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SUMMARY

Search schemes constitute a flexible and generic framework to describe how all
approximate occurrences of a search pattern in a text can be found efficiently.
We propose an algorithm for the dynamic partitioning of search patterns which
can be universally applied to any kind of search scheme and demonstrate that
this technique significantly reduces the search space. We present Columba, a
software tool written in C++, in which a multitude of search schemes are imple-
mented. We discuss implementation aspects such as memory interleaving of Bur-
rows-Wheeler transform representations and the reduction of redundancy that is
inherently associated with the edit distance metric. Ultimately, we demonstrate
that Columba has superior performance to the state of the art. Using a single CPU
core, Columba is able to retrieve all occurrences of 100,000 Illumina reads and
their reverse complements within a maximum edit distance of four in the human
genome in less than 3 min.

INTRODUCTION

Sequence alignment algorithms are central tomany bioinformatics applications. Given a query pattern P (e.g., a

read) and a search text T (e.g., a reference genome or a collection of genomes), the basic task is to identify oc-

currences of P in T. Due to the presence of sequencing errors and natural variation, one is often interested in

‘‘approximate pattern matching’’: finding occurrences of P in T within a certain Hamming distance (allowing

only substitutions) or Levenshtein/edit distance (allowing substitutions, insertions, and deletions).

Most bioinformatics tools (e.g., BLAT [Kent, 2002], BLAST [Altschul et al., 1990], BWA [Li and Durbin, 2009],

etc.) use ‘‘lossy’’ approximate pattern matching algorithms: they rely on heuristics to quickly identify some

(but not necessarily all) approximate matches of P in T. By sacrificing some sensitivity, significant gains in

performance can be obtained. In this paper, we focus on ‘‘lossless’’ algorithms that are guaranteed to

retrieve all approximate matches of P in T. Recent algorithmic developments on ‘‘bidirectional indexes’’

and ‘‘search schemes’’ promise to decrease the performance gap between lossy and lossless approximate

pattern matching algorithms.

Regular full-text substring indexes (e.g., suffix trees [Gusfield, 2007], enhanced suffix arrays [Abouelhoda et al.,

2004], FM indexes [Ferragina andManzini, 2000]) allow unidirectional patternmatching. In this work, we focus on

the FM index (Ferragina and Manzini, 2000), which is based on the Burrows-Wheeler transform (BWT) of the

search text T. It allows for the identification of exact occurrences of a query pattern P in Twith a time complexity

of OðjPj +noccÞ with jPj the length of P and nocc the number of occurrences of P in T. It does so by matching

pattern P character by character in reverse order, from right to left. Baseline lossless approximate patternmatch-

ing with up to k errors is performed by exploring branches of the FM index that could potentially be matches.

Branches are explored character by character for as long as they remainwithin themaximumallowedHamming/

Levenshtein distance of k errors with the corresponding part of query pattern P. When the number of errors ex-

ceeds the value of k, the branch is abandoned (called ‘‘backtracking’’), and the search procedure continues with

the next feasible branch that is yet unexplored. The problem is that (a) the number of branches to explore in-

creases rapidly with the number of errors allowed and (b) the vastmajority of branches that are explored turn out

not to be matches. In other words, the search space, i.e., the feasible region of the full-text index in which oc-

currences of P could be found, is very large, rendering the backtracking procedure computationally unfeasible

even for modest values of k.
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Bidirectional indexes (affix trees [Maab, 2000], affix arrays [Strothmann, 2007], and bidirectional FM indexes [Lam

et al., 2009]) augment the functionality of their unidirectional counterparts by allowing to extendqueries in either

direction: a pattern P can be searched by starting at any position of P and extending thematch either to the left

or to the right in arbitrary order. Lam (Lam et al., 2009) was the first to note that this added functionality could

significantly accelerate lossless approximate pattern matching in full-text indexes by leveraging the classical

‘‘pigeonhole principle’’: by partitioning P in k + 1 non-overlapping parts with k themaximumnumber of allowed

errors, it immediately follows that one part must be error free. By first performing an exact search for each of the

k + 1 parts and then extending that match with an approximate search, the search space is reduced significantly

and computational gains are obtained. Indeed, the initial exact match avoids the computationally costly explo-

ration of the densely branched region near the root of the search tree.

Kucherov et al. generalized these ideas and introduced the notion of ‘‘search schemes’’ (Kucherov et al., 2014).

Search schemes define how a pattern P is matched using a bidirectional full-text index such that unsuccessful

branches are discarded as quickly as possible, reducing the search space and hence runtime. We adopt their

notation. Pattern P is partitioned into p (potentially uneven) parts Pi ði= 1. pÞ. A search S = ðp; L;UÞ is a triplet

of arrays of size pwhere p is a permutation over f1; 2;.;pg that defines the order in which the parts Pi are pro-

cessed. It must satisfy the connectivity property in that sense that a partial match can only be extended in a

contiguous manner, either to the left or to the right. The arrays L and U define the lower and upper bound

to the cumulative number of errors when each part is processed. The core idea is to only gradually increase

the number of allowed errorswhenmore parts ofP arematched against the full-text index, significantly reducing

the search space near the dense root of the search tree. To cover all possible error distributions over the length

of a pattern,multiple ‘‘searches’’ are required that collectively form a search scheme. Kucherov et al. proposed a

number of efficient search schemes for up to k = 4 errors using p= k + 1 or p= k + 2 parts. For example, for k = 2

errors and p= k + 1= 3 parts, they proposed a search scheme with three searches: S1 = ð123; 000; 022Þ; S2 =

