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ABSTRACT During the last decade, the concept of smart cities is gaining popularity, and many cities
all around the globe are adopting it. Lately, the Smart Pedestrian Crossing (SPC) idea has become an
important part of the smart city concept. The main objective of the SPC is to achieve a safe and smooth
traffic flow of pedestrians and vehicles in the smart city. In this paper, we present a simple yet efficient
localization system which is suitable for locating people over a pedestrian crossing. By adopting the
proposed localization system, the people flow over the pedestrian crossing can be observed. Consequently,
a safe and efficient traffic flow in the smart city can be achieved. The proposed system utilizes Internet
of Things (IoT) transceivers that are carried by the pedestrians or embedded in the pedestrians’ smart
devices. These transceivers can be activated to transmit a signal every few seconds when the pedestrian
passes over a pedestrian crossing. These periodic signals will be received by a single Angle of Arrival (AoA)
estimation system to estimate the direction of the pedestrian. Furthermore, the pedestrian direction and the
environmental features of the pedestrian crossings are utilized in a 1D particle filter to estimate accurately the
pedestrian’s location. The proposed system has been validated experimentally in the smart zone of Antwerp
city. The experimental results reveal that the proposed localization system can provide an accurate, cost
effective and reliable localization solution to this specific problem without violating the pedestrian privacy.

INDEX TERMS AoA, angle of arrival, DoA, direction of arrival, Internet of Things, IoT, environmental
features localization, smart pedestrian crossing, smart cities, particle filter, SAGE algorithm.

I. INTRODUCTION
Henceforth the 1990s, digital communication systems have
been under enormous developments. Most of these develop-
ments are concerned with increasing the throughput, decreas-
ing the latency and improving the quality of service of the
communication systems. Nowadays, the industry demands
have been shifted towards the smart systems idea. These
demands are the key factor to the birth of the Internet of
Things (IoT) technology. Consequently, low power wire-
less area network (LPWAN) standards (such as LoRa [1],
Sigfox [2] and NB-IoT [3]) and low power communication
standards (such as DASH7 [4]) are currently providing IoT
services. This communication revolution can be attributed to
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few reasons such as: i) the reduction of the IoT transceivers’
cost and size, ii) the capability of the IoT transceivers to
establish long range communication links (covering area of
several kilometers), and iii) the low energy consumption of
the IoT transceivers. Therefore, a small and affordable IoT
transceiver is expected to operate for years using a small
battery.

Shortly after the introduction of the IoT technology,
the concept of smart cities started to verbalize [5]. Hence,
many cities all over the globe have started to deploy this
concept. For instance, in the city of Antwerp in Belgium,
a part of the city has been dedicated to be a smart zone [6],
companies and research institutes are encouraged to deploy
any connectivity technology in a real life environment. Lately,
the idea of the Smart Pedestrian Crossing (SPC) has been
introduced as an important part of the smart city concept [7].
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FIGURE 1. A schematic representation of the proposed localization system. The figure shows that the proposed system can,
simultaneously, monitor several pedestrian crossings. Consequently, some crossings might be situated at the same
direction with respect to the AoA estimation system. In this case, an ambiguity in locating the pedestrian might occur
(e.g. identification ambiguity between crossing 2 and 3). Therefore, we deployed a particle filter that exploits the previous
measurements to resolve this ambiguity. Furthermore, due to the deployment of the particle filter, the proposed
localization solution is less influenced by the presence of instantaneous obstacles (e.g. the big bus between crossing 3 and
the AoA system) compared with camera-based solutions.

The deployment of the SPC should provide a safe passage to
people over the pedestrian crossing, and a smooth traffic flow
to vehicles in the smart city. Many solutions were proposed
to tackle these challenges. Some solutions were concerned
with controlling the pedestrians and vehicles flow in streets’
intersections [8] and [9]. Other solutions were concerned
with the safety of the people over a pedestrian crossing [10].
Apparently, to the best of the authors’ knowledge, no solution
has been introduced yet to tackle the both challenges of the
SPC. Therefore, tackling these challenges in a single solution
constitutes the main objective of this paper.

