GigaScience, 11, 2022, 1-10

(GIgA)n https://doi.org/10.1093/gigascience/giab094
7o TECH NOTE

OXFORD

CIEN<.E

TECH NOTE
Halvade somatic: Somatic variant calling with Apache
Spark

Dries Decap?, Louise de Schaetzen van Brienen?!, Maarten Larmuseau?,
Pascal Costanza?, Charlotte Herzeel?, Roel Wuyts?, Kathleen Marchal ©! and
Jan Fostier ®1°

1IDLab, Ghent University - imec, Technologiepark 126, B-9052 Ghent, Belgium; %Intel, Veldkant 31, B-2550
Kontich, Belgium and 3imec, Kapeldreef 75, B-3001 Leuven, Belgium

*Correspondence address. Jan Fostier, IDLab, Ghent University - imec, Technologiepark 126, B-9052 Ghent, Belgium.
E-mail: jan.fostier@ugent.be http://orcid.org/0000-0002-9994-8269

Abstract

Background: The accurate detection of somatic variants from sequencing data is of key importance for cancer treatment
and research. Somatic variant calling requires a high sequencing depth of the tumor sample, especially when the detection
of low-frequency variants is also desired. In turn, this leads to large volumes of raw sequencing data to process and hence,
large computational requirements. For example, calling the somatic variants according to the GATK best practices
guidelines requires days of computing time for a typical whole-genome sequencing sample. Findings: We introduce
Halvade Somatic, a framework for somatic variant calling from DNA sequencing data that takes advantage of multi-node
and/or multi-core compute platforms to reduce runtime. It relies on Apache Spark to provide scalable I/O and to create and
manage data streams that are processed on different CPU cores in parallel. Halvade Somatic contains all required steps to
process the tumor and matched normal sample according to the GATK best practices recommendations: read alignment
(BWA), sorting of reads, preprocessing steps such as marking duplicate reads and base quality score recalibration (GATK),
and, finally, calling the somatic variants (Mutect2). Our approach reduces the runtime on a single 36-core node to 19.5 h
compared to a runtime of 84.5 h for the original pipeline, a speedup of 4.3 times. Runtime can be further decreased by
scaling to multiple nodes, e.g., we observe a runtime of 1.36 h using 16 nodes, an additional speedup of 14.4 times. Halvade
Somatic supports variant calling from both whole-genome sequencing and whole-exome sequencing data and also
supports Strelka2 as an alternative or complementary variant calling tool. We provide a Docker image to facilitate
single-node deployment. Halvade Somatic can be executed on a variety of compute platforms, including Amazon EC2 and
Google Cloud. Conclusions: To our knowledge, Halvade Somatic is the first somatic variant calling pipeline that leverages
Big Data processing platforms and provides reliable, scalable performance. Source code is freely available.

Keywords: Apache Spark; somatic variant calling; GATK/Mutect2; Strelka2

Introduction somatic variants has been characterized by large-scale research
projects such as The Cancer Genome Atlas Program (TCGA) [1],
The Cancer Cell Line Encyclopedia [2], and the International
Cancer Genome Consortium [3]. In clinical practice, the profil-
ing of genomic variants and signatures in tumors is increasingly
adopted to provide patient-tailored therapies.

Somatic mutations are changes in the DNA of a cell that are
introduced during the lifetime of a living organism. Owing to
their role in the development of cancer, the accurate detection
of somatic variants is of key importance. The broad landscape of

Received: 1 September 2021; Revised: 27 October 2021; Accepted: 9 December 2021

© The Author(s) 2022. Published by Oxford University Press GigaScience. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any
medium, provided the original work is properly cited.

z20z Aenhuer 71 uo 1senb Aq 0Z15059/¥609e16/00ua10sebib/e60L "0 L/10p/a1omue/gousiosebib/uoo dnoolwapede//:sdiy woly papeojumoq

http://www.oxfordjournals.org
http://orcid.org/0000-0002-2169-4588
http://orcid.org/0000-0002-9994-8269
mailto:jan.fostier@ugent.be
http://orcid.org/0000-0002-9994-8269
http://orcid.org/0000-0002-9994-8269
http://creativecommons.org/licenses/by/4.0/

