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A B S T R A C T

Given their substantial success in addressing a wide range of computer vision challenges, Convolutional Neural
Networks (CNNs) are increasingly being used in smart home applications, with many of these applications
relying on the automatic recognition of human activities. In this context, low-power radar devices have recently
gained in popularity as recording sensors, given that the usage of these devices allows mitigating a number of
privacy concerns, a key issue when making use of conventional video cameras. Another concern that is often
cited when designing smart home applications is the resilience of these applications against cyberattacks. It is,
for instance, well-known that the combination of images and CNNs is vulnerable against adversarial examples,
mischievous data points that force machine learning models to generate wrong classifications during testing
time. In this paper, we investigate the vulnerability of radar-based CNNs to adversarial attacks, and where
these radar-based CNNs have been designed to recognize human gestures. Through experiments with four
unique threat models, we show that radar-based CNNs are susceptible to both white- and black-box adversarial
attacks. We also expose the existence of an extreme adversarial attack case, where it is possible to change the
prediction made by the radar-based CNNs by only perturbing the padding of the inputs, without touching the
frames where the action itself occurs. Moreover, we observe that gradient-based attacks exercise perturbation
not randomly, but on important features of the input data. We highlight these important features by making
use of Grad-CAM, a popular neural network interpretability method, hereby showing the connection between
adversarial perturbation and prediction interpretability.
. Introduction

Recent advancements in the field of computer vision, natural lan-
uage processing, and audio analysis enabled the deployment of in-
elligent systems in homes in the form of assistive technologies. These
o-called smart homes come with a wide range of functionality such as
oice- and gesture-controlled appliances, security systems, and health-
elated applications. Naturally, multiple sensors are needed in these
mart homes to capture the actions performed by household residents
nd to act upon them.

Sensors for smart home applications — Microphones and video
ameras are currently two of the most commonly used sensors in smart
omes. The research in the domain of video-oriented computer vision
s extensive, and the combined usage of a video camera and com-
uter vision enables a wide range of assistive technologies, including
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E-mail address: utku.ozbulak@ugent.be (U. Ozbulak).

1 Equal contribution.

applications related to security (e.g., intruder detection) and appli-
cations incorporating gesture-controlled functionalities (Zhang et al.,
2019). However, one of the major drawbacks of using video cameras is
their privacy intrusiveness (Rajpoot and Jensen, 2015). These privacy-
related concerns are, at an increasing rate, being covered by media
articles (Staples, 2019). Furthermore, a largely overlooked aspect of
video-assisted technologies in smart homes is that video cameras are
able to capture both smart home residents and visitors. Therefore,
residents of smart homes need to be aware of the statutory restrictions
on privacy invasion.

Low-power radar devices, as complementary sensors, are capable of
alleviating the privacy concerns raised over the usage of video cameras.
In that regard, the main advantages of radar devices over video cameras
are as follows: (1) better privacy preservation, (2) a higher effectiveness
ttps://doi.org/10.1016/j.cviu.2020.103111
eceived 1 October 2019; Received in revised form 14 August 2020; Accepted 16 S
vailable online 23 September 2020
077-3142/© 2020 The Authors. Published by Elsevier Inc. This is an open access
http://creativecommons.org/licenses/by-nc-nd/4.0/).
eptember 2020

article under the CC BY-NC-ND license

https://doi.org/10.1016/j.cviu.2020.103111
http://www.elsevier.com/locate/cviu
http://www.elsevier.com/locate/cviu
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cviu.2020.103111&domain=pdf
mailto:utku.ozbulak@ugent.be
https://doi.org/10.1016/j.cviu.2020.103111
http://creativecommons.org/licenses/by-nc-nd/4.0/


U. Ozbulak, B. Vandersmissen, A. Jalalvand et al. Computer Vision and Image Understanding 202 (2021) 103111

a

i
(

e
l
u
(
c
o
w
R
e
h
s
i
R

g

Fig. 1. (1) RD frames, (2) video frames, and (3) Grad-CAM heatmaps for the action
swipe left. The 𝑋-axis and 𝑌 -axis of the RD frames and the Grad-CAM images, which
re omitted for visual clarity, correspond to range and velocity, respectively.

n poor capturing conditions (e.g., low light, presence of smoke), and
3) through-the-wall sensing (Zhao et al.).

Frequency-modulated continuous-wave (FMCW) radars capture the
nvironment by transmitting an electromagnetic signal over a certain
ine-of-sight. The reflections of this transmitted signal are then picked
p by one or more receiving antennas and converted into range-Doppler
RD) and micro-Doppler (MD) frames (Chen et al., 2014). These frames
ontain velocity and range information about all the objects in the line-
f-sight (for the duration of the recording). Recent studies show that
ith the help of (deep) neural networks, it is possible to leverage these
D and MD frames to recognize multiple individuals (Vandersmissen
t al., 2018; Jalalvand et al., 2019) or to detect human activities with
igh precision (Wang et al., 2016). The aforementioned studies repre-
ent these RD and MD frames in the form of a sequence of mono-color
mages which are supplied as an input to deep CNNs. Three example
D frames and their corresponding video frames for the gesture swiping

left are given in Fig. 1.
Convolutional neural networks — Even though CNNs were ap-

plied extensively in the work of LeCun et al. (1998) on the MNIST
data set, they only became popular after some revolutionary results
were obtained in the study of Krizhevsky et al. (2012) on the ImageNet
data set (Russakovsky et al., 2015). That work was further improved by
many researchers, showing the efficacy of deep CNNs (Simonyan and
Zisserman, 2014; He et al., 2016; Szegedy et al., 2016). One of the main
benefits of CNNs is their ability to automatically learn features, thus
making it possible to forgo the cumbersome process of having to define
hand-engineered expert features. Since CNN architectures are end-to-
end differentiable, the features can be learned by an optimization
method such as gradient descent. This property allows CNNs to be
applied to various types of data beyond images and video sequences,
such as text (i.e., natural language processing), speech, and radar
data (Graves et al., 2013; Kim and Toomajian, 2016).