Achieving a safe and smooth flow of people and vehicles
over a pedestrian crossing is a challenging task. Depending
on the age and the health, people speeds vary as they walk
over a pedestrian crossing. Therefore, in many occasions,
the traffic lights turn green for the cars while people are
still walking over the pedestrian crossing. In these occasions,
the traffic flow will be disturbed, and the people safety will
be jeopardized. Thus, on such an occasion, the traffic can be
handled ‘‘smartly’’, by keeping the traffic lights red for the
cars to allow a safe passage for the pedestrian, meanwhile
other traffic lights (where the pedestrian crossing is idle) can
keep the green lights for a longer period. Thus, by adopting
this approach, a safe and efficient traffic flow in the city can
be achieved.

Observing the pedestrian location on the pedestrian cross-
ing can provide a safe passage for the pedestrians and an
optimized traffic flow for the vehicles. Solutions based on
cameras [11] and radars [12] can be adopted to monitor

the pedestrian crossing. In general, camera-based solutions
are not preferred due to privacy issues and the depen-
dency of cameras on a clear visual sight of the pedes-
trian crossing which is not always guaranteed. Radar-based
solutions, on the other hand, are less influenced by the
environmental and weather changes than cameras. Nev-
ertheless, the installation of radar monitoring system for
every pedestrian crossing is a high cost ánd maintenance
solution.

In this paper, we proposed a new low cost and efficient
localization solution that can estimate the pedestrian loca-
tion on the pedestrian crossing. The proposed system uti-
lizes IoT transceivers carried by the pedestrians or embedded
in the pedestrians’ smart devices1. These transceivers can
be activated to transmit every few seconds when the user
passes over a pedestrian crossing. These periodic signals will
be received by a single Angle of Arrival (AoA) estimation
system to estimate the direction of the pedestrian. Further-
more, the pedestrian direction and the environmental features
of the pedestrian crossings are utilized in a 1D particle filter
to estimate accurately the pedestrian location.

Figure 1 shows a schematic representation of the proposed
localization system. The figure reveals that the proposed

1 It is worth noting that the upcoming 5G technology will enable the
massive Machine Type Communications (mMTC). The mMTC component
will complement the machine-type communications technologies known
as LTE-M and Narrow Band IoT (NB-IoT), which are already developed
by 3GPP in Rel-13 [13]. Therefore, IoT transceivers are expected to be
massively deployed for various applications in the near future.
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system can, simultaneously, monitor several pedestrian cross-
ings. Consequently, as shown in the figure, some crossings
might be situated at the same direction with respect to the
AoA estimation system. In this case, an ambiguity in locat-
ing the pedestrian might occur (e.g. identification ambiguity
between crossing 2 and 3). Therefore, we deployed a particle
filter that exploits the previous measurements to resolve this
ambiguity. Furthermore, due to the deployment of the particle
filter, the proposed localization solution is less influenced
by the presence of instantaneous obstacles (e.g. the big bus
between crossing 3 and the AoA estimation system) com-
pared with camera-based solutions. The contribution of this
paper can be summarized as follows:

1) We introduce an unprecedented localization solution
based on IoT technology to tackle the SPC challenges.

2) The proposed localization system can monitor several
crossings simultaneously, making it a compact and
cost effective localization system. Radar-based solu-
tion, on the other hand, requires the installation of radar
monitoring system for every pedestrian crossing.

3) The proposed localization system, compared to a
camera-based solution, is independent of the environ-
mental and weather changes.

4) The proposed system utilizes, innovatively, few com-
ponents to provide a novel localization system. The
proposed system constitutes low cost IoT transceivers,
a low cost array antenna system, an efficient AoA esti-
mation algorithm, and a particle filter implementation.

The remainder of this paper is structured as follows:
In Section II, the localization approach of the proposed sys-
tem is introduced. Section III presents an overview of the
proposed system’s components. The experimental setup and
results are discussed in Sections IV. Finally, the conclusions
are drawn in Section V.

II. THE LOCALIZATION APPROACH
Over the past decades, several techniques have been devel-
oped and deployed to provide localization solutions. These
techniques depend on either the Received Signal Strength
(RSS), the Time of Arrival (ToA), the Time Difference of
Arrival (TDoA) or the Angle of Arrival (AoA) parameters
of the received signals [14]. RSS and time-based approaches
estimate the distance between the transmitter and the receiver
by measuring the signal strength and the travel time of the
received signal, respectively. AoA-based approaches, on the
other hand, estimate the angle between the transmitter and
the receiver by measuring the phase of the received signal at
different points in space using array antennas.