ð321; 000; 012Þ; and S3 = ð213; 001; 012Þ. In the S1 search, exact matching is first performed for the leftmost

part P1. Next, this exact match is extended to the right, thus processing parts P2 and P3, using a backtracking

procedure that allows up to two errors. In the S2 search, exact matching is first performed for the rightmost part

P3 and extended to the left by first allowing up to a single error in P2 and then two errors in P1. Indeed, occur-

rences of Pwith two errors in the middle part were already covered by search S1. Finally, search S3 first involves

an exact matching of P2, which is then extended to the left allowing a single error and finally to the right with at

least one and at most two errors.

Kianfar et al. (Kianfar et al., 2018) further extended this work and used integer linear programming to

generate additional search schemes for the Hamming distance metric. Additionally, they show that related

work on lossless approximate pattern matching by Vroland et al. on 01*0 seeds (Vroland et al., 2016) can

also be expressed as search schemes. Therefore, search schemes represent a flexible framework for loss-

less approximate pattern matching in which a multitude of algorithmic ideas can be expressed. For refer-

ence, all search schemes used in this paper are provided in Table S1.

In this paper, we propose an algorithm for the ‘‘dynamic partitioning’’ of a search pattern P based on its

sequence content. We demonstrate that this technique reduces the search space and runtime by up to

28% and 25%, respectively, compared to a uniform partitioning of P. Dynamic partitioning can be univer-

sally applied to any kind of search scheme to boost its performance.We implemented this idea in Columba,

an open-source tool written in standard C++11. Columba is almost 3.5 times faster than Bwolo (Vroland

et al., 2016) for the task of identifying all occurrences of 101 bp Illumina reads in the human reference

genome within an edit distance of k = 4 errors. Columba is available at https://github.com/biointec/

columba under AGPL-3.0 license.
RESULTS AND DISCUSSION

Benchmarks

In all benchmarks, all occurrences of both strands of search patterns up to an edit distance (allowing sub-

stitutions and/or indels) of k = f1; 2; 3; 4g were identified in the human reference genome (GRCh38)

(Schneider et al., 2017). Non-ACGT characters (e.g., Ns) in the reference sequence were replaced by a

randomly chosen nucleotide. Chromosomes were concatenated into a single string. It is therefore possible

that a pattern is mapped across the boundary of adjacent chromosomes. Such matches can easily be

filtered during post-processing.
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We sampled two sets of each 100; 000 Illumina HiSeq 2000 reads (101 bp) from a whole genome sequencing

data set (accession no. ERR194147). The first set of reads was used only to determine suitable parameters

(as described further) for the different partitioning strategies, for the different search schemes, and for

different values of k. All benchmark results were obtained using the second set of reads, demonstrating

that the empirically derived parameters generalize well to other data sets with similar characteristics.

We also provide results for 100; 000 search patterns of length 50 bp, randomly sampled from long Pacific

Biosciences reads (accession no. SRR1304331).

All results were obtained using a single core of a 24-core AMD EPYC 7451 CPU running at a base clock fre-

quency of 3.1 GHz. Each simulation was repeated 20 times. We report both the average wall clock time as

well as the standard deviation. We report the fraction of search patterns with at least one match as well as

the total number of non-redundant occurrences. We label an occurrence as redundant when its starting

position is at most 2k + 1 nucleotides away from another match with an equal or lower edit distance.
Dynamic partitioning of search patterns reduces the search space

As noted by Kucherov et al. (Kucherov et al., 2014) the partitioning of P into equally sized parts (called ‘‘uni-

form’’ partitioning) is not necessarily optimal. This is because different searches might enumerate a

different number of strings during the search procedure. Using the search scheme for k = 2 errors from

the introduction section as an example, it is clear that search S1 will on average be associated with a larger

search space than S2 and S3 because S1 allows for two errors in the second part that is processed, whereas

S2 and S3 allow only for a single error. By increasing the size of P1, the number of exact matches of P1 will

generally decrease. Consequently, search S1 will enumerate fewer candidate occurrences. Conversely, by

decreasing the size of P2 and P3, the search space to explore by S2 and S3 will increase. Due to the asym-

metry between searches, the decrease in search space can be larger than the increase, thus improving the

overall performance of the search scheme. In their paper, Kucherov et al. propose a dynamic programming

algorithm to find the optimal part sizes, using a model that assumes a random search text T and a random

search pattern P. In this work, we focus on the human genome as a reference genome and on search pat-

terns that have a small edit distance to some subsequence of this reference genome. The assumption of

randomness is not valid as the human genome has, unlike random sequences, a very complex repeat struc-

ture. Hence, we established optimal part sizes empirically using the first set of reads, as described in the

previous section. We call this partitioning the ‘‘optimal static’’ partitioning. These optimal part sizes

depend on characteristics of the search patterns (length, error rate, and distribution) as well as the charac-

teristics of the reference genome itself (repeat structure).

