 Alliance, “OSS-7: Open Source Stack,” https://github.com/
MOSAIC-LoPoW/dash7-ap-open-source-stack, accessed: 15-6-2020.

[30] ChirpStack, “Open Source LoRaWAN Network Server stack,” https://
www.chirpstack.io/, accessed: 15-6-2020.

[31] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek, “The
Click Modular Router,” ACM Trans. Comput. Syst., vol. 18, no. 3, p.
263–297, 2000.

[32] Sub-G Module Datashheet - CMWX1ZZABZ-091, Murata Investment
Co., Ltd., 10 2018, rev. C.

[33] Using the hardware RTC and the tamper management unit (TAMP) with
STM32 microcontrollers - AN4759, STMicroelectronics, 2 2020, rev. 5.

[34] Semtech and StackForce, “LoRaMAC 4.4.4. API documentation,” https:
//stackforce.github.io/LoRaMac-doc/, accessed: 17-6-2020.

[35] A. Appleby, “MurmurHash3,” https://github.com/aappleby/smhasher/
wiki/MurmurHash3, accessed: 22-6-2020.

[36] “Libdivide – Header-only C/C++ library for optimizing integer division,”
https://github.com/ridiculousfish/libdivide, accessed: 22-6-2020.

[37] X. Yu, X. Chen, X. Ding, and X. Zhao, “A high-stability quartz crystal
resonator humidity sensor based on tuning capacitor,” IEEE Trans.
Instrum. Meas., vol. 67, no. 3, pp. 715–721, 2018.

[38] M. Bor, J. E. Vidler, and U. Roedig, “LoRa for the Internet of Things,”
in Proc. Int. Conf. on Embedded Wireless Syst. Netw. EWSN ’16, 2016,
pp. 361–366.

Celia Garrido-Hidalgo received her Bachelor’s
Degree in Industrial Electronics and Automation
Engineering in 2015 and a Master’s in Industrial
Engineering in 2018, both from Universidad de
Castilla-La Mancha, Spain. She is currently pursuing
her Ph.D. in Advanced Computing Technologies
at the Albacete Research Institute of Informatics
(Spain) with the High-Performance Networks and
Architectures group. Celia has received different
international awards for innovation projects, and her
research interests include low-power communication

standards, heterogeneous networks and reverse supply chain management.

Jetmir Haxhibeqiri received the Masters degree
in Engineering (information technology and com-
puter engineering) from RWTH Aachen University,
Aachen, Germany, in 2013. In 2019, he obtained a
PhD in Engineering Computer Science from Ghent
University with his research on flexible and scal-
able wireless communication solutions for industrial
warehouses and logistics applications. Currently he
is a post-doc researcher in the Internet Technology
and Data Science Lab (IDLab) of Ghent University
and imec. His current research interests include

wireless communications technologies (IEEE 802.11, IEEE 802.15.4e, LoRa)
and their application, IoT, wireless time sensitive networking, in-band network
monitoring and wireless network management.

Bart Moons received the masters degree in Elec-
tronics and ICT from the University of Antwerp,
in 2017, with specialization in ambient technology.
During his studies, he had the opportunity to work
on Wireless Sensor Networking in the Internet of
Things as part of his master thesis. He is currently
pursuing the Ph.D. degree with the Internet Technol-
ogy and Data Science Lab of Ghent University and
imec. His current research interests include the In-
ternet of Things, Heterogeneous Wireless Networks,
the Web of Things and standard based networking

in the Internet of Things.

Jeroen Hoebeke received the Masters degree in En-
gineering Computer Science from Ghent University
in 2002. In 2007, he obtained a PhD in Engineering
Computer Science with his research on adaptive ad
hoc routing and Virtual Private Ad Hoc Networks.
Current, he is an associate professor in the Internet
Technology and Data Science Lab of Ghent Univer-
sity and imec. He is conducting and coordinating
research on wireless (IoT) connectivity, embedded
communication stacks, deterministic wireless com-
munication and wireless network management. He

is author or co-author of more than 150 publications in international journals
or conference proceedings.

Teresa Olivares is Assistant Professor with the
Department of Computing Systems at Universidad
de Castilla-La Mancha. She received her PhD de-
gree in Computer Science in 2003 from the same
university. She is a member of the research group
High-Performance Networks and Architectures at
the Albacete Research Institute of Informatics. Her
main scientific research interests include Internet of
Things (IoT) standards, communications and proto-
cols, heterogeneous low power wireless sensor net-
works and standards, smart environments, Industry

4.0 and Reverse Logistics. She has participated in more than 40 research
projects and has co-authored more than 70 research papers in journals,
conferences and book chapters.

F. Javier Ramirez is Assistant Professor of En-
gineering Management at the School of Industrial
Engineering, Universidad de Castilla-La Mancha,
Albacete, Spain. Ramirez’s research focuses on op-
erations research and manufacturing engineering. He
has participated in more than 120 R&D projects and
has co-authored over 50 research papers in journals,
specialized conferences and book chapters. He is co-
inventor of 6 patents with industrial exploitation. F.
Javier Ramirez is Associate Editor of Proceedings
of the Institution of Mechanical Engineers Part C:

Journal of Mechanical Engineering Science, and Cogent Engineering.

Antonio Fernández-Caballero received his M.Sc.
in Computer Science from Universidad Politécnica
de Madrid, Spain, in 1993, and his Ph.D. from the
Department of Artificial Intelligence at Universidad
Nacional de Educación a Distancia, Spain, in 2001.
He is a Full Professor with the Department of Com-
puter Science at Universidad de Castilla-La Mancha.
He is head of the n&aIS (natural and artificial
Interaction Systems) research group belonging to
the Albacete Research Institute of Informatics. His
research interests are Image Processing, Cognitive

Vision, Mobile Robotics, Affective Computing and Intelligent Agents. Anto-
nio Fernández-Caballero is Associate Editor of Pattern Recognition Letters,
Topic Editor-in-Chief for Vision Systems of International Journal of Advanced
Robotic Systems, and Specialty Chief Editor for Robot and Machine Vision of
Frontiers in Robotics and AI, among other editorship tasks. He has authored
more than 380 peer-reviewed papers.