Localization and tracking services are considered a key
feature that distinguishes IoT standards from each other.
For instance, LoRa networks provide a localization solution
based on the TDoA of the received signals [15]. Sigfox and
NB-IoT networks, on the other hand, provide localization
solutions based on the RSS values [16]. Even though the
AoA estimation techniques have the potential to provide
an accurate localization solution for IoT applications [17],

commercially available AoA-based localization systems (to
the best of the authors’ knowledge) do not yet exist for IoT
applications.

FIGURE 2. A schematic representation of an AoA-based localization
system. The figure shows that AoA-based localization requires multiple
spatially distributed AoA estimation systems. Every AoA estimation
system constitutes an array antenna frontend and an AoA estimation
algorithm. These AoA estimation systems can provide the relative
directions of the received signal. Combining the direction information
from every array antenna can provide a location estimate of the
transmitting device.

AoA-based localization require multiple spatially dis-
tributed AoA estimation systems to provide a location esti-
mate of the transmitting device. As shown in Figure 2, every
AoA estimation system constitutes an array antenna frontend
and an AoA estimation algorithm. These AoA estimation sys-
tems can provide the relative directions of the received signal.
Combining the direction information can provide a location
estimate of the transmitting device. Accordingly, AoA-based
localization solutions based on multiple AoA estimation sys-
tems have been discussed, thoroughly, in the literature [14],
[17]–[21]. For instance, Tomic et al. [21] provided a solution
to localize outpatients in a hospital. The outpatient position
can be determined by a smartphone through a geometric
calculation based on theAoA estimates from two knownWiFi
access points.

In this paper, however, we propose a localization solution
that can estimate the transceiver location based on a single
AoA estimation system and the utilization of the environ-
mental features. The proposed localization solution is suitable
for locating a pedestrian over a pedestrian crossing. Figure 3
shows a schematic representation of the proposed system.
The figure demonstrates that the traffic light is equipped with
an IoT transmitter. This transmitter is used as a trigger to
enable the pedestrian transceiver when the pedestrian traffic
light changes to green. Figure 3 a) shows that the pedestrian
transceiver, during the waiting period, is at the receiving
mode and waiting for the trigger signal from the traffic light
transmitter. Figure 3 b) implies that the pedestrian transceiver,
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FIGURE 3. A schematic representation of the proposed system. The figure demonstrates that the traffic light is equipped with an IoT
transmitter. Figure a) shows that the pedestrian transceiver is at the receiving mode. Figure b) implies that the pedestrian transceiver,
as soon as the traffic light becomes green, will receive an enabling signal to change its function from a receiver to a transmitter.
Figure c) shows that the pedestrian transceiver transmits periodic signals to the AoA system for the localization purpose.

as soon as the traffic light becomes green, will receive an
enabling signal to change its function from a receiver to a
transmitter. Figure 3 c) shows that the pedestrian transceiver,
during the pedestrian walk over the crossing, transmits peri-
odic signals to the AoA system for the localization purpose.
Finally, when the pedestrian passes the crossing safely, it will
get a trigger signal from the AoA system (not shown in the
figure) to disable the transceiver transmission.

III. THE PROPOSED SYSTEM COMPONENTS
The proposed system consists of twomainmodes: the waiting
and the localization modes. As shown in Figure 3, the IoT
transceiver stays at the waiting mode until it receives an
enabling signal from the traffic light. Afterwards, the system
switches to the localization mode (i.e. the IoT transceiver
starts transmitting periodic signals to the AoA estimation
system for the localization purpose). The main focus of
this paper is to investigate the localization capability of the
proposed system. Therefore, the waiting mode has neither
been implemented nor investigated. The investigation of the
waiting mode will constitute the focus of the future work.

The localization mode of the proposed system consists of
few components. These components are divided into hard-
ware and software components. The hardware components
include the IoT transceiver and the array antenna frontend.
The software components, on the other hand, include theAoA
estimation algorithm and the particle filter implementation.
These components are presented hereafter:

A. IoT TRANSCEIVER
In this work, we deployed a USB transceiver (see Figure 4)
based on EZR32LG Wireless Micro Controller Unit
(MCU) [22]. The transceiver transmits DASH7 packets. The
DASH7 is an open source standard for wireless commu-
nication over unlicensed Sub-1 GHz bands specified and
promoted by the DASH7 Alliance [23]. The DASH7 stan-
dard is considered a low power mid-rang communication

FIGURE 4. The USB transceiver that was utilized in the experiment.

standard. It can establish a communication link within
sub-1 km distance, making it a suitable candidate for the
problem in hand. DASH7 RF signals are formed by applying
a Gaussian Frequency Shift Keying (GFSK) modulation
scheme. In our experiment, the USB transceiver transmits a
Lo−Rate DASH7 signal at Ch0 (i.e center frequency equals
to 863MHz).