Nevertheless, CNNs usually also come with a number of detrimental
properties, namely, (1) a high training complexity, (2) difficulty of
interpretation, and (3) vulnerability to adversarial attacks.

Adversarial examples — The study of Szegedy et al. (2013) showed
that the predictions made by CNNs may change drastically with small
changes in the pixel values of the input images. Specifically, when
the input data at hand are modified with a gradient-based method
to maximize the likelihood of another class (i.e., targeted adversarial
attacks) or to minimize the likelihood of the initially correct class
(i.e., untargeted adversarial attacks), it is possible to create malicious
data samples that are called adversarial examples. These adversarial
examples are shown to exist not only in the digital domain but also

in the real world (Kurakin et al., 2016), and are thus recognized as a i
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major security threat for models that are used in a real environment
(that is, an environment where the input is not strictly administered).

Research on adversarial attacks on CNNs gained traction after the
seminal studies conducted by Szegedy et al. (2013) and Goodfellow
et al. (2014), with Biggio et al. (2013) providing an in-depth discus-
sion of adversarial attacks on machine learning models deployed in
security-sensitive applications. Since then, the susceptibility to adver-
sarial attacks is recognized as one of the major drawbacks of deep
learning, along with the lack of clear interpretability of these models.
Some studies even go so far as to suggest that these two issues should
be investigated as a single topic (Ross and Doshi-Velez, 2018; Tao et al.,
2018; Etmann et al., 2019).

On the other side of this story, many defense techniques to prevent
adversarial attacks have been proposed, only to be found ineffec-
tive (Carlini and Wagner, 2017; Athalye et al., 2018). As it currently
stands, there are no defense mechanisms available that reliably prevent
all adversarial attacks.

Aim of this study — Given the extensive research in the machine
learning community on techniques to prevent adversarial attacks, we
analyze the vulnerability of radar-based CNNs to adversarial examples,
with the goal of assessing their significance as a security threat in smart
homes. For this analysis, we consider the human activity recognition
task presented in Vandersmissen et al. (2019), in which the proposed
models were able to identify human gestures with high precision using
a low-power FMCW radar. Our analysis of adversarial attacks covers a
wide range of scenarios, from white-box attacks, in which the adversary
is assumed to have all the knowledge about the underlying system,
to localized attacks on radar frames under strict conditions, in which
the adversary is assumed to have limited knowledge. Furthermore, we
also attempt to analyze the connection between adversarial attacks
and neural network interpretability by investigating the connection
between prediction, perturbation amount, and Grad-CAM (Selvaraju
et al., 2016), a popular deep neural network (DNN) interpretability
technique.

This paper is organized as follows. In Section 2, we describe the
mathematical notation, the data set, and the machine learning models
used. In Section 3, we cover the details of the different threat models
considered in this study, followed by a discussion of the experiments
performed and the results obtained in Section 4. Next, we provide a
number of additional experiments in Section 5, exposing the relation
between adversarial examples and model interpretability. In Section 6,
we conclude our paper and provide directions for future work.

2. Framework and notation

In this section, we outline our mathematical notation, also providing
details on the data and the models used in this study.

• 𝐗 : an arbitrary RD frame represented as a 3-D tensor (frame
count × height × width), with values in the range of [0, 1].

• 𝐲 = 𝑔(𝜃,𝐗) : a classification function that links an input 𝐗 to
an output vector 𝐲 of size 𝑀 , containing predictions made by
a neural network that comes with parameters 𝜃 and that does
not contain a final softmax layer. 𝑀 denotes the total number
of classes used. The 𝑘th element of this vector is referred to as
𝑔(𝜃,𝐗)𝑘.

• 𝐽 (𝑔(𝜃,𝐗)𝑐 ) = − log

(

𝑒𝑔(𝜃,𝐗)𝑐
∑𝑀

𝑚=1 𝑒
𝑔(𝜃,𝐗)𝑚

)

: the cross-entropy (CE) func-

tion, which calculates the negative logarithmic loss of the softmax
prediction made by a neural network for a class 𝑐.

• ∇𝑥𝑔(𝜃,𝐗) : the partial derivative of a neural network 𝑔 with
respect to an input 𝐗.

Data — Our experiments are conducted on a data set of human
estures, containing six different hand-based actions performed in an
ndoor environment, published with our previous study (Vandersmissen
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Table 1
An overview of all the activities in the selected data set.

(Class ID) Activity Samples Avg. duration (Std.)

(0) Drumming 390 2.92𝑠 (±0.94)
(1) Shaking 360 3.03𝑠 (±0.97)
(2) Swiping Left 436 1.60𝑠 (±0.27)
(3) Swiping Right 384 1.71𝑠 (±0.31)
(4) Thumb Up 409 1.85𝑠 (±0.37)
(5) Thumb Down 368 2.06𝑠 (±0.42)

et al., 2019). The different gestures, along with the number of samples
per gesture and their average duration, are listed in Table 1. These
activities vary from dynamic and clear movements (e.g., swiping left)
o static (e.g., thumbs up) and subtle (e.g., drumming) motions.

