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Abstract: Manual assembly in the future Industry 4.0 workplace will put high demands on 

operators' cognitive processing. The development of mental workload (MWL) measures 

therefore looms large. Physiological gauges such as electroencephalography (EEG) show 

promising possibilities, but still lack sufficient reliability when applied in the field. This 

study presents an alternative measure with a substantial ecological validity. First, we 

developed a behavioral video coding scheme identifying 11 assembly behaviors potentially 

revealing MWL being too high. Subsequently, we explored its validity by analyzing videos 

of 24 participants performing a high and a low complexity assembly. Results showed that 

five of the behaviors identified, such as freezing and the amount of part rotations, 

significantly differed in occurrence and/or duration between the two conditions. The 

study hereby proposes a novel and naturalistic method that could help practitioners to 

map and redesign critical assembly phases, and researchers to enrich validation of MWL-

measures through measurement triangulation. 

Keywords: mental workload, measurement, behavioral video coding, validation, 

assembly 

 

Practitioners summary: Current physiological mental workload (MWL) measures still lack 

sufficient reliability when applied in the field. Therefore, we identified several observable 

assembly behaviors that could reveal MWL being too high. The results propose a method 

to map MWL by observing specific assembly behaviors such as freezing and rotating 

parts. 
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1. Introduction 

The current growing demand for mass-customization yields a greater product variety 

(Um, Lyons, Lam, Cheng, & Dominguez-Pery, 2017; Wan & Sanders, 2017) and thereby a 

higher manufacturing complexity (ElMaraghy, ElMaraghy, Tomiyama, & Monostori, 2012; 

Hu, Zhu, Wang, & Koren, 2008). Despite the extensive automation of production 

processes, manual assembly still remains highly valuable for the extreme flexibility it 

provides (Booker, Swift, & Brown, 2005). Cognitive demands on operators in this context 

and for sure in the future Industry 4.0 setup however increase accordingly, reinforcing 

the long-standing need for mental workload (MWL) measurement in order to optimize 

cognitive ergonomics (Van Acker, Parmentier, Vlerick, & Saldien, 2018; Young, Brookhuis, 

Wickens, & Hancock, 2014). With a thorough and objective understanding of non-optimal 

MWL (i.e., overload or underload) the presentation of information and materials can be 

redesigned (Brolin, Thorvald, & Case, 2017), assemblies can be made more intuitive 

(Parmentier, Van Acker, Detand, & Saldien, 2019) or smart technologies can be introduced 

to assist the operator (Erol, Jäger, Hold, Ott, & Sihn, 2016; Longo, Nicoletti, & Padovano, 

2017). 

 

Subjective measures have long been the preferred method to indirectly infer MWL (cf., 

Young et al., 2014), but are intrusive when applied in the field and only provide a 

subjective estimation (for a discussion, see de Waard & Lewis-Evans, 2014; de Winter, 

2014; Matthews, De Winter, & Hancock, 2019) of accumulated load instead of more 

sensitive fluctuations in MWL-levels (Antonenko, Paas, Grabner, & van Gog, 2010). More 

recent methods offer a more direct and continuous way of measuring MWL through 

physiological reactions within the operator and this with a very limited latency (Charles & 

Nixon, 2019). EEG, for instance, or functional Near Infrared Spectroscopy (fNIRS) 

measuring frontal cerebral blood flow velocity have demonstrated exciting potential for 

future unobtrusive MWL measurement (cf., Foy & Chapman, 2018; Guru et al., 2015; 

Hairston et al., 2014; McKendrick et al., 2016) and even mental overload measurement 

(Morton et al., 2019). Such measures are nevertheless still in full development and do not 

yet achieve adequate effect sizes (Vanneste et al., 2020) nor adequate reliability or 

external validity in applied mobile settings, this due to numerous confounds such as 

movement and breathing artefacts (see Arico, Borghini, Di Flumeri, Sciaraffa, & Babiloni, 
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2018; Brouwer, Zander, van Erp, Korteling, & Bronkhorst, 2015). Additionally, differences 

in MWL are often estimated by comparing discrete conditions, instead of measurement 

being instantaneous. To arrive at the stage of measuring MWL fluctuations within a short 

time span - say, seconds - and in a real-world context, great strides need to be made yet.  

Where the field of subjective and physiological MWL measurement validation assesses 

MWL changes to eventually detect or predict decrements in performance (see, e.g., 

Young et al., 2014), here, we reversed the logic, in line with primary task performance 

measures (cf., Cain, 2007). We designed a coding scheme by narrowly defining observable 

types of inefficient and ineffective assembly behaviors that potentially reveal MWL being 

too high. The current study is hence, to our knowledge, the first to explore behavioral 

observation as a measure of MWL in an ecologically valid assembly context. Specifically, it 

builds on current knowledge on human cognition in assembly performance (but not 

providing a validated measure yet) and translates this knowledge and similar work on 

behavior analysis in human-computer interaction and driving into a novel and validated 

mental workload measure for manual assembly. It hereby aims to help design a method 

already meeting some of the widely envisioned criteria for in-the-field MWL-measurement 

on the short term, i.e., non-obtrusiveness, sensitivity to rapidly changing MWL 

fluctuations and ease-of-use (see Matthews, Reinerman-Jones, Barber, & Abich, 2015).  

2. Background

Scrutiny on the concept of MWL upholds a long tradition and even thrives during recent 

years, driven by the expectations for the upcoming Industry 4.0 (Young et al., 2014). 

Altogether, MWL exists as a function of task demands and moderating variables, and can 

be understood as a subjective experience and a physiological reaction, resulting in task-

related behavior (Van Acker et al., 2018). Research on the measurement of MWL in 

industrial contexts has mainly focused on subjective estimations and physiological 

reactions (Charles & Nixon, 2019). Gauging the third, behavioral component in these 

settings has however rarely made the step beyond measuring, e.g., execution times, 

reaction times or errors. The same theorization explaining fluctuations in the subjective 

and physiological components of MWL can however also help explain fluctuations in 

observable behavior. 
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2.1 MWL revealing limited resources 

MWL can be defined as a subjectively experienced physiological processing state 

resulting from the interplay between the human cognitive architecture and the work 

demands being attended to (Van Acker et al., 2018). Seminal work learns that the 

cognitive physiological resources propelling this interplay are limited (e.g., because of 

competition between visual and auditory sensory modalities; Wickens, 2002, 2008) and 

draw from a common and also limited underlying pool of physiological resources from 

which also competing emotional load (for a distinction between cognitive and emotional 

load, see Van Acker et al., 2018) and physical load draw (Kahneman, 1973; Mandler, 1979; 

Norman & Bobrow, 1975; for an overview, see Staal, 2004) (see Figure 2).  

 

2.2 Performance revealing MWL 

In assembly specifically, cognitive resources are allocated for perception, response 

selection and action, propelled by, i.a., attention and memory (Stork & Schubö, 2010). For 

commissioning, the perception stage include, i.a., identifying relevant parts. For joining, 

the operator's perception entails, for instance, processing the required part position and 

orientation. An appropriate response is then selected (e.g., 'take this part and join it on 

that position in that orientation') to finally go through the process of motor execution of 

the joining operation (including planning and adjusting). Since resources are limited, this 

concrete assembly performance can become less efficient and less effective when MWL 

increases. Commissioning, for example, can take longer, while response selection can 

entail taking two wrong parts first. 

 

Previous research shows that the relationship between (assembly) performance and 

MWL exhibits an inverted U-shaped trend (de Waard, 1996; Montani, Vandenberghe, 

Khedhaouria, & Courcy, 2020; Young et al., 2014). In Figure 1 (inspired on de Waard, 1996; 

Hart & Wickens, 2008; Young et al., 2014), it can be observed that, in this way, 

performance is optimal when MWL resides around moderate levels (cf., flow theory; 

Bruya, 2010), while it is non-optimal (i.e., too low) in case of MWL being too low or too 

high. The MWL 'redlines' represent the performance break points here, so that at the 
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right side of the right redline, overload, and at the left side of the left redline, underload, 

leads to strong reductions in performance. In the current study, we focus on the levels of 

MWL around the right redline, i.e., the part of the curve where performance goes down. 

We coin this area the MWL upper red zone since these redlines rather represent a fuzzy 

zone when applied over contexts and people (cf., Young et al., 2014). We do not focus on 

performance decrements due to underload, i.e., lower red zone MWL (for an elaboration 

on underload and its relation to MWL levels, see Brookhuis & de Waard, 2000). 

 

Within upper red zone MWL, a differentiation can be made between impending mental 

overload and mental overload per se. The MWL-redline approximates the break point (or 

a ceiling effect in terms of a limited resource system; Young et al., 2014) between both 

(see also, Grier et al., 2008; Paras, Yang, Tippey, & Ferris, 2015). We define impending 

mental overload as high MWL associated with minor decrements in performance and 

visualize this concept as our first Area Of Interest ('AOI 1') on the curve in Figure 1. Mental 

overload is defined as high MWL associated with major decrements in performance and is 

represented by the second Area Of Interest ('AOI 2') on the curve. As the curve shows an 

exponential trend, overload should thus be associated with the largest and most severe 

drops in performance.  

 

Figure 1: Graph of performance and MWL as a function of task 

demands, presenting the MWL-redlines and the areas of 

interest (AOI 1= Area of Interest 1, AOI 2= Area of Interest 2) . 

Adapted from Young and colleagues (2014) and de Waard 

(1996).  
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In all, we thus focus on red zone MWL associated with minor and major performance 

decrements – i.e., stretching over AOI 1 and AOI 2 in Figure 1. Our assumption 

subsequently states that performance decrements here will be observable in concrete 

assembly behavior and can hence indicate changes in MWL, in turn revealing changes in 

the cognitive resources spent. We illustrate this assumption in Figure 2. To facilitate 

theory building and comparability of the presented work (Van Acker et al., 2018), our 

operational definition of MWL states that the MWL measured here will be reflected in the 

observed participants' assembly behavior indirectly revealing the interplay between 

participants’ limited working memory modalities and the visual–spatial demands and 

working memory span demands being exposed to. 

 

 

Figure 2 : Schematic overview of rationale how observable behaviors indicate MWL levels and thereby 

reveal the latent, non-observable competition for, and expenditure of, physiological resources.  

 

3. Study overview 

After delineating our focus area, we formulated our central research question stating: 

'Which could be possible observable behavioral indications of upper red zone MWL?'. 

Based on Heyman and colleagues’ (2018) recommendations, we tackled this question in 

twofold. We first developed a coding scheme identifying such behavioral indications 
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based on literature (deductively) and by observing assembly behavior in a subsample of 

videos from an assembly experiment validated to induce high and low MWL (inductively). 

After finalizing the coding scheme, we, secondly, validated the scheme with a larger set 

of videos of the same experiment (excluding the subsample used in the first stage). 

Specifically, we analyzed whether all behavioral codes would significantly differ per 

experimental condition (i.e., high and low complexity inducing high and low MWL) in 

their occurrence and, following Richardson and colleagues (2006), their duration. 

3.1 Experimental procedures 

For the experiment providing the video data for developing and validating the coding 

scheme, the same procedures as an earlier experiment exploring mobile pupillometry 

was followed (see Van Acker et al., 2020, for an extensive overview). In a within-subjects 

design experiment, participants performed both a high and low complexity assembly in a 

random and counterbalanced order and with a resting phase in-between. They assembled 

while being seated in a quiet room and wearing the SMI Eye-Tracking Glasses (ETG 2w) 

(SMI; Teltow, Germany), a lightweight glasses-type eye-tracking system (47g; size: 173 x 

58 x 56mm) using small cameras implemented in the frame of the glasses (and 

compatible with contact lenses). Data were stored on a customized smartphone 

connected to the ETG with a cable. The smartphone was kept in the participants trouser 

pocket or waist bag. Participants were told that they would participate in a study 

'exploring how people assemble and that their eye-movements would be tracked. They 

were explicitly instructed that they had all the time they needed to complete the 

assembly. In total the experiment would last for approximately one hour.  

Both ecologically valid assemblies consisted of seven steps each, to be executed in a 

fixed order. Participants saw instructions per step on a screen at the opposite side of the 

worktable. Our focus was not on this instruction phase. After seeing the instructions, 

participants turned around to select, position and mount two components per step 

(three for the first step) that they had to select out of a display of parts presented on the 

worktable. After completion of each assembly, participants filled out a questionnaire. 

Figure 3 shows a diagrammatic overview of the assembly process. 
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Figure 3: Diagrammatic overview of the assembly process. The low complexity assembly is used as an 

example. The high complexity assembly followed the exact same procedure. 

The assemblies were designed to induce low and high MWL based on 10 task variables 

defining assembly complexity as proposed and validated by Richardson et al. (2004, 2006), Pillay's 

(1997) use of non-familiar assembly objects (see also Norman's, 1983, Shalin et al.'s, 1996, insights 

on mental models in objects) and one material-related task variable introduced by the authors. 

