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Abstract Classic control theory applied to compliant and
soft robots generally involves an increment of computation
that has no equivalent in biology. To tackle this, morphologi-
cal computation describes a theoretical framework that takes
advantage of the computational capabilities of physical bod-
ies. However, concrete applications in robotic locomotion
control are still rare. Also, the trade-off between compliance
and the capacity of a physical body to facilitate its own con-
trol has not been thoroughly studied in a real locomotion
task. In this paper, we address these two problems on the
state-of-the-art hydraulic robot HyQ. An end-to-end neu-
ral network is trained to control HyQ’s joints positions and
velocities using only Ground Reaction Forces (GRF). Our
simulations and experiments demonstrate better controlla-
bility using less memory and computational resources when
increasing compliance. However, we show empirically that
this effect cannot be attributed to the ability of the body to
perform intrinsic computation. It invites to give an increased
emphasis on compliance and co-design of the controller and
the robot to facilitate attempts in machine learning locomo-
tion.
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1 Introduction

Robotic legged locomotion has potential applications in
many situations with unfriendly terrain for wheeled robots.
This covers a broad range of sectors, stretching through
agriculture, construction, mining operations, search and res-
cue, hazardous operation, health-care, domestic help, or ed-
ucation (Siciliano & Khatib, 2008). This research domain
has led to rapid improvements in the last decade. But para-
doxically, while locomotion can be seen as a primitive be-
havior in biology, the successes in robotic locomotion are
still far from achieving the level of complexity and robust-
ness observed in nature. Among the most promising paths
for improvement, we can mention producing more flexible
and robust materials, to mimic living systems (Calisti et al.,
2017), improving the ratio between size, weight, power, and
price of the actuators (Eschenauer et al., 2012), or the better
miniaturization and integration of electronics, actuators, and
sensors. On top of that, the control mechanisms in biologi-
cal brains are not yet fully understood and constitute a major
disincentive to designing functional legged robots as adap-
tive and energy-efficient than their biological counterparts.

In a classical engineering approach, a locomotion con-
troller processes raw sensor inputs to define an observable
state of the robot, as described by the rigid-body theory. It
then uses it to determine the next desired state, which is
reprojected into the actuator space. This technique allows
an analytical understanding of the process, which is useful
to optimize the robot’s performance, stability, or accuracy.
It shows however different limitations (Pfeifer & Bongard,
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2007). First, the projections between sensor, actuator, and
Cartesian spaces add an important computation overhead.
Secondly, this intermediate abstract representation creates
sharp separation between the controller and the body, which
could be an obstacle to mapping sensors and actions opti-
mally (Brooks, 1991). Third, this kind of controller can not
easily cope with underactuated, compliant, and flexible parts
without adding extra complexity to model the dynamics.

In this context, it has been suggested that embodiment is
a key concept to operate flexible robots adequately. This the-
ory primarily advocates that the brain-body dynamics inter-
action should be the starting point in designing new robots
and controllers. Among the various theoretical frameworks
implementing this approach, morphological computation is
certainly the most discussed in the literature (Füchslin et
al., 2013). An important milestone in morphological com-
putation for robotics has been conducted in Hauser et al.
(2011), which provides a theoretical foundation to evalu-
ate the computational capacity of compliant bodies in con-
trol and learning tasks. A generic implementation of these
bodies can be achieved using recurrent networks of masses
and springs, also called Mass-Spring Network (MSN) struc-
tures. This conclusion has been later extended for locomo-
tion control of MSN using a similar framework in Urbain
et al. (2017). Other demonstrations of morphological com-
putation for robotics control include locomotion of under-
actuated tensegrity structures (Caluwaerts et al., 2013), gait
embodiment in compliant quadruped robots (Zhao et al.,
2013; Degrave et al., 2015), or the control of soft robotic
arms (Nakajima et al., 2013; Eder et al., 2018). More re-
cently, however, Müller & Hoffmann (2017) and Hoffmann
& Müller (2017) have suggested an important differentiation
between morphological computation on one side and mor-
phology that facilitates the control on the other. In the latter,
the body is not literally involved in a computational pro-
cess. However, its non-linear complexity can provide more
dynamical landscapes where the location of attractors could
facilitate the performance on a given task. To determine to
which extent the morphology can perform computation or
just simplifies the control, Rückert & Neumann (2013) has
used optimal control strategies to discard the contribution
of the controller itself in the computation process. They dis-
cussed the impact of the morphology on the control problem
using a simplified four-segment model. However, the exact
role of compliance in this study is only addressed briefly and
qualitatively.

In contrast, several works in traditional robotics and au-
tomation have provided analytical discussions on the impor-
tance of compliant and soft parts. They can be divided into
three categories: active compliance, passive compliance, and
soft robotics. Passive compliant robots are generally made of
rigid parts with under-actuated joints and additional springs
and dampers. Therefore, they require specific attention dur-

ing the selection of their mechanical properties and are also
limited by design: unlike real animals, they are unable to
tune their stiffness properties in real-time to adapt to differ-
ent gait behaviors and environmental constraints. Because
they are cheap and easy to build, small-scale quadruped
robots mostly use this technology to conduct research on dy-
namic gaits (wyffels et al., 2010; Spröwitz et al., 2013; Ur-
bain et al., 2018; Hoffmann & Simanek, 2017). Soft robots
operate with fully flexible parts or a mix of rigid and elastic
segments (Calisti et al., 2017). By pushing the concept of
compliance further than the simple joint level, they also de-
fine a new control paradigm, requiring either complex finite
element inverse kinematics or a fully embodied approach.
Finally, the idea of active compliance originates from the
concept of impedance control in control theory (Hogan,
1984). Rather than implementing the compliance properties
physically, a software PD controller is in charge of rendering
stiffness and damping effects in a joint, Cartesian, or virtual
space. The control accuracy and the capacity to deal with
external impacts makes it suitable for big size quadrupeds.
However, it assumes the use of actuators that can tolerate
high-torques during a short amount of time. This has been
handled using hydraulic actuators, e.g. in Big Dog (Raibert
et al., 2008) and HyQ (Semini et al., 2011) robot or using
Series Elastic Actuation (SEA), which combine passive and
active properties, on the ANYmal robot (Hutter et al., 2016).
Proprioceptive control on a leg level coupled with a custom
actuator and mechanical design has also been used to miti-
gate this issue on Cheetah-2 and Cheetah-3 robots (Seok et
al., 2012; Bledt et al., 2018).