The samples are recorded using nine different subjects, with each
ubject repeating each activity several times, and with each subject
erforming different activities at different speeds and with different
ause intervals. This recording approach results in less generic and
ore diverse activities, given that the length of the activities is not
redetermined, nor is their order. The gestures are performed in front
f both a radar sensor and an RGB camera, with both devices recording
n a synchronized manner. As shown in Table 1, the extent of time
n which each activity is performed differs significantly per activity
lass. The data set contains 2347 activities in total, with an average
uration of 2.16 s per activity, thus making it one of the larger radar
ata sets concerning human actions (Kim and Moon, 2015; Jokanovic
t al., 2016; Seyfioğlu et al., 2018).

In order to implement a number of threat scenarios, which are
iscussed in more detail in Section 3, and in order to work with a
cenario that better reflects real-world settings, we apply a data set split
ifferent from the random stratified split used in Vandersmissen et al.
2019). Instead, we use a subject-specific split, ensuring that the data
f a single subject are only present in either the training, testing, or
alidation set.

• (𝑆+) : A subject-specific split, with the training set consisting of
samples obtained from subjects 2, 6, 8, and 9. Samples originating
from subjects 1 and 7 are used for the validation set and samples
obtained from subjects 3, 4, and 5 are used for the test set. This
approach leads to a total of 1050, 572, and 725 samples for the
training, testing, and validation set, respectively.

• (𝑆−): This subject-specific split is the opposite of (𝑆+), which
means that the training set contains samples obtained from sub-
jects 1, 3, 4, 5, and 7. Likewise, samples obtained from the subjects
2 and 9 are used for the testing set, while subjects 6 and 8 provide
samples for the validation set. This approach leads to a total of
1297, 404, and 646 samples for the training, testing, and validation
set, respectively.

In line with our previous study (Vandersmissen et al., 2019), we
consider a fixed sample length of 50 frames, which matches the average
length of the majority of the activity samples. Samples that are shorter
than 50 frames are padded with the median RD frame. This median
frame is calculated by using all of the samples in the data set in order to
acquire a padding frame that does not disturb the prediction (i.e., that
is not an out-of-distribution sample). For the samples that possess more
than 50 frames, only the middle 50 frames are considered.

Models — In this study, we use three substantially different archi-
tectures in order to solve the multiclass classification problem of human
activity recognition. The first architecture is the 3D-CNN architecture
used in Vandersmissen et al. (2019), which we will refer to as . The
second architecture is a variant of ResNeXt (Xie et al.), a relatively
new architecture that achieved the second place in ILSVCR 2017 (Rus-
sakovsky et al., 2015). The design of this architecture is heavily inspired
by VGG (Simonyan and Zisserman, 2014) and ResNet (He et al., 2016).

To handle data with a temporal dimension (e.g., radar or video data),

3

we use a modified version of this architecture (adopted from Hara et al.
(2018)). In the remainder of this paper, we will refer to the ResNeXt
architecture used as .

Furthermore, a recent trend in the field of activity recognition
is the usage of CNN-LSTM architectures (Zhao et al., 2018b; Nair
et al., 2018; Yao and Qian, 2018), leveraging the underlying CNN
as the feature extractor and employing a Long Short-Term Memory
(LSTM) (Hochreiter and Schmidhuber, 1997) layer in order to discover
temporal relations. Apart from the usage of the previously explained
fully convolutional architectures, we also employ a similarly capable
CNN-LSTM architecture () in order to discover differences between
fully convolutional and CNN-LSTM architectures in terms of adversarial
robustness. Architectural details of all models, as well as their per-
formance on the selected dataset, can be found in Section A of the
supplementary materials.

With 8.1 million trainable parameters, the employed ResNeXt model
() is significantly more complex than the 3D-CNN model (), which
contains approximately 647 thousand trainable parameters. Conse-
quently, the size of the two models is also considerably different:
ResNeXt occupies about 32.9MB of memory, whereas 3D-CNN only
takes about 2.9MB. Although the space occupied by each of the models
does not make a significant difference for many of the current com-
mercial products, on the same hardware, the 3D-CNN model is up to 7
times faster than the ResNeXt model in terms of inference speed. When
considering edge-computing and real-time applications in the context
of smart homes, this means that deploying the ResNeXt model will
naturally cost more than deploying the 3D-CNN model.

By employing fully-convolutional models that are significantly dif-
ferent in terms of both architecture and the number of trainable pa-
rameters, we are able to study the impact of adversarial examples
generated by an advanced model on a simpler model, and vice versa.
Moreover, by evaluating the adversarial examples generated by these
fully-convolutional models on the CNN-LSTM model, we are able to
analyze the effectiveness of non-LSTM adversarial examples on LSTM
architectures.

The accuracies of , , and  are provided in Table A.1 in the sup-
plementary materials, as obtained for the evaluation splits. As can be
observed from this table, although the number of trainable parameters
is significantly different for each architecture, they achieve comparable
results. Note that the models trained on the evaluation splits 𝑆{−,+}
achieve slightly lower test and validation accuracies than the models
presented in our previous work. This can be attributed to the reduced
amount of training data we intentionally assigned to these splits, with
the goal of covering a wide range of threat models (see Section 3).
Throughout this paper, we adopt the notation Dataset split in order to
describe a trained model. For instance, 𝑆+

means that the model is of
architecture  and that this model has been trained on the training set
of 𝑆+. As will be described in the next section, our approach towards
selecting models and creating evaluation splits makes it possible to
evaluate a wide range of white- and black-box attack scenarios.