Even though these part sizes may be optimal on average, they are not necessarily optimal for each individual

search pattern P. For example, depending on the sequence content of P itself, some parts of P might have a

very low number of exact matches (or even no matches), whereas other parts might have a very high number

of exact matches. In turn, this will again translate into an uneven workload among searches. By reducing the

size of the parts with few exact matches while increasing the size of parts with many exact matches, it is again

possible to achieve a global reduction in workload. We propose an algorithm for the ‘‘dynamic partitioning’’ of

P. The ideas are illustrated in Figure 1. Each part is initialized bymatching a single character. The position of that

character is taken as the middle position of the corresponding uniformly sized parts, except for the first and last

part where we take, respectively, the first and last character of P. During each next step, the part with the highest

number of exact occurrences (and which can still be extended) is selected, and it is extended by a single char-

acter in the direction (left or right) of the adjacent part that has the fewest number of exact occurrences. This

procedure is repeated until all characters of P are assigned to some part. Intuitively, this greedy algorithm at-

tempts to partition P such that each part is associated with an equal number of exact matches. The actual par-

titioning that is obtained depends on the sequence content of P itself and will therefore differ between search

patterns, hence the name ‘‘dynamic partitioning’’. The overhead imposed by dynamic partitioning is very small:

the SA/BWT ranges of the exact matches of the parts of P (see STAR methods: Bidirectional FM index) that

emerge as a by-product of the procedure are stored and are re-used during the execution of the search

schemes. Indeed, efficient search schemes consist of searches that first involve the exact matching of some

part of P. Note that the dynamic partitioning algorithm in general extends parts both to the left and right

and therefore takes full advantage of the functionality offered by the bidirectional FM index.

In its basic form, the dynamic partitioning algorithm yields parts with a roughly equal number of exact matches,

similar to what is expected on average from uniform partitioning. However, in order to obtain the best results,
iScience 24, 102687, July 23, 2021 3



Figure 1. Dynamic partitioning of a search pattern P with four parts.

Each part is initialized by matching a single character (dark gray squares). The part with the largest number of exact

occurrences is extended by a single character (light gray squares), either to the left or to the right.
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one should aim to balance the relative number of exactmatches among parts such that they correspond towhat

is expected on average from the optimal static partitioning. The dynamic partitioning algorithm is easily adapt-

ed to this task as follows: (1) we initialize the first character of each part as the center position of the optimal static

partitioning (again, except for the first/last part); (2) we assign per-part weights and balance the weighted num-

ber of exact matches among parts. Intuitively, the first modification allows certain parts to ‘‘grow’’ more than

others while the weights take into account the expected relative workload among searches. Again, we obtained

these weights empirically using the first set of reads.

Table 1 shows the impact of different partitioning strategies for different values of the maximum allowed edit

distance k = f1; 2; 3; 4g, using the search schemes proposed by Kucherov et al. with k + 1 parts (Kucherov et al.,

2014). Besides runtime, the number of nodes visited in the search tree as well as the number of computed el-

ements in the banded edit distance matrix are shown. The former equals the number of times a partial match is

extendedby a single character c (in either direction). In practice, this involves expensive randommemory access,

and it is therefore a clear indication of intrinsic performance, regardless of the quality of implementation.

For k = 1 errors, the search scheme consists of two searches which are symmetric with respect to each other.

Hence, the uniform and optimal static partitioning strategies both partition P into two equally sized parts

and both show equal performance. The dynamic partitioning strategy reduces the number of nodes visited

by 11.6%, demonstrating its ability to reduce the search space. However, because the overhead resulting

from the dynamic partitioning procedure itself is larger than the gains from this smaller search space, the

runtime increases slightly.

The search scheme for k = 2 errors is not symmetric; thus, we expect the optimal static partitioning to differ

from the uniform partitioning. For jPj = 101, we find optimal part sizes of 41, 29, and 31, respectively. Table

1 shows that applying optimal static partitioning reduces both the number of nodes visited and the runtime

by 9.8%. The use of dynamic partitioning yields a notable reduction in search space and runtime of, respec-

tively, 28.2% and 20.4%, both with respect to uniform partitioning. Clearly, the ability to partition patterns

based on their sequence content results in a significant computational gain.

For k = 3 errors, the search scheme is only asymmetric in the lower bounds. We find that the optimal part sizes

are uniform for jPj = 101; hence, optimal static partitioning and uniformpartitioning yield identical results. How-

ever, dynamic partitioning again reveals superior performance with a runtime reduction of 17.1%.

The search scheme for k = 4 is highly asymmetric. It consists of eight searches, three of which start from an

exact match of part P1. Therefore, it is beneficial to increase the size of P1, such that the number of exact

matches of this part is reduced. We find optimal part sizes of 27, 20, 15, 19, and 19 that yield a reduction in

runtime of 11:1%. Dynamic partitioning, however, is able to further reduce runtime by 24:7%, while the num-

ber of nodes visited is reduced by 28:3%. Also for other search schemes, we found that dynamic partitioning

reduces the search space and runtime to a similar extent (Tables S2–S6). The same holds for the search pat-

terns sampled from Pacific Biosciences reads (Table S7). We conclude that dynamic partitioning can be uni-

versally applied to boost the performance of search schemes.
Memory interleaving of bit vectors reduces runtime

To extend a partial match by a single character c, the FM index relies on occðc;pÞ queries on the BWT to

return the number of occurrences of character c in the prefix BWT½0;pÞ (see STAR methods: Bidirectional

FM index). Given our focus on DNA sequences, which have alphabet size jSj = 4, we realize this using four
4 iScience 24, 102687, July 23, 2021



Table 1. Comparison of different partitioning strategies when identifying all occurrences of both strands of

100,000 Illumina reads in the human reference genome for different values of the maximum allowed edit distance k

using the search schemes by Kucherov et al. with k +1 parts.

