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Abstract: The heavy computational burden of computer-generated holograms (CGHs) has been
a significant issue for three-dimensional (3D) display systems using electro-holography. Recently,
fast CGH calculation methods of line-drawn objects for electro-holography were proposed, which
are targeted for holography-based augmented reality/virtual reality devices because of their ability
to project object contours in space with a small computational load. However, these methods
still face shortcomings, namely, they cannot draw arbitrary curves with graphics processing unit
(GPU) acceleration, which is an obstacle for replaying highly expressive and complex 3D images.
In this paper, we propose an effective algorithm for calculating arbitrary line-drawn objects
at layers of different depths suitable for implementation of GPU. By combining the integral
calculation of wave propagation with an algebraic solution, we successfully calculated CGHs of
1, 920× 1, 080 pixels within 1.1 ms on an NVIDIA Geforce RTX 2080Ti GPU.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

With the growing demand for augmented reality and virtual reality technologies, there is a daily
increase in the expectations from three-dimensional (3D) imaging technologies. Among the
possible implementations of 3D displays, electro-holography is the most promising technology
for photo-realistic 3D displays, owing to its ability of reproducing the complete light wave
reflected from a 3D object. However, the large computational load required to calculate the
computer-generated holograms (CGHs) is a significant issue for realizing practical holographic
display systems.

Till date, many algorithms for fast calculations of CGH have been developed, including the
look-up table method [1–7], ray-wavefront conversion methods [8,9], wave-front recording plane
methods [10–13], deep-learning-based methods [14], layer-based methods [15–17], saccade
suppression [18], and sparsity-based methods [19–21]. Hardware-based acceleration have also
been proposed for devices, such as field-programmable gate arrays [22–24] , application specific
integrated circuit [25] and GPU [26,27].

Recently, we proposed an algorithm for fast calculation of CGH (CG-line method) for line-
drawn objects at layers of different depths [28]. Figure 1 provides an overview of our previous
method. The algorithm is primarily based on the phenomenon that wavefronts created from
point-light sources (PLSs) aligned on a line segment placed at a constant depth converge to
a one-dimensional (1D) signal, provided the line length is sufficiently long. The CG-line
method approximates the wavefronts created from arbitrary shapes consisting of constant-depth
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line-drawn objects to synthesize the precalculated converged 1D wavefront along the normal
direction of the line object. Although the proposed method can calculate CGHs at high speed
even with consumer CPUs, effective implementation on massive parallel processors such as
GPUs is difficult as it requires random memory access to synthesize 1D wavefronts. Since the
computational load for this method increases with the complexity of the 3D object, implementing
the algorithm on high-speed devices such as GPUs is essential for practical purposes. We also
proposed a method for analytically solving the distribution of wavefronts from line-drawn objects
suitable for GPU implementation [29]; however, the algorithm could only draw straight lines or
arcs that lie at the same depth, which limits the expressiveness of the 3D image.

Fig. 1. Overview of CG-line method.

Consequently, we propose a novel algorithm for calculation of CGH for arbitrary line-drawn
objects at layers of different depths, suitable for GPU implementation. The primary idea of
the proposed method is based on the CG-line method, but it does not use precalculated data to
avoid random memory access. In other words, the proposed method calculates the converged
wavefronts directly and independently on each pixel of the hologram plane, which is suitable
for GPU implementation. As a result, we succeeded in calculating CGHs 3 to 12 times faster
than the GPU implementation using [29] for objects consisting of arcs and straight lines with
equivalent image quality. Furthermore, the proposed method succeeded in drawing font-shaped
line-drawn objects as an arbitrary line-drawn object at sufficiently high speed.