3. Threat model

In this section, we discuss the threat models evaluated in this paper.
To that end, recall that activities performed in smart homes cause
either a global response, meaning that the assistance of a third party
is required (e.g., calling the police to prevent an intruder from enter-
ing a home or calling an ambulance for a health-related emergency
situation), or a local, in-house response, meaning that the request of
a household resident is related to a functionality confined to the house
(e.g., turning on the lights). In this study, we evaluate threat scenarios
concerning an adversarial attack to the neural network that is part
of the decision making mechanism, which may affect both in-house
and out-house functionalities. Naturally, there are also other types of
security-related topics that need to be analyzed when a smart home
system requests aid from outside the house. Such topics are mainly
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Fig. 2. Threat configurations and their taxonomy for adversarial examples. Scenarios
evaluated in this study are highlighted with their abbreviation.

related to home network security and are deemed out of scope for this
study.

Given the context described above, an activity and a corresponding
flow of events taking place in a smart home environment are visualized
in Fig. A.4 in the supplementary materials, as well as in the graphical
abstract of this paper. We consider three entry points for a possible
adversarial attack: (1) when the radar frames are generated, (2) when
radar frames are being transferred from the detector to the on-site
server, and (3) right before the inference phase, where frames are sent
as an input to the underlying CNN.

In order to be consistent with past research that studied adversarial
examples, we use a taxonomy similar to the one outlined in Papernot
et al. (2015). In this context, the two main aspects of a threat model are
(1) the knowledge of the adversary about the underlying system and (2)
the complexity of the attack. Multiple levels of (1) and (2) are shown
in Fig. 2, with the labels within the figure also illustrating the different
scenarios assessed in this paper. Among all possible combinations of the
attacks listed in Fig. 2, we only evaluate the two most restrictive cases,
which are targeted misclassification and targeted misclassification with
a localized attack. A detailed description of all attacks can be found in
the supplementary materials.

Based on the different types of attacks and the level of knowledge of
the adversary about the underlying system, we evaluate the following
scenarios as threat models:

• White-box threat model (WB): The adversary has access to the
underlying trained model (including the trained weights) that
performs the classification when a radar activity is performed
(e.g., adversarial examples generated by 𝑆+

and tested on 𝑆+
).

• Black-box threat models: The adversary does not have access to
the underlying trained model (including the trained weights), but
the adversary does have access to the following specifications of
the underlying decision-making system:

– Scenario 1 (B:1): The adversary has access to (1) the archi-
tecture of the underlying model that performs the classifica-
tion (without the trained weights) and (2) data from a simi-
lar distribution that the underlying model was trained with
(e.g., adversarial examples generated by 𝑆+

and tested on
𝑆−

).
– Scenario 2 (B:2): The adversary has access to the training

data used to train the underlying model, but not to the exact
specifics of this model such as the weights, layers, and nodes
(e.g., adversarial examples generated by 𝑆+

and tested on
𝑆+

).
– Scenario 3 (B:3): The adversary neither has access to the

underlying model nor the training data used to train this
model. However, the adversary has access to data obtained
from a similar distribution and a model that is akin to the
underlying model (e.g., adversarial examples generated by

𝑆+

and tested on 𝑆−
).

4

In the upcoming section, we evaluate the threat models described
above using various adversarial attacks.

4. Threat model evaluation

In this section, we analyze the robustness of radar-based CNNs
against adversarial examples using the threat models described in Sec-
tion 3. To that end, we investigate the significance of commonly used
adversarial attacks, as well as additional attacks that are only possible
because of the existence of the temporal domain in the employed input.

4.1. Evaluating common adversarial attacks for radar data

Since the inception of adversarial attacks against machine learning
models, a wide range of attack methods has been proposed in the
literature, with each attack method focusing on a different aspect of
the adversarial optimization. Fast Gradient Sign (FGS) (Goodfellow
et al., 2014) is a fast way of generating adversarial examples without
any iteration. Adversarial Patch (Brown et al., 2017) produces visible
patches that, when added to the input, reliably change the prediction
of the model. Basic Iterative Method (BIM) (Kurakin et al., 2016) is
an extension of FGS that generates adversarial examples in an iterative
manner. Universal Perturbation, as proposed by Moosavi-Dezfooli et al.
(2017), shows that it is possible to generate adversarial examples
with a pre-selected perturbation pattern. Finally, the Carlini–Wagner
Attack (CW) (Carlini and Wagner, 2016) produces durable adversarial
examples that are resistant to defense systems. Next to these, there
are also other black-box attacks that do not use a surrogate model to
produce adversarial examples (Ilyas et al., 2018; Guo et al., 2019).

Recently published studies typically aim for improving the strength
of the produced adversarial examples, making it easier to evade de-
ployed defense systems (Madry et al., 2017). In the literature, BIM and
CW are often selected as methods to evaluate newly proposed defense
mechanisms against adversarial examples, given the diversity of their
properties. Similarly, we use BIM and CW in order to investigate the
vulnerability of radar-based CNNs.

Basic Iterative Method — This attack is an extension of FGS, which
uses the signature of the cross-entropy loss in order to generate ad-
versarial examples. On the one hand, BIM is seen as a method for
generating weak adversarial examples that heavily perturb the input.
On the other hand, BIM is highly efficient because it generates ad-
versarial examples much faster than CW. It is defined as follows:

𝐗𝑛+1 = 𝐶𝑙𝑖𝑝𝐗,𝜖(𝐗𝑛 − 𝛼 sign(∇𝑥𝐽 (𝑔(𝜃,𝐗𝑛)𝑐 ))) , (1)

where the 𝐶𝑙𝑖𝑝 function ensures that the adversarial example 𝐗𝑛+1 is
valid input (i.e., an image) and where 𝛼 denotes the perturbation

multiplier. In this study, we use 𝛼 = 15 × 10−4, meaning that a
ingle iteration of perturbation will change values by half a pixel value
i.e., 0.5∕255), reporting results based on the use of this perturbation
ultiplier.