It is worth noting that BniLam et al. [17] had pro-
vided an energy consumption budget for the utilized
transceiver. According to their analysis, the current consump-
tion over time is approximately 0.18 µAh. Since the voltage
is 3.3 V, the power consumption over time is approximately
0.6 µWh. This leads to an energy consumption per transmis-
sion of 2.2mJ . Therefore, assuming a coincell cr2032 battery
with 2268 J capacity, it is possible to have around million
transmissions. Accordingly, by assuming 10 transmissions
per crossing and 10 crossings per day, the user should expect
to change the coincell battery after 25 years of operation.

B. ARRAY ANTENNA FRONTEND
As stated previously, any AoA estimation system requires the
deployment of an array antenna at the receiver side. Several
array antenna systems, that can provide AoA estimations for
IoT applications, have been proposed lately [24]–[28]. These
array antennas utilize either hardware or software solutions
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to reduce the cost and the complexity of the array antenna
system.

Recently, we introduced the RTL-Array as an AoA estima-
tion unit for IoT applications [29]. The RTL-Array is a low
cost hardware solution based on converting multiple individ-
ual low cost software defined radios (called RTL-SDR [30])
into a single SDR with multiple coherent RF-channels2

(i.e. the RF-channels are synchronized in time and frequency,
and coherent in phase). The RTL-Array unit captures the
received signals in an Inphase and Quadrature (I/Q) complex
data format. The I/Q data can be utilized for estimating the
AoA of the received signals. The angular estimation accuracy
of the RTL-Array was verified in an anechoic chamber. The
estimated AoA accuracy (for a Uniform Linear Array ULA
consists of 6 antenna elements) was below 1 degree in the
868 MHz frequency band. However, the RTL-Array has a
limited receiving bandwidth; it can only provide a maximum
receiving bandwidth of around 2.5 MHz. Nevertheless, for
IoT applications, this bandwidth limitation will suffice.

In this work, a single RTL-Array has been deployed to
estimate the AoA of the received signals in an outdoor envi-
ronment. The RTL-Array was connected to an ULA antenna
consists of 6 half wave length dipoles with inter-element
spacing equals a half wavelength, as shown in Figure 5. The
operating frequency was 863 MHz and the sampling rate was
1 M samples per second.

FIGURE 5. The experimental setup. The AoA unit was installed on the top
of a building that faces an intersection of 5 streets. Every street has its
own pedestrian crossing.

In order to present the data model of the received signals,
lets assume a narrowband signal (in the far field region)
that reaches an array antenna system. The array antenna is
assumed to be constructed of N antenna elements. Then,
the received sampled signal vector at the time index k can
be expressed as

x(k) = [x1(k) . . . xn(k) . . . xN (k)]T , (1)

in which

xn(k) = r(k − τ )ei2π1fkeiψn + ωn(k), (2)

2 For further information regarding the hardware architecture, the reader
is referred to [31].

where ()T is the transpose notation, τ is the propaga-
tion time delay of the received sample r(k), 1f is the
frequency offset between the transmitter and the receiver,
and ωn(k) is the identically independently distributed (iid)
complex-valued Gaussian noise with zero-mean and vari-
ance σ 2, i.e. CN (0, σ 2).

The time and frequency synchronization is out of this
paper scope. Therefore, in the following, we will consider the
simplified version of (2), as follows

xn(k) = r(k)eiψn + ωn(k), (3)

ψn is the phase difference between the nth antenna element
in the array antenna and a reference point in space. ψn is a
function of θ and φ, where {θ ∈ R : −π ≤ θ ≤ π} is the
azimuth angle and {φ ∈ R : 0 ≤ φ ≤ π} is the elevation
angle. In this paper, however, we adopted the uniform linear
array (ULA) antenna system, therefore, the phase response is
expressed in terms of θ only, as follows

ψn(θ ) =
2π
λ
dn sin (θ) , (4)

where λ is the operational wavelength and dn is the displace-
ment of the n-th antenna element with respect to a specific
point in space.