2 | Halvade somatic: Somatic variant calling with Apache Spark

Cancer mutations are often characterized using next-
generation sequencing (NGS) technology. In a typical setting,
a tumor sample is accompanied by a matched normal sample
from which germline variants are determined. Cancer-specific
mutations are those that are present in the tumor sample but ab-
sent from the normal sample. The tumor sample is often hetero-
geneous: it may contain different subpopulations of cancer cells
with distinct molecular signatures [4]. As such, mutations can
appear in a bulk tumor sample with varying frequency. To also
capture low-frequency variants, a high sequencing depth of the
tumor sample is warranted (typically >50x) [5]. Together with
the sequencing of the matched normal sample, this gives rise
to large volumes of raw sequencing data, especially for whole-
genome sequencing (WGS). In turn, this leads to high processing
times. To illustrate this, we consider the variant calling pipeline
according to the GATK best practices recommendations [6] that
uses BWA [7] for read mapping, Picard [8] and GATK [9] for data
preprocessing, and Mutect2 [10] for somatic variant calling. To
process an Illumina HiSeq 2000 WGS dataset of the HCC1395
sample (breast cancer cell line) with a sequencing depth of 62x
(tumor) and 34x (normal) and using a 36-core machine (dual 2.30
GHz Intel Xeon Gold 6140 CPU with 196 GB of RAM), we measured
a runtime of ~3.5 days (~84.5 h): ~13 h for read mapping, ~41
h for data preprocessing, and ~30.5 h for variant calling. This
very high runtime is caused not only by the large volume of in-
put sequencing data to process (~693 GB uncompressed) but also
due to the fact that Picard, GATK, and Mutect2 do not efficiently
make use of modern, multi-core architectures because most of
their codebase is single-threaded. As such, the computational
resources provided by modern compute systems are underuti-
lized.

We present Halvade Somatic, a scalable software frame-
work that leverages Apache Spark [11] to efficiently perform so-
matic variant calling using multi-node and/or multi-core com-
pute platforms. Halvade Somatic creates and manages parallel
data streams that are processed by multiple instances of exist-
ing tools on different CPU cores. It implements the somatic vari-
ant calling pipeline according to the GATK best practices recom-
mendations (see Fig. 1 for an overview). Next to Mutect2 [10],
Strelka2 [12] is supported as an alternative or complementary
variant calling tool. Both Mutect2 and Strelka2 use an algorithm
that models joint allele frequencies to call somatic variants [13],
and both tools have been widely adopted by the scientific com-
munity. The support for both Mutect2 and Strelka2 allows for
consensus variant calling by combining the results of both tools,
a commonly used practice that yields more robust results. To
distribute the workload in smaller subtasks, Halvade Somatic
uses the same general principles as its predecessors that were
designed for germline variant calling from DNA and RNA se-
quencing data [14, 15]: (i) the read alignment step can be par-
allelized by read; i.e., the process of aligning a particular read
is independent of the alignment of another read; and (ii) pre-
processing and variant calling steps are parallelized by genomic
region; e.g., calling somatic variants in a particular genomic re-
gion is independent of variant calling in other regions. Com-
pared with its counterparts for germline variant calling, Hal-
vade Somatic is significantly more complex. First, the volume
of data to process is larger owing to the presence of 2 samples
(tumor + normal) instead of only a single sample in the case
of germline variant calling. The data of both samples must be
partitioned in a consistent manner across the parallel compute
tasks while maintaining good load balance. Second, to have a
good concordance between somatic variants called by the origi-
nal (sequential) pipeline and the variants called by Halvade So-

Tumor Sample Normal Sample

Read alignment

Read alignment

Sort reads

Sort reads

Mark duplicates

Mark duplicates

Get BQSR table

Get BQSR table
Apply BQSR Apply BQSR
7

Mutect2 And/Or Strelka2
VCF VCF

Figure 1: Somatic variant calling pipeline implemented in Halvade Somatic.
Strelka2 can be run as an alternative or complementary tool to Mutect2.

matic, we found that a careful design of the parallel base qual-
ity score recalibration (BQSR) step was essential: whereas BQSR
for the germline variant calling pipeline could simply be applied
to different genomic regions independently, the construction of
genome-wide recalibration tables appears essential for somatic
variant calling. Because of this, additional communication steps
are required to aggregate locally computed, partial BQSR statis-
tics into global statistics. Finally, whereas Halvade for germline
variant calling was based on the MapReduce framework [16],
Halvade Somatic is a re-implementation from scratch that lever-
ages the Spark framework. Compared with MapReduce, Spark
offers a richer framework with support for more complex com-
munication and synchronization primitives, as well as the abil-
ity to keep data in memory. As such, Spark is much better suited
to deal with the different communication steps that arise from
the parallelization of somatic variant calling pipelines.