Carlini–Wagner Attack — The Carlini–Wagner attack is proposed
s a method to generate strong adversarial examples (Carlini and Wag-
er, 2016). This attack uses multi-target optimization and maximizes
he prediction likelihood of both the target class and second-most-likely
lass in order to deceive the underlying machine learning model. CW
s criticized for its high computational complexity, which is primarily
ue to its extensive search for strong perturbations (Goodfellow et al.,
018). It is defined as follows:

iminize ‖𝐗 − (𝐗 + 𝛿)‖22 + 𝓁(𝐗 + 𝛿) , (2)

(𝐗′) = max
(

max{𝑔(𝜃,𝐗′)𝑖 ∶ 𝑖 ≠ 𝑐} − 𝑔(𝜃,𝐗′)𝑐 ,−𝜅
)

(3)

here 𝛿 is the perturbation added to the image and 𝓁 a loss function.
his equation aims at maximizing the prediction likelihood of the target
lass 𝑐 and the second-most likely class 𝑖, with 𝜅 controlling the logit
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Table 2
Median value (interquartile range) of the 𝐿2 and 𝐿∞ distances obtained for 1000 adversarial optimizations, as well as their success rate, for the
models and data sets described in Section 2. For easier comprehension, the threat models are listed from most permissive to least permissive.
𝐿∞ values less than 0.003 are rolled up to 0.003 (this is approximately the smallest amount of perturbation required to change a pixel value
by 1, so to make discretization possible).
Threat model Source model Target model BIM CW

𝐿2 𝐿∞ Success % 𝐿2 𝐿∞ Success %

WB
{𝑆+ ,𝑆−} {𝑆+ ,𝑆−}

0.79 0.003 100% 0.50 0.02 97%(0.72) (0.003) (0.42) (0.02)

{𝑆+ ,𝑆−} {𝑆+ ,𝑆−}
0.19 0.003 100% 0.17 0.01 99%(0.11) (0.003) (0.11) (0.02)

BB:1
{𝑆+ ,𝑆−} {𝑆− ,𝑆+}

2.27 0.006 79% 0.72 0.02 54%(3.17) (0.011) (1.17) (0.09)

{𝑆+ ,𝑆−} {𝑆− ,𝑆+}
0.24 0.006 35% 0.20 0.01 31%(0.08) (0.003) (0.17) (0.03)

BB:2
{𝑆+ ,𝑆−} {𝑆+ ,𝑆−}

2.24 0.009 35% 0.92 0.03 30%(4.77) (0.012) (0.97) (0.11)

{𝑆+ ,𝑆−} {𝑆+ ,𝑆−}
0.24 0.006 28% 0.22 0.03 27%(0.12) (0.003) (0.18) (0.02)

BB:3
{𝑆+ ,𝑆−} {𝑆− ,𝑆+}

3.12 0.012 30% 0.87 0.03 21%(5.14) (0.07) (1.03) (0.13)

{𝑆+ ,𝑆−} {𝑆− ,𝑆+}
0.22 0.006 19% 0.21 0.02 18%(0.10) (0.005) (0.27) (0.04)
difference between both classes. We adhere to the study of Carlini and
Wagner (2016) and set 𝜅 = 20.

Constraints on Adversarial Attacks — During the generation of
adversarial examples, when not considering constraints for the gen-
erated adversarial examples, (1) the optimization may result in an
adversarial example that does not represent a valid input for the
targeted neural network or (2) the attack may not be representative
of a real-world scenario. In order to avoid such scenarios, we impose
a box constraint, a time constraint, and a discretization constraint on
the way adversarial examples are generated. A detailed description of
these constraints can be found in the supplementary materials.

Experiments — In Table 2, we present the experimental results
obtained in terms of white-box and black-box transferability success,
for the adversarial examples created with BIM and CW. Specifically,
Table 2 details the success rate obtained for 1000 adversarial examples
that originate from unseen data points by their respective models
during training time, as well as median 𝐿2 and 𝐿∞ distances between
adversarial examples and their initial data points, giving an idea of the
minimum amount of perturbation necessary to change the prediction
of a model by both attacks. Since we use the 𝐿2 and 𝐿∞ distances
between adversarial examples when they transfer successfully from a
source model to a target model, we also provide the interquartile range
in order to gain insight into the spread of the 𝐿2 and 𝐿∞ distances. We
use median and interquartile range over mean and standard deviation
in order to mitigate the influence of outliers when the success rate of
the attacks is low. Based on this experiment, we make the following
observations:

• Unsurprisingly, the success rate of the adversarial attacks de-
creases as the knowledge of the adversary on the underlying
system decreases. As opposed to this trend, the minimal required
perturbation to change the prediction of the target model often
increases as the knowledge of the adversary decreases.

• More often than not, adversarial attacks with BIM are more
successful than the ones with CW, even though the latter is con-
sidered a more advanced attack. Using additional experiments, we
observed this can be primarily attributed to the time constraint
imposed on the optimization. Since CW is computationally more
expensive than BIM, given its extensive search for a minimum
amount of perturbation, generating an adversarial example with
CW within the time limit imposed becomes challenging.