Notwithstanding their contribution to the scientific
knowledge and their improvements in traditional robotics,
most works in compliant locomotion do not take full advan-
tage of the dynamical interactions between the body and the
controller as suggested in the embodiment theory. Further-
more, the role of the compliance value has been highlighted
as a driving factor to characterize locomotion within mam-
mals (McMahon, 1985) but classical mechanics modeling
does not provide sufficient criteria to evaluate how it acts at
a body level. A dynamical analysis seems, therefore, more
appropriate for this investigation. Indeed, it has been shown
that the concept of resonance disappears within nonlinear
systems, which makes it hard to model optimal and stable
solutions in complex systems (Carbajal, 2012) and to dis-
cuss optimal damping and stiffness values. Empirical studies
on single-leg hopper robots have backed up this observation
by showing that the eigenvalues of a compliant leg are not
fully aligned with the optimal Cost of Transport (COT) for
locomotion (Vu et al., 2015).

Therefore, the first goal of this paper is to clarify how
compliance affects the trotting gait generated by the Reac-
tive Framework Controller (RCF) (Barasuol et al., 2013) on
the HyQ robot. This characterization has already been car-



Effect of Compliance on Morphological Control of Dynamic Locomotion with HyQ 3

ried out and discussed for separate legs alone (Boaventura,
Semini, et al., 2012; Boaventura et al., 2013) and showed
that some configuration of compliance cannot be theoreti-
cally achieved with the active impedance controller. Other
works on HyQ have also investigated the effect of compli-
ance (Semini et al., 2015) and the optimal impedance pa-
rameters (Heijmink et al., 2017) in trotting tasks on different
surfaces. These results are extended in this paper through an
extensive analysis of all possible stiffness and damping pa-
rameters in a trotting gait.

Previous work on locomotion has discussed the benefits
of compliant robot’s morphologies to improve energy con-
sumption (Papadopoulos & Buehler, 2000; Vanderborght et
al., 2009) or locomotion speed (Spröwitz et al., 2013; Gal-
loway et al., 2011). However, to our knowledge, no paper
has yet investigated the trade-offs between compliance in
locomotion and the controller requirements in a closed-loop
embodied approach. The second goal of this article is to pro-
vide such a discussion on HyQ with a perspective inspired
by morphological computation. To carry out this analysis,
the robot is driven by a very generic controller made of a De-
lay Line (DL), an Extreme Learning Machine (ELM), and
a trained readout layer. It facilitates investigations to look
for a potential transfer of computation between body and
controller and to generate a robust closed-loop dynamic gait
from simple biologically-inspired inputs.

In contrast to other works conducted in simulation only,
we wanted to demonstrate the potential of morphological
control on a real robot. Therefore, our third goal is to ap-
ply the same approach on the real robot HyQ, to provide an
end-to-end neural controller that can be trained in a realistic
time. In comparison to some recent research that has studied
machine learning control on the robot ANYmal (Lee et al.,
2019), the policies are learned directly on HyQ in a super-
vised way, which allows avoiding complex transfer proce-
dures.

2 Methods

2.1 Control Architectures

To support the research goals of this paper, two different ar-
chitecture were elaborated: an open-loop architecture, rep-
resented in Fig.1 and a closed-loop architecture, represented
in Fig. 2.

The open-loop architecture is based on an instance of the
RCF controller (Barasuol et al., 2013) actuating the HyQ
robot. The robotic platform is presented in more details in
Section 2.2 and the internal mechanisms of the RCF are
described in Section 2.3. The active compliance module is
a key element in this architecture. It can virtually tune the
stiffness and damping of the actuated joints, as explained in
Section 2.4. The software also includes a framework written

Robot + Environment

RCF

Open-loop Motion Generation

State
Estimator

Trunk Controller
(stability)

CPG Feet
Trajectories

Inverse
Kinematics + Impedance

Controller

+

ytarget

{Kp,Kd}

HyQ

Fig. 1: The open-loop architecture is based on the RCF. In
its core a CPG determines the evolution of the feet trajec-
tories, which are translated in the joints space using inverse
kinematics. A PD controller implements the active compli-
ance module and the Trunk Controller helps to stabilize the
robot during locomotion. Given the absence feedback, the
dynamics of the motion generation and the robot are rather
decoupled in this approach.
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Fig. 2: In the closed-loop architecture, we use a feed-
forward neural network that takes the GRF inputs from the
robot and directly predicts the joints trajectories. The strong
coupling between the robot and the controller dynamics
makes it more appropriate to study the trade-offs between
robot compliance and controller complexity.

in Python to run parallel simulations with different sets of
active joint stiffness and damping in Docker, and to investi-
gate locomotion against the different metrics detailed in the
Supplementary Materials.