CGH encodes the complex wavefront computed with the wave propagation of digital 3D
objects. The spatial light modulator (SLM), which is the digital device to display CGHs, can not
modulate the complex amplitude directly in the current technology. There are several encoding
methods for CGH (phase-only, amplitude-only, etc.), and the quality of the reproduced image
varies depending on the method. The proposed method can be applied to any encoding scheme.
In this paper, Kinoform CGH is demonstrated as an example. It is a phase-only coding method
that can produce high-quality 3D images due to its high light utilization efficiency.

The remainder of this paper is organized as follows. Section 2 briefly presents the CG-line
method. Section 3 describes the details of the proposed method. Section 4 presents the
experimental results. Section 5 discusses the results. Finally, Section 6 presents the conclusions
of the study.

2. CG-line method for fast generation of CGH for line-drawn objects

The calculations of CGH for a PLS-based 3D model can be regarded as a linear superimposition
of the wavefront of each individual PLS. The wavefront of a single PLS located at the coordinates



Research Article Vol. 29, No. 9 / 26 April 2021 / Optics Express 12851

(δ, ϵ , ζ) is defined with axial approximation as

P(x, y) = a · exp
(︂ iπ
λζ

[︃
(x − δ)2 + (y − ϵ)2

]︃ )︂ 1
ζ

, (1)

where, (x, y) are the coordinates of the hologram plane, ζ the distance between PLS and the
hologram plane, i the imaginary unit, λ the wavelength of the incident light, and a the amplitude
of PLS.

According to Eq. (1), assuming the PLSs lie on the x-axis from −∞ to +∞ on the same ζ ,
forming a self-illuminated line of infinite length residing at a certain depth, the complex amplitude
distribution on the hologram plane L(x, y) is given as

L(x, y) =
a
ζ

∫ ∞

−∞

exp
(︂ iπ
λζ

[︃
(x − u)2 + y2

]︃ )︂
du, (2)

where the amplitudes of all the PLSs are considered to be equal. Applying the Fresnel integral,
Eq. (2) becomes a pure function of y.

U(y) =
1
ζ

√︃
λζ

2
(i + 1) exp

(︃
iπy2

λζ

)︃
. (3)

Therefore, the wavefront of a self-luminous line of infinite length converges to a 1D pattern on
the hologram plane. In practice, U(y) does not always need to be calculated due to the diffraction
limit of the SLM, which is a display device for CGH. In other words,

U(y) =

{︄
Eq.(3) (y<Rζ )

0 (otherwise)

where,
Rζ = ζ

λ√︁
4p2 − λ2

, (4)

and p is the pixel pitch of the SLM.
The primary idea of the CG-line method is to approximate the calculation for the wavefront

of the arbitrary line-drawn object by superimposing the 1D wavefront, which is obtained by
Eq. (3), along the normal vector of the line-drawn object. Figure 1 provides an overview of the
CG-line method. In the original CG-line method [28], the normal vector at each point on the line
is calculated and the precalculated 1D wavefront is obtained; thus, it is a point-wise calculation
of the line.

Since the computational complexity of the original CG-line method increases with the
complexity of the line-drawn objects, a faster implementation is essential for more practical
3D images, which would facilitate the implementation on high-performance massive parallel
processors such as GPUs, which are suitable for pixel-wise parallelization. However, since the
original CG-line method requires tracing line objects, converting to a pixel-wise parallelization is
required. In addition, as mentioned in [28], the blank pixels between the succesively synthesized
1D wavefronts causes image degradation, which also stems from the original CG-line method
tracing the line and pasting the 1D wavefront along the normal direction on each point of the line.

Therefore, in this paper, we propose a method to calculate the CG-line method with pixel-wise
parallelization and is suitable for GPU implementation. The problem regarding the blank pixels
between the pasted 1D wavefronts in [28] can be resolved by our proposed pixel-wise calculations.
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3. Algorithm for pixel-wise parallelization of the CG-line method

The basic idea of the pixel-wise computation of the CG-line method is to find an effective way for
calculating the length of the normal vector passing through both a point on the line-drawn curve
and a certain point on the hologram plane, which is an input for the 1D function of Eq. (3). Note
that line-drawn objects are assumed to be at a constant depth ζ in a single integral calculation.