• Although BIM is more successful in generating adversarial ex-

amples than CW, the adversarial examples generated by BIM

5

come with much stronger perturbations in terms of 𝐿2 distance
than those generated by CW. On the other hand, thanks to the
𝑠𝑖𝑔𝑛(⋅) function flattening the gradients to an equal level, adver-
sarial examples created with BIM come with much less pertur-
bation in terms of 𝐿∞ distance. This finding for radar data is
also in line with the observations we have made in the image
domain (Ozbulak et al., 2020).

• Even though ResNeXt models are able to find adversarial exam-
ples with less perturbation, the time limit set on the generation of
adversarial examples also affects ResNeXt models more than 3D-
CNN models, since it takes them longer to perform a prediction,
as well as to calculate the gradients for adversarial example
generation, ultimately resulting in lower success rates.

• For all black-box cases, the ResNeXt architecture is able to find
adversarial examples with much less perturbation than 3D-CNN.
Our initial interpretation of this finding was that the adversar-
ial examples generated from stronger models transfer with less
perturbation when attacking similar or weaker models. However,
recent results in the area of adversarial research suggest that
residual models that contain skip-connections allow the gener-
ation of adversarial examples with much less perturbation (Wu
et al., 2020). Our experiments also confirm this observation.

• Experimental results obtained for the CNN-LSTM architecture
(presented in Table E.2 in the supplementary materials) show
that adversarial examples generated by fully convolutional archi-
tectures are capable of adversarial transferability. Moreover, we
observed that the CNN-LSTM architecture employed in this study
provides no additional security compared to fully convolutional
models. A detailed discussion of these results is presented in
Section E of the supplementary materials.

Detailed visual examples of the degree of perturbation needed and
the perturbation visibility can be found in Fig. F.6 in the supplementary
materials.

4.2. Adversarial padding for radar data

Our experiments show that, in the most restrictive case, the success
rate of the adversarial attacks falls as low as 18%. The reason behind
the low success rate can again be mainly attributed to the time con-
straint imposed on the attacks. However, an attacker may already be
in possession of a pattern of adversariality that is ready to be deployed
without needing any additional computation, thus nullifying the time
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Table 3
Median value (interquartile range) of the 𝐿2 and 𝐿∞ distances obtained for 1000
adversarial optimizations, as well as their success rate, for the models and data sets
described in Section 2, hereby using the padding attack described in Section 4.2.

Source model Target model Padding attack

𝐿2 𝐿∞ Success %

{𝑆+ ,𝑆−} {𝑆+ ,𝑆−}
3.34 0.012 84%(0.56) −

{𝑆+ ,𝑆−} {𝑆+ ,𝑆−}
3.07 0.012 74%(0.28) −

{𝑆+ ,𝑆−} {𝑆− ,𝑆+}
3.47 0.011 68%(0.82) −

{𝑆+ ,𝑆−} {𝑆− ,𝑆+}
4.19 0.010 51%(1.07) −

{𝑆+ ,𝑆−} {𝑆+ ,𝑆−}
5.19 0.011 48%(0.95) −

{𝑆+ ,𝑆−} {𝑆+ ,𝑆−}
5.56 0.012 28%(0.87) −

{𝑆+ ,𝑆−} {𝑆− ,𝑆+}
4.67 0.010 41%(1.21) −

{𝑆+ ,𝑆−} {𝑆− ,𝑆+}
5.47 0.012 25%(0.80) −

constraint set on generating an adversarial example. In the literature,
this type of attacks is called universal perturbations (Moosavi-Dezfooli
et al., 2017). The main focus of these studies is to generate a universal
perturbation pattern in advance and use it during inference time.

Moosavi-Dezfooli et al. (2017) demonstrated that universal pertur-
bations exist for DNNs and that these universal perturbations may even
be diverse in nature (i.e., more than one universal perturbation may be
available). Instead of evaluating the techniques proposed in Moosavi-
Dezfooli et al. (2017), which allow for finding a universal perturbation
eventually, we experiment with the idea of generating adversarial
padding. This approach can then be employed for samples in the data
set that contain less than 50 frames, facilitating prediction without
requiring additional optimization. In other words, adversarial padding
allows an adversary to change the prediction without even having to
modify the frames in which the activity of interest takes place. Inspired
by the work of Moosavi-Dezfooli et al. (2017), we use the approach
described below to generate the adversarial padding.

Let 𝐏 ∈ [0, 1]80×126 be the median padding used in this study,
as described in Section 2, and let 𝐗 ∈ [0, 1]𝓁×80×126 be an 𝓁-frame-
ong activity for some 𝓁 ∈ {1,… , 50}. We define 𝐌1 = [𝐏 … 𝐏] ∈
[0, 1]50×80×126 as the initial adversarial padding pattern made up of
multiple 𝐏s and denote by 𝐌𝑖, 𝑖 ∈ {1,… , 50}, the 𝑖th frame of 𝐌.
In order to generate the adversarial padding, we use the following
approach:

�̄� = [𝐗 𝐏…𝐏
⏟⏟⏟
50−𝓁

] , �̂� = [𝐗 𝐌𝓁+1 …𝐌50
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

50−𝓁

] , (4)

minimize ‖ �̄� − �̂� ‖2 , (5)

such that argmax
(

𝑔(𝜃, �̂�)
)

= 𝑐, argmax
(

𝑔(𝜃, �̄�)
)

≠ 𝑐 (6)

where 𝑐 is the target class. We then calculate 𝐌 in an iterative manner
s follows:

𝑛+1 = 𝐌𝑛 +
(

𝛼∇𝑥
(

𝑔(𝜃, [𝐗 𝐌𝓁+1
𝑛 …𝐌50

𝑛 ])
)

𝑐 ⊙ 𝐊
)

, (7)

𝐊𝑖 =

{

180×126, if 𝑖 ∈ {𝑖1, 𝑖2, 𝑖3}
080×126, otherwise

, (8)

with ‖𝐌{𝑖1 ,𝑖2 ,𝑖3}
𝑛 − 𝐏‖2 < ‖𝐌𝑖𝑢

𝑛 − 𝐏‖2 , (9)

∀𝑖𝑢 ∈ {1,… , 50} ⧵ {𝑖1, 𝑖2, 𝑖3} , (10)

where ⊙ is the element-wise tensor multiplication. The idea behind
using 𝐊 is to force the optimization to modify the least modified
padding frames (in this case, the three frames 𝑖 , 𝑖 , and 𝑖 ). This leads
1 2 3

6

to a more uniform distribution of the perturbation over the padding
frames, rather than having perturbation that is concentrated in just a
few frames. Indeed, we observed that the optimization focuses on just a
few frames rather than all frames when 𝐊 is not incorporated, resulting
in an adversarial example that is not able to reliably change the pre-
diction. We also experimented with selecting more than three frames:
although results were comparable, selecting three frames produced the
best results in terms of adversarial transferability.

By following the aforementioned procedure, we are able to create
padding sequences that convert model predictions to the targeted class,
without even having to change the frames in which the activity occurs.
In order to demonstrate the effectiveness of this attack, we provide
Table 3, containing details about the success rate of the padding attack,
obtained under the same conditions as the results presented in Table 2.
Note that the 𝐿∞ interquartile range is not presented in Table 3 because
the padding attack aims at spreading the adversarial perturbation
equally over all padding frames, thus keeping the 𝐿∞ distance between
genuine data points and their adversarial counterparts for multiple data
points approximately the same.

Given Table 3 in the main text and Table E.3 in the supplemen-
tary materials, the first observation is that the padding attack cannot
achieve a success rate upwards of 80% for white-box cases. This is
because certain samples, which usually belong to activities 0 and 1,
re either not padded or padded with very few frames (see Table 1 for
verage activity duration). Thus, it is very challenging, or downright
mpossible, for the padding attack to change the prediction. Trivially,
he shorter activities are more affected by the padding attack. Further-
ore, we can observe that the padding attack achieves higher success

ates in most black-box cases than the attacks presented in Table 2,
lbeit by incorporating stronger perturbations.

Our experiments show that it is indeed possible to exploit the
tructure of data sets that contain a temporal dimension with special
ttacks similar to the above-described padding attack. In this case, we
emonstrated the possibility of changing a model prediction by only
erturbing the frames where the activity does not take place. Moreover,
he adversarial padding generated by our padding attack only needs to
e computed once and can then be used multiple times, thus allowing
t to be incorporated in scenarios where the attacker has limited time
or performing a malicious attack. In the supplementary materials,
e provide a detailed illustration of adversarial padding in Fig. F.7,

howing how remarkably hard it is to spot adversarial padding using
he bare eye.

In the next section, we discuss a number of interesting observa-
ions related to model interpretability, as made during our analysis of
dversarial attacks on radar-based CNNs.

. Relation of adversarial attacks to interpretability

A major criticism regarding DNNs is their lack of interpretability;
t is often challenging (if not impossible) to understand the reasoning
ehind the decisions made by a neural network-based model. In order
o overcome this issue and to increase the trustworthiness of DNNs,
everal techniques have been proposed. These can broadly be divided
nto the following two groups: (1) perturbation-based forward propaga-
ion methods (Zeiler and Fergus, 2014; Shrikumar et al., 2017) and (2)
ack-propagation-based approaches (Simonyan et al., 2014; Zhou et al.,
016; Selvaraju et al., 2016). The main goal of these techniques is to
ighlight those parts of the input that are important for the prediction
ade by a neural network. When the input consists of a natural

mage, this analysis is often done subjectively, unless the evaluated
ata comes with, for example, weakly-supervised localization labels,
hich can then be used for evaluating the correctness of the selected

nterpretability technique. In our case, different from natural images,
he input consists of a sequence of RD frames that are significantly
arder to interpret by humans. However, different from prediction
sing a single image, radar data also bring useful features, such as
llowing for a frame-by-frame analysis.



U. Ozbulak, B. Vandersmissen, A. Jalalvand et al. Computer Vision and Image Understanding 202 (2021) 103111

a

e
F
w
S
p
o
t

Fig. 3. Visual representation of the frame replacement operation as explained in
Section 5.

Fig. 4. A boxplot representation of added perturbation, as generated by CW, displayed
for individual frames of adversarial examples that transfer from 𝐴𝑆+

to 𝐴𝑆−
. The amount

of added perturbation is plotted against the median frame importance, as calculated
by the experiment detailed in Section 5.

Fig. 5. Mean Grad-CAM magnitude (normalized) is plotted against the mean frame
importance, as calculated by the experiment detailed in Section 5.

A first peculiar observation we made during the experiments pre-
sented in Section 4 is that CW focuses on only introducing perturbation
in certain frames, rather than spreading out the perturbation equally.
In Fig. 4, we present the amount of perturbation added by CW to each
frame in the form of boxplots. Note that padding frames at the end
receive considerably less perturbation than the frames containing the
action. We hypothesize that frames that are the recipient of stronger
perturbations are important frames, making it possible to distinguish
ctions from one another.