The open-loop architecture is mostly used to produce the
results of Section 3.1. However, it is not sufficient to study
the dynamical interactions between the robot compliance
and the controller complexity. Indeed, the motion genera-
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tion of the RCF is performed by a CPG model, with its spe-
cific dynamic limit cycle. This architecture has two weak-
nesses in the scope of our study. First, the evolution of the
full system is driven by the internal dynamics of the CPG,
which explicitly controls the robot movements. The role of
the feedback is only limited to correcting the stability of the
robot trunk in our experiments. This decoupling between the
generation of motion trajectories and the robot is not suited
to study reciprocal interactions controller-morphology. Sec-
ondly, the CPG is a parametric model with a high-level rep-
resentation. Therefore, in order to achieve embodied con-
trol, an agnostic model, such as a feed-forward neural net-
work directly connected to the robot’ sensors and actuators
seems more appropriate. It creates a closed-loop control ar-
chitecture. The neural network is presented in Section 2.5.
Nonetheless, the open-loop motion trajectories are benefi-
cial to train the neural network of the closed-loop architec-
ture because it can provide reference trajectories for an effi-
cient engineered locomotion. In Section 2.6, we explain how
we can perform the training procedure to provide a continu-
ous transition between the open- and the closed-loop archi-
tectures. This mechanism is key to train the HyQ platform
in real conditions and to validate the results obtained in sim-
ulation in the real world.

2.2 HyQ Robot and Simulation Model

The HyQ robot and its simulation model in ROS Gazebo
are both represented in Fig. 3. HyQ is a state-of-the-art hy-
draulically powered quadruped platform of 1.3 m length and
90 kg weight (Semini et al., 2011). Its design allows the im-
plementation of versatile gaits, ranging from static tasks like
walking (Focchi et al., 2020) to dynamic trotting (Magana
et al., 2019) and running, both on flat or uneven terrains.
In contrast with cheap passive compliant robots on which
morphological control has been already demonstrated (Iida
& Pfeifer, 2004; Spröwitz et al., 2018; Urbain et al., 2018),
HyQ has a bigger mass, a higher center of gravity (CoG) and
a larger range of motion. To achieve robust stable locomo-
tion control on this platform is therefore significantly more
difficult but it could be a step in generalizing the works from
morphological control to the field of advanced robotics.

HyQ has four legs with three degrees-of-freedom each,
named Hip Abduction-Adduction (HAA), Hip Flexion-
Extension (HFE), and Knee Flexion-Extension (KFE). All
joints are hydraulically actuated. The advantage of this fea-
ture regarding the current work is twofold: first, the joints
are capable of delivering or dissipating high torques, this al-
lows fast actuation and makes the robot particularly robust
for testing a feed-forward neural network controller, prone
to oscillating behaviors that lead to larger Ground Reaction
Forces (GRF); secondly, the actuation system can virtually

Fig. 3: In the top picture the real robot HyQ is trotting using
the neural network presented in this work. Similar results
can be achieved in simulation using the model from ROS
Gazebo displayed in the bottom picture.

produce adjustable levels of damping and stiffness as de-
scribed in Section 2.3.

2.3 Reactive Controller Framework

To provide meaningful analysis, this work is limited to one
single trot with constant gait parameters. The gait control
signals are computed using a simplified version of the RCF
(Barasuol et al., 2013). Sensory and visual feedback are used
in other works to avoid obstacles and provide better foot
placement (Magana et al., 2019) but these mechanisms are
disabled here. In the simulations, the robot forward veloc-
ity is set to 0.25 m/s with a gait frequency of 1.7 Hz, a trot
duty factor of 0.5, a desired step length of 7.3 cm, and a step
height of 10 cm. These parameters are chosen heuristically
to provide a robust trotting gait with a safe speed and foot
trajectories. In the real experiments, the frequency has been
lowered to 1.4 Hz with a duty factor of 0.6. This does not
affect the comparison but helps to better monitor the robot
to avoid inadvertent damage.

The different parts of the RCF controller can be seen in
Fig. 1. In its core, a module produces four 2D CPG-inspired
trajectories in the reference coordinates of each foot. They
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are subsequently projected in the frame of reference of the
robot’s trunk. In this work, the correction of the foot trajecto-
ries according to the robot’s attitude (Kinematic Adjustment
module) has been deactivated to keep an open-loop behav-
ior. Finally, the desired joint positions qd, velocities q̇d and
accelerations q̈d are computed using inverse kinematics and
transformed into joint torques via the PD impedance con-
troller described in the next Sections. The robot body is sta-
bilized in roll, pitch, and height using a module called Trunk
Controller. It also produces joint torques that add up to the
RCF contribution and regulate the stability of the robot.

2.4 Impedance Controller

The implementation of a torque controller for HyQ joints
has been presented in Boaventura, Semini, et al. (2012) and
Focchi et al. (2012) and its performance and stability when
compensating external forces have been addressed both in
simulation and on the real robot (Boaventura et al., 2013;
Boaventura, Focchi, et al., 2012). To understand the role
of the impedance controller, the joint control loop can be
replaced by an equivalent rotational spring-damper system
(Semini et al., 2015). This operation is represented for the
KFE joint in Fig. 4. To this aim, we first hypothesize that the
effect of the Inner Torque Control Loop, running at 1 kHz,
is negligible compared to the oscillation of the impedance
controller, which is true for the impedance gains considered
in this paper. The equation describing the torques applied on
the joints:

τττ f = τττext + Kp
(
qd−q

)
+ Kd

(
q̇d− q̇

)
(1)

and the one of the equivalent spring-damper system:

τττ f = τττext− k
(
q−qref

)
− c

(
q̇− q̇ref

)
(2)

therefore imply that the proportional and derivative gains Kp
and Kd have respectively the same units as the virtual tor-
sional spring stiffness k measured in N.m/rad and the damp-
ing c in N.m.s/rad, for which we would vary the vector of
reference position qref and the vector of reference rotational
speed q̇ref during actuation. In these equations, τττ f represents
the torque vector experienced by the joints, and τττext, exter-
nal disturbing torques from the robot’s interaction with its
environment. qd and q̇d are the vectors of desired position
and velocities of the joints, and q and q̇, the real ones. For
the sake of clarity, we will simply call Kp and Kd respec-
tively stiffness and damping in the following sections.