C. AoA ESTIMATION ALGORITHM
Over the years, several AoA estimation algorithms have been
proposed [14]. In general, there are four main kinds of algo-
rithms; algorithms that are based on an optimal beamforming,
algorithms that rely on signal and noise subspaces’ decom-
position, algorithms that employ the parametric search using
maximum likelihood (ML) estimator, and algorithms that
apply the sparse representation of the space.

Here, we adopted the space alternating generalized
expectation-maximization (SAGE) algorithm [32]. The
SAGE algorithm employs the ML estimator to estimate the
received signals parameters. The SAGE algorithm can esti-
mate the AoA of correlated signals efficiently based on few
received signals’ samples, making it perfect for estimating
the direct and the reflected paths of the received signal. In this
paper, we adopted the implementation of the SAGE algorithm
as presented by Chung and Bohme (2002) [33].

Assume there are M narrowband signals were generated
in the far-field region, then, the received signal vector can be
expressed as follows

x(k) = Dr(k)+�(k), (5)

where D ∈ CN×M , r(k) ∈ CM×1 and �(k) ∈ CN×1 are the
steering matrix, the received signals’ vector, and the complex
noise vector, respectively. They can be expressed as follows

D = [d(θ1) . . . d(θm) . . . d(θM )] ,

r(k) = [r1(k) . . . rm(k) . . . rM (k)]T ,

�(k) = [ω1(k) . . . ωn(k) . . . ωN (k)]T , (6)
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where d(θm) ∈ CN×1 is the steering vector of the m-th
received signal. For an ULA antenna, it can be expressed as

d(θm) =



ei
2π
λ
d1 sin(θm)

...

ei
2π
λ
dn sin(θm)

...

ei
2π
λ
dN sin(θm)


. (7)

The problem in (5) can be formulated as an optimization
problem, the complete unobservable information, i.e. Dr(k),
needs to be estimated from the incomplete observable data,
i.e. x(k). To solve this optimization problem, the SAGE algo-
rithm deploys expectation andmaximization steps as follows:
The expectation step

ym(k) = E
[
ym(k)|x(k), ηµ

]
= d(θµm )r

µ
m (k)+

(
x(k)− Dµrµ(k)

)
, (8)

where ym(k) ∈ CN×1 is the expected m-th received signal’s
vector, ηµ is the estimated parameters matrix and it is given
by

ηµ =
[
η
µ
1 . . . η

µ
m . . . η

µ
M

]
ηµm =

[
θµm rµm (k)

]T
, (9)

in which η
µ
m is the estimated parameters vector of the

m-th received signal at the µ-th iteration step, and θ
µ
m

and rµm (k) are the estimated values of θm and rm(k) at the
µ-th iteration step, respectively.

The covariance matrix of the expected m-th signal can be
expressed as

Rm =
1
K

K−1∑
k=0

ym(k)yHm (k), (10)

where ()H is the conjugate transpose notation and K is the
total amount of received signals’ samples. It is worth men-
tioning that the term (x(k)− Dµrµ(k)) in (8) represents the
mismatch between the expected values and the observed
incomplete data, i.e. the noise in the system.
The maximization step

θµm = argmax
θ
{d(θ )HRmd(θ )}

rµm (k) =
1
N
d(θum)

Hym(k), (11)

The E-step in (8) is coupled iteratively with the M-step
in (11), as shown in algorithm 1. The algorithm reveals that
the parametric search is repeated iteratively until the paramet-
ric change satisfies a predefined tolerance ε.

D. PARTICLE FILTER IMPLEMENTATION
The particle filter is an important tracking algorithm that can
cope with nonlinear and non-Gaussian dynamic motion mod-
els3. Few attempts have been introduced to deploy the particle

3For details regarding other tracking filters and the particle filter mathe-
matical background, the reader is referred to [34].

Algorithm 1 SAGE Algorithm

Input: η0

1: µ← 1
2: while ηµ − ηµ−1 > ε do
3: for m← 1 toM do
4: E-step:
5: calculate ym, see (8)
6: calculate Rm, see (10)
7: M-step:
8: estimate θµm and rµm (k), see (11)
9: η

µ
m =

[
θ
µ
m rµm (k)

]T
10: end for
11: µ← µ+ 1
12: end while

filter based on the AoA estimation [35]–[37]. These attempts
deal mainly with simulation results and do not involve a
specific application. The combination of AoA estimations
and the particle filter implementation for a real life IoT
application has not yet presented, which constitutes a major
contribution of this paper.