Partitioning

strategy

Wall clock

time G SD

No. of nodes visited

(search space)

No. of matrix

elements computed

k = 1, non-redundant matches = 959;844, reads mapped 93:6%

Uniform 6.73 G 0.18 s 29,212,674 45,697,288

Optimal static 6.73 G 0.18 s ð+ 0:0%Þ 29,212,674 ð+ 0:0%Þ 45,697,288 ð+ 0:0%Þ
Dynamic 7.23 G 0.14 s ð+ 7:4%Þ 25,829,974 ð� 11:6%Þ 39,391,011 ð� 13:8%Þ

k = 2, non-redundant matches = 2;329;746, reads mapped 96:0%

Uniform 22.32 G 0.15 s 104,476,617 339,010,141

Optimal static 20.14 G 0.12 s ð� 9:8%Þ 94,289,677 ð� 9:8%Þ 282,148,209 ð� 16:8%Þ
Dynamic 17.76 G 0.13 s ð� 20:4%Þ 74,978,120 ð� 28:2%Þ 228,389,750 ð� 32:6%Þ

k = 3, non-redundant matches = 4;606;995, reads mapped 97:0%

Uniform 55.19 G 0.44 s 276,027,753 1,068,947,201

Optimal static 55.27 G 0.40 s ð+ 0:1%Þ 276,027,753 ð+ 0:0%Þ 1,068,947,201 ð+ 0:0%Þ
Dynamic 45.73 G 0.39 s ð� 17:1%Þ 212,965,491 ð� 22:8%Þ 816,519,456 ð� 23:6%Þ

k = 4, non-redundant matches = 7;997;221, reads mapped 97:7%

Uniform 215.37 G 0.96 s 1,154,125,425 4,941,009,260

Optimal static 191.45 G 1.46 s ð� 11:1%Þ 1,012,354,507 ð� 12:3%Þ 4,272,355,550 ð� 13:5%Þ
Dynamic 162.14 G 0.99 s ð� 24:7%Þ 827,521,618 ð� 28:3%Þ 3,607,583,286 ð� 27:0%Þ
The percentage values indicate the relative increase or decrease with respect to uniform partitioning. See also Tables S2–S7.
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bit vectors Bc with constant time rank support. Then, occðc;pÞ = Bc :rank1ðpÞ =
P

0%i<p

Bc ½i�, i.e., the number of

1-bits in the first p positions of Bc . For 64-bit CPU architectures, the rank9 algorithm (Vigna, 2008) has attrac-

tive properties. Briefly, a bit vector of size n bits is stored in n=64 64-bit words. For every p that is a multiple

of 512 bits, the pre-computed ‘‘first-level count’’ rank1ðpÞ is stored as a 64-bit value. Each first-level count is

associated with seven additional pre-computed ‘‘second-level counts’’ that contain values rank1ðp + 64kÞ -
rank1ðpÞ, for 1%k%7. These second-level counts are stored as seven 9-bit values within a 64-bit word. Rank

operations rank1ðpÞ for arbitrary p can then be answered in constant time by adding three contributions: (1)

the appropriate first-level and (2) second-level counts; (3) a popcountðwÞ instruction to count the number of

1-bits inw, the word of the bit vector that contains position p and for which the bits at positions p and higher

were masked to zero. The memory overhead of the first- and second-level counts amounts to only 25% of

the bit vector data.

Vigna (Vigna, 2008) proposed to store the first- and second-level counts in an ‘‘interleaved’’ manner: the

two words that hold corresponding first- and second-level counts are located next to each other in memory.

When loading the cache line that contains first-level count information, the second-level count information

is retrieved as well, thus reducing the number of cache misses. Gog and Petri (Gog and Petri, 2014) pro-

posed to additionally interleave the pre-computed count information with the bit vector data itself. In

that case, all information to answer a rank query is stored on either a single cache line or two adjacent cache

lines.

In the context of search schemes (or more generally: backtracking algorithms), the search tree is explored

by extending a partial match with each character c˛S. Hence, within a short time duration, different calls to

occðc;pÞ are made for fixed p and for all c˛S. In order to maximally fill a cache line (64 bytes or eight words

on typical x86 architectures) with relevant information, we propose to interleave the data related to

different bit vectors Bc as shown in Figure 2. In the case of DNA sequences, all four calls to occðc;pÞ
with c = fA;C;G;Tg can then be answered using 12 words of data. By using 64-byte aligned vectors to store

the interleaved bit vector data and pre-computed counts, we guarantee that only two cache lines are

required for four occ calls. For the same task, when using four non-interleaved bit vectors, at least four

cache lines would be required when these individual bit vectors are stored using the scheme by Gog
iScience 24, 102687, July 23, 2021 5
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Figure 2. Interleaved storage of bit vectors Bc and associated first- and second-level counts for S = fA;C;G;Tg.
Four calls to occðc;pÞ for fixed p and all c˛S require the data of only two cache lines.
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and Petri while eight cache lines would be required using Vigna’s storage scheme. For large genomes, due

to the fact that p takes unpredictable values, most of these cache lines have to be retrieved from main

memory, a task that requires �100 ns (equivalent to 200–300 CPU cycles) on modern CPU architectures.