2.5 Neural Network

The core element of the closed-loop architecture is the feed-
forward neural network presented in Fig. 5. At each time

−

−
Compliance

PD
Controller

Inner Torque
Control Loop + Robot

Dynamics
τττd τττ f

τττext
qd

q̇d

q
q̇

Equivalent Rotational Sping-Damper System

Fig. 4: The torque controller of the leg’s actuators can ac-
curately reproduce virtual stiffness and damping properties.
The speed of the hydraulic actuation and the fast PD loop is
a key factor to its high performance.

step tk, sampled at 250 Hz, the neural network model takes
a set of inputs xk and outputs a set of signals yk that controls
the flexion-extension actuators only:

yk = { qLH, HFE
d, k , qRH, HFE

d, k , qLF, HFE
d, k , qRF, HFE

d, k ,

qLH, KFE
d, k , qRH, KFE

d, k , qLF, KFE
d, k , qRF, KFE

d, k ,

q̇LH, HFE
d, k , q̇RH, HFE

d, k , q̇LF, HFE
d, k , q̇RF, HFE

d, k ,

q̇LH, KFE
d, k , q̇RH, KFE

d, k , q̇LF, KFE
d, k , q̇RF, KFE

d, k },

(3)

where qd and q̇d represent the desired position and veloc-
ities; LH, RH, LF, RF are the leg index, i.e., Left Hind,
Right Hind, Left Front, Right Front; KFE and HFE refer
to the different actuators, i.e., Knee Flexion-Extension and
Hip Flexion-Extension.

The neural controller inputs are given by the normalized
GRFs, a bias signal, and no clock:

x = { GRF LH
k , GRF RH

k , GRF LF
k , GRF RF

k , 1 }. (4)

This critical choice of GRFs inputs is guided simulta-
neously by practical reasons and biological evidence about
quadruped locomotion. On one hand, using real joints’ posi-
tions and velocities as feedback to teach a feed-forward neu-
ral network to predict the next desired joints’ positions and
velocities could ultimately split the global architecture into a
set of independent controllers at a joint level. In other words,
instead of training a controller to predict the next robot pose,
this approach could drift to training each actuator to pre-
dict its next pose individually. In that sense, GRFs are a bet-
ter indicator of the full robot’s dynamic than joints’ status.
For instance, an error of actuation on qLH, HFE

d can produce
an strong direct effect on GRF RF but less importantly on
qRF, HFE. This signal is also very informative about the dis-
tribution of the robot weight on its different feet (hence, its
stability) and the interaction with the environment (through
the impacts with the ground).

On the other hand, the role of CPG is debated for com-
plex locomotion behaviors within humans (Dzeladini et al.,
2014). In contrast, GRFs have a serious plausibility to rep-
resent the biological implementation of reflex-based loco-
motion in mammals. For instance, simulation studies on cat
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locomotion have indicated that the stability of gait coordina-
tion in the presence of external disturbance depends heavily
on sensing GRFs in each separate leg (Ekeberg & Pearson,
2005). Demonstration of biologically plausible locomotion
on simulated human models has also established the rele-
vance of GRFs as the main input to design an efficient reflex-
based controller (Geyer & Herr, 2010). The same principle
has been also implemented to create natural recovery behav-
iors from tripping on unexpected obstacles (Murai & Ya-
mane, 2011). Hybrid strategies implementing a mixture of
centralized control and reflex mechanisms have been also
achieved in robotics (Manoonpong et al., 2007). While lim-
iting the input numbers, we are not aiming at an exact repli-
cation of the RCF dynamics. However, this representation
should be able to learn a stable attractor with trajectories
identical to the ones in the RCF, using no prior knowledge
about the robot morphology and mechanics.

MinMax Scaler
[−1.5;1.5] 1 2 ... M

Time Buffer

∼

∼
∼

1

2

...

N

ELM

×
×
×
×
×
×
×
×

Readout Layer

x y

Fig. 5: Tuning the memory and the non-linearities of the
neural network can be performed by setting respectively the
size of a time buffer and a hidden layer of hyperbolic tan-
gent neurons. The time buffer is fully connected to the hid-
den layer and only the connections between the hidden layer
and the linear readout are trained.

In the generic controller, we opted for a very abstract
representation: normalized inputs are sent to a Delay Line
(DL), which acts as a first-in, first-out memory buffer. It is
fully connected to a hidden layer of hyperbolic tangent neu-
rons, followed by another fully connected readout layer of
linear neurons. The layers’ architecture is inspired by the
Extreme Learning Machines (ELM) (Huang et al., 2004).
This approach has been used in robotics before (Degrave
et al., 2013) and has the benefit of exposing only two pa-
rameters M and N to tune respectively the memory and the
nonlinear hidden projections of the controller’s model. The
absence of prior knowledge in the network structure does
not restrict the range of motion to a defined subset but al-
lows a continuous infinity of trajectories. Furthermore, due
to the feed-forward processing, no temporal components are
added in the controller dynamics.