Figure 2 shows the overview of the algorithm. Given that line-drawn objects are formulated by
parametric functions with coordinates g⃗(t) = (x(t), y(t)), the vector from a specific point on the
hologram plane r⃗ = (α, β) to g⃗(t) becomes

h⃗(t) = g⃗(t) − r⃗ = (x(t) − α, y(t) − β), (5)

where 0 ≤ t ≤ 1.

Fig. 2. Overview of the proposed method

The condition for h⃗(t) to be a normal vector of the line-drawn curve is,

h⃗(t) · g⃗′(t) = 0, (6)

→ {x(t) − α}x′(t) + {y(t) − β}y′(t) = 0. (7)

where the apostrophe denotes the derivative with respect to t. Since the degree of Eq. (7) is 2n− 1
where n is the maximum degree of x(t) and y(t) (assuming these functions are polynomials),
Eq. (7) can be analytically solved if 2n − 1 ≤ 4; thus, n ≤ 2 is preferable.

Given Tj as the j-th real number solution of Eq. (7), the norm of h⃗(t) becomes;

|h⃗(Tj)| =

√︂
{x(Tj) − α}2 + {y(Tj) − β}2. (8)

Thus, from Eq. (3), the complex amplitude distribution at (α, β) becomes;

L(α, β) =
∑︂

j
U(|h⃗(Tj)|). (9)

Since Eq. (9) can be computed independently for each pixel of the hologram plane, the above
algorithms allow for the CG-line method to be computed in parallel by a massive parallel
processor such as the GPU.

Many algorithms for approximating arbitrary curves with parametric functions, such as Bezier
and Spline curves, can be considered. Among these, some practical algorithms that the maximum
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degree of the equation is two are existed, such as B-Spline and quadratic Bezier curves [30].
Thus, we propose an algorithm for the quadratic parametric curve function by introducing the
quadratic Bezier curve as an example, and it can be easily expanded to other quadratic curve
functions. In addition, we develop solutions for the simpler cases of circle and straight line in the
following subsections.

3.1. Quadratic parametric curve

First, we define the function for the quadratic parametric curve as:

x(t) = at2 + bt + c, (10)

y(t) = dt2 + et + f , (11)

where a, b, c, d, e, f ∈ R. h⃗(t) and g⃗′(t) become,

h⃗(t) = (at2 + bt + c − α, dt2 + ct + f − β), (12)

g⃗′(t) = (2at + b, 2dt + e). (13)

Thus, Eq. (7) becomes,

(at2 + bt + c − α)(2at + b) + (dt2 + et + f − β)(2dt + e) = 0, (14)

→ At3 + Bt2 + Ct + D = 0, (15)

where,
A = 2(a2 + d2), (16)

B = 3(ab + de), (17)

C = b2 + 2a(c − α) + e2 + 2d(f − β), (18)

D = b(c − α) + e(f − β). (19)

We can obtain the real number solution Tj as an input for Eq. (3) by solving the cubic equation
Eq. (15) using Cardano’s formula [31].

Next, we introduce the quadratic Bezier curve as a practical example. The quadratic Bezier
curve is defined as [30],

x(t) = (1 − t)2x0 + 2(1 − t)tx1 + t2x2, (20)

y(t) = (1 − t)2y0 + 2(1 − t)ty1 + t2y2, (21)

where, (x0, y0) and (x2, y2) are the start and end points of the curve, respectively, and (x1, y1) is
the control point. According to Eqs. (20) and (21), the coefficients in Eqs. (10) and (11) would
become:

a = x0 − 2x1 + x2, (22)

b = −2x0 + 2x1, (23)

c = x0, (24)

d = y0 − 2y1 + y2, (25)

e = −2y0 + 2y1, (26)

f = y0. (27)