Specifically, the following 10 task variables defined the, respectively, low and high complexity 

level of the assemblies: assembly model (cubicle box design vs. abstract unfamiliar design, 

respectively), amount of symmetrical planes (high vs. low, respectively), amount of components 

(low vs. high, respectively), component groups (low vs. high, respectively), selections of 

components (no redundant components and displayed in correct order vs. redundant 

components and displayed in randomized order, respectively), amount of fastenings (minimally 

required vs. high, respectively), amount of fastening points (low vs. high, respectively), amount of 

novel (sub-)assemblies (low vs. high, respectively), presenting orientation on work table (correct 

angle vs. randomly angled 90° to the left or right along the horizontal plane, respectively), 

material of sides (low transparency vs. high transparency, respectively). The original 

experiment (see Van Acker et al., 2020) showed that subjective MWL differed significantly 

between the low and high complexity condition, in that the high complexity condition 

induced higher MWL levels as compared to the low complexity assembly (see Van Acker 

et al., 2020). The same assemblies used in the current experiment were thus validated to 

induce low and high MWL. 

3.2 Video capturing procedures 

The frontal Scene Camera of the eye-tracking glasses (with a resolution of 1280x960p; 24 

FPS; H.264 video format, 60° horizontal and 46° vertical field of view; High Dynamic Range 

mode with high sensitivity for low light) was used to capture participants' assembly 
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behavior, i.e., their hands and upper arms manipulating the assembly. Videos (in .avi 

format) were then imported into the SMI BeGaze software (SMI; Teltow, Germany) in 

order to calculate the eye-gaze position (3-point calibration; binocular eye tracking at 

60Hz with automatic parallax compensation and dark pupil tracking; 80° horizontal and 

60° vertical gaze tracking range; gaze position accuracy of 0.5° over all distances) to be 

used for the definitions of certain behavioral codes.  

4. Development of the coding scheme

4.1 Method 

Behavioral observation is a method in which a researcher sees and/or hears, and then 

systematically records specific behaviors of an individual or group within a certain 

context of interest (Heyman, Lorber, Eddy, & West, 2018). These behaviors are then 

organized into categories by using clearly defined codes to be assigned based on certain 

rules. Together, these categorized codes form a coding scheme. After analyzing these 

behaviors from, for example, video data, their occurrence or time duration can be 

analyzed. No behavioral coding scheme for MWL measurement in assembly execution 

existed already. We - three of the current authors and a team of three trained graduate 

students - therefore developed a scheme through deduction and induction, inspired by 

the practical guide for developing behavioral coding schemes of Chorney and colleagues 

(2015). 

4.1.1 Deductive path 

From theory, we started with a profound understanding of MWL and how assembly 

behavior is propelled by mental processing (cf., the Background section). Most central 

here is that cognitive processing competes with physical processing for the limited 

physiological resources. The MWL measurement literature learns that assembly-specific 

cognitive processing can subsequently be inferred from execution time (Richardson et al., 

2006; Stork & Schubö, 2010), reaction time and errors (Stork & Schubö, 2010; Young et al., 

2014), dwell time on assembly and amount of sub-steps needed (Stork & Schubö, 2010), 

and even hand movement parameters such as total movement time, speed-accuracy 

tradeoff, peak velocity and latency of movement onset (Stork & Schubö, 2010).  
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Other work outside assembly environments infers MWL levels based on behavioral 

parameters such as writing velocity and pen gesture (Badarna, Shimshoni, Luria, & 

Rosenblum, 2018; see also Meulenbroek, Van Galen, Hulstijn, Hulstijn, & Bloemsaat, 2005; 

for an overview, see Chen et al., 2016). Both strongly resonating with our work here, Qiu 

and Helbig (2012) used video-analysis to show how computer operators’ task-unrelated 

body posture (coming closer or moving less) can indicate MWL, whereas Boer (2000) 

proposed a behavioral entropy index characterizing MWL in driving (i.e., a quantification 

of corrective actions such as error corrections or startled responses reflecting the level of 

smoothness in driving control behavior such as lane keeping and car following). Next, 

features of computer mouse behavior such as contemplation-style pauses occur more 

and longer under high MWL (Arshad, Wang, & Chen, 2013; see also target highlight time in 

Vitense, Jacko, & Emery, 2003) – resembling the use of more and longer pauses when 

speaking under high MWL (Ruiz, Taib, & Chen, 2006) or, oppositely but revealing the 

interplay of resources, resembling poorer performance on a difficult secondary cognitive 

task while walking (Srygley, Mirelman, Herman, Giladi, & Hausdorff, 2009).  

 

Based on these notions and in relation to the assembly stages for commissioning, joining 

and action execution, we first derived codes defined by execution time (e.g., the time to 

find the right position) and erroneous behavior (e.g., the amount of wrong positioning 

attempts). Based on, i.a., behavioral entropy, body posture and pauses, we distilled 

generic behavioral codes, such as muscular freezing (reflecting thinking or startle 

responses) and changes in the relative position of the head. A first preliminary coding 

scheme was thereby crafted, importantly, before seeing any videos.  

 

4.1.2 Inductive path 

In a next phase, we used the first coding scheme to code three training samples, being 

three videos selected from the collected videos of the same experiment, but not used for 

the validation. By using the behavioral video analysis software BORIS (Friard & Gamba, 

2016), we now inductively refined, selected and pragmatized our first set of codes, and 

aimed at discovering new codes. For the latter, team members were instructed to 

identify additional exemplary behavioral indicators of MWL being too high, i.e., not yet 

captured in the first coding scheme. Specifically, they were instructed to gauge how 
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decrements in performance (quantified by duration and number of occurrences) 

manifested in observable behaviors other than those already identified in the deductive 

phase.  

 

For this inductive method, team members alternated between working individually and 

discussing all adaptations in group. We discussed (also with team members not having 

been involved in the early stage iterations), tested and updated several coding schemes 

during multiple iteration rounds on completeness (i.e., do we agree that all possible 

behavioral indicators are included), accuracy and face validity (i.e., are the definitions 

adequate to grasp and delineate the behaviors aimed for), and feasibility (i.e., is the 

scheme usable for the raters, e.g., in terms of comprehensibility and vigilance). 

 

4.1.3 Inter-rater reliability 

The final coding scheme was fine-tuned during the last stages of the iteration process. 

Procedures for this were largely based on Lombard, Snyder-Duch and Bracken (2002, 

2010) and McAlister and colleagues (2017), and went as follows. First, three team 

members used BORIS to independently code parts of the three training videos (not used 

for the validation) and repeatedly assessed the inter-rater reliability (IRR) informally by 

reflecting on their coding disagreements in group. Specifically, they discussed where and 

why in the videos they seemed to disagree. Subsequently, they redefined the respective 

codes until adequate agreement on the coding scheme was reached.  

 

In a next stage, as is common practice in behavioral coding research (see also Hallgren, 

2012; Neuendorf, 2002), two raters (i.e., different team members) consolidated the 

coding scheme and now formally assessed IRR based on a subset of four videos of the full 

sample to be used for the validation (for a similar approach, see, e.g., Baranek et al., 

2005). Specifically, they first coded the videos of the first participant of the subset 

independently from each other and afterwards calculated the Cohen’s Kappa IRR 

coefficient in BORIS (a robust standardized statistic for agreement between raters 

ranging from -1 to +1, with 0 being agreement expected by from random chance, and 

correcting for random agreement due to guessing, Cohen, 1960) with an interval time of 

1.00s (meaning that the behaviors coded by the two raters were checked for 
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agreement/disagreement per second). Then, they discussed the minor unclarities 

remaining in the coding scheme as revealed by the IRR-calculation - for instance due to an 

atypical assembly strategy exhibited by the participant. When a consensus was reached 

on refining these subtle ambiguities accordingly and when the codes were thoroughly 

understood by the raters, the same videos were coded again from the beginning, 

independently and without guidance. IRR was then calculated again. This process of 

training and consolidation continued for the first and, if necessary, for the following 

participant videos until an acceptable Cohen’s Kappa IRR coefficient was reached of K > 

.70 for the complete subset (falling within the range for 'moderate agreement' of 0.60 to 

0.79, McHugh, 2012; we opted for this threshold being appropriate for a first exploratory 

study on the topic, see Lombard et al., 2002, 2010).  

 

4.1.4 Coding procedures 

The following coding approach was used throughout the process of informal (i.e., the 

three training video’s) and formal IRR assessment (i.e., the subset of four), and 

throughout the validation process (see below). Out of the, in total, seven steps both 

assemblies consisted of, only the first, third and fifth step of both assemblies were coded 

in order to make the labor-intensive video coding process feasible for the raters while 

selecting a representative sample of assembly behavior (for a similar approach, see, e.g., 

Baranek et al., 2005). This provided in total approximately 10 minutes of data per 

participant1 to be analyzed with BORIS. Specifically, a combination of a topographical 

coding system measuring the occurrence of behaviors (i.e., the amount of times a code 

occurred) and a dimensional coding scheme gauging the time duration of behaviors was 

deployed (Heyman et al., 2018). For the detection of occurrence and duration, a timed-

event sequential continuous coding approach was used (Chorney et al., 2015). That is, the 

raters continuously analyzed behavior during the complete assembly step by 

backwarding and forwarding throughout the videos.  

 

Although preferred when possible, raters could not be blind for the manipulation, since 

the design of the assemblies were also visibly different in complexity for the raters. Since 

                                                 
1
 Note that participants had all the time they needed to complete each step, so that the length of data differed 

per participant. 
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the codes are clearly delineated in time and define concrete physical behavior (instead of, 

e.g., socially constructed behaviors, see Chorney et al., 2015), we do not foresee the 

coding having been prone to judgment subjectivity. Table 1 provides an overview of the 

steps and amount of participants coded per rater. 

 

 Assembly steps  

 Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7  

Rater 1 x  x  x   N = 24 
Rater 2 x  x  x   n = 4 

Table 1: Overview of assembly steps coded for both assemblies and the amount of subjects coded per rater. "X" 
indicates that a step was coded by a rater. 

 

The final coding scheme differentiated codes between state events (for which both 

duration and occurrence was important) and point events (for which duration was not 

meaningful and only occurrence was hence coded). For the state events, onset and stop 

times were coded. Point events were coded at the onset of the behavior. For the onsets 

and stop times, both raters aimed to apply an accuracy of approximately 0.5 seconds. Not 

every behavior was coded. Specifically, we did not account for ergonomic behavior (i.e., 

repositioning one’s hand, retaking a part for comfort or picking up a part the participant 

dropped), orderliness behaviors such as putting parts aside in a personally preferred way, 

screwing or picking screws. We did so, since we did not have deductive nor inductive 

grounds for linking such behaviors to upper red zone MWL. Figure 3 shows a screenshot 

of the behavioral video coding software deployed to apply (iterations of) the coding 

scheme. 
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Figure 4: Screenshot of the coding scheme (left side of the screen, see ‘Ethogram’) deployed in BORIS, on a 

participant video (center) (orange circle displays the eye gaze), resulting in a sequence of behaviors coded 

throughout the video (right side of the screen, see ‘Events for …’).  

 

4.2 Results 

The final coding scheme, consisting of 4 categories and 11 codes, is displayed in Table 1 

and was synthesized in a logic sequence of categories for assembly execution, being; I., 

Parts selection behavior (3 codes), II., Positioning behavior (4 codes), III., Transition 

behavior (i.e., in-between completing an assembly step and starting the next) (1 code) 

and, IV., Generic behavior (occurring throughout all assembly phases) (3 codes). 

Only the code ‘Freeze’ involved modifiers to differentiate between three types of freezes. 

Importantly, we used the participant’s eye-gaze point to distinguish between certain 

codes and to help define others. Table 1 also includes the available empirical referents 

that helped in the coding scheme development. Note that some codes were mainly 

driven by the inductive path, others deductively. In Appendices we included a table with 

rater instructions (Appendix A) and one with rater attention points (Appendix B), both 

especially to be used during rater training. 

 

Finally, not all codes were mutually exclusive, meaning that some codes could be nested 

in another code, such as ‘Gaze redirection’ in ‘Freeze’, or ‘Freeze’ in ‘Verification of fixed 
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position’. Other codes were always nested in the main categorical code, such as ‘Part 

touched’ in ‘Parts collection’. 

 

Category, Code 
(Unit) 

Definition Empirical referents Example 

  

I. Selecting Behavior 
1. Parts collection 
(state event) 

Time needed to select all 
perceived correct parts. 

Execution time 
(Richardson et al., 2006; 
Stork & Schubö, 2010) 
and reaction time  
(Young et al., 2014) 

 
The operator 
wants to select the 
required two 
parts, but under 
higher MWL levels 
touches five parts 
and rotates them 
several times 
before a decision is 
made on which the 
correct parts are. 
In total, the 
selection of both 
parts hence lasted 
longer. 

   
2. Part touched 
(point event) 

Number of new parts touched. Making errors 
(Richardson et al., 2006; 
Stork & Schubö, 2010), 
amount of sub-steps 
needed (Stork & 
Schubö, 2010) 

   
3. Part rotation 
(point event) 

Number of times operator is 
manipulating a part (here 
rotating, from velocity is 0 to 
velocity is 0). 