Thus, reducing the number of cache lines that have to be retrieved from memory improves performance.

We compare our proposed memory storage scheme for bit vectors to the scheme proposed by Vigna. For

the sake of simplicity, we refer to thesemethods as ‘‘interleaved’’ and ‘‘non-interleaved’’, respectively, even

though also in Vigna’s scheme, first- and second-level counts are interleaved. Table 2 shows the runtime for

both approaches for the different partitioning strategies using the search scheme by Kucherov et al. for k =

4 errors and k + 1= 5 parts. Runtime is considerably reduced by 35%–37%. Note that the memory storage

scheme is independent from the partitioning scheme, and hence, both techniques can be combined.

Collectively, they reduce runtime from 342 s (uniform partitioning with non-interleaved bit vectors) to

162 s (dynamic partitioning with interleaved bit vectors), a reduction of 53%.
Reducing redundancy for the edit distance metric reduces the search space

The use of the edit distance metric inherently results in a certain degree of redundancy. An occurrence of a

pattern P may be reported multiple times with slightly different start and/or end positions in T. For

example, if P occurs as an exact match in T and k errors are allowed, then
P

i = 1.k

4i = 2kðk + 1Þ redundant oc-

currencesO will be found for which the alignments between P andO have leading and/or trailing gaps in P

and/or O. Hence, the degree of redundancy increases rapidly with the number of errors allowed.

As searches of search schemes align a pattern P part by part, the same redundancy occurs when dealing

with partial matches of P. Consider a search S = ðp;L;UÞ. If all partial occurrences up to part Pp½i� with an

edit distance of at most U½i� are reported, then an alignment procedure for part Pp½i + 1� will be started for

each such occurrence, even though some of them may be redundant. In STAR methods, we provide tech-

niques to reduce redundant computations and thus improve performance.

We compare an optimized implementation, which implements the ideas from STAR methods, to a naive

implementation. In this naive implementation, an alignment procedure is started for each partial occur-

rence, even though some of them may be redundant. In Table 3, both approaches are compared for

different values of k. For k = 1, the difference in runtime, number of nodes, and matrix elements is negli-

gible. For k = 2, the search space is reduced by 26%, leading to a reduction in runtime by 13%. For k = 3,

even larger reductions of respectively 46% (search space) and 33% (runtime) are found. This is to be ex-

pected, as the redundancy grows quadratically with k. For k = 4, the optimized implementation reduces

the search space by 63% and the runtime by 52%. We conclude that for higher values of k, an optimized

implementation to handle redundancy associated with edit distance metric computations is essential to

achieve high computational performance.
Columba has higher computational performance than other state-of-the-art tools

We benchmarked the different search schemes that have been proposed in literature in our implementa-

tion (called Columba). Kucherov et al. proposed schemes with k + 1 and k + 2 parts (Kucherov et al., 2014).

Kianfar et al. generated optimal search schemes for the Hamming distance metric (Kianfar et al., 2018). For

k = 3 and k = 4 errors, they contain searches that already allow one or two errors in the first part of P that is

matched. Hence, we found that these search schemes are not competitive when the edit distance metric is
6 iScience 24, 102687, July 23, 2021



Table 2. The wall clock time for mapping both strands of 100,000 Illumina patterns using interleaved and non-

interleaved bit vectors for k =4 errors and the search scheme by Kucherov et al. with k +1=5 parts.

Bit vectors

Uniform

partitioning

Optimal static

partitioning

Dynamic

partitioning

Non-interleaved 342.02G 2.71 s 295.15G 2.93 s 249.49G 2.19 s

Interleaved 215.37G 0.96 s ð� 37:2%Þ 191.45G 1.46 s ð� 35:1%Þ 162.14G 0.99 s ð� 35:0%Þ
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used. From the same research group, Pockrandt et al. derived an alternative search scheme for k = 4 errors

referred to as ManBest (Pockrandt, 2019). We also include the search schemes based on the pigeonhole

principle as well as those based on the 01*0 seeds (Vroland et al., 2016; Kianfar et al., 2018). For the latter,

a dedicated tool called Bwolo was developed. In other papers, Bwolo was found to be the fastest available

method for the edit distance metric (Kianfar et al., 2018; Pockrandt, 2019). For all search schemes, dynamic

partitioning of search patterns was used with optimal parameters. We also compared our implementation

to the implementation of search schemes in SeqAn 3. In our hands, the runtime was found to be orders of

magnitude larger than our implementation. Therefore, no results for SeqAn 3 are reported.

Table 4 lists the running times. For efficient search schemes, Columba shows superior performance to

Bwolo: for k = 4 errors and using the Kucherov k + 1 search scheme, Columba is almost four times faster

than Bwolo. Particularly, even when Bwolo’s 01*0 search strategy is used within Columba, a significant per-

formance difference is revealed. Bwolo uses a unidirectional search index, whereas Columba relies on a

bidirectional search functionality. Therefore, Bwolo has to perform in-text verification to validate candidate

matches, whereas Columba performs the matching entirely within the index structure itself. Nevertheless,

as also noted in (Kianfar et al., 2018), in-text verification can in certain cases be faster.