Applying these coefficients to Eqs. (16)–(19), and solving Eq. (15) using Cardano’s formula to
obtain Tj, thereafter calculating Eqs. (8) and (9), we can obtain the complex amplitude distribution
at a specific pixel of the hologram plane.
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Figure 3 is an example of the CGH of a line-drawn object drawn by the quadratic Bezier
curve and numerically reconstructed image of CGH and its original image. Note that although
Fig. 3(a) is a kinoform type of CGH, the proposed method is applicable for any type of CGHs,
including amplitude CGH. In this example, a line-drawn object lies on a depth of 0.1 m. As
shown in the reconstructed image, the obtained CGH is succeeded in projecting the arbitrary
curved line-drawn object in 3D.

Fig. 3. Example of CGH created from a line-drawn object with quadratic Bezier curve: (a)
CGH, (b) numerically reconstructed image, (c) original image

3.2. Circles and arcs

Generally, it is difficult to draw a circle or an arc with quadratic parametric curve functions.
Hence, we developed the algorithm for drawing the circle and arc independently, and it is simpler
than the case of quadratic curves.

Figure 4 shows the overview for a circle. The purpose of the algorithm is to calculate the norm
of h⃗(t) when it is the normal vector of a line-drawn object. For a circle, the vector connecting
the center of the circle and a point is always the normal vector of the circle, as shown in Fig. 4.
Further, we should consider two normal vectors, h⃗1 and h⃗2, whose locations correspond to the
near and far sides of the circle. Their norms are then given as follows:

|h⃗1 | = |r⃗ − c⃗| − R, (28)

|h⃗2 | = |r⃗ − c⃗| + R, (29)

where, c⃗ is the position vector of the center of the circle and R the radius of the circle. Therefore,
the complex amplitude distribution at (α, β) becomes

L(α, β) = U(|h⃗1 |) + U(|h⃗2 |) (30)

For arcs, the complex amplitude distribution can be obtained by determining whether the angles
of h⃗1 and h⃗2 are within the range of the angle of the arc.

3.3. Straight line

If the distance between a point and another on a straight line of infinite length is minimal, the
vector connecting those points is the normal. Thus, for a line, it can be summarized as a problem
of finding the minimum distance of a point to a line. Figure 5 shows the overview for a straight
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Fig. 4. Overview of obtaining the norm of the normal vector for a circle and arc.

Fig. 5. Overview of obtaining the wavefront for straight-line objects.

line. The straight-line functions are defined as:

lx + my + n = 0, (31)

where l, m, n ∈ R. The minimum distance between the point on a line and r⃗ = (α, β) can be
obtained as follows:

δ =
|lα + mβ + n|
√

l2 + m2
. (32)

When the straight line has a constant length, we should ascertain whether r⃗ is within the range
where the normal vector of the line object exists. Defining the start and end points of a line as
p⃗1 = (x1, y1) and p⃗2 = (x2, y2), respectively, the coefficients in Eq. (31) become,

l = y2 − y1, (33)

m = −x2 − x1, (34)

n = −x1(y2 − y1) + y1(x2 − x1). (35)

Because r⃗ = (α, β) is on the normal vector of the line, both the following conditions must be
satisfied:

(p⃗2 − p⃗1) · (r⃗ − p⃗1)≥0, (36)

(p⃗2 − p⃗1) · (p⃗2 − r⃗)≥0. (37)
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Therefore, the complex amplitude distribution of r⃗ that satisfies the condition of Eqs. (36) and
(37) can be obtained by,

L(α, β) = U(δ). (38)

4. Experiments

We investigated the feasibility of the proposed method, considering both the calculation speed and
image quality for the numerically and optically reconstructed images. The results are compared
with those of three reference methods suitable for GPU implementation, because they can perform
independent pixel-wise calculations.

• conventional point-based method: directly calculates Eq. (1) for each coordinate of a
hologram plane and every PLS.