Making errors 
(Richardson et al., 2006; 
Stork & Schubö, 2010), 
amount of sub-steps 
needed (Stork & 
Schubö, 2010) 

  

II. Positioning Behavior 
4. Positioning  
(state event) 

Time to select perceived right 
position. Includes rotation and 
alignment. 

Execution time 
(Richardson et al., 2006; 
Stork & Schubö, 2010) 
and reaction time  
(Young et al., 2014) 

When then 
positioning the 
two parts, the 
operator, still 
under higher MWL 
levels, makes a few 
redundant 
positioning 
attempts, needs 
more time to verify 
whether a fixed 
position is then 
indeed correct and 
takes a while to 
correct a wrong 
perceived fixed 
position. 
Altogether, 
positioning the 
two parts lasted 
longer as would be 
expected. 

   
5. Positioning 
attempt  
(point event) 

Number of positions tried 
(defined by velocity = 0, part 
touches assembly-in-progress or is 
being held above, below or aside 
from it) on assembly-in-progress. 

Making errors 
(Richardson et al., 2006; 
Stork & Schubö, 2010), 
amount of sub-steps 
needed (Stork & 
Schubö, 2010) 

   
6. Verification of 
fixed position  
(state event) 

Time needed for operator to 
verify if a position (i.e., 
orientation, alignment, position) 
is correct after a component has 
been fastened, for at least 2 
seconds. 

Dwell time on assembly 
(Stork & Schubö, 2010) 

   
7. Correction of 
perceived wrong 
position  
(state event) 

Time operator needs to correct a 
(set of) perceived wrong 
fastening(s) and perform a 
perceived correction, for at least 2 
seconds. 

Error corrections in 
behavioral entropy 
(Boer, 2000) 
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III. Transition Behavior
8. Inspection of
assembly-in-
progress
(state event)

Time operator needs to familiarize 
with or verify the assembly-in-
progress including touching and 
rotating assembly-in-progress, for 
at least 2 seconds, in between 
visual intake of instructions and 
onset ‘Parts collection’ or 
‘Correction of perceived wrong 
position’. 

Dwell time on assembly 
(Stork & Schubö, 2010) 

When proceeding 
to the next step, 
the operator first 
inspects the 
assembly-in-
progress. Under 
higher MWL levels, 
this lasts longer. 

IV. Generic Behavior
9. Freeze
(state event)

Number of times both operator's 
hands and arms stop moving or 
only move very minimally (the 
latter not as a function of 
selection or positioning), at a 
fixed place in the workspace for 
at least 2 seconds. 

Hand movement 
parameters (Stork & 
Schubö, 2010), writing 
velocity (Chen et al., 
2016), startled response 
in behavioral entropy 
(Boer, 2000), 
contemplation-style 
pauses in computer 
mouse behavior 
(Arshad et al., 2013) and 
dwell time on assembly 
(Stork & Schubö, 2010) 

During the entire 
assembly process, 
apart from the 
assembly stages, 
the operator also 
freezes more 
often, has several 
occasions of 
needing to redirect 
the eye gaze and 
more often 
inspects the 
assembly (parts) 
from closer by – all 
when under higher 
MWL levels. 

Modifier 1 Head freezes too, eyes move 

Modifier 2 Not accompanied by freeze of 
head and eyes  

Modifier 3 Both eyes and head freeze too 

10. Gaze
redirection (point 
event)

Number of times operator gazes 
away from worktable for at least 
2s. 

Behavioral entropy 
(Boer, 2000) 

11. Relative head
position change
(point event)

Number of times operator’s head 
is repositioned closer to or further 
away from parts or assembly-in-
progress, because of the operator 
moving the upper body or 
oppositely, the parts or assembly-
in-progress. 

Task-unrelated body 
posture (coming closer, 
moving less) (Qiu & 
Helbig, 2012) 

Table 2: Final behavioral video coding scheme. 

5. Validation of the coding scheme

To validate our central research question on possible observable behavioral indications of 

upper red zone MWL, we deployed our coding scheme on a set of 24 videos from the 

assembly experiment and hypothesized that: 

H: The behaviors detected will last longer and/or occur more frequently in the high 

complexity condition as compared to the low complexity condition.  
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We directly derived this hypothesis from previous work empirically addressing the limited 

resource theories (discussed in section 2. Background) by showing that, e.g., higher 

behavioral entropy in driving and more and longer contemplation-style pauses in 

computer mouse behavior indicate high MWL (see section 4.1.1). The experiment 

leveraging a high and a low complexity assembly now served to validate, with a separate 

large-scaled sample of videos, whether the behavioral codes of the coding scheme are 

indicative of high MWL, as compared to low MWL. This way, we experimentally tested 

the coding scheme’s discriminative validity, i.e., can the behavioral codes distinguish 

between groups that are hypothesized to differ (Heyman et al., 2018)?  

 

5.1 Participants 

Because no previous studies exist deploying behavioral video coding to gauge MWL, we 

looked for previous work using the most similar research methodology to help us 

determine the sample size. The work of Qiu & Helbig (2012) and Baranek and colleagues 

(2005) adhered most closely to our experimental setup. The former inferred MWL levels 

through automated video analysis of body posture based on 22 participants and a pair-

wise comparison between cognitive tasks in a within-subjects experimental design. The 

latter study by Baranek and colleagues (2005) gauged autism in infants by deploying a 

retrospective video analysis method very similar to our method. In this study, 32 

participants were distributed over three conditions in a between-subjects experimental 

design. In line with these most similar studies, and to keep the labor intensive video 

coding feasible, we aimed to also arrive at a minimum of 20 participants per condition in 

our within-subjects design experiment. A total of 25 university student volunteers of an 

engineering university faculty (20% female, Mage = 21.48, SDage = 1.19), naïve to the 

manipulation participated after giving a written consent (no participant afterwards 

reported to have an idea about the experimental goal). Participants' inclusion criteria 

were the same as in Van Acker and colleagues (2020). 

 

5.2 Measures  

As the experiment now serves for validation of the codes, we first checked whether the 

manipulation of the experiment was successful in inducing MWL and excluding 

confounders by including subjective measures and a test. The same measures and their 
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theoretical background were used as in earlier work (see Van Acker et al., 2020, for more 

information). All items deployed a 7-point Likert-scale. 

 

5.2.1 Manipulation check 

As a manipulation check, perceived task Complexity was measured with a single item ('I 

perceived this assembly to be difficult.') and subjective Mental Workload (MWL) was 

gauged by the average of the scores on three items derived from cognitive load theory 

(Paas, 1992; Paas, van Merriënboer, & Adam, 1994), the Subjective Workload Assessment 

Technique (SWAT; Reid and Nygren 1988) and the NASA-TLX (S. G. Hart & Staveland, 

1988) (e.g., 'I experienced this assembly as cognitively demanding'; αlow complexity = .90, 

αhigh complexity = .91).  

 

Since we aimed to induce (impending) mental overload, we also measured emotional 

load (EL), as it can provide an indirect measure (Van Acker et al., 2018). Emotional Load 

consisted of five items selected from the Dundee Stress State Questionnaire (DSSQ; 

Matthews et al. 2013; Matthews 2016) (e.g., 'I felt frustrated while performing this 

assembly.'; αlow complexity = .77, αhigh complexity = .83) measuring the negative emotions 

frustration and irritation, whether participants felt tense during the assembly, and 

appraisals covering whether they felt they could cope with the situation and to what 

extent they felt uncertain. 

 

5.2.2 Measures of confounding variables 

As we only aimed to measure (impending) overload, we wanted to minimize effects of 

other possible confounding variables. Therefore, we first measured perceived Physical 

Load (PHL) with one item ('I perceived this assembly to be physically demanding') as it 

can interact with mental and emotional load, hence confounding the duration of our 

behavioral codes (i.e., higher PHL inducing longer code durations because of physical 

fatigue). Additionally, two variables Mind Wandering and Fed Up consisting of one item 

each (also derived from the DSSQ, Matthews et al. 2013; Matthews 2016) checked for task 

engagement by asking whether the participant's mind started wandering and to what 

extent the participant was fed up with the assembly. We included these questions to 

check whether the coded behavior could be caused by a lack of engagement into the 
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assembly task (e.g., freezing longer because of mind wandering or more parts touched 

because of being fed up with the task).  

 

Finally, two idiosyncratic control variables were included for which we reasoned they 

could correlate with our codes. First, we measured the self-reported Dexterity with one 

item ('In general, how dexterous do you estimate yourself to be - apart from how you 

experienced these assembly tasks'), again on a 7-point Likert answer scale (from 1, very 

clumsy, to 7, very dexterous). Second, participant's visual-spatial intelligence was gauged 

with a subset of the Revised Minnesota Paper Form Board test (Stinissen, 1977) 

subsequent to both experimental conditions and a resting phase of five minutes. We did 

so, since this intelligence factor can largely affect interpersonal differences in assembly 

performance.  

 

5.2.3 Video coding procedures 

As proposed by Hallgren (2012; see also Neuendorf, 2002), after calculation of the inter-

rater reliability (see above), the primary rater continued to analyze the remainder of the 

dataset in BORIS using the final coding scheme and following the same coding 

procedures (for a similar approach, see Baranek et al., 2005). The secondary rater thus 

only served for reliability. In total, 24 videos were coded by this rater2, i.e., the four videos 

already coded for the IRR assessment and 20 remaining videos. These 24 coded videos 

were used for the analysis. Note that the first, third and fifth step were selected to code. 

Below, we refer to these steps as Step 1, Step 2 and Step 3, respectively. 

 

From BORIS, we subsequently extracted the occurrence and duration of the codes per 

step. As duration and occurrence was sometimes important per code, while for other 

codes only occurrence was relevant, we hence did not have 22 dependent variables in 

total, but 19. All codes measured through duration were quantified in seconds. All codes 

measured through occurrence were quantified as the number of times the coder had 

coded the behavior (e.g., ‘Parts collection’ sometimes occurred multiple times within a 

                                                 
2
 Note that we had 25 participants in total, but for one participant the video was corrupted and therefore not 

usable, because of a technical malfunction. 
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step, because the participant returned to a ‘Parts collection’ phase after starting 

‘Positioning’).  

 

5.3 Results  

All subjective measures lacked normality of data. We therefore ran non-parametric tests. 

The results are reported in Figure 4. 

 

5.3.1 Manipulation check 

A Wilcoxon Signed Rank Test on perceived assembly difficulty showed that the high 

complexity condition was indeed perceived as more difficult (Mhigh complexity = 4.84, SD = 

1.56, range: 1-7; Mlow complexity = 1.56, SD = .92, range: 1-5; N = 25), z = -3.99., p < .001 (two-

tailed), with a large effect size of r = .56 (i.e., r = z/√(Nx + Ny), Rosenthal 1994). A Wilcoxon 

Signed Rank Test showed that MWL was perceived as higher in the high complexity 

condition with a rather neutral score (Mhigh complexity = 4.39, SD = 1.58, range: 1-7; Mlow 

complexity = 2.10, SD = 1.12, range: 1.00-5.33; N = 25), z = -3.79, p < .001 (two-tailed) and with a 

large effect size of r = .54. The complexity manipulation was hence effective.  

For EL, a Wilcoxon Signed Rank Test revealed that EL was significantly higher in the high 

complexity condition (Mhigh complexity = 3.72, SD = 1.21, range: 1.60-6.00; Mlow complexity = 2.16, 

SD = 1.04, range: 1.00-4.80; N = 25), z = -3.71, p < .001 (two-tailed), with a large effect size 

of r = .53. 

 
5.3.2 Confounding variables 

Physical Load (PHL) showed to be higher in the high complexity condition (Mhigh complexity = 

1.72, SD = 1.06, range: 1-5; Mlow complexity = 1.16, SD = .55, range: 1-3; N = 25), z = -2.38, p = .018 

(two-tailed), with a medium effect size of r = .34, but was still low. 

Being Fed Up with the assembly was higher for the low complexity condition, expressed 

in a neutral score as compared to a low score for the high complexity condition (Mhigh 

complexity = 2.40, SD = 1.32, range: 1-5; Mlow complexity = 4.00, SD = 1.89, range: 1-6; N = 25), z = -

2.73, p = .006 (two-tailed), with a medium effect size of r = .39. Mind Wandering was 

rated higher for the low complexity condition as well, expressed in a neutral score, as 

compared to a low score for the high complexity condition (Mhigh complexity = 2.44, SD = 1.53, 
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range: 1-6, N = 25; Mlow complexity = 4.08, SD = 1.91, range: 1-7, N = 24), z = -2.61, p = .009 (two-

tailed), with a medium effect size of r = .37.  

 

 

Figure 5: Overview of the means (with 95% CI) of all subjective ratings used for the manipulation check and 

possible confounding variables, *p < .05, **p < .01, ***p < .001. Note: MWL = mental workload; EL = 

emotional load; PHL = physical load; 'Complexity' refers to the experimental conditions.  