Interestingly, in our implementation and using our data set, the original k + 1 search schemes proposed by

Kucherov et al. yield the highest performance. Nevertheless, the performance difference with the ManBest,

Kucherov k + 2, and 01*0 schemes is relatively small, and other data sets may yield different conclusions.

Remarkably, the performance differences between these four efficient search schemes are about as large

as the performance differences between partitioning strategies. Therefore, it might be worthwhile to

further investigate novel partitioning strategies as well as novel search schemes.

We also benchmarked the runtime of Columba with uniform partitioning, non-interleaved bit vectors, and a

naive edit distance implementation (i.e., without any of the improvements proposed in this paper) for k = 4
Table 3. Comparison of a naive and optimized strategy for handling the redundancy associated to the edit distance

metric for different values of k.

Edit distance

redundancy

Wall clock

time G SD

No. of nodes visited

(search space)

No. of matrix

elements computed

k = 1, non-redundant matches = 959;844, reads mapped 93:6%

Naive 7.19 G 0.10 s 26,102,601 39,697,328

Optimized 7.23 G 0.14 s ð+ 0:6%Þ 25,829,974 ð� 1:0%Þ 39,391,011 ð� 0:8%Þ

k = 2, non-redundant matches = 2;329;746, reads mapped 96:0%

Naive 20.50 G 0.18 s 101,087,547 297,657,004

Optimized 17.76 G 0.13 s ð� 13:4%Þ 75,164,043 ð� 25:6%Þ 227,670,435 ð� 23:5%Þ

k = 3, non-redundant matches = 4;606;995, reads mapped 97:0%

Naive 67.72 G 0.52 s 393,769,104 1,389,115,919

Optimized 45.73 G 0.39 s ð� 32:5%Þ 212,965,491 ð� 45:9%Þ 816,519,456 ð� 41:2%Þ

k = 4, non-redundant matches = 7;997;221, reads mapped 97:7%

Naive 335.67 G 1.94 s 2,247,115,246 8,250,593,095

Optimized 162.14 G 0.99 s ð� 51:7%Þ 827,521,618 ð� 63:2%Þ 3,607,583,286 ð� 56:3%Þ
Both strands of 100,000 Illumina reads are mapped, using the search schemes by Kucherov et al. with k + 1 parts, dynamic

partitioning, and interleaved bit vectors.
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Table 4. The runtime for different search schemes that we support in our tool Columba versus a state-of-the-art

tool Bwolo for different values of k.

Search scheme/tool k = 1 k = 2 k = 3 k = 4

Pigeonhole principle 7.13 G 0.04 s 24.13 G 0.15 s 144.88 G 0.99 s 722.21G 5.72 s

Kucherov k + 1 7.23 G 0.14 s 17.76 G 0.13 s 45.73 G 0.39 s 162.14G 0.99 s

Kucherov k + 2 7.23 G 0.09 s 20.93 G 0.12 s 58.61 G 0.35 s 195.52G 1.57 s

01*0 principle 7.22 G 0.09 s 18.50 G 0.10 s 68.67 G 0.38 s 241.17G 2.07 s

Kianfar 7.11 G 0.06 s 17.05 G 0.11 s 152.54 G 1.19 s 1994.92G 19.69 s

ManBest NA NA NA 192.56G 1.35 s

Bwolo 12.68 G 0.37 s 35.87 G 0.25 s 123.60 G 0.33 s 602.14G 0.77 s

For all search schemes, dynamic partitioning was used.
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and using the search scheme by Kucherov et al. with k + 1= 5 parts. This resulted in a wall clock time of 560.64 s,

almost 3.5 times slower than the runtime of 162.14 s of Columba with all improvements in place (see Table 1).

Note that Columba, like most alignment tools, can easily take advantage of multi-core and/or multi-CPU

architectures by aligning reads on different cores in parallel.
SUMMARY

In this paper, we made three contributions, which together form Columba. We proposed an algorithm for

the ‘‘dynamic partitioning’’ of a search pattern P based on its sequence content. We demonstrate that for

the task of mapping 100 bp Illumina reads to the human reference genome, this technique reduces the

search space and runtime by up to 28% and 25%, respectively, compared to a uniform partitioning of P.

Dynamic partitioning can be universally applied to any kind of search scheme to boost its performance.

Additionally, we proposed a new strategy to interleave bit vector representations of the BWT in memory

that is specifically tailored to search schemes. This leads to fewer cache misses and reduces runtime by

35%. Again, this technique can be universally applied to all search schemes. Finally, we provided an analysis

and discussion on how to maximally avoid redundancy that is inherently associated with edit distance com-

putations. Avoiding this redundancy reduces the search space by up to 63% and the runtime by 52%.