• angular spectrum method (ASM): calculates the fast Fourier transform (FFT)-based
wave diffraction for a specific depth plane, where the PLS exists. The resolution of the
plane is the same as that of the hologram plane. Given the number of planes as P, the total
number of FFT to be executed becomes P + 1.

• analytical line-drawn method: solves the integral for calculating the complex amplitude
distribution for arcs and straight-line segments that are located on the same depth plane
[29].

We also compared the original CG-line method implemented on the CPU for verifying both the
effectiveness of massively parallel implementation on GPU and filling the blank pixels that cause
image degradation.

We employed three 3D models for the evaluation: (1) the SimpleShape model (Fig. 6(a)),
which consists of 6 arcs and 40 lines, and the total line length is 17,777 pixels using 1,920×1,080
pixels (2k) resolution; (2) the Seigaiha model (Fig. 6(b)), which consists of 144 arcs, and the total
line length is 29,331 pixels using 2k resolution; (3) the Tokyo model (Fig. 6(c)), which consists
of 111 segments of quadratic Bezier curves and 2 straight lines, and the total length of the line

Fig. 6. Dataset: (a) “SimpleShape”, (b) “Seigaiha”, (c) “Tokyo”, the same line color implies
the same line depth.
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is 9,876 pixels using 2k resolution. Since the analytical line-drawn method can only draw arcs
and lines, we did not evaluate the Tokyo model for this method. Here, the line thickness for all
models was 1 pixel in the digital image; i.e., it was assumed to be equal to the pixel pitch of SLM,
which is 8 µm in this paper. In addition, the models do not apply to anti-aliasing. Furthermore,
for the point-based method, we regarded each pixel of the line as PLS; for example, the 17,777
pixels in the SimpleShape model amounted to 17,777 PLSs. Note that the size of all 3D models
is scaled to match the hologram resolution. For example, the 3D image used at 4k resolution is
twice as wide and tall as the 3D image at 2k resolution.

We used the following computer environment: Microsoft Windows 10 Professional operating
system; AMD Ryzen 9 3950X 3.50 GHz CPU, 64 GB DDR4–2132 memory; Microsoft Visual
C++ 2019 compiler with single floating-point computational precision and NVIDIA Geforce
RTX 2080Ti GPU with CUDA 11.0. The CGH resolution was set to 2k, 4k, 8k, 16k, 32k for
investigating the trend of computational speed and image quality according to the resolution, and
we assumed that the wavelength of the incident light to be 532 nm (green light).

Figure 7 shows the optical setup, which consists of a phase-modulation-type SLM (Holoeye
Photonics AG, ’HEO1080P’), green laser with a wavelength of 532 nm (Thorlabs inc., ’CPS532’),
beam expander (Thorlabs inc., ’GBE10-A’), polarizer (Sigma-koki, ’SPF-50C-32’), and beam
splitter (Edmund optics, ’47571’). We captured real images directly focused on the image sensor
of the camera.

Fig. 7. Optical setup.

Figure 8 provides the CGH of a SimpleShape model created with the proposed method and
point-based method in 2k resolution as an example.

4.1. Calculation speed

Table 1 and Fig. 9 shows a comparison of the calculation speed for each dataset and resolution.
Here, Fig. 9 shows the total calculation time including the kernel execution and memory access.
The ASM could only calculate until 8k resolution because the amount of memory used in the
calculation exceeds the GPU’s hardware limit. The calculation time of the proposed method was
the shortest among all other methods for each 3D model and resolution. For example, it was 132
and 40 times faster than the Point-based and the ASM methods, respectively, for the SimpleShape
model at 2k resolution and 5.4 times faster than the analytical method for the Seigaiha model at
2k resolution. The scale of the speed-up grows with increasing resolution. For example, it was
3444 times faster than the Point-based method for the SimpleShape model at 32k resolution.