 

Summarized, our manipulation succeeded in inducing two different levels of MWL, 

though during the high MWL condition levels still remained rather neutral. EL also 

differed, but the high complexity condition neither yielded high EL, hence not potentially 

indicating mental overload. We hoped being fed up and mind wandering to be low, but 

they panned out closer to average. These negative indications of task engagement 

differed per condition too, potentially confounding our behavioral coding data towards 

not finding differences between conditions (i.e., possible negative confounding because 

of slower and ineffective assembly behavior in the low complexity condition). Finally, 

physical load unexpectedly differed per condition, although it remained low to non-

existent for both conditions (i.e., very close to the lower extreme of the scale). For the 

latter reason, we do not expect physical load to confound the occurrence and duration of 

our codes. 
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5.3.3 Behavioral coding 

Contrary to our subjective measures where the unit of analysis was our participants, in 

our behavioral coding analysis, we used a flattened, nested dataset consisting of n = 144 

coded observations across 24 participants3, that is, a dataset of all occurrences and 

durations per code (i.e., the 19 columns for the dependent variables) for; the coded steps 

(i.e., 3), per condition (i.e., 2), per participant (i.e., 24) - making 144 rows of observations 

(i.e., 3 x 2 x 24 = 144).  

As discussed by Snijders and Bosker (1999) approaches such as analysis of variance or 

general linear modeling assumes that no relationship exists between the individual 

observations in the sample. In our study, this is clearly not the case because multiple 

observations come from the same participant. As a result of this, there can be an 

assumption that the individual will impact our various outcome variables. We therefore 

used multilevel modeling (also called mixed effects or random-effects models) to test for 

the effects of the different codes, with the individual participant being the grouping 

variable. As discussed by Maas and Hox (2005), our sample size is sufficiently large to 

perform a multilevel model. We used the Ime4 (1.0-5) R Package (Bates et al., 2019). 

 

We first report a null model (I) including no variables, to show differences with the 

subsequent models, being a model (II) with only the control variables (i.e., spatial 

intelligence and dexterity), a model (III) with only the independent variables, a model (IV) 

with the independent variables and their interactions and a final full model (V) including 

all these variables. Per model, we report the total explained variance with an R2 estimate. 

Because of the large amount of dependent variables, we included all respective tables in 

Appendices. Note that Step 1, Step 2 and Step 3 referred to below are steps selected from 

the seven assembly steps and therefore represent, respectively, steps 1, 3 and 5 of both 

assemblies (see Table 1). 

 

Selecting behavior 

For the full model (V), the code 'Parts collection' was found to indeed occur more (p < 

.001) and longer (p < .001) during the high complexity Condition, as compared to the low 

                                                 
3
 Because we did not have the spatial intelligence data for one participant, we ran the analysis with 24 

participants to assure complete comparability.  
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complexity Condition.  This full model explained a total variance of 31% (of which 24% by 

the independent variables). 

This behavior also occurred more (p < .01) and longer (p < .001) during the first step, as 

compared to the second step. Step 2 (as compared to Step 1) interacted with Condition 

for the number of occurrences (p < .01) and duration (p < .05), so that during Step 1  this 

code was even more prevalent and took even longer during the high complexity 

Condition. Additionally, there was an interaction between Step 3 (as compared to Step 1) 

and Condition (p < .01) for the duration of this code in the same direction (see Figure 6). 

This full model explained a total variance of 48% (of which 43% by the independent 

variables).        

 

Figure 6: Occurrence and duration of ‘Parts collection’, expressed in z-scores. 

 

'Part touched' did not differ per Condition. Again, the behavior occurred more during the 

Step 1, as compared to Step 2 (p < .001), and Step 3 (p <.001) (see Figure 7). Dexterity 

interestingly, was positively related to this code too (p < .05), although its explained 

variance was low (R2
model II = .03, R2

model III = .24, R2
model V = .25). 

 

Figure 7: Occurrence of ‘Part touched’, expressed in z-scores. 
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'Part rotation' occurred more under high complexity levels, p < .05, and again more 

during Step 1, as compared to Step 2, p < .001, and Step 3, p < .001 (R2
model III = .31, R2

model V = 

.31) (see Figure 8). 

 

Figure 8: Occurrence of ‘Part rotation’, expressed in z-scores. 

 

Positioning behavior 

‘Positioning’ too, was more prevalent during the high complexity Condition, p < .001. An 

interaction effect between Condition and Step 2, p < .05, showed that the code occurred 

significantly more during Step 2 during the low complexity Condition as compared to Step 

1 (R2
model III = .23, R2

model V = .27).  

The duration of ‘Positioning’ also took longer during the high complexity Condition (p < 

.001) and, remarkably, during Step 3, as compared to Step 1 (p < .001). An interaction 

effect showed the behavior took longer during Step 3 (compared to Step 1) under high 

complexity levels, p < .01 (R2
model III = .48, R2

model V = .54) (see Figure 9). 

 
Figure 9: Occurrence and duration of ‘Positioning’, expressed in z-scores. 

 

‘Positioning Attempt’ was observed more under high complexity levels, p < .001, and for 

Step 1 as compared to Step 2, p < .05 (R2
model III = .30, R2

model V = .32) (see Figure 10). 
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Figure 10: Occurrence of ‘Positioning attempt’, expressed in z-scores. 

 

‘Verification of fixed position’ did not depend on Condition, but did occur more during the 

first step as compared to Step 3, p < .01 (R2
model III = .22, R2

model V = .24).  

The duration of this code did not depend on Condition. Again, the code lasted longer 

during Step 1 when compared to Step 3, p < .05 (R2
model III = .27 , R2

model V = .30) (see Figure 

11). 

 

Figure 11: Occurrence and duration of ‘Verification of a position’, expressed in z-scores. 

 

The amount of occurrences of ‘Correction of perceived wrong position’ was not observed 

differently per Condition, but it did occur more during Step 2 as compared to Step 1, p < 

.001, and showed an interaction effect, p < .001, showing that the code occurred more 

often during Step 2 under high complexity levels when compared to Step 1 (R2
model III = .18, 

R2
model V = .27).  

Nor did the duration of this behavior show to depend on Condition. The duration was 

however longer during Step 2 (p < .01) and Step 3 (p < .01), both as compared to Step 1. 

An interaction effect additionally showed that the code lasted longer during Step 2 (p < 
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.05) when compared to Step 1, during the high complexity Condition (see Figure 12). 

Finally, also Dexterity positively affected this code, p < .05 (R2
model III = .21, R2

model V = .24). 

 

Figure 12: Occurrence and duration of ‘Correction of a wrong position’, expressed in z-scores. 

 

Transition behavior 

For ‘Inspection of assembly-in-progress’ we only compared Step 2 with Step 3, because 

during Step 1 no assembly-in-progress was yet present. This behavior occurred more 

during the onset of Step 3 as compared to Step 2, p < .01, but was independent of 

Condition. An interaction effect however revealed that this behavior occurred more 

during Step 3 under high complexity levels as compared to Step 2 (see Figure 13). 

Dexterity was also positively related to this behavior, p < .05, but only added little 

variance (R2
model III = .07, R2

model IV = .17, R2
model V = .20). For the duration of this code, no 

effects were found (R2
model III = .6, R2

model IV = .11, R2
model V = .20). 

 

Figure 13: Occurrence and duration of ‘Inspection of the assembly-in-progress’, expressed in z-scores. 

 

Generic behavior 

 ‘Freeze - Modifier 1’ – did not depend on Condition (R2
model III = .16, R2

model V = .19) after 

adding the interactions in model III. Its duration was independent of Condition, as well 
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after adding the additional variables in model III. During Step 3 (p < .05) in general, this 

behavior however lasted longer, as compared to Step 1 (R2
model III = .16, R2

model V = .20). 

Additionally, an interaction effect, p < .05, revealed that this behavior lasted longer during 

Step 3 under high complexity levels, when compared to Step 1 (see Figure 14).  

 

Figure 14: Occurrence and duration of ‘Freeze (Modifier 1)’, expressed in z-scores. 

 

‘Freeze - Modifier 2’ occurred more during the high complexity Condition (p < .05) (R2
model 

III = .17, R2
model V = .17). The effect of Condition on its duration disappeared after adding the 

interactions in Model III (R2
model III = .10, R2

model V = .10) (see Figure 15). ‘Freeze - Modifier 3’ 

was only observed once, so that no analyses could be run. 

 

Figure 15: Occurrence and duration of ‘Freeze (Modifier 2)’, expressed in z-scores. 

 

 ‘Gaze redirection’ did not depend on Condition, nor the Steps (see Figure 16). Only 

Dexterity showed a positive correlation (p < .05). The total explained variance of the full 

model (V) was nevertheless low (R2
model V = .06). 
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Figure 16: Occurrence of ‘Gaze redirection’, expressed in z-scores. 

 

Finally, also ‘Relative head position change’ did not differ per Condition (see Figure 17). 

The total explained variance of the full model (V) for this code was also low, only 

explaining 5% the total variance (of which 4% by the IV’s). 

 

Figure 17: Occurrence of ‘Relative head position change’, expressed in z-scores. 

 

6. Discussion 

The current work focused on the 'Employee Work Behavior'-level as presented in the 

conceptual MWL-framework of Van Acker and colleagues (2018), thereby focusing on the 

underrepresented behavioral component of MWL. Iterative processes of deductive and 

inductive development were finalized into a behavioral video coding scheme defining 11 

observable indicators of behaviors potentially revealing upper red zone MWL in 

assembly. An experiment was deployed to validate these codes, i.e., to answer the 

question whether these codes indeed measure what they should measure.  

 

Multilevel analyses showed that only the occurrence and duration of the codes 'Parts 

collection' and 'Positioning', and the occurrence of 'Part rotation', 'Positioning attempt' 
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and 'Freeze (Modifier 2)’ statistically significantly differed between conditions - thereby 

partly confirming our hypothesis. The behaviors not differing significantly, were; 'Part 

touched’, 'Verification of a fixed position', 'Correction of a wrong position', 'Inspection of 

the assembly-in-progress', 'Freeze (Modifier 1)’, ‘Gaze redirection’ and ‘Relative head 

position change’. Based on this first presented work, five behavioral codes (out of eleven) 

can thus be withheld as indicative of upper red zone MWL in assembly.  

In other words, these results suggest that upper red zone MWL can be observed as 

expressed during a complex assembly task in specific behavioral manifestations such as 

slower and/or more (1) collecting, (2) positioning, (3) rotating and (4) positioning 

attempts of/with assembly parts, and (5) freezing of the hands and arms. 

 

The six non-significant codes that could not be indicative of MWL, in this context, could 

use more scrutiny or might reflect that behavioral expression of upper red zone MWL is 

partly idiosyncratic and might differ substantially between human beings. Indeed, some 

people might express different behaviors indicating fluctuations in MWL than others, so 

that for some certain behaviors might be very indicative, while other behaviors would 

not, or very rarely, occur at all. Also, it might be that upper red zone MWL elicits in some 

people rather covert human reactions (e.g. emotional, cognitive rumination) than the 

overt behaviors we aimed to observe. Below, we refer to some exploratory suggestions 

on personality traits in this respect. Next, the participant sample size might not have 

been sufficient to find all effects expected in this more real-life experiment. In line with 

this, it might also have been the case that the desired effects were not present as 

strongly as expected. As we show and elaborate upon below, most participants only 

experienced moderate levels of MWL. Under higher levels of MWL also some of the now 

non-significant behaviors might therefore become indicative of MWL as well. Inadequate 

task manipulation and raters' lack of familiarity with behavioral coding or judgmental bias 

as potential explanations for our non-significant findings can be excluded as we checked 

our experimental task manipulation and the raters involved were experienced senior 

researchers, well instructed and trained.  

 

Interestingly, we did see that some main effects of Step might allude to some codes 

rather revealing accumulated cognitive fatigue towards the third step (Step 2 in the 
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analyses) and the fifth step (Step 3 in the analyses) out of the seven in total (for a 

possible example of such fatigue effects in pupillometry, see Van Acker et al., 2020; also 

see Hockey, 1997), whereas for other codes main effects could point to a more stressful, 

startled response-like effect at the onset of the assembly. The interaction effects of 

certain steps could nevertheless point in the same direction of our hypothesis, in that 

some codes occurred more and longer during the high complexity condition, but only for 

certain steps. Overall, main effects of Steps, the interaction effects found in the full 

models and the main effects of Condition disappearing after the interaction effects were 

included (in model III, cf., Freeze – Modifier 1) suggest that the complexity manipulation 

was not equally strong per step. The steps thus also varied in the MWL they induced. This 

is intelligible, since manipulating complexity in a real-world assembly with consecutive 

steps entails this challenge (also see Van Acker et al., 2020). Altogether, all codes might 

also have been underestimated because of negative confounding due to the low 

complexity condition yielding moderate levels of task engagement (as compared to 

significantly higher task engagement levels during the high complexity condition). 

 

Of our control variables we found that spatial intelligence did not show any effect and 

dexterity only very weakly (see the modest amounts of explained variance). 

Exploratively, we were able to also measure three personality traits for which we thought 

they could relate to our codes, this for a subsample  of n = 17.  We subjectively gauged 

‘Impulsivity’, i.e., the tendency of acting before thinking in work situations (based on 2 

items measuring ‘individual action propensity’ in Vera, Crossan, Rerup, & Werner, 2014), 

and we gauged the Big Five personality traits Neuroticism and Conscientiousness (each 

measured with 4 items out of a short form of a Big Five scale; Donnellan, Oswald, Baird, & 

Lucas, 2006). We found that only Impulsivity was negatively correlated (p < .05) with the 

duration of the code ‘Verification of a position’. Future work could address these factors 

more profoundly.  