Collectively, these techniques reduce the runtime with a factor of almost 3.5. Columba supports different

search schemes: the pigeonhole-based schemes, the search schemes with k + 1 and k + 2 parts as proposed

by Kucherov et al. (Kucherov et al., 2014), the schemes proposed by Kianfar et al. (Kianfar et al., 2018), and

the 01*0 seeds by Vroland et al. (Vroland et al., 2016). We demonstrated that our implementation is almost

four times faster than Bwolo (Vroland et al., 2016) for the task of identifying all occurrences of 100 bp Illu-

mina reads in the human reference genome within an edit distance of k = 4 errors. Columba is available at

https://github.com/biointec/columba under AGPL-3.0 license.
LIMITATIONS OF THE STUDY

This work considers only lossless approximate pattern matching algorithms. Columba is not compared

against state-of-the-art tools that use lossy approximate pattern matching algorithms. Only the edit dis-

tance (i.e., Levenshtein) metric is considered and not the Hamming distance metric. Columba cannot

find occurrences under a more generic scoring scheme with arbitrary match, mismatch, and gap scores/

penalties. Search schemes have been proposed in literature for up to k = 4 errors. It is still an open research

question how efficient search schemes for higher values of k can be designed. We have benchmarked

Columba using only patterns of length 101 (Illumina) and length 50 (Pacific Biosciences). Performance

and relative performance differences with respect to other tools may vary for other pattern lengths. We

have benchmarked only using the human reference genome as a search text.
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STAR+METHODS

KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Illumina sequencing data EBI ENA ERR194147

Pacific Biosciences sequencing data EBI ENA SRR1304331

Software and algorithms

Columba This paper https://github.com/biointec/columba

Bwolo (Vroland et al., 2016) https://bioinfo.lifl.fr/olo/
RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to and will be fulfilled by the lead con-

tact, Jan Fostier jan.fostier@ugent.be.

Materials availability

This study did not generate new unique reagents.

Data and code availability

The data sets used in this study are derived from publicly available data. The first data set consists of

100,000 randomly sampled reads from an Illumina sequencing experiment (EBI ENA, accession no.

ERR194147). The sampled reads are available at: https://github.com/biointec/columba/releases/

download/example/sampled_illumina_reads.fastq. The second data set consists of 100,000 subreads of

length 50 randomly sampled from a Pacific Biosciences sequencing experiment (EBI ENA, accession no.

SRR1304331). The sampled version is available at: https://github.com/biointec/columba/releases/

download/example/sampled_pacbio_seeds.fastq.

The code generated during this study is available at https://github.com/biointec/columba.

METHOD DETAILS

Bidirectional FM index

We use standard notation on strings, zero-based array indexing and half-open intervals [.,.). The Burrows-

Wheeler transform BWT½0;nÞ of a text T ½0; nÞ of size n that ends with a unique (and lexicographically smallest)

sentinel character $ is defined as BWT½i�=T ½SA½i� � 1� if SASA½i�>0 and BWT[i] = $ otherwise (Burrows and

Wheeler, 1994). SA denotes the suffix array, an array of size n over integer values that indicate the starting po-

sitions of the suffixes of T in lexicographic order. We need support for occðc; iÞ queries on the BWT that return

the number of occurrences of character c in the prefix BWT½0;iÞ. We realize this through jSj bit vectors with con-
stant-time rank support. Here, jSj denotes the size of the alphabet (e.g., jSj= 4 for DNA sequences). Exact

pattern matching is then performed by matching character by character, from right to left. Let ½i; jÞ denote

the interval over the suffix array for which the corresponding suffixes have P as a prefix. The suffix array interval

½i0; j0Þ whose suffixes have cP as a prefix can then be computed by i
0
=CðcÞ+occðc; iÞ and j

0
= CðcÞ+occðc; jÞ.

Here, CðcÞ denotes the number of characters in BWT½0; nÞ strictly smaller than c. These are pre-computed and

stored in a small array of size jSj. As occðc; iÞ queries can be performed in constant time, exact matching of a

pattern P takesOðjPj) time. The size of the obtained interval ½i; jÞ denotes the number of occurrences of P in T.

The actual positions of the occurrences in T are found using the suffix array. The full-text index that comprises a

BWT representation and auxiliary tables is called the FM index andmayoccupy as little as 2-4 bits ofmemory per

character for DNA sequences (Ferragina and Manzini, 2000).

A bidirectional FM index is realized by also storing BWTr, the Burrows-Wheeler transform of the reverse of T.

By keeping track of both the range ½i; jÞ over the BWT as well as the range ½i0; j0Þ over BWTr in a synchronized
10 iScience 24, 102687, July 23, 2021
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Figure 3. A banded alignment matrix (AM) for which the allowed edit distance increases between parts

Left: The gray-shaded cells are set during initialization, whereas the white-shaded cells are completed during the

execution of the search procedure. Search pattern P is depicted horizontally, whereas a branch of the index is depicted

vertically. Right: the AM for part Pp½i + 1� is initialized around the uppermost cluster center of the final column of part Pp½i�.
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manner (Lam et al., 2009), one can extend a pattern P to both cP as well as Pc. By replacing the ‘Occ’ data

structure with a ‘Prefix-Occ’ structure, this can be realized in constant time (Pockrandt et al., 2017).
Reducing redundancy for the edit distance metric

Consider a search S = ðp;L;UÞ. If all partial occurrences up to part Pp½i� with an edit distance of at most U½i�
are reported, then an alignment procedure for part Pp½i + 1� will be started for each such occurrence, even

though some of them may be redundant. If the search procedure does not change direction in between

parts Pp½i� and Pp½i + 1�, one can achieve this by increasing the width of the banded alignment matrix (AM)

from 2U½i�+ 1 to 2U½i + 1�+ 1 as exemplified in Figure 3 (left).