2.6 Training

The weights of the connections between the hidden and
readout layer Wout are updated using the FORCE learning
method (Sussillo & Abbott, 2009) to learn to reproduce the
trajectories provided by RCF target:

ek+1 = ( Wout
k )T . xk+1 −ytarget

k+1 (5)

Pk+1 = Pk−
Pk . xk+1 . xT

k+1 . Pk

1+xT
k+1 . Pk . xk+1

(6)

Wout
k+1 = Wout

k −Pk+1 . xk . eT
k+1 (7)

yk+1 = ( Wout
k+1 )

T . xk+1, (8)

where P is the estimate of the inverse of the correlation ma-
trix and x, y and ytarget are the network input, the network
output and the RCF target, respectively.

0s 15s 30s 45s

Ttraining Tclosing Ttesting

100%
Open-loop

100% Closed-loop

Alternating between
training and prediction

Training

Prediction
Neural Net-
work Mode

Mixer Mode

Fig. 6: The simulations and trials on the real robot are di-
vided into three phases of 15 seconds. In the first phase, the
robot is actuated in open-loop while the neural network is in
training mode. In the second phase, we switch to the closed-
loop architecture and the network alternates between train-
ing and prediction mode until it stays only in that mode in
the third phase.

As presented in Fig. 6, the trials are divided into three
phases of 15 seconds each. During the first phase, Ttraining,
the robot is actuated by the RCF only and the signals are
used together with the sensors to train the readout layer of
the neural network. In the second phase, Tclosing, the mixer
depicted in the middle of the figure switches to the neural
network output. The RCF target is however still used as a
target to train the network. The closing phase alternates be-
tween prediction and training until only the prediction re-
mains at the end of the phase. Finally, in the last phase
Ttesting, only the predictions of the neural network are used
to investigate its performance.
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2.7 Experimental Methodology

The experiments realized to collect the results are divided
into three parts.

First, in Section 3.1, we are using the open-loop control
architecture (presented in Fig. 1) in simulation to evaluate
different virtual stiffness and damping coefficients. To esti-
mate the performance in open-loop, the experiments run for
15 seconds and only the first phase Ttraining is carried. Perfor-
mance indicators on stability, power, speed, and GRFs are
measured to determine the behavior of the gaits and identify
different locomotion regimes.

In the second set of experiments presented in Section
3.2, we evaluate the effect of compliance on the COT and
the minimal controller requirements in a closed-loop archi-
tecture. In the stiffness-damping region with the best open-
loop performance identified in the previous step, we train
the neural network of the closed-loop architecture presented
in Fig. 2 over the full duration of 45 seconds as discussed
in Section 2.6. The interaction of four quantities (controller
memory, controller non-linearity, joint stiffness, and joint
damping) is evaluated for the dynamical system formed by
the robot and the controller.

The third part, presented in Section 3.3, details the ex-
perimental trials on the real HyQ robot and discusses the
qualitative observations made during these trials.

3 Results

3.1 Compliance Regions for the Open-Loop Architecture

This section provides a characterization of the different trot-
ting regimes on HyQ in function of its compliance. To this
goal, 3.600 different settings in the HyQ’s active impedance
controller are sampled on a logarithmic space formed by the
joints damping and stiffness. Ten trotting simulations with
the open-loop architecture are averaged for each impedance,
using the RCF as detailed in Section 2.3. Four metrics are
represented as they together summarize the locomotion be-
havior: stability, power, speed, and GRFs. Motivation and an
explicit definition for each of the metrics are provided in the
Supplementary Materials.

From the results presented in Fig. 7a, we can cluster
the different morphologies following their gait performance
metrics. The graph in Fig. 7b provides such a partitioning
into six different regions in the stiffness-damping space. To
understand how these regimes are determined, the effects on
the final gait are first discussed for increasing stiffness (X-
axis). At low stiffness, the robot is falling and the GRFs ob-
served in the simulation become unrealistic. This is caused
by the difficulty of the physics engine to cope with the di-
verse impacts due to the undesired robot position, lying on
the ground. For Region 1, the power consumption remains

(a) The gait metrics for different damping and stiffness values
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(b) A diagram clustering the space in different gait regions

Fig. 7: Gait metrics for different damping and stiffness val-
ues. In (a), grid simulations represent the robot locomotion
behavior in terms of stability (falling in blue and not falling
in yellow), mechanical work power (in Watts), normalized
speed (as a ratio of the desired target speed) and GRFs (in
Newtons). Some unrealistic simulation results are discussed
in the manuscript. A range of good performance on all four
criteria is defined by the red line on the graphs. From left to
right, the red triangles define two sets of impedance, called
compliant and stiff, selected to evaluate a generic controller.
In (b), the damping-stiffness space is divided into character-
istic regions describing the robot locomotion.
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small and the robot speed is reduced to zero. Increasing stiff-
ness raises the frequency of the joint oscillations. For Region
2, these oscillations have the same order of magnitude as
the locomotion frequency. The stability module presented
in Section 2.3 is therefore able to prevent the robot from
falling. This region is characterized by a correct forward
speed and a stable yet shaky gait. When shifting to higher
stiffness in Region 3, the oscillations are too fast and lead to
locomotion instabilities, which explains the high falling rate
and the low average speed.

The role of the damping coefficient can be better un-
derstood by browsing the graph diagonally through the dif-
ferent curves of iso-damping ratios. For lower ratios (Re-
gion 3 for instance), the oscillations around the desired joint
positions are under-damped. The robot has more undesired
impacts with the ground, causing it to fall. The power con-
sumption is also increased due to the high velocities of the
joint oscillations. On the other end, in the upper left corner
of the graph, the damping ratios are too high and the ac-
tuators are over-damped. In Region 4, the dissipated power
measured in simulation becomes unrealistic due to the small
amplitude of the oscillations. Between these extremes, crit-
ical damping can be reached in Regions 5 and 6. Despite
the high frequencies, the robot can maintain a positive for-
ward speed without falling in most cases. Region 5 consti-
tutes the most interesting area for our studies as it combines
acceptable damping ratios with correct stiffnesses. It is char-
acterized by adequate speed and energetic performance and
realistic GRF for a transfer on the real platform. A red line is
defined in this area of the graph. It will be considered in the
next section to study the compliance effect in closed-loop lo-
comotion. Two parameters sets, called compliant (left) and
stiff (right) are also identified with red triangle on this line.
They score equally for all the metrics in open-loop but have
different stiffness values.