Algorithm 2 Particle Filter
Input: 2e, P, Z , Zc, s, ζ , α
1: Algorithm 2: Initialize Z particles.
2: for p← 1 to P do
3: Algorithm 3: predict new particle states.
4: Algorithm 4: update particle weights.
5: Algorithm 5: resample and state estimate.
6: end for

Here, we utilized the environmental features (i.e. the angles
of the two ends of the pedestrian crossings with respect to the
AoA system) in a 1D particle filter. Our implementation has
been divided into 5 simple and easy to deploy algorithms. The
general implementation of the particle filter is presented in
Algorithm 2. The input information to the filter are2e, P, Z ,
Zc, s, ζ and α. In which, 2e represents the AoA estimations
vector and can be expressed as:

2e
= [θe1 . . . θ

e
p . . . θ

e
P]
T , (12)

where P is the total amount of the received signals.4 θep is
the AoA estimation of the p-th received signal. θep has been
obtained using Algorithm 1.
Z is the total amount of particles and Zc(≤ Z ) is the total

amount of particles that share the same statistical behavior.
The vectors s, ζ and α represent the direction of particles’
motion, the maximum possible particles’ displacement and
the initial locations of the particles, respectively. All these

4The difference between M and P is that M is the total amount of the
received signals from the direct and the reflected paths during a single
transmission. The value P, on the other hand, is the total amount of received
signals from all the transmissions during the entire operation.
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vectors can be presented as follows:

s = [s1 . . . si . . . s(Z/Zc)]
T

ζ = [ζ1 . . . ζi . . . ζ(Z/Zc)]
T

α = [α1 . . . αi . . . α(Z/Zc)]
T . (13)

It is worth noting that theAoA estimation is the onlymeasure-
ment that was considered, therefore, all the aforementioned
parameters represent the angular behavior of the particles
with respect to the AoA estimation system.

Algorithm 3 Initialize Z Particles
1: z = 1
2: for i← 1 to Z/Zc do
3: for j← 1 to Zc do
4: νz ∼ siR (ζi)

5: θ z ∼ Rn (αi, 1◦)
6: χ z = [νz, θ z]
7: z = z+ 1
8: end for
9: end for

The initialization of the particle filter is presented in
Algorithm 3. First, the particles will be divided into Z/Zc
subsets of particles that share the same statistical behavior
(e.g. if there are two pedestrian crossings and every end of
the crossings is represented by 100 particles, then Zc = 100
particles and Z = 400 particles). The z-th particle (χ z) will be
represented by two parameters. The first parameter νz repre-
sents the particle’s angular velocity and the second parameter
θ z represents the particle’s angle with respect to the AoA
estimation system. R (ζi) is a uniform distribution function
that returns a random value between [0 ζi], and Rn (αi, 1◦)
is a normal distribution function that returns a random value
within the mean value αi and the standard deviation (std)
of 1◦. For this application, it is safe to assume that the
pedestrians are very close to the edge of the crossing when the
pedestrians’ traffic light becomes green. Therefore, the small
standard deviation (i.e. std = 1◦) is valid, nonetheless, any
other standard deviation value can be applied. Finally, the par-
ticles in this model are moving in one dimension, therefore,
si is assigned + to the right end of the crossing and − to the
left end of the crossing.

Algorithm 4Motion Model
1: for z← 1 to Z do
2: νz ∼ Rn (ν

z, 1◦)
3: θ z = θ z + νz

4: end for

Algorithm 4 represents the motion model of the particles.
It can be deducted that the motion model is very simple,
therefore, the update of the particles will be done with a
minimal computational complexity. Nevertheless, as it will
be shown in the results, this motion model was very effective

in detecting the direction of the motion and reducing the state
estimate error.