This approach can be improved upon by taking into account the actual edit distance values observed in the

final column of the AM of part Pp½i�. It may then be possible to reduce the width of the band of the next part

Pp½i + 1�. For this, we introduce the notion of a cluster. We remind the reader that adjacent cells on a row or

column of the AM differ by a value of at most one (see Lemma 3 of (Masek and Paterson, 1980)). A cluster

fs; c; eg ðs%c <eÞ at column j of the AM contains all elements AM½i; j�with s%i<e for which it holds that AM½i;
j� = AM½c; j�+ jc � ij. Cell AM½c; j� is called the center of the cluster and can be thought of as a local mini-

mum. Figure 4 (left) illustrates the clusters of a column of the AM.

Lemma 1.

Consider the edit distance alignment of strings X and Y and consider the clusters of some column of the

AM. For each optimal alignment path that passes through one or more cells of cluster fs; c; egand that

does not pass through the center, an alternative optimal alignment path exists that passes through the cen-

ter of that cluster.

Proof Case 1: the optimal alignment path passes through cell AM½i; j�, with s%i<c (see Figure 4 right). By

definition of a cluster, it holds that AM½i; j� = AM½c; j�+ ðc � iÞ. Assume that AM½c; k� is the leftmost cell on

row c through which the optimal alignment path passes. Because the edit distance can only increase along

an alignment path, AM½c; k�RAM½i;j�, hence AM½c; k�RAM½c;j� + ðc�iÞ (1). Because also AM½c; k�% AM½c;
j�+ ðk�jÞ (2), it follows from (1) and (2) that ðk � jÞRðc � iÞ. The optimal alignment path betweenmatrix cells

AM½i; j� and AM½c; k� entails exactly ðk�jÞ � ðc�iÞgaps. It then follows that AM½c; k�RAM½i; j�+ ðk�jÞ� ðc�iÞ
and hence, AM½c;k�RAM½c;j�+ ðk � jÞ. Together with inequality (2), it follows that AM½c;k� = AM½c;j�+ ðk �
jÞ. Therefore, an alternative optimal alignment path runs from the origin to AM½c;j�; fromAM½c; j� to AM½c; k�
and then proceeds in an identical manner as the original path.
iScience 24, 102687, July 23, 2021 11



Figure 4. Illustrations related to Lemma 1.

Left: The clusters of a column of the AM are encircled. Note that a cell can be part of two adjacent clusters and that a

cluster can consist out of only a single cell. Right: Illustration of proof of Lemma 1, case 1.
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Case 2: the optimal alignment path passes through cell AM½i; j�, with c<i<e. Because of the definition of a

cluster, it holds that AM½i; j� = AM½c; j�+ ði � cÞ. The value AM½i; j� can thus always originate from AM½c; j�
through a vertical path, as the difference in rows between these two cells is exactly ði � cÞ. Again, an alter-

native optimal alignment path exists from the origin to cell AM½c; j�; from AM½c; j� to AM½c; i�; and then pro-

ceeds in an identical manner as the original path. ∎

We leverage Lemma 1 to save computations: when part Pp½i� is processed, we identify the uppermost cluster

center in the last column of the alignment matrix of part Pp½i� that has a value between L½i� and U½i�. The cells

above this cluster center can be ignored: even when they take part in some optimal alignment path, there

will always be an alternative optimal path that passes through the center cell (lemma 1). By ignoring these

cells, the banded alignment matrix for the next part may be initialized with a reduced width and the number

of edit cells to be computed in the next part is reduced. In Figure 3 (right), this is exemplified.

In case the search changes direction in between parts Pp½i� and Pp½i + 1� the same redundancy problem arises.

By reporting all approximate (partial) matches with an edit distance of at most U½i�, multiple, possibly

redundant alignments will be started in the other direction. Again, this can be mitigated using the cluster

concept. Two cases exist. First, assume part Pp½i� is either the leftmost or rightmost part of pattern P. This

implies that the partial matches will no longer be extended in the current direction. Instead of reporting all

partial occurrences with an edit distance of at most U½i�, we report only the partial match associated to the

cluster center with the lowest value. If multiple such centers exist, then the uppermost one is reported, cor-

responding to the shortest (partial) match. In the second case, if part Pp½i� is neither the leftmost or rightmost

part of pattern P, partial matches are first extended in the other direction before resuming the extension in

the present direction. In this case, we cannot a priori assume that an optimal alignment path of the entire

pattern P (if such alignment exists) will pass through the cluster center with the lowest value. However, due

to lemma 1, we know that such optimal alignment path (or an alternative, equivalent path) will pass through

one of the cluster centers. Therefore, when part Pp½i� has been processed, we extend (in the other direction)

only the FM-range corresponding to the deepest point in present branch with the knowledge that this par-

tial match will ultimately turn out to have an edit distance between the lowest and highest cluster center

values. This information is valuable when checking the L½i + 1� and U½i + 1� bounds during the processing

of part Pp½i + 1�.
12 iScience 24, 102687, July 23, 2021
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