The computational requirements of the Point-based method are proportional to the total length
of all lines, regardless of whether they are curved or not. Therefore, the Seigaiha model takes the
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Fig. 8. CGH of SimpleShape model in 2k resolution: (a) proposed method, (b) point-based
method.

Fig. 9. Trend of calcualtion time for CGH resolution.

Table 1. Time for kernel execution (memory access) at 2k resolution

[ms] Point-based ASM Analytical Orginal CG-line Proposed

SimpleShape 144(0.353) 35.0(8.51) 2.78(0.403) 221 0.799(0.290)

Seigaiha 235(0.362) 27.3(6.32) 22.7(0.254) 291 3.98(0.248)

Tokyo 80.1(0.354) 4.89(0.880) - 111 3.86(0.289)
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maximum computational time. As for the ASM method, the computational requirements are
determined by the number of layers at different depths and the resolution of the aperture; thus,
the SimpleShape model takes the maximum time to compute. Furthermore, the ASM method
requires transferring the aperture data for all layers. In this study, we send the aperture data with
the exact resolution to CGH as a straightforward implementation; thus, the memory access time
is generally more significant than the other methods, and it depends on the number of layers. In
the analytical method, the computational requirements are proportional to the number of line
segments, independent of their length, and the formulas for arcs are more complicated than those
of straight lines. Hence, the Seigaiha model would take a longer time than the SimpleShape
model to compute. For the proposed method, the computational load is proportional to the
total line length, and it is not significantly different among the straight lines and arcs, unlike
the analytical method. However, the computational load of the Bezier curve is more intensive
because it solves cubic equations. Thus, the Tokyo model takes the maximum time among the
3D models with the proposed method.

4.2. Image quality

To evaluate image quality, we calculated the peak signal-to-noise ratio (PSNR) and structural
similarity (SSIM) between the numerically reconstructed images at the depth where the line-drawn
object exists, using the reconstructed image obtained from the CGH of the Point-based method
as a reference.

Tables 2, 3, and 4 compare the image quality for each 3D model by the PSNR and SSIM at 2k
resolution. Fig. 10 provides the trend of the average of each value among all layer according
to the CGH resolution. The image quality of the proposed method is degraded compared with
the ASM method. It is the worst in the SimpleShape model and better in the Seigaiha model,
compared with the analytical method at 2k resolution. The SSIM and PSNR of the SimpleShape
and Seigaiha models are worse than those of the Tokyo model, which has only one layer. This
may be because images reproduced at different depths affect those reproduced at other depths.

Table 2. Image quality (SimpleShape)

ASM Analytical Original CG-line Proposed

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

0.24 31.3 0.781 22.2 0.494 28.1 0.596 23.9 0.549

0.28 28.9 0.741 23.5 0.603 22.7 0.448 25.2 0.603

0.32 28.4 0.725 24.9 0.641 25.3 0.540 23.9 0.576

0.36 25.6 0.675 24.1 0.640 22.5 0.475 22.1 0.557

0.40 25.0 0.655 24.8 0.664 22.7 0.499 22.5 0.569

0.44 26.3 0.673 25.9 0.702 23.8 0.534 23.5 0.619

0.48 26.8 0.681 25.4 0.734 21.5 0.457 24.4 0.637

0.52 23.6 0.597 24.4 0.680 22.2 0.484 22.0 0.556

0.56 23.5 0.593 24.7 0.664 22.4 0.485 22.2 0.556

0.60 25.7 0.659 25.3 0.709 21.1 0.416 23.6 0.612

0.64 26.1 0.666 27.3 0.693 24.4 0.484 23.5 0.598

0.68 23.3 0.554 25.2 0.621 22.3 0.414 22.9 0.504

avg 26.2 0.667 24.8 0.654 23.3 0.486 23.3 0.578

Figures 11, 12, and 13 show examples of numerically and optically reconstructed images of
each 3D model. Note that the reconstructed image of the SimpleShape model (Fig. 11) is zoomed
around the object to enhance the visibility. The optically reconstructed images are overlayed
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Table 3. Image quality (Seigaiha)