 

In relation to previous work on mental overload as outlined by, i.a., Young and colleagues 

(2014), the subjective results showed that the observed behaviors on average did not 

indicate overload as envisioned in Figure 1, because both MWL and EL remained neutral 

(note that, however, different measures do not always correlate; Hancock & Matthews, 
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2019; Gerald Matthews et al., 2015). Here, we can at most speak of potentially impending 

overload (i.e., AOI 1 in Figure 1). Future work could explore whether overload could be 

defined by specific behavior, or by a long sequence and/or duration of behavioral codes. 

For impending overload, the code 'Freeze' could for example be differentiated into 

‘decelerating movement’ (i.e., automatized motor execution behavior, such as fetching, 

slowing down) and ‘contemplation-style freeze’ (i.e., the freeze reflects thinking, without 

negative affect; cf., potentially our Freeze – Modifier 2). While overload per se could be 

defined by a ‘startle-like freeze’ (i.e., a freeze associated with negative affect; cf., 

potentially our Freeze – Modifier 1 or 3) (cf., freezing as a defensive musculoskeletal 

response to an abrupt stimulus, related to negative affect in, Lang, Davis, & Öhman, 

2000). Differently, nine positioning attempts or a sequence of long-lasting contemplation-

style freezes could as well indicate overload. This way, MWL-levels within the upper red 

zone could be objectively defined as a function of performance - as called for in earlier 

work - and could even help define, e.g., a 'maximum permissible cognitive load' 

constraint for assembly work (Grier et al., 2008; S. Hart & Wickens, 2008). 

 

In all, the proposed MWL measure thus showed to be valid within this specific context to 

measure impending overload (and potentially mental fatigue and startle-like responses) 

with five behavioral codes. Future work could also explore effects of overload per se to 

cover the full spectrum of upper red zone MWL and will hereto need to address possible 

crucial moderating variables such as interpersonal differences in behavioral expressions, 

personality, intelligence and experience. 

 

6.1 Limitations 

The operationalization of some codes depended on the participant’s eye-gaze for the 

annotation of their onset and end, or to define them (e.g., redirecting eye gaze). It should 

nevertheless be possible to redesign eye gaze out of the coding scheme, as we tested 

this with a sample dataset. Also using regular stationary camera's instead of the frontal 

camera of eye-tracking glasses should be well feasible and could even provide richer 

datasets since more behaviors are captured.  
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We decided not to focus on (impending) underload, as the behavior observed in our 

piloting iterations did not show an adequate amount of code occurrences such as sighing 

or gazing away, while such behaviors can also indicate (impending) overload. Future 

work could additionally explore this construct, underrepresented in the literature (Young 

et al., 2014). We also found that ‘Freeze’ showed low interrater-reliability for two 

participants. Next, the fact that raters were not blind to the conditions might have 

allowed for some subjectivity. Future work could address this better.  

 

Finally, the proposed coding scheme only applies for our specific assembly context. We 

believe the designed codes can however be customized. Future work can hence explore 

the generalizability and external validity of these codes when applied in other contexts 

and with operators (instead of a with a student sample), finding out that, e.g., for some 

contexts some codes will not be indicative, will not occur, will have to be redefined or 

that new codes arise. In the early iterations of the current coding scheme we for instance 

also included sighing as previous work linked such utterances to high MWL (see Vlemincx, 

Diest, & Bergh, 2012; Vlemincx, Taelman, Peuter, & Diest, 2011). Here, we found that our 

respective code was too unreliable to code manually. Other behaviors that might apply 

more in other contexts could be; changing the task execution sequence, re-consulting 

instructions, verbal expressions such as cursing, ironic laughter, thinking out loud, asking 

for help, or non-verbal utterances as shaking one’s head or fidgeting, and more 

elementary motor execution such as hovering of the hands over parts or a lower velocity 

of motor execution in general (cf., Stork & Schubö, 2010). The authors therefore look 

forward to iterations on our method in a diversified set of contexts with a diverse sample 

of operator profiles, in which the current codes will be customized and new behavioral 

codes could arise. This future work will eventually show to what extent the presented 

codes are generic already and easily customizable. 

 

6.2 Implications for research and practice 

Our results are well in line with earlier work assessing, for example, computer mouse 

activity and behavioral entropy. By designing a behavioral coding scheme for MWL 

detection in manual assembly, we hope to inspire research further developing the 

method into a measurement system applicable in (real-life industrial) contexts requiring 
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unobtrusiveness, ease-of-use and a straightforward way to map MWL fluctuations 

directly onto redundant or even dangerous behavior. A method with such ecological, 

external and face validity could hence be of added value to practitioners analyzing and 

(re)designing assemblies, instructions, assistive technology and training methods (cf., 

Error Management Training; Keith & Frese, 2008). This might also be relevant for 

situations in which the consequences of hesitative behavior can be detrimental (cf., the 

petrochemical industry, surgery).  

 

Concurrent and incremental validity of the proposed behavioral coding method of and 

beyond other in literature proposed MWL measures (i.e. physiological measures) is 

recommended as well. Research further scrutinizing physiological measures could also 

benefit when triangulating by narrowing down to coded events, so that the sensitivity of 

measures (cf., Matthews et al., 2015) could raise significantly. Also, the aim should be to 

explore and extend the method's 'group-to-individual generalizability' (Fisher, Medaglia, 

& Jeronimus, 2018). That is, to investigate to what extent the method can be used at the 

individual level (instead of at the group level as validated here) and how to promote this 

further. An experimental approach with many repeated measures within the same 

subjects but over time (instead of cross-sectional) will be needed for this (Fisher et al., 

2018). 

 

The practice of coding requires intensive training, is very labor-intensive and is even 

prone to attentional blindness (i.e. by focusing on certain behaviors, not perceiving other 

behaviors). Future research could aim to simplify codes, to make codes generic (cf., 

freezing) or to develop behavioral recognition algorithms applied on video images to 

automatically detect, e.g., freezes or positioning attempts. Only then our method could 

reach the level of widespread industrial applicability. Finally, as Virtual Training Systems 

(implementing virtual environment, virtual reality or augmented reality) becomes 

increasingly valuable (cf., Al-ahmari, Abidi, & Ahmad, 2016; Langley et al., 2016), a MWL-

measure for such environments could be developed by deriving, e.g., freezes or 

positioning attempts from the gyroscope data of the controllers. 

 

7. Conclusion 
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The presented work endeavored to develop a non-obtrusive MWL-measure with high 

ecological and face validity, as current research on physiological measurement faces 

reliability challenges in applied settings. A behavioral video coding scheme was 

developed and revealed to be able to detect multiple assembly behaviors indicative of 

upper red zone MWL. That is, the occurrence and duration of the behavioral codes 'Parts 

collection' and 'Positioning', and the occurrence of 'Part rotation', 'Positioning attempt' 

and 'Freeze - Modifier 2’ was significantly higher during the execution of a high 

complexity assembly, as compared to a low complexity assembly. The authors aspire to 

hereby initiate a novel line of measurement validation to decisively help practitioners and 

operators optimize MWL-levels on the shop floor. 

 

8. Acknowledgments 

This work was supported by the strategic research centre for the manufacturing industry 

Flanders Make, Oude Diestersebaan, 133, 3920 Lommel, Belgium, as part of the SBO 

project 'Augmented workers using smart robots in a manufacturing cell (Yves)'. The 

authors report no conflict of interest. 

 

9. Declaration of interests 

The authors declare no conflict of interest. 

 

10. References 

Al-ahmari, A. M., Abidi, M. H., & Ahmad, A. (2016). Development of a virtual 

manufacturing assembly simulation system. Advances in Mechanical Engineering, 8(3), 

1–13. https://doi.org/10.1177/1687814016639824 

Antonenko, P., Paas, F., Grabner, R., & van Gog, T. (2010). Using electroencephalography 

to measure cognitive load. Educational Psychology Review, 22(4), 425–438. 

https://doi.org/10.1007/s10648-010-9130-y 

Arico, P., Borghini, G., Di Flumeri, G., Sciaraffa, N., & Babiloni, F. (2018). Passive BCI 

beyond the lab: Current trends and future directions. Physiological Measurement, 

39(8), aad57e. https://doi.org/10.1088/1361-6579/aad57e 

Arshad, S., Wang, Y., & Chen, F. (2013). Analysing mouse activity for cognitive load 



 
 

36 

detection. In Proceedings of the 25th Australian Computer-Human Interaction 

Conference on Augmentation, Application, Innovation, Collaboration - OzCHI ’13 (pp. 

115–118). New York, New York, USA: ACM Press. 

https://doi.org/10.1145/2541016.2541083 

Badarna, M., Shimshoni, I., Luria, G., & Rosenblum, S. (2018). The importance of pen 

motion pattern groups for semi-automatic classification of handwriting into mental 

workload classes. Cognitive Computation, 10(2), 215–227. 

https://doi.org/10.1007/s12559-017-9520-2 

Baranek, G. T., Barnett, C. R., Adams, E. M., Wolcott, N. A., Watson, L. R., & Crais, E. R. 

(2005). Object play in infants with autism: Methodological issues in retrospective 

video analysis. American Journal of Occupational Therapy, 59(1), 20–30. 

https://doi.org/10.5014/ajot.59.1.20 

Bates, D., Maechler, M., Bolker, B., Walker, S., Bojesen Christensen, R. H., Singmann, H., 

… Fox, J. (2019). lme4: Linear mixed-effects models using Eigen and S4. R package 

version 1.1-21. Retrieved from https://github.com/lme4/lme4/ 

Boer, E. R. (2000). Behavioral entropy as an index of workload. Proceedings of the XIVth 

Triennial Congress of the International Ergonomics Association and 44th Annual 

Meeting of the Human Factors and Ergonomics Association, “Ergonomics for the New 

Millennium,” 125–128. https://doi.org/10.1177/154193120004401702 

Booker, J. D., Swift, K. G., & Brown, N. J. (2005). Designing for assembly quality: 

Strategies, guidelines and techniques. Journal of Engineering Design, 16(3), 279–295. 

https://doi.org/10.1080/09544820500126672 

Brolin, A., Thorvald, P., & Case, K. (2017). Experimental study of cognitive aspects 

affecting human performance in manual assembly. Production and Manufacturing 

Research, 5(1), 141–163. https://doi.org/10.1080/21693277.2017.1374893 

Brookhuis, K. A., & de Waard, D. (2001). Assessment of drivers’ workload: Performance, 

subjective and physiological indices. In P. A. Hancock & P. A. Desmond (Eds.), Stress, 

workload, and fatigue (pp. 321–333). Mahwah, NJ: L. Erlbaum. 

Brouwer, A. M., Zander, T. O., van Erp, J. B. F., Korteling, J. E., & Bronkhorst, A. W. (2015). 

Using neurophysiological signals that reflect cognitive or affective state: Six 

recommendations to avoid common pitfalls. Frontiers in Neuroscience, 9(APR), 1–11. 

https://doi.org/10.3389/fnins.2015.00136 



 
 

37 

Bruya, B. (2010). Effortless attention. A new perspective in the cognitive sciene of attention 

and action. Cambridge, MA: MIT Press. A Bradford book. 

Cain, B. (2007). A review of the mental workload literature. In Report No.: RTO-TR-HFM-121-

Part-II. (pp. 1–34). Ontario, WT: Defence Research and Development Canada Toronto 

Human System Integration Section. 

Charles, R. L., & Nixon, J. (2019). Measuring mental workload using physiological 

measures: A systematic review. Applied Ergonomics, 74, 221–232. 

https://doi.org/10.1016/j.apergo.2018.08.028 

Chen, F., Zhou, J., Wang, Y., Yu, K., Arshad, S. Z., Khawaji, A., & Conway, D. (2016). Robust 

multimodal cognitive load measurement. (D. Tan & J. Vanderdonckt, Eds.), Human–

Computer Interaction Series. Switzerland: Springer. https://doi.org/10.1007/978-3-319-

31700-7_3 

Chorney, J. M. L., McMurtry, C. M., Chambers, C. T., & Bakeman, R. (2015). Developing and 

modifying behavioral coding schemes in pediatric psychology: A practical guide. 

Journal of Pediatric Psychology, 40(1), 154–164. https://doi.org/10.1093/jpepsy/jsu099 

Cohen, J. (1960). A coefficient of agreement for nominal Scales. Educational and 

Psychological Measurement, 20(1), 37–46. 

https://doi.org/10.1177/001316446002000104 

de Waard, D. (1996). The measurement of drivers’ mental workload. PhD dissertation. 