3.2 Effect of Compliance in Closed-Loop Control

The empirical evaluation of compliance in the last Section
constitutes a basis to discuss major assumptions in morpho-
logical control. In this section, we aim at quantifying the
effect of compliance in a closed-loop architecture by pro-
viding an answer to the two following questions:

1. Can compliance improve the COT in reflex-based loco-
motion? On one hand, it seems that compliant robots can
be safer and use less energy (Papadopoulos & Buehler,
2000; Vanderborght et al., 2009; Kashiri et al., 2018;
Seok et al., 2014). On the other hand, several works have
discussed the presence of an optimal stiffness value to
maximize the locomotion speed of a robot (Spröwitz et
al., 2013; Galloway et al., 2011). Here, we evaluate how

Fig. 8: The COT for the closed-loop architecture increases
with stiffness (top left). This effect can be linked to an incre-
ment in power consumption, itself due to higher impacts on
the ground. The speed, however, slightly increases with the
stiffness before to drop at higher values, because of reduced
stability and gait efficiency.

these two effects contribute to the COT in a closed-loop
control architecture.

2. Can compliance facilitate morphological locomotion
control on complex dynamic structures? While non-
linearities and fading memory have been identified as
essential features to perform computation with generic
morphologies in Hauser et al. (2011), the role of com-
pliance and its interaction with the controller complex-
ity requires further investigation. Here, we contribute to
this topic with empirical demonstrations on HyQ.

3.2.1 Cost of Transport

In this first investigation, a fixed neural network is selected
in the closed-loop architecture by setting the memory and
non-linearity parameters M and N to 50. These values are se-
lected to provide enough complexity for the task with a cor-
rect real-time execution, as shown in the Supplementary Ma-
terials. Robots with different compliance are sampled from
the red line introduced in Fig. 7. For each of them, we av-
erage ten simulations in which the neural network is trained
as described in Section 2.6. The results for different metrics
are displayed in Fig. 8.
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In the top-left graph of Fig. 8, the evolution of the COT
is represented for different compliance values. The blue line
describes the open-loop architecture and the red line, the
closed-loop architecture. The first observation is that the
COT of the closed-loop system increases almost exponen-
tially with stiffness. In other words, good performance with
this control architecture can only be achieved with compli-
ant robots. In the scope of HyQ’s locomotion task, this is a
serious motivation to combining morphological control with
compliant morphologies in the search for optimal perfor-
mance.

The COT is defined by the ratio between the robot’s
power consumption and speed, normalized by the robot’s
mass (see Supplementary Materials). The speed and power
curves are, therefore, also represented in Fig. 8 to better un-
derstand the reasons behind the increase of COT with stiff-
ness. The power value is only theoretical as it is obtained
by multiplication of all actuators torque and speed as de-
tailed in the Supplementary Materials, but calorific losses
due to hydraulic compression and other mechanical drags
need to be added in practice. The variations of COT seem
to be mostly explained by the power contribution. To under-
stand why, we rather need to consider the dynamic of the
system as a whole. The last line of Fig. 8 shows an incre-
ment of the actuators’ oscillations around their limit cycles
at higher stiffness. Despite these oscillations, we can note
that the neural network accuracy presented in the same fig-
ure, remains quite stable with the stiffness, i.e. it can keep
track with the target trajectories. So, the oscillations are not
due to the controller or the robot alone but rather to their
interaction as a dynamic system. In turn, this is responsi-
ble for larger impacts between the feet and the ground. A
plot of the maximal GRFs provided in Supplementary Ma-
terials substantiates this hypothesis. The increase of power
consumption with the stiffness also corroborates the expla-
nations presented in other works (Vanderborght et al., 2009;
Hoffmann & Simanek, 2017; Kashiri et al., 2018) and advo-
cates for the use of compliance to optimize energy efficiency
and reduce the risks of impact with the environment, partic-
ularly in situations where humans are involved.

In comparison with power, speed seems to play a smaller
role in its contribution to the COT variations for the closed-
loop architecture. The dominant trendshows that speed is
first rising with the stiffness before to drop when the joints
become too stiff. The positive effect relates to a better lift-
off phase and a stronger push on the ground to propel the
robot forward when increasing the joint’s rigidity. However,
the negative effect starts to take over at stiffness higher than
400 N.m/rad. Additional graphs presenting the robot’s step
length and the number of steps in Supplementary Materials
show that this is principally due to a reduced average step
length (i. e. the feet are touching the ground sooner than ex-
pected). A visual analysis of the locomotive cycle in the last

line of Fig. 8, in correlation with the trajectories displayed
in Fig. 10 further demonstrates that this effect.

A last interesting observation from the COT graph sug-
gests that a closed-loop controller becomes better than open-
loop against this metric for really compliant robots (far left
side of the curve). This highlights a positive point of mor-
phological control: the ability to better handle compliant
bodies, without forcing the joints to follow a given trajectory
or computing complex intermediate representations with fi-
nite elements theory. Nonetheless, it is important to stress
that this benefit also comes at a certain cost, as featured by
the reduced speed at low stiffness.