In order to confirm this hypothesis, we perform an exhaustive
xperiment on measuring the importance of a frame. As illustrated in
ig. 3, we replace individual frames, one at a time, by the median frame
e described in Section 2, subsequently performing a forward pass.
ince this median frame is used throughout the training procedure to
ad the data, it is not an out-of-distribution sample, thus not favoring
ne class over another. By doing so, for each data point, we measure
he change in the prediction logit for the correct class 50 times (for

each frame individually) and plot the median difference in Fig. 4,
showing the relation between the perturbation amount per frame and
the logit change when those frames are replaced. Specifically, the red
line represents the median logit change and the shaded area represents
the interquartile range. As can be observed, the frames favored by
adversarial attacks in terms of added perturbation are also the ones
that contribute more to the prediction, confirming our hypothesis. In
the supplementary materials, an extended version of this experiment,
conducted on each class individually, can be found in Fig. F.8.
7

Following this experiment, we investigate the applicability of CNN
interpretability techniques to radar data. Among different interpretabil-
ity techniques, Grad-CAM (Selvaraju et al., 2016) stands out, thanks
to its superior weakly-supervised localization results obtained on Ima-
geNet. Another reason for selecting this method is that its approach is
based on backpropagation, meaning that the input is not perturbed. We
especially want to avoid methods based on input perturbation because,
unlike natural images, small changes in RD frames may lead to large
changes in terms of correctness of the data (i.e., being a valid data
point). In our setting, Grad-CAM is defined as follows:

Grad–CAM =
∑

𝑘

(

𝑅𝑒𝐿𝑈
(
∑

𝑖

∑

𝑗
∇𝑥𝐋

𝑝
𝑖,𝑗
)

𝐋𝑝
𝑘

)

, (11)

where 𝐋𝑝 denotes the output of the forward pass after the 𝑝th layer
(i.e., discriminative features) and ∇𝑥𝐋𝑝 denotes the gradient obtained
with a backward pass from the same layer with respect to the input
(i.e., weighted gradient). Different from adversarial attacks, as well
as vanilla and guided backpropagation, Grad-CAM does not use the
gradients of the first layer, thus arguably allowing for a more robust
explanatory approach. Because the input is not a single image but a
sequence of frames, Grad-CAM produces class activation maps for each
frame individually. An example set of video frames, their corresponding
radar frames, and the obtained Grad-CAM heatmaps can be found in
Fig. 1. In the supplementary materials, an extended version of the same
activity sequence is provided in Fig. F.10. These qualitative results
show that the heatmaps usually highlight (1) those frames where the
most important part of the activity occurs and (2) those locations where
the radar activity is the largest.

Apart from the qualitative results provided in Fig. 1, which are
heavily criticized in Lipton (2016) and Ghorbani et al. (2017), we
now aim at performing a quantitative evaluation of the correctness of
the produced Grad-CAM activation frames. We calculate the median
magnitude of the produced Grad-CAM frames, which are normalized
between 0 and 1, and compare it to the previously presented frame
importance data in Fig. 5, where the blue line represents the median
Grad-CAM magnitude and the red line the median frame importance.
The bands around the lines correspond to the respective interquartile
ranges. In the supplementary materials, the same type of illustration on
a per-class basis is provided in Fig. F.9.

Given Fig. 5, we again observe a correlation between the importance
of frames and their corresponding Grad-CAM activations. Both experi-
ments, as presented in Figs. 4 and 5, show strong correlation between
their respective data. In particular, the higher the magnitude of the
positive Grad-CAM heatmap, the larger the change in the prediction
will be when replacing the underlying frame with the padding frame.
Consequently, our experiments confirm that the output of Grad-CAM
can indeed be used to assess the relative importance of each radar
frame for the prediction made. Indeed, the frames that contribute the
most to a prediction are also the ones that are naturally perturbed
more than the others during an adversarial optimization, pointing
to a strong connection between adversarial optimization and model
interpretability.

6. Conclusions and future work

In this study, we evaluated multiple scenarios in which adversarial
attacks are performed on CNNs trained with a sequence of range-
Doppler images obtained from a low-power FMCW radar sensor, with
the goal of performing gesture recognition. Our analysis showed that
these models are vulnerable not only to commonly used attacks, but
also to unique attacks that take advantage of how the data set is crafted.
In order to demonstrate a unique attack that leverages knowledge about
the data set, we proposed a padding attack that creates a padding
sequence that changes the predictions made by CNNs.

An often mentioned drawback of CNNs is their lack of interpretabil-
ity. By taking advantage of the data selected for this study, we were
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able to show the connection between the perturbation exercised by
adversarial attacks and the importance of individual frames. Moreover,
we were also able to demonstrate that it is possible to identify important
rames using Grad-CAM, thus showing (1) the relation between adver-
arial optimization and interpretability, and (2) a quantitative method
o evaluate interpretability techniques.

In future research, we aim to analyze multiple shortcomings of radar
ensors against so-called real-world adversarial examples (Sun et al.,
018; Kurakin et al., 2016), as well as black-box attacks that do not
se surrogate models (Tu et al., 2019; Cheng et al., 2019; Gragnaniello
t al., 2019). In the case of activity detection, real-world adversarial
xamples may occur when radar sensors are employed in environments
xhibiting poor recording conditions, such as environments that contain
eflective materials (e.g., metal objects), or similarly, when the subject
tself carries any reflective material. Moreover, it would be of interest
o investigate the influence of multiple moving subjects in the same
ecording environment on adversariality.
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