Halvade Somatic is highly efficient: using a single 36-core
compute node, runtime for the GATK/Mutect2 pipeline is re-
duced from ~84.5 to ~19.5 h. This speedup of 4.3 times origi-
nates from a better utilization of the same hardware resources.
Scaling to 16 nodes further reduces runtime to ~1 h 21 min,
an additional speedup of ~14.4 times, i.e., a total speedup of
~62.4 times over the original pipeline. Users can select between
the Mutect2 or Strelka2 variant callers or can choose to execute
both tools, thus generating 2 separate variant callsets that can be
combined and filtered to obtain high-confidence consensus vari-
ants [17]. Variant calling from both WGS as well as whole-exome
sequencing (WES) data is supported. To facilitate the execution
of Halvade Somatic on a workstation without Spark installation,
we provide a Docker image. Halvade Somatic can be executed on
a wide variety of compute platforms, including the Amazon EC2
and Google Cloud.

Positioning with respect to state of the art

As reviewed in [18], many bioinformatics workflows have been
accelerated using Hadoop MapReduce or Spark. Tools such as
BigBWA [19], SEAL [20], and Halvade [14] rely on the MapReduce

z20z Aenuer 71 uo isenb Aq 0Z15059/v609e16/00ua10seb16/2601 "0 L/10p/a1o1uE/20us10sebib/woo dnoolwapede//:sdiy woly papeojumoq

programming model to accelerate sequence analysis pipelines.
Whereas BigBWA and SEAL focus primarily on the read map-
ping phase, Halvade leverages MapReduce to accelerate an end-
to-end germline GATK-based variant calling pipeline. The com-
bination of parallel processing, the distributed-memory sorting
functionality of Hadoop MapReduce, and a scalable storage solu-
tion such as the Hadoop Distributed File System (HDFS) [21] yield
efficient workflows that strongly reduce runtime. A more com-
plex pipeline for germline variant calling from RNA-sequencing
data was implemented in Halvade-RNA [15]. Halvade-RNA re-
quires 2 successive MapReduce jobs to express the workflow. In
between both MapReduce jobs, large volumes of intermediate
data are stored on disk and loaded again when the second job
commences.

The stringent map-sort-reduce paradigm as well as its disk-
oriented processing are the main drawbacks of Hadoop MapRe-
duce. The introduction of Spark solved these shortcomings and
led to the introduction of a new generation of sequence analysis
pipelines. SparkBWA [22] and StreamBWA [23] leverage Spark for
the task of read mapping, whereas SparkGA [24, 25] implements
a more comprehensive pipeline for germline variant calling ac-
cording to the GATK best practices recommendations. A Spark-
based adaption of an RNA-seq variant calling pipeline was pro-
vided by SparkRA [26].

These MapReduce and Spark-based workflows have in com-
mon that they execute, in parallel, multiple instances of existing
tools (e.g., BWA [7] or GATK [9]) on subsets of the data. In other
words, MapReduce and Spark are used (i) to provide scalable 1/0;
(ii) to manage parallel data streams; and (iii) for task scheduling,
synchronization, and communication purposes. Most of the ac-
tual processing of sequencing data is done by existing tools. This
modular approach makes it easy to integrate newer versions of
these tools or to switch between alternative tools. For example,
the elPrep [27] tool can be used as a drop-in replacement for cer-
tain modules of the GATK software suite. Alternatively, certain
workflows such as ADAM/avocado [28] and certain GATK mod-
ules provide variant calling pipelines that are implemented in
native Spark itself without relying on existing tools. However,
such an approach is rarely used because it requires extensive
programming efforts.

In contrast to existing tools that focus on germline variant
calling using either DNA-sequencing or RNA-sequencing data,
we focus in this work on somatic variant calling from DNA-
sequencing data. To the best of our knowledge, Halvade Somatic
is the first software framework to leverage a Big Data processing
platform for this task.

Apache Spark is a data processing framework that was built
to overcome some of the limitations of Hadoop MapReduce.
Both frameworks share common principles such as the use of
a distributed file system to provide scalable access to large vol-
umes of data and support for parallel data processing in a fault-
tolerant manner. Compared to MapReduce, Apache Spark allows
for a wider range of operations through its API implemented in
several programming languages. Additionally, Spark avoids disk
/0 when possible: data are kept in memory for as long as pos-
sible and only written to disk when the data volume exceeds
the memory capacity or when explicitly asked to persist data
on disk. We briefly describe the most important terminology of
Spark. For a more detailed account, we refer to [11].