3.2.2 Computational Requirements

In the second analysis, we evaluate the trade-offs between
controller’s complexity and robot compliance, to contribute
to stable and efficient locomotion. To this goal, a qualitative
evaluation of the gait is conducted for the two individuals
with compliant and stiff parameters described in Section 3.1.
For each of them, several controllers with a different amount
of non-linearity, N and memory, M, are trained. This choice
is inspired by the fact that nonlinear dynamical systems with
fading memory have a finite computational capacity and dis-
play a trade-off between memory and non-linearity (Dambre
et al., 2012). Furthermore, memory and non-linearities are
not only meaningful in the controller but also at the body
level. Therefore, we believe that these parameters are rel-
evant to measure the complexity of the dynamical system
formed by the robot and its controller and to discuss the in-
fluence on the final controllability of the system. For each
neural architecture, ten simulations are performed to provide
a meaningful estimate and three metrics are investigated in
Fig. 9: accuracy, speed, and stability. In this figure, the left
column represent the compliant robot and the right column,
the stiff robot. In each graph, the X-axis describes the evo-
lution of the controller’s memory and the Y-axis, the con-
troller’s non-linearities. More metrics are discussed in the
Supplementary Materials and can help to understand the un-
derlying mechanisms of the experiment results. A qualita-
tive evaluation of the gait obtained by the compliant and stiff
robots is also presented in Fig. 10 to visualize how the gait
trajectories predicted by the neural network are affected by
the compliance. To draw these pictures, we have selected a
controller with M = 50 and N = 50.

We can first observe in Fig. 9 that the prediction accu-
racy (defined as the inverse of Normalized Square Root Er-
ror between the neural network’s prediction and the RCF
target in the Supplementary Materials) increases with the
controller memory and non-linearities (i.e., in the direction
of the upper right part of the graph). As it can be seen in the
second row of this figure, this improvement in prediction ac-
curacy is also linked to a higher speed. It also has a beneficial
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impact on gait behavior, as it seems to correlate with better
stability in the third row. However, this effect is mostly ob-
served for soft impedances and disappears for stiffer ones.
This is expressed by the spreading of the accuracy, speed,
and stability levels for the stiff robot on the graphs.

An important remark needs to be formulated here. In the
hypothesis of a strict transfer of computation to the robot
facilitated by compliance, we could have expected the mi-
gration of the region of interest (yellow points for accuracy
and speed, and blue points for stability) on a diagonal axis
between the compliant and stiff morphologies. However, we
failed to observe such an effect in our experiments. Instead,
these regions start spreading on the graphs. In other words,
this means that the controller complexity, represented by its
memory and non-linearities on the X and Y axis, has less in-
fluence on the locomotion metrics for a stiff robot than for a
compliant one. The robot becomes less sensitive to the com-
putation power of the controller at higher stiffness. There-
fore, these empirical results rather support the idea that in-
creasing stiffness leads to more decoupling between the con-
troller and the robot dynamics in closed-loop, making mor-
phological control a harder task with stiff robots, rather than
demonstrating an explicit transfer of computation between
the controller and the body.

In the scope of morphological control, we can conclude
that the compliance is facilitating the control of locomo-
tion on the HyQ robot. The feedback from a compliant body
backs up the controller’s memory and non-linearities to pro-
duce a better prediction in a virtuous cycle. This observation
is fundamental in the scope of embodiment and morpholog-
ical computing as it emphasizes how the choice of morphol-
ogy is important to obtain a stable limit cycle.

3.3 Evaluation on the Real HyQ Robot

Despite recent progress on locomotion using machine learn-
ing, most works are conducted in simulation, and only a few
results have been tested on real robots. This issue primarily
arises from what is called the reality gap: simulation models
cannot reproduce the real physics accurately enough with-
out a prohibitive amount of computation or excessive pa-
rameter tuning. This paper, however, highlights the role of
the body for efficient locomotion which makes a validation
on the real HyQ platform inevitable. Minor parameter and
algorithm adaptations have been added in comparison with
the previous section to deal with the reality gap:

1. The stiffness gains discussed in Section 3.1 are defined
empirically for the simulated model. Their relationship
and the different defined areas are more meaningful than
their absolute values. To cope with differences in weight,
inertia, or actuator torques between the robot and its
model, the stiffness values were raised to 250 N.m/rad

Fig. 9: In each of these six graphs, various controllers are
evaluated by tuning the delay line size M (to increase or de-
crease the controller’s memory) on the X-axis and the ELM
layer size N (to change the non-linear richness) on the Y-
axis. The columns correspond to the compliant and the stiff
joint parameters. Each row represents a different locomotion
metric ranging from blue for low values to yellow for high
values. The spreading of the region of efficient locomotion
with the stiffer robot can be interpreted as a decoupling be-
tween the controller and robot dynamics at higher stiffness.

Fig. 10: This figure shows the end-effector trajectories of the
right front foot (red), the left front foot (purple), and also the
trunk’s center of mass (green). The blue planes divide the
trajectory in the time domain into three phases: Training,
Closing and Testing. The experiment is repeated for the two
compliance values discussed in the paper: compliant (top),
and stiff (bottom). It shows a deteriorated locomotion cycle
at higher stiffness.
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and 150 N.m/rad in swing phase and 150 N.m/rad and
100 N.m/rad in stance phase respectively for the hip and
the knee.

2. The GRFs are indirectly acquired using encoders and
load cells on different joints. The sensor accuracy at high
torques and the propagation of errors in computing the
contacts lead to noisy sensor data in comparison to the
simulation baselines. This effect is corrected by applying
a moving window filter using 15 samples followed by a
threshold function on the GRF data. The values before
and after processing are presented in Fig. 11 (top). The
simulation counterpart is also represented on the same
figure and demonstrates that the process can provide cor-
rect amplitude, smooth transitions, and keep the impor-
tant phase information (gait synchronism).