University of Groningen, Haren. https://doi.org/10.1016/j.apergo.2003.11.009 

de Waard, D., & Lewis-Evans, B. (2014). Self-report scales alone cannot capture mental 

workload. Cognition, Technology & Work, 16(3), 303–305. 

https://doi.org/10.1007/s10111-014-0277-z 

de Winter, J. C. F. (2014). Controversy in human factors constructs and the explosive use 

of the NASA-TLX: A measurement perspective. Cognition, Technology and Work, 

16(3), 289–297. https://doi.org/10.1007/s10111-014-0275-1 

Donnellan, M. B., Oswald, F. L., Baird, B. M., & Lucas, R. E. (2006). The Mini-IPIP scales: 

Tiny-yet-effective measures of the Big Five factors of personality. Psychological 

Assessment, 18(2), 192–203. https://doi.org/10.1037/1040-3590.18.2.192 

ElMaraghy, W., ElMaraghy, H., Tomiyama, T., & Monostori, L. (2012). Complexity in 

engineering design and manufacturing. CIRP Annals, 61(2), 793–814. 

https://doi.org/10.1016/j.cirp.2012.05.001 



 
 

38 

Erol, S., Jäger, A., Hold, P., Ott, K., & Sihn, W. (2016). Tangible industry 4.0: A scenario-

based approach to learning for the future of production. Procedia CIRP, 54, 13–18. 

https://doi.org/10.1016/j.procir.2016.03.162 

Fisher, A. J., Medaglia, J. D., & Jeronimus, B. F. (2018). Lack of group-to-individual 

generalizability is a threat to human subjects research. Proceedings of the National 

Academy of Sciences, 115(27), E6106–E6115. https://doi.org/10.1073/pnas.1711978115 

Foy, H. J., & Chapman, P. (2018). Mental workload is reflected in driver behaviour, 

physiology, eye movements and prefrontal cortex activation. Applied Ergonomics, 

73(April), 90–99. https://doi.org/10.1016/j.apergo.2018.06.006 

Friard, O., & Gamba, M. (2016). BORIS: a free, versatile open-source event-logging 

software for video/audio coding and live observations. Methods in Ecology and 

Evolution, 7(11), 1325–1330. https://doi.org/10.1111/2041-210X.12584 

Grier, R., Wickens, C., Kaber, D., Strayer, D., Boehm-Davis, D., Trafton, J. G., & St. John, M. 

(2008). The red-line of workload: Theory, research, and design. Proceedings of the 

Human Factors and Ergonomics Society Annual Meeting, 52(18), 1204–1208. 

https://doi.org/10.1177/154193120805201811 

Guru, K. A., Shafiei, S. B., Khan, A., Hussein, A. A., Sharif, M., & Esfahani, E. T. (2015). 

Understanding cognitive performance during robot-assisted surgery. Urology, 86(4), 

751–757. https://doi.org/10.1016/j.urology.2015.07.028 

Hairston, W. D., Whitaker, K. W., Ries, A. J., Vettel, J. M., Bradford, J. C., Kerick, S. E., & 

McDowell, K. (2014). Usability of four commercially-oriented EEG systems. Journal of 

Neural Engineering, 11(4). https://doi.org/10.1088/1741-2560/11/4/046018 

Hallgren, K. A. (2012). Computing inter-rater reliability for observational data: An overview 

and tutorial. Tutorials in Quantitative Methods for Psychology, 8(1), 23–34. 

https://doi.org/10.20982/tqmp.08.1.p023 

Hancock, P. A., & Matthews, G. (2019). Workload and performance: Associations, 

insensitivities, and dissociations. Human Factors, 61(3), 374–392. 

https://doi.org/10.1177/0018720818809590 

Hart, S. G., & Staveland, L. E. (1988). Development of NASA-TLX (Task Load Index): 

Results of empirical and theoretical research. In P. A. Hancock & N. Meshkati (Eds.), 

Human mental workload. (pp. 139–183). Amsterdam: Elsevier Science Publishers B.V. 

(North-Hollland). 



 
 

39 

Hart, S., & Wickens, C. D. (2008). Mental Workload. In NASA Human Integration Design 

Handbook. 

Heyman, R. E., Lorber, M. F., Eddy, J. M., & West, T. V. (2018). Behavioral observation and 

coding. In H. T. Reis & C. M. Judd (Eds.), Handbook of Research Methods in Social and 

Personality Psychology (pp. 345–372). New York: Cambridge University Press. 

https://doi.org/10.1017/CBO9780511996481.018 

Hockey, G. R. J. (1997). Compensatory control in the regulation of human performance 

under stress and high workload: A cognitive energetical framework. Biological 

Psychology, 45(96), 73–93. https://doi.org/10.1016/S0301-0511(96)05223-4 

Hu, S. J., Zhu, X., Wang, H., & Koren, Y. (2008). Product variety and manufacturing 

complexity in assembly systems and supply chains. CIRP Annals, 57(1), 45–48. 

https://doi.org/10.1016/j.cirp.2008.03.138 

Kahneman, D. (1973). Attention and effort. The American Journal of Psychology, 88(2), 339. 

https://doi.org/10.2307/1421603 

Keith, N., & Frese, M. (2008). Effectiveness of error management training: A meta-

analysis. Journal of Applied Psychology, 93(1), 59–69. https://doi.org/10.1037/0021-

9010.93.1.59 

Lang, P. J., Davis, M., & Öhman, A. (2000). Fear and anxiety: Animal models and human 

cognitive psychophysiology. Journal of Affective Disorders, 61(3), 137–159. 

https://doi.org/10.1016/S0165-0327(00)00343-8 

Langley, A., Lawson, G., Hermawati, S., D’Cruz, M., Apold, J., Arlt, F., & Mura, K. (2016). 

Establishing the usability of a virtual training system for assembly operations within 

the automotive industry. Human Factors and Ergonomics in Manufacturing & Service 

Industries, 26(6), 667–679. https://doi.org/10.1002/hfm.20406 

Lombard, M., Snyder-Duch, J., & Bracken, C. C. (2002). Content analysis in mass 

communication: Assessment and reporting of intercoder reliability. Human 

Communication Research, 28(4), 587–604. https://doi.org/10.1111/j.1468-

2958.2002.tb00826.x 

Lombard, M., Snyder-Duch, J., & Bracken, C. C. (2010). Practical resources for assessing 

and reporting intercoder reliability in content analysis research projects. Retrieved 

from http://matthewlombard.com/reliability/index_print.html 

Longo, F., Nicoletti, L., & Padovano, A. (2017). Smart operators in industry 4.0: A human-



 
 

40 

centered approach to enhance operators’ capabilities and competencies within the 

new smart factory context. Computers and Industrial Engineering, 113, 144–159. 

https://doi.org/10.1016/j.cie.2017.09.016 

Maas, C. J. M., & Hox, J. J. (2005). Sufficient sample sizes for multilevel modeling. 

Methodology, 1(3), 86–92. https://doi.org/10.1027/1614-2241.1.3.86 

Mandler, G. (1979). Thought processes, consciousness, and stress. In V. Hamilton & D. M. 

Warburton (Eds.), Human stress and cognition: an information processing approach. 

(pp. 179–201). New York: John Wiley & Sons, Inc. 

Matthews, G. (2016). Multidimensional profiling of task stress states for human factors: A 

brief review. Human Factors: The Journal of the Human Factors and Ergonomics 

Society, 58(6), 801–813. https://doi.org/10.1177/0018720816653688 

Matthews, G., De Winter, J., & Hancock, P. A. (2019). What do subjective workload scales 

really measure? Operational and representational solutions to divergence of 

workload measures. Theoretical Issues in Ergonomics Science, 1–31. 

https://doi.org/10.1080/1463922X.2018.1547459 

Matthews, Gerald, Reinerman-Jones, L. E., Barber, D. J., & Abich, J. (2015). The 

psychometrics of mental workload: Multiple measures are sensitive but divergent. 

Human Factors, 57(1), 125–143. https://doi.org/10.1177/0018720814539505 

Matthews, Gerald, Szalma, J., Rose, A., Neubauer, C., & Warm, J. S. (2013). Profiling task 

stress with the dundee stress state questionnaire. In L. Cavalcanti & S. Azevedo 

(Eds.), Psychology of stress: new research (pp. 49–91). Hauppage, NY: Nova Science 

Publishers. 

McAlister, A. M., Lee, D. M., Ehlert, K. M., Kajfez, R. L., Faber, C. J., & Kennedy, M. S. 

(2017). Qualitative coding: An approach to assess inter-rater reliability. ASEE Annual 

Conference and Exposition, Conference Proceedings, 2017-June. 

https://doi.org/10.18260/1-2--28777 

McHugh, M. L. (2012). Lessons in biostatistics interrater reliability: The kappa statistic. 

Biochemica Medica, 22(3), 276–282. Retrieved from https://hrcak.srce.hr/89395 

McKendrick, R., Parasuraman, R., Murtza, R., Formwalt, A., Baccus, W., Paczynski, M., & 

Ayaz, H. (2016). Into the wild: Neuroergonomic differentiation of hand-held and 

augmented reality wearable displays during outdoor navigation with functional near 

infrared spectroscopy. Frontiers in Human Neuroscience, 10. 



 
 

41 

https://doi.org/10.3389/fnhum.2016.00216 

Meulenbroek, R. G. J., Van Galen, G. P., Hulstijn, M., Hulstijn, W., & Bloemsaat, G. (2005). 

Muscular co-contraction covaries with task load to control the flow of motion in fine 

motor tasks. Biological Psychology, 68(3), 331–352. 

https://doi.org/10.1016/j.biopsycho.2004.06.002 

Montani, F., Vandenberghe, C., Khedhaouria, A., & Courcy, F. (2020). Examining the 

inverted U-shaped relationship between workload and innovative work behavior: 

The role of work engagement and mindfulness. Human Relations, 73(1), 59–93. 

https://doi.org/10.1177/0018726718819055 

Morton, J., Vanneste, P., Larmuseau, C., Acker, B. B. Van, Raes, A., Bombeke, K., … De, L. 

(2019). Identifying predictive EEG features for cognitive overload detection in 

assembly workers in Industry 4.0. In 3rd International Symposium on Human Mental 

Workload: Models and Applications (H-WORKLOAD 2019). Rome. 

Neuendorf, K. A. (2002). The Content Analysis Guidebook. Thousand Oaks, CA: Sage. 

Norman, D. A. (1983). Some observations on mental models. In D. Gentner & A. L. Stevens 

(Eds.), Mental models (1st ed., pp. 7–15). New York: Lawrence Erlbaum Associates Inc. 

Norman, D. A., & Bobrow, D. G. (1975). On data-limited and resource-limited processes. 

Cognitive Psychology, 7, 44–64. 

Paas, F. G. (1992). Training strategies for attaining transfer of problem-solving skill in 

statistics: A cognitive-load approach. Journal of Educational Psychology, 84(4), 429–

434. https://doi.org/10.1037/0022-0663.84.4.429 

Paas, F. G. W. C., van Merriënboer, J. J. G., & Adam, J. J. (1994). Measurement of cognitive 

load in instructional research. Perceptual and Motor Skills, 79(1), 419–430. 

https://doi.org/10.2466/pms.1994.79.1.419 

Paras, C. R., Yang, S., Tippey, K., & Ferris, T. K. (2015). Physiological indicators of the 

cognitive redline. Proceedings of the Human Factors and Ergonomics Society, 2015-

Janua, 637–641. https://doi.org/10.1177/1541931215591139 

Parmentier, D. D., Van Acker, B. B., Detand, J., & Saldien, J. (2019). Design for assembly 

meaning: A framework for designers to design products that support operator 

cognition during the assembly process. Cognition, Technology & Work. 

https://doi.org/10.1007/s10111-019-00588-x 

Pillay, H. K. (1997). Cognitive load and assembly tasks: Effect of instructional formats on 



 
 

42 

learning assembly procedures. Educational Psychology, 17(3), 285–299. 

https://doi.org/10.1080/0144341970170304 

Qiu, J., & Helbig, R. (2012). Body posture as an indicator of workload in mental work. 

Human Factors, 54(4), 626–635. https://doi.org/10.1177/0018720812437275 

Reid, G. B., & Nygren, T. E. (1988). The subjective workload assessment technique: A 

scaling procedure for measuring mental workload. In A. Hancock & N. Meshkati 

(Eds.), Human mental workload (pp. 185–218). Amsterdam: North-Holland: Elsevier 

Science Publishers B.V. 

Richardson, M., Jones, G., & Torrance, M. (2004). Identifying the task variables that 

influence perceived object assembly complexity. Ergonomics, 47(9), 945–964. 

https://doi.org/10.1080/00140130410001686339 

Richardson, M., Jones, G., Torrance, M., & Baguley, T. (2006). Identifying the task 

variables that predict object assembly difficulty. Human Factors: The Journal of the 

Human Factors and Ergonomics Society, 48(3), 511–525. 

https://doi.org/10.1518/001872006778606868 

Rosenthal, R. (1994). Parametric measures of effect size. In C. H & L. V. Hedges (Eds.), The 

handbook of research synthesis (pp. 231–244). New York, NY: Russell Sage 

Foundation. 