Algorithm 5 Update Particle Weights
1: for z← 1 to Z do
2: wz ∼ p

(
θ z|θep

)
3: end for
4: for z← 1 to Z do
5: wz = wz/

∑Z
i=1 w

i

6: end for

Algorithm 5 represents the measurement model. In this
model, the weight wz of the z-th particle will be updated
with respect to the estimated AoA information. The function
p
(
θ z|θep

)
returns the probability of the particle z that has

the correct angle θ z giving the measured angle θep . In this
paper, we deployed the normal distribution function as the
probability functionwith a standard deviation equals 5◦. After
computing the weight values for all the particles, the weight
of every particle will be divided by the sum of all the weight
values to provide a normalized weight vector, as shown in
lines 4-6.

Algorithm 6 Cumulative Sum Resample
1: z = 1
2: β1 = w1

3: r = R (1)
4: while z <= Z do
5: for i← 2 to Z do
6: β i = β i−1 + wi

7: while r ≤ β i do
8: z = z+ 1
9: χ z = χ i

10: r = R (1)
11: break
12: end while
13: end for
14: end while
15: return θ̂ = mean(θ [1,2,...,Q])

Algorithm 6 represents the resampling algorithm. Several
resampling techniques have been introduced in the litera-
ture [38]. In this particle filter, we deployed the commutative
sum resampling method. The algorithm starts with setting the
particle number, setting the first value of the commutative
sum vector β1 = w1, and setting a random number between
[0 1] to r . The r value will be used as a control value in
line 7. The resampling algorithm constitutes three nested
loops. The first while loop (lines 4-14) ensures the update
of all the particles. The for loop (lines 5-13), on the other
hand, calculates the cumulative sum value β i of the particles’
weight. Finally, the second while loop (lines 7-12) compares
r with β i. If the statement r ≤ β i is false then the for loop
will continue. If the statement r ≤ β i is true then the particle
number and the state will be updated, and a new random value
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FIGURE 6. The particles development after every AoA estimate of the received signal. In this figure, a single DASH7 signal was transmitted
at every white zebra line of the C2 crossing. Figure a) shows the particles distribution before the operation. The red arrows in figures (b-k)
represent the actual angular orientation of the white zebra line location with respect to the AoA estimation system. The figure shows, after
the first measurement, the particles start to approach the exact location (the red arrow). As the time progresses, the particles keep
progressing to provide a mean estimation almost equal to the exact angle.

will be assigned to r . Afterwards, at line 11, the for loop will
break to start the resampling process for the next particle.
The final step of the resampling process is the calculation
of the state estimate. In this paper, the state estimate is taken
as the mean of all the particles’ angles, as shown in line 15.

IV. SMART CROSSING EXPERIMENTAL RESULTS
We conducted an experiment, in the smart zone of Antwerp
city, to validate the proposed localization system. The AoA
estimation system was installed on the top of a building that
faces an intersection of 5 streets.5 Every street has its own
pedestrian crossing, as shown in Figure 5. The C4 crossing
was in the non-line-of-sight (NLoS) region with respect to
the AoA estimation system. The C1 crossing, on the other
hand, was orthogonal to the estimation axes of the AoA
system (i.e. the start and the end of the crossing had the same
angle with respect to the AoA estimation system). Therefore,
only C2, C3 and C5 crossings have been considered in our
analysis. Nonetheless, by optimizing the location of the AoA
estimation system, all the crossings can be considered. Dur-
ing the experiment; 10 DASH7 signals, per white zebra line
per crossing, were transmitted. A total of 340 DASH7 signals
have been transmitted during the experiment.

5The total area of the intersection is around 820 m2. Nonetheless, the uti-
lization of the environmental features constrains the area of interest to the
pedestrian crossings only.

The geo-locations of the white zebra lines per crossing
have been mapped to the equivalent angles with respect to
the AoA estimation system. For the C2 and C3 crossings,
the angular difference between two successive white zebra
lines was 1◦ (on average) and for the C5 crossing was
2.16◦. According to the described system in Section III,
the pedestrian transceiver becomes activewhen the pedestrian
is near one of the two ends of any crossing. The particle
filter initialization for both ends of the three crossings is
shown in Figure 6 a). The figure shows that the one end
of the C5 crossing (the green particles) overlaps with the
C2 crossing (the blue particles), and the other end overlaps
with the C3 crossing (the orange particles). 500 particles
per end per crossing have been used (i.e. Zc = 500),
rendering 3000 particles for the complete filter response
(i.e. Z = 3000). Furthermore, for every crossing, the direc-
tion of the particles’ motion (i.e. si) at the right end of the
crossing is opposite to the direction of the particles’ motion
at the left end of the crossing.