ASM Analytical Original CG-line Proposed

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

0.10 26.0 0.514 19.9 0.347 21.5 0.279 22.9 0.415

0.20 30.3 0.712 20.5 0.372 22.8 0.312 26.6 0.592

0.30 30.9 0.740 21.6 0.416 23.1 0.370 26.2 0.587

0.40 28.1 0.648 22.2 0.436 22.0 0.379 23.6 0.517

0.50 24.7 0.587 22.4 0.441 21.3 0.345 22.1 0.465

0.60 23.7 0.512 22.6 0.434 20.6 0.318 21.1 0.428

0.70 22.2 0.463 22.2 0.393 20.1 0.270 21.3 0.407

0.80 22.0 0.409 22.9 0.441 19.6 0.234 21.7 0.409

avg 26.0 0.573 21.8 0.410 21.4 0.313 23.2 0.477

Table 4. Image quality (Tokyo)

ASM Analytical Original CG-line Proposed

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

0.30 44.9 0.996 - - 26.6 0.825 25.7 0.951

by unwanted light (background light of rectangle shape), which can generally be removed with
a spatial filter system such as the 4f optical system. However, since the optical reproduction
image quality was degraded due to distortions and aberrations caused by the lenses constituting
the 4f optical system, this paper demonstrates the proposed method’s effectiveness by showing
a distortion-free reproduction image without introducing any spatial filter. We must mention
that this noise is somehow suppressed by incident light’s calibration using a polarization plate.
According to the figures, the proposed method can reconstruct 3D images with approximately
similarquality as the other method, which is sufficient to recognize the shape of the line-drawn
objects.

Fig. 10. Trend of image quality for CGH resolution.
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Fig. 11. Example of numerically and optically reconstructed images of the SimpleShape
model.
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Fig. 12. Example of numerically and optically reconstructed images of the Seigaiha model.

Fig. 13. Example of numerically and optically reconstructed images of the Tokyo model.
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5. Discussion

5.1. Calculation speed

The computational speed of the proposed method is the highest among all the tested methods.
The achieved framerate of the proposed method in 2k resolution was 918 fps for the SimpleShape
model, 236 fps for the Seigaiha model, and 241 fps for the Tokyo model, and these values are high
enough for the smooth rendering of 3D images, considering the framerate of current television
systems. The proposed method’s speed-up effect increases as the resolution increases, suggesting
that it is an effective computational method for practical holographic displays.

5.2. Image quality

As shown in the comparison of the numerically and optically reconstructed images, the quality of
the replayed images with the proposed method was not significantly degraded compared with that
of the reference methods. The numerical values of the PSNR and SSIM of the proposed method
were approximately equal or not significantly lower than that of the standard fair-quality image,
where PSNR is 25 dB and SSIM is 0.88 or higher [32]. Therefore, considering the speed-up
effect, the proposed method is superior to the reference methods. There are various causes for
image degradation, including the influence of images in other layers and various noises, and
since they are common to all methods, there is a need for further research.

However, a single-layer 3D projection such as the Tokyo model can produce a highly visible
image, as indicated by the values of PSNR and SSIM and the optically and numerically reproduced
images. This makes it practical for applications such as projecting onto the windshield of a car.
Furthermore, optically reconstructed images are visually degraded primarily due to zero-order
noise. This could be removed by 4f optical systems, which we will introduce in our future study.

The proposed method’s image quality improves with the resolution, since the number of pixels
occupied by lines in the total number of pixels of the reproduced image becomes relatively tiny at
higher resolutions. Also, the Analytical method degrades the image quality because of aliasing
caused by the steep diffraction angles, inducing frequencies surpassing the Shannon bound of
the sampled hologram. However, this problem can be solved by making additional checks when
evaluating the analytical integral expression.