3. The robot simulation model assumes a uniform distribu-
tion of the mass along the trunk. In reality, some subsys-
tems located in the body are heavier than others, which
creates a heterogeneous weight repartition. Therefore,
the robot is less stable than its simulated counterpart and
covers a larger range of roll, pitch, and height during lo-
comotion. This effect is yet increased by external forces
applied by the supply of hoses that provide pressurized
oil to the robot and that randomly pull or push it to dif-
ferent directions during the gait. Finally, another distur-
bance comes from the communication delay between the
robot and the computer where the neural network is run-
ning. For all these reasons, the experiment duration was
increased to 180 seconds with 120 seconds of training,
30 seconds of closing phase, and 30 seconds of testing
phase. The learning algorithm regularization was also
raised from 0.001 to 1 to generalize on more samples.

The experimental validation results are shown in the
video provided in the Supplementary Materials. The trans-
fer can be considered successful as there is no qualitative
difference between the trot using the target gait of the classi-
cal controller or the neural network gait. The stability of the
trunk is contained in the same value range and the feet trajec-
tories show no visible deviation from the targets. However,
it has been observed that the robot is more sensitive to ex-
ternal disturbance. For instance, if there is a connection loss
between the computer running the neural network and the
robot (therefore freezing the actuators briefly) the motion
mostly failed to recover back its attractor. To further under-
stand the underlying mechanisms, the predicted trajectories
are plotted together with the target in Fig. 11 (bottom). It can
be observed that the shape of the locomotion cycle is similar
but the neural network output starts to lose synchrony with
the target phase when the training has stopped. From that
moment on, the controller is completely disconnected from
the classical CPG and uses no more temporal information,
which explains why their phases desynchronize. This effect
aside, this section provides a proof on the capacity of a neu-

Fig. 11: Embodied locomotion on the real robot. On the top,
the GRF are presented with the raw signal (red), after pro-
cessing using a window filter and threshold (green) as well
as a comparison with the signal in simulation (blue). The
preprocessing method keeps the phase of the real signal but
it generates levels that are closer to their simulation coun-
terpart. On the bottom, the left hind foot height is shown for
the target and prediction signals to highlight the dephasing
in reflex-based locomotion.

ral controller to operate a large quadruped robot directly at a
low-level joint level, to sustain an efficient embodied loco-
motion.

4 Conclusions

In this work, we have suggested two different control ar-
chitectures to achieve locomotion on the HyQ robot. The
first, named open-loop, is based on a CPG and its dynamics
controls tightly the motion of the body with limited feed-
back from the environment. The second, named closed-loop,
is based on a reflex mechanism where the controller is im-
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plemented by a simple feed-forward neural network taking
GRF sensors as input and predicting directly the desired
joints positions and velocities, which a strong coupling be-
tween the body dynamic and the controller. The motivation
of this work is not to compare the open-loop and closed-loop
architectures but rather to use the first one as a target and
a benchmark to study morphological control in locomotion
and the trade-offs with joint compliance.

The experiments presented in this paper advocate in
favor of using compliant robots in conjunction with mor-
phological control. They highlight the role of compliance
for learning control and coordination of locomotion move-
ment and the relevance of this approach on real robots. Be-
side providing advantages on the COT, simulations on HyQ
show that compliant robots can simplify closed-loop con-
trol of robot locomotion. A possible interpretation of the
role of compliance can be found in morphological com-
putation theory. A robot can be seen as a computational
entity that transforms actuation signals into sensor signals
through its dynamical interactions with the environment. As
remarked in Müller & Hoffmann (2017), it is nevertheless
essential to differentiate morphologies that facilitate con-
trol, in which a good design reduces computation require-
ments, from intrinsic morphological computation, where
there is clear outsourcing of the computing power. Our em-
pirical study demonstrates that intrinsic morphological com-
putation could be discarded in the locomotion task under
consideration. At higher stiffness, however, we observe a de-
coupling between the control and the robot dynamics. Com-
pliant robots have, therefore, morphologies that facilitate
control. Rather than a concrete transfer of computation to
the body as observed in other work on embodied locomotion
(Urbain et al., 2017; Caluwaerts et al., 2013), compliance of
HyQ helps to regulate the locomotion trajectories and better
outsource the body feedback.

Built on the simulation work, a successful validation on
real hardware has been investigated. The use of a stability
module for PID-based attitude control and gravity compen-
sation (called Trunk Controller and detailed in Section 2.3)
in association with learning feet trajectories and coordina-
tion was crucial to facilitate the transfer. We believe that this
is key in finding a methodology to bring simulation results
on locomotion robots without damaging them. The experi-
ment also showed the possibility to operate locomotion only
in a reflex-based fashion. But the loss of phase synchroniza-
tion with the motor target emphasizes the importance of os-
cillatory systems, like biological CPGs, to keep a stable lo-
comotion phase in presence of external disturbance. By ap-
plying joint torques to keep the base stable and to ensure the
stance timing, the stability module also plays a critical role
in the system performance. A discussion on this question has
been investigated in Urbain et al. (2020).

By quantifying the needs in memory and non-linearities
of a neural network and interpreting them in the light of the
mechanical properties of a robot, we hope that this paper
contributes to bridging the gap between the fields of robotics
and machine learning. In particular, the results could be used
in further investigation of reinforcement learning methods to
estimate the requirement of a recurrent network controller.
This work also enriches the efforts in reflex-based locomo-
tion with an effective demonstration on a real robot, which
can bring some insights into the fundamental understanding
of the neural mechanism used for locomotion in biology.
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