Figure 6 shows the development of the particles after every
AoA estimation. In this figure, a single DASH7 signal was
transmitted at every white zebra line of the C2 crossing.
The red arrows represent the actual angular orientation of the
white zebra line location with respect to the AoA estimation
system. The C2 crossing has 10 white zebra lines, therefore,
10 DASH7 signals were transmitted. Figures 6 (b-k) show,
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FIGURE 7. The direction estimates of three different locations on the C2 crossing. The white arrows represent the directions that are obtained
from the particle filter state estimate (i.e. the mean of all the particles’ angles as shown in figure 6). The figure demonstrates the feasibility of the
proposed solution to provide an accurate estimate of the pedestrian location.

FIGURE 8. The CDF plots of the location estimation error from all the received signals at the C2, C3, and C5 crossings, respectively. The CDF at each
figure presents the location estimates based on the pure AoA estimation (using Algorithm 1) and based on the particle filter estimation. The
figure reveals that the particle filter has provided a better location estimates than the pure AoA estimation. Furthermore, the locations at the
C5 crossing have been estimated with better accuracy than the other two crossings. Nevertheless, the location estimates based on the particle
filter are readily very accurate. The median of the estimation error for all the received signals was below 1 meter and the maximum estimation
errors for the C2, C3 and C5 crossings were 3, 3.1 and 1.5 meters, respectively.

after the first measurement, all the particles start to approach
the exact location (the red arrow). As the time progresses,
the particles keep progressing to provide a mean estimation
almost equal to the exact angle.

Figure 7 shows the AoA estimates of three different loca-
tions on the C2 crossing. The white arrows represent the
directions that are obtained from the particle filter state esti-
mate (i.e. the mean of all the particles’ angles as shown
in Figure 6). The figure demonstrates the feasibility of the
proposed solution to provide an accurate estimate of the
pedestrian location.

Figure 8 (a, b and c) show the cumulative distribution
function (CDF) of the location estimation error from all the
received signals at the C2, C3, and C5 crossings, respectively.
The CDF at each figure presents the location estimates based
on the pure AoA estimation (using Algorithm 1) and based
on the particle filter estimation. The figure reveals that the
particle filter has provided better location estimates than
the pure AoA estimation. Furthermore, the locations at the
C5 crossing have been estimated with a better accuracy than
the other two crossings. This can be attributed to the fact
that the position of the C5 crossing is the closest to the
AoA unit compared with the other two crossings. Therefore,

the LoS condition is almost certain for the C5 crossing, conse-
quentially, the exact location can be retrieved. Nevertheless,
the location estimates based on the particle filter are readily
very accurate. The median of the estimation error for all
the received signals was below 1 meter and the maximum
estimation errors for the C2, C3 and C5 crossings were 3,
3.1 and 1.5 meters, respectively.

The AoA estimation is expected to be improved with
enlarging the array antenna aperture and with optimizing the
AoA estimation system’s location.

V. CONCLUSION
In this paper, we presented a simple yet efficient local-
ization system that is suitable for locating people over a
pedestrian crossing. By adopting the proposed localization
system, the people flow over the pedestrian crossing can be
observed. Consequently, a safe and an efficient traffic flow in
the smart city can be achieved. The proposed system utilizes
IoT transceivers carried by the pedestrians (or embedded in
the pedestrians’ smart devices). These transceivers can be
activated to transmit a signal every few seconds when the
pedestrian passes over a pedestrian crossing. These periodic
signals will be received by a single AoA estimation system
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to estimate the direction of the pedestrian. Furthermore,
the pedestrian direction and the environmental features of
the pedestrian crossings are utilized in a 1D particle filter to
estimate accurately the pedestrian location.

The proposed system consists of two main modes: the
waiting and the localization modes. The IoT transceiver stays
in the waiting mode until it receives an enabling signal,
afterwards, the system switches to the localization mode. The
main focus of this paper is to investigate the localization capa-
bility of the proposed system. Therefore, the waiting mode
has neither implemented nor investigated. The investigation
of the waiting mode will constitute the focus of the future
work.

The localization mode has been experimentally validated
in the smart zone of Antwerp city. The AoA estimation
system was installed on the top of a building that faces an
intersection of 5 streets. The experimental results reveal that
the proposed localization system can provide an accurate,
cost effective and reliable localization solution to this specific
problem without violating the pedestrian privacy.
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