Compared to the original CG-line method, the PSNR of the proposed method is either the same
or better, except for the Tokyo model, and all SSIM are improved. In general, SSIM is regarded
as a more accurate way to evaluate the objective quality of images. The SSIM of the proposed
method is higher than that of the original CG-line method in all cases, which is evidence of the
proposed method’s superiority compared to the original CG-line method. This can be explained
by the fact that the proposed method does not produce blank pixels that occur in the original
CG-line method. Besides, the proposed method calculates the y of the convergent wavefront
U(y) as a continuous value. Therefore, the proposed method can superimpose wavefront with
less error than the original CG-line method.

To enhance the image quality of the proposed method, one of the promising approaches is to
flatten the intensity distribution between the straight and curved lines. The most striking example
of this is the replayed image of the Tokyo model. Nonuniformity in the intensity distribution is
observed between areas with small curvature and linear areas of the letters. One of the causes of
this phenomenon is the difference in areas when obtaining the 1D wavefront between the curved
and straight lines, according to the radius of curvature of the line.

Considering a simple case where the curve is an arc whose radius of curvature is constant, as
shown in Fig. 14. Given that l is the length of the line and R the radius of curvature, the total area
to obtain the 1D wavefront becomes 2Rζ l when Rζ<R as shown in Fig. 14(a), and l

R (Rζ
2 + R2)

when Rζ ≥ R as shown in Fig. 14(b), and 2Rζ l when the line is straight, as shown in Fig. 14(c),
where Rζ is defined in Eq. (4). The light intensity on the reconstructed plane is correlated with
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the area of the wavefront on the hologram plane; thus, it may cause nonuniformities between the
straight and curved lines when Rζ ≥ R.

Fig. 14. Area to paste the 1D wavefront (gray area) for a line object: (a) for an arc when
Rζ<R, (b)for an arc when Rζ ≥ R, and (c) for a straight line.

To validate this hypothesis, we performed a numerical experiment to calculate the intensity
distribution from the CGHs created by the line object, which consisted of a straight line and an
arc of the same length, as shown in Fig. 15. In this experiment, we compared the sum of the
intensity values for the pixels on the reconstructed image between the straight line and the arc;
i.e., the intensity values were masked by the original image whose line thickness was 3 pixels
and thereafter accumulated at each part. Figure 16 shows the results for the two cases: (a) lines
at 0.1-m depth and (b) lines at 0.3-m depth. In Fig. 16, the circular mark indicates Is/Ic where Is
and Ic are the sum of the measured intensity of the straight line and curved parts, and the cross
mark indicates As/Ac where As and Ac are the areas of the obtained 1D wavefront for the straight
line and curved parts, respectively. Here, Rζ was 416 pixel (3.33 mm) for the 0.1-m depth and
1,249 pixel (9.99 mm) for the 0.3-m depth. The approximate shapes of the two graphs show a
similar trend, which supports the hypothesis. Therefore, adjusting the intensity of the wavefront
according to the radius of curvature of the line may solve this problem. However, this requires an
accurate estimation of the radius of curvature of the quadratic parametric curve. Thus, this issue
will be reported in our future study.

Fig. 15. Line object to validate the nonuniformity of intensity distribution between straight
and curve lines.
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Fig. 16. Ratio of the sum of the values of intensity and area to obtain the 1D wavefront for
the straight line and arc of same length: (a) lines on the 0.1-m depth and (b) lines on the
0.3-m depth.

6. Conclusion

A novel fast method for calculation of CGH for 3D line objects at layers of different depths that
can be accelerated on a GPU is proposed in this paper. Compared with the reference methods,
the proposed method can calculate holograms up to 3444 times faster while preserving the image
quality. The proposed method can draw arbitrary curves that lie on the same depth plane and can
be expressed with quadratic parametric functions such as the Bezier curve, which has practical
applications in areas like the TrueType font [33]. Hence, it has many potential applications,
including car windshields and head-up displays.
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