Ruiz, N., Taib, R., & Chen, F. (2006). Examining the redundancy of multimodal input. In 

Proceedings of the 20th conference of the computer-human interaction special interest 

group (CHISIG) of Australia on Computer-human interaction: design: activities, artefacts 

and environments - OZCHI ’06 (p. 389). New York, New York, USA: ACM Press. 

https://doi.org/10.1145/1228175.1228254 

Shalin, V. L., Prabhu, G. V., & Helander, M. G. (1996). A cognitive perspective on manual 

assembly. Ergonomics, 39(1), 108–127. https://doi.org/10.1080/00140139608964438 

Snijders, T., & Bosker, R. (1999). Multilevel Analysis: An Introduction to Basic and Applied 

Multilevel Analysis. SAGE Publications Ltd, London. 

Srygley, J. M., Mirelman, A., Herman, T., Giladi, N., & Hausdorff, J. M. (2009). When does 

walking alter thinking? Age and task associated findings. Brain Research, 1253, 92–99. 

https://doi.org/10.1016/j.brainres.2008.11.067.When 

Staal, M. A. (2004). Stress, cognition, and human performance: A literature review and 

conceptual framework. NASA Technical Memorandum 212824, pp 1-170. 



 
 

43 

Stinissen, J. (1977). Revised minnesota paper form board test. Vorm AB - Leuvense 

aanpassing van vorm MA en MB, Likert, R. & Quasha, W. (pp. 1–7). Amsterdam: 

Swets & Zeitlinger, B.V. 

Stork, S., & Schubö, A. (2010). Human cognition in manual assembly: Theories and 

applications. Advanced Engineering Informatics, 24(3), 320–328. 

https://doi.org/10.1016/j.aei.2010.05.010 

Um, J., Lyons, A., Lam, H. K. S., Cheng, T. C. E., & Dominguez-Pery, C. (2017). Product 

variety management and supply chain performance: A capability perspective on their 

relationships and competitiveness implications. International Journal of Production 

Economics, 187, 15–26. https://doi.org/10.1016/j.ijpe.2017.02.005 

Van Acker, B. B., Bombeke, K., Durnez, W., Parmentier, D. D., Mateus, J. C., Biondi, A., … 

Vlerick, P. (2020). Mobile pupillometry in manual assembly: A pilot study exploring 

the wearability and external validity of a renowned mental workload lab measure. 

International Journal of Industrial Ergonomics, 75, 102891. 

https://doi.org/10.1016/J.ERGON.2019.102891 

Van Acker, B. B., Parmentier, D. D., Vlerick, P., & Saldien, J. (2018). Understanding mental 

workload: From a clarifying concept analysis toward an implementable framework. 

Cognition, Technology and Work, 20(3). https://doi.org/10.1007/s10111-018-0481-3 

Vanneste, P., Raes, A., Morton, J., Bombeke, K., Van Acker, B. B., Larmuseau, C., … Van 

den Noortgate, W. (2020). Measuring cognitive load during assembly work through 

multimodal physiological data. Unpublished Manuscript. 

Vera, D., Crossan, M., Rerup, C., & Werner, S. (2014). “Thinking before acting” or “acting 

before thinking”: Antecedents of individual action propensity in work situations. 

Journal of Management Studies, 51(4), 603–633. https://doi.org/10.1111/joms.12075 

Vitense, H. S., Jacko, J. A., & Emery, V. K. (2003). Multimodal feedback: An assessment of 

performance and mental workload. Ergonomics, 46(1–3), 68–87. 

https://doi.org/10.1080/00140130303534 

Vlemincx, E., Diest, I. Van, & Bergh, O. Van Den. (2012). A sigh following sustained 

attention and mental stress: Effects on respiratory variability. Physiology & Behavior, 

107, 1–6. https://doi.org/10.1016/j.physbeh.2012.05.013 

Vlemincx, E., Taelman, J., Peuter, S. D. E., & Diest, I. V. A. N. (2011). Sigh rate and 

respiratory variability during mental load and sustained attention. Psychophysiology, 



 
 

44 

48, 117–120. https://doi.org/10.1111/j.1469-8986.2010.01043.x 

Wan, X., & Sanders, N. R. (2017). The negative impact of product variety: Forecast bias, 

inventory levels, and the role of vertical integration. International Journal of 

Production Economics, 186, 123–131. https://doi.org/10.1016/j.ijpe.2017.02.002 

Wickens, C. D. (2002). Multiple resources and performance prediction. Human Factors: The 

Journal of the Human Factors and Ergonomics Society, 3(2), 159–177. 

Wickens, Christopher D. (2008). Multiple resources and mental workload. Human Factors: 

The Journal of the Human Factors and Ergonomics Society, 50(3), 449–455. 

https://doi.org/10.1518/001872008X288394. 

Young, M. S., Brookhuis, K. A., Wickens, C. D., & Hancock, P. A. (2014). State of science: 

Mental workload in ergonomics. Ergonomics, 58(1), 1–17. 

https://doi.org/10.1080/00140139.2014.956151 

 

11. Appendices 

 

Appendix A : Overview of coding instructions 

 

Category, 
Code (Unit) 

Definition Coding Instructions 

I. Selecting Behavior 

1. Parts 
collection 
(state event) 

Time needed to select all the 
perceived correct parts. 

From first glance on parts, for at least 2 seconds, until onset 
positioning (starting at first glance for at least two seconds on 
the assembly-in-progress).  

2. Part 
touched 
(point event) 

Number of new parts that 
are touched. 

Code until onset positioning. Nested in ‘Parts collection’. 

3. Part 
rotation 
(point event) 

Number of times the 
operator is manipulating a 
part (here rotating, from 
velocity is 0 to velocity is 0). 

Also rotating part back to original position counts as rotation. 
Code until onset positioning. Nested in ‘Parts collection’.  

II. Positioning Behavior 

4. Positioning 
(state event) 

Time to select perceived 
right position. Includes 
rotation and alignment.  

From eye gaze switch from selected part (defined as part that 
will be positioned) to assembly-in-progress fixating on 
assembly-in-progress for at least 2s, until onset first screw 
being inserted or eye-gaze at not-yet selected parts in case a 
new ‘Parts collection’ occurs. 

5. Positioning 
attempt 
(point event) 

Number of positions tried 
(defined by velocity = 0, part 
touches assembly-in-
progress or is being held 
above, below or aside from 
it) on assembly-in-progress. 

Positions already tried count as a new attempt if part has been 
moved from position. Parts selected in previous steps count as 
well. Code until the perceived right position (defined by the 
final position that precedes completely screwing a part) is 
achieved of the part on the assembly-in-progress. Nested in 
‘Positioning’.  

6. Verification 
of fixed 

Time needed for the 
operator to verify if a 

From finishing screwing (one of the screws of a part) until the 
next assembly behavior, such as inserting the next screw, or 
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position 
(state event) 

position (i.e., orientation, 
alignment, position) is 
correct after a component 
has been fastened, for at 
least 2 seconds. 

until eye-gaze for at least 2 seconds on next part to be 
collected or positioned, until onset next step (here from onset 
turning around towards laptop with instructions), until 
checking steadiness of fastening, etc. Not nested in 
‘Positioning’. 

7. Correction 
of perceived 
wrong 
position 
(state event) 

Time the operator needs to 
correct a (set of) perceived 
wrong fastening(s) and 
perform a perceived 
correction, for at least 2 
seconds.  

From onset completely unfastening the perceived wrong 
fixation(s) until onset of screwing the last component of a 
perceived correction, for at least 2s. Not nested in 
‘Positioning.’ 

III. Transition Behavior 

8. Inspection 
of assembly-
in-progress 
(state event) 

Time the operator needs to 
familiarize with or verify the 
assembly-in-progress 
including touching and 
rotating assembly-in-
progress, for at least 2 
seconds, in between visual 
intake of instructions and 
onset ‘Parts collection’ or 
‘Correction of perceived 
wrong position’.  

Can only occur after a first step has been performed, since 
from then on an assembly-in-progress is present. Code from 
start gaze position on assembly-in-progress for at least 2 
seconds, until start ‘Parts collection’. 
 

IV. Generic Behavior 

9. Freeze 
(state event) 

Number of times both 
operator's hands and arms 
stop moving or only move 
very minimally (the latter not 
as a function of selection or 
positioning), at a fixed place 
in the work space for at least 
2 seconds. 

From start movement stops (minimally) until onset movement. 

Modifier 1 Head freezes, eyes move  

Modifier 2 No freeze of eyes and head   

Modifier 3 Both eyes and head freeze 
too 

 

10. Gaze 
redirection 
(point event) 

Number of times operator 
gazes away from work table 
for at least 2s. 

Code until switching back to eye-gaze on work table for at 
least 2 seconds. 

11. Relative 
head position 
change (point 

event) 

Number of times operator’s 
head is repositioned closer 
to or further away from parts 
or assembly-in-progress, 
because of the operator 
moving the upper body or 
oppositely, the parts or 
assembly-in-progress. 

Moving back from coded position does not count as new code 
(e.g., moving closer to the parts or assembly-in-progress while 
moving back to original position 10s later on, counts as one 
point event). 
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Appendix B : Overview of attention points 

 

Category, 
Code (Unit) 

Attention points 

I. Selecting Behavior 

1. Parts 
collection 
(state event) 

1. Can also alternate with ‘Positioning’, in case of ‘Positioning’ already started but participant 
gazes back at parts not-yet touched (i.e., parts still on display at outer side of work table). In this 
case code from first glance on parts until first next glance on assembly-in-progress for at least 2s. 
‘Parts collection’ can hence also only include visual scanning. 

2. Part 
touched 
(point event) 

1. The assembly-in-progress does not count as a part, except during the first step in which there is 
no assembly-in-progress yet.  
2. Parts already touched hence do not count.  
3. Can also occur during ‘Positioning’ or ‘Fastening’.  

3. Part 
rotation 
(point event) 

1. Exceptions: rotating assembly-in-progress (this is included in Positioning). 

II. Positioning Behavior 

4. Positioning 
(state event) 

1. Can alternate with ‘Parts collection’ (reminder: if eye-gaze fixates on assembly-in-progress or at 
not-yet selected parts for at least 2 seconds).  
2. In case operator positions two parts at once: code stops at inserting first screw of first part and 
next ‘Positioning’ code starts from switch of gaze on second part to at least two seconds on 
assembly-in-progress and stops at inserting first screw of the second part.  
3. For the first step of the assembly, the assembly-in-progress is defined as the part on which the 
other two parts are being positioned on.  
4. Can also occur with parts selected in previous steps. 

5. Positioning 
attempt 
(point event) 

/ 

6. Verification 
of fixed 
position 
(state event) 

1. Includes twisting the component just screwed for alignment and orientation.  
2. Checking screws and components for tightness does not count, even if component is being 
twisted in function of this checkup.  
3. Includes visually checking the component in relation to the other components (already 
fastened). 4. Visually checking other components on the assembly-in-progress for at least 2s 
without gazing back at original component counts as ‘Positioning’ instead.  
4. Manipulating other components after the respective component has been screwed does not 
count, but instead counts as a new ‘Positioning’ code. 

7. Correction 
of perceived 
wrong 
position 
(state event) 

1. Can also occur at the onset of a step, with parts assembled in previous steps.  
2. Can alternate with ‘Parts collection’ and ‘Positioning’ (of newly selected parts). In case 
component is put aside to complete later on, code should be stopped at point of putting aside and 
starts again when picking up this component. 

III. Transition Behavior 

8. Inspection 
of assembly-
in-progress 
(state event) 

/ 

IV. Generic Behavior 

9. Freeze 
(state event) 

/ 

Modifier 1 / 

Modifier 2 / 

Modifier 3 / 

10. Gaze 
redirection 
(point event) 

/ 
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11. Relative 
head position 
change (point 

event) 

/ 
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Appendix C : Overview of results per behavioral code 

 

1. Parts Collection - Occurrence 

 I II III IV V 

Spatial Intelligence  -0.018   -0.018 

Dexterity  0.12   0.12 

      

Condition   -0.786*** -1.347*** -1.347*** 

Step 2   -0.206 -0.786** -0.786** 

Step 3   -0.187 -0.449 -0.449 

Condition x Step 2    1.160** 1.160** 

Condition x Step 3    0.524 0.524 

      

Constant 0 0 0.524** 0.804*** 0.804*** 

      

Observations 144 144 144 144 144 

R2 0.02 0.02 0.24 0.31 0.31 

The values in the table are standardized weights (Beta's).  
*p<0.05; **p<0.01; ***p<0.001  
N = 24  
Low spatial intelligence, low dexterity, high complexity and Step 1 were used as reference categories. 

 
1. Parts Collection - Duration 

 I II III IV V 

Spatial Intelligence  0.014   0.014 

Dexterity  0.101   0.101 

      

Condition   -0.908*** -1.465*** -1.465*** 

Step 2   -0.863*** -1.235*** -1.235*** 

Step 3   -1.099*** -1.562*** -1.562*** 

Condition x Step 2    0.745* 0.745* 

Condition x Step 3    0.926** 0.926** 

      

Constant 0 0 1.108*** 1.386*** 1.386*** 

      

Observations 144 144 144 144 144 

R2 0.00 0.01 0.43 0.47 0.48 

The values in the table are standardized weights (Beta's).  
*p<0.05; **p<0.01; ***p<0.001  
N = 24  
Low spatial intelligence, low dexterity, high complexity and Step 1 were used as reference categories. 

 
2. Part Touched - Occurrence 

 I II III IV V 

Spatial Intelligence  0.123   0.123 

Dexterity  0.160*   0.160* 
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Condition   -0.308* -0.482 -0.482 

Step 2   -0.793*** -0.944*** -0.944*** 

Step 3   -1.014*** -1.124*** -1.124*** 

Condition x Step 2    0.301 0.301 

Condition x Step 3    0.221 0.221 

      

Constant 0 0 0.756*** 0.843*** 0.843*** 

      

Observations 144 144 144 144 144 

R2 0.00 0.03 0.24 0.25 0.25 

The values in the table are standardized weights (Beta's).  
*p<0.05; **p<0.01; ***p<0.001  
N = 24  
Low spatial intelligence, low dexterity, high complexity and Step 1 were used as reference categories. 

 
3. Part rotation - Occurrence 

 I II III IV V 

Spatial Intelligence  0.02   0.02 

Dexterity  0.033   0.033 

      

Condition   -0.498*** -0.614* -0.614* 

Step 2   -0.988*** -1.054*** -1.054*** 

Step 3   -1.094*** -1.201*** -1.201*** 

Condition x Step 2    0.133 0.133 

Condition x Step 3    0.214 0.214 

      

Constant 0 0 0.943*** 1.001*** 1.001*** 

      

Observations 144 144 144 144 144 

R2 0.00 0.00 0.31 0.31 0.31 

The values in the table are standardized weights (Beta's).  
*p<0.05; **p<0.01; ***p<0.001  
N = 24  
Low spatial intelligence, low dexterity, high complexity and Step 1 were used as reference categories. 

 
4. Positioning - Occurrence 

 I II III IV V 

Spatial Intelligence  0.056   0.056 

Dexterity  0.018   0.018 

      

Condition   -0.911*** -1.236*** -1.236*** 

Step 2   0.325 -0.13 -0.13 

Step 3   0.228 0.195 0.195 

Condition x Step 2    0.911* 0.911* 

Condition x Step 3    0.065 0.065 
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Constant 0 0 0.271 0.434* 0.434* 

      

Observations 144 144 144 144 144 

R2 0.00 0.00 0.23 0.27 0.27 

The values in the table are standardized weights (Beta's).  
*p<0.05; **p<0.01; ***p<0.001  
N = 24  
Low spatial intelligence, low dexterity, high complexity and Step 1 were used as reference categories. 

 
4. Positioning - Duration 

 I II III IV V 

Spatial Intelligence  -0.025   -0.025 

Dexterity  0.038   0.038 

      

Condition   -1.348*** -1.114*** -1.114*** 

Step2   -0.009 -0.094 -0.094 

Step3   0.286* 0.721*** 0.721*** 

Condition x Step 2    0.17 0.17 

Condition x Step 3    -0.872** -0.872** 

      

Constant 0 0 0.582*** 0.465** 0.465** 

      

Observations 144 144 144 144 144 

R2 0.00 0.00 0.48 0.55 0.54 

The values in the table are standardized weights (Beta's).  
*p<0.05; **p<0.01; ***p<0.001  
N = 24  
Low spatial intelligence, low dexterity, high complexity and Step 1 were used as reference categories. 

 
5. Positioning Attempt - Occurrence 

 I II III IV V 

Spatial Intelligence  0.006   0.006 

Dexterity  0.009   0.009 

      

Condition   -1.068*** -1.222*** -1.222*** 

Step 2   -0.267 -0.524* -0.524* 

Step 3   -0.121 -0.096 -0.096 

Condition x Step 2    0.512 0.512 

Condition x Step 3    -0.051 -0.051 

      

Constant 0 0 0.663*** 0.740*** 0.740*** 

      

Observations 144 144 144 144 144 

R2 0.00 0.00 0.30 0.32 0.32 

The values in the table are standardized weights (Beta's).  
*p<0.05; **p<0.01; ***p<0.001  
N = 24  
Low spatial intelligence, low dexterity, high complexity and Step 1 were used as reference categories. 
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6. Verification of position - Occurrence 

 I II III IV V 

Spatial Intelligence  -0.003   -0.003 

Dexterity  0.003   0.003 

      

Condition   -0.149 -0.448* -0.448* 

Step 2   0.168 -0.056 -0.056 

Step 3   -0.560** -0.784** -0.784** 

Condition x Step 2    0.448 0.448 

Condition x Step 3    0.448 0.448 

      

Constant 0 0 0.205 0.355 0.355 

      

Observations 144 144 144 144 144 

R2 0.09 0.09 0.22 0.24 0.24 

The values in the table are standardized weights (Beta's).  
*p<0.05; **p<0.01; ***p<0.001  
N = 24  
Low spatial intelligence, low dexterity, high complexity and Step 1 were used as reference categories. 

 
6.Verification of position - Duration 

 I II III IV V 

Spatial Intelligence  -0.045   -0.045 

Dexterity  0.092   0.092 

      

Condition   -0.481** -0.323 -0.323 

Step 2   0.101 0.409 0.409 

Step 3   -0.467* -0.538* -0.538* 

Condition x Step 2    -0.616 -0.616 

Condition x Step 3    0.141 0.141 

      

Constant 0 0 0.363* 0.284 0.284 

      

Observations 144 144 144 144 144 

R2 0.12 0.11 0.27 0.30 0.30 

The values in the table are standardized weights (Beta's).  
*p<0.05; **p<0.01; ***p<0.001  
N = 24  
Low spatial intelligence, low dexterity, high complexity and Step 1 were used as reference categories. 

 
7. Correction of wrong position - Occurrence 

 I II III IV V 

Spatial Intelligence  0.057   0.057 

Dexterity  0.053   0.053 

      

Condition   -0.678*** -0.062 -0.062 
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Step 2   0.586** 1.233*** 1.233*** 

Step 3   0.216 0.493 0.493 

Condition x Step 2    -1.295*** -1.295*** 

Condition x Step 3    -0.555 -0.555 

      

Constant 0 0 0.072 -0.236 -0.236 

      

Observations 144 144 144 144 144 

R2 0.00 0.00 0.18 0.28 0.27 

The values in the table are standardized weights (Beta's).  
*p<0.05; **p<0.01; ***p<0.001  
N = 24  
Low spatial intelligence, low dexterity, high complexity and Step 1 were used as reference categories. 

 
7. Correction of wrong position - Duration 

 I II III IV V 

Spatial Intelligence  0.054   0.054 

Dexterity  0.190*   0.190* 

      

Condition   -0.470** 0.026 0.026 

Step 2   0.359 0.763** 0.763** 

Step 3   0.398* 0.738** 0.738** 

Condition x Step 2    -0.808* -0.808* 

Condition x Step 3    -0.680* -0.680* 

      

Constant 0 0 -0.017 -0.265 -0.265 

      

Observations 144 144 144 144 144 

R2 0.10 0.08 0.21 0.25 0.24 

The values in the table are standardized weights (Beta's).  
*p<0.05; **p<0.01; ***p<0.001  
N = 24  
Low spatial intelligence, low dexterity, high complexity and Step 1 were used as reference categories. 

 
 
8. Inspection of assembly-in-progress - Occurrence 

 I II III IV V 

Spatial Intelligence  -0.009   -0.009 

Dexterity  0.113*   0.113* 

      

Condition   -0.188* 0.042 0.042 

Step 3   0.104 0.333** 0.333** 

Condition x Step 3    -0.458** -0.458** 

      

Constant 0.281** -0.068 0.323*** 0.208* -0.141 

      

Observations 96 96 96 96 96 
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R2 0.00 0.08 0.07 0.17 0.20 

The values in the table are standardized weights (Beta's).  
*p<0.05; **p<0.01; ***p<0.001  
N = 24  
Low spatial intelligence, low dexterity, high complexity and Step 2 were used as reference categories. 

 
8. Inspection of assembly-in-progress - Duration 

 I II III IV V 

Spatial Intelligence  -0.077   -0.077 

Dexterity  0.878   0.878 

      

Condition   -1.851* -0.704 -0.704 

Step 3   0.706 1.853 1.853 

Condition x Step 3    -2.295 -2.295 

      

Constant 1.917*** -0.665 2.489*** 1.916* -0.666 

      

Observations 96 96 96 96 96 

R2 0.00 0.06 0.06 0.08 0.14 

The values in the table are standardized weights (Beta's).  
*p<0.05; **p<0.01; ***p<0.001  
N = 24  
Low spatial intelligence, low dexterity, high complexity and Step 2 were used as reference categories. 

 
9. Freeze (Modifier 1) - Occurrence 

 I II III IV V 

Spatial Intelligence  -0.099   -0.099 

Dexterity  0.011   0.011 

      

Condition   -0.802*** -0.463 -0.463 

Step 2   0.116 0.324 0.324 

Step 3   0.069 0.37 0.37 

Condition x Step 2    -0.417 -0.417 

Condition x Step 3    -0.602 -0.602 

      

Constant 0 0 0.339* 0.17 0.17 

      

Observations 144 144 144 144 144 

R2 0.00 0.01 0.16 0.18 0.19 

The values in the table are standardized weights (Beta's).  
*p<0.05; **p<0.01; ***p<0.001  
N = 24  
Low spatial intelligence, low dexterity, high complexity and Step 1 were used as reference categories. 

 
9. Freeze (Modifier 1) - Duration 

 I II III IV V 

Spatial Intelligence  -0.034   -0.034 

Dexterity  0.071   0.071 
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Condition   -0.764*** -0.278 -0.278 

Step 2   0.205 0.491 0.491* 

Step 3   0.243 0.688* 0.688* 

Condition x Step 2    -0.571 -0.571 

Condition x Step 3    -0.889* -0.889* 

      

Constant 0 0 0.233 -0.01 -0.01 

      

Observations 144 144 144 144 144 

R2 0.00 0.01 0.16 0.19 0.20 

The values in the table are standardized weights (Beta's).  
*p<0.05; **p<0.01; ***p<0.001  
N = 24  
Low spatial intelligence, low dexterity, high complexity and Step 1 were used as reference categories. 

 
9.Freeze (Modifier 2) - Occurrence 

 I II III IV V 

Spatial Intelligence  0.033   0.033 

Dexterity  -0.004   -0.004 

      

Condition   -0.673*** -0.561* -0.561* 

Step 2   0.056 0.112 0.112 

Step 3   0.112 0.224 0.224 

Condition x Step 2    -0.112 -0.112 

Condition x Step 3    -0.224 -0.224 

      

Constant 0 0 0.280 0.224 0.224 

      

Observations 144 144 144 144 144 

R2 0.01 0.01 0.17 0.17 0.17 

The values in the table are standardized weights (Beta's).  
*p<0.05; **p<0.01; ***p<0.001  
N = 24  
Low spatial intelligence, low dexterity, high complexity and Step 1 were used as reference categories. 

 
9. Freeze (Modifier 2)  - Duration 

 I II III IV V 

Spatial Intelligence  -0.053   -0.053 

Dexterity  -0.012   -0.012 

      

Condition   -0.574*** -0.451 -0.451 

Step 2   0.037 0.074 0.074 

Step 3   0.147 0.294 0.294 

Condition x Step 2    -0.074 -0.074 

Condition x Step 3    -0.294 -0.294 
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Constant 0 0 0.226 0.164 0.164 

      

Observations 144 144 144 144 144 

R2 0.00 0.00 0.10 0.11 0.10 

The values in the table are standardized weights (Beta's).  
*p<0.05; **p<0.01; ***p<0.001  
N = 24  
Low spatial intelligence, low dexterity, high complexity and Step 1 were used as reference categories. 

 
10. Gaze redirection - Occurrence 

 I II III IV V 
Spatial Intelligence  -0.024   -0.024 
Dexterity  0.184*   0.184* 
      
Condition   -0.107 -0.322 -0.322 
Step 2   0.081 -0.161 -0.161 
Step 3   0.081 0 0 
Condition x Step 2    0.484 0.484 
Condition x Step 3    0.161 0.161 
      
Constant 0 0 0 0.107 0.107 
      
Observations 144 144 144 144 144 
R2 0.07 0.04 0.07 0.09 0.06 
The values in the table are standardized weights (Beta's).  
*p<0.05; **p<0.01; ***p<0.001  
N = 24  
Low spatial intelligence, low dexterity, high complexity and Step 1 were used as reference categories. 

 
11. Relative head position change - Occurrence 

 I II III IV V 
Spatial Intelligence  -0.026   -0.026 
Dexterity  0.018   0.018 
      
Condition   -0.316 -0.526 -0.526 
Step 2   -0.053 -0.105 -0.105 
Step 3   -0.263 -0.526 -0.526 
Condition x Step 2    0.105 0.105 
Condition x Step 3    0.526 0.526 
      
Constant 0 0 0.263 0.368 0.368 
      
Observations 144 144 144 144 144 
R2 0.00 0.00 0.04 0.05 0.05 
The values in the table are standardized weights (Beta's).  
*p<0.05; **p<0.01; ***p<0.001  
N = 24  
Low spatial intelligence, low dexterity, high complexity and Step 1 were used as reference categories. 
 

 