Data is stored in Spark using “Resilient Distributed Datasets”
(RDDs). RDDs can be thought of as containers for large volumes
of data that are partitioned into smaller chunks that are dis-
tributed over the local memories of the worker nodes. Opera-
tions on data are performed through “transformations” and “ac-
tions.” Transformations apply a particular operation to an RDD,
yielding a new RDD that is again distributed over the worker
nodes. In contrast, actions on RDDs apply operations for which
the result is collected in the driver program.

Spark relies on “lazy evaluation” of RDDs. Subsequent trans-
formations on RDDs form the Spark “lineage,” which is evalu-
ated only when an action is triggered. This is called a Spark
“job.” The actual computations are performed by “executors,”
i.e., processes on the worker nodes that are in charge of run-
ning individual tasks on subsets of the data. Lazy evaluation al-
lows performance to be optimized because certain operations
can be grouped together. Fault tolerance is provided by recom-
puting lost results: if an executor fails, the lineage is used to re-
calculate results starting from the last available data. When the
data of an RDD are used multiple times and/or when the com-
putation of an RDD is costly, it is beneficial to “persist” the RDD,
which means that its data are explicitly stored in memory or on
disk.

To execute existing tools (e.g., BWA or GATK) inside the Spark
framework, we created a specialized PipedRDD implementation
that supports common bioinformatics formats such as SAM or
BAM [29]. SAM records are represented as an iterator over strings
while BAM data are represented as an array of bytes.

Halvade Somatic leverages Apache Spark for the parallel,
distributed-memory processing of the somatic variant calling
pipeline shown in Fig. 1. A global overview of Halvade Somatic
is depicted in Fig. 2. The workflow consists of 3 Spark jobs.

In the first job, the reads of the tumor DNA sample are aligned
against the reference genome. Next, the reference genome is
partitioned into N chromosomal regions in such a way that the
regions contain roughly an equal number of aligned reads. To
have an accurate, yet computationally efficient algorithm to de-
termine the region boundaries, this procedure is performed on
a randomly sampled subset of the aligned reads.

During the second job, the reads of the matched normal sam-
ple are aligned against the reference genome. The aligned read
records of the tumor and normal samples are grouped accord-
ing to the N regions that were established during the first job.
Next, for each of the N regions independently, reads are sorted
according to the position to which they align, read duplicates
are marked, and BQSR statistics are computed. These N partial
BQSR statistics are aggregated into a single, genome-wide BQSR
table.

Finally, in the third job, BQSR is applied to all reads. Somatic
variants are called for each region independently. The N result-
ing partial Variant Call Format (VCF) files are merged into a single
VCF output file.

Below, the different computational steps are described in
more detail.

Input data preparation

Halvade Somatic supports input data as either unaligned reads
(in FASTQ format) or pre-aligned reads (in BAM format). In the
former case, paired-end reads, per read group, are typically pro-
vided as 2 distinct, compressed (gzipped) FASTQ files. Halvade
Somatic decompresses these files and splits them into smaller

z20z Aenuer 71 uo isenb Aq 0Z15059/v609e16/00ua10seb16/2601 "0 L/10p/a1o1uE/20us10sebib/woo dnoolwapede//:sdiy woly papeojumoq

4 | Halvade somatic: Somatic variant calling with Apache Spark

JOB1 JOB 2

Tumor sample

Align I Align I AligIIign

A4 A A

Determine N regions by sampling

Normal sample

PERSIST

Partition & Merge

Sort & Sort & Sort & Sort &
Mark Mark \ELS \ES
Duplicates Duplicates Duplicates Duplicates

Get BQSR Get BQSR Get BQSR Get BQSR
Table Table Table Table

Table 1 Table N

Merge BQSR Tables

Table a Table z

Final Table

Broadcast

V. V. Ry,

Apply BQSR & Apply BQSR & Apply BQSR & Apply BQSR &
Call Variants Call Variants Call Variants ces Call Variants

| JoB3 I
v

7\

Merge VCF files

Merged VCF VCF

Figure 2: Overview of the somatic variant calling framework in Spark. The workflow consists of 3 Spark jobs where the data at the end of Jobs 1 and 2 are persisted.
During the first job, the reads of the tumor sample are aligned to the reference genome and N chromosomal regions are determined such that each region contains
roughly an equal number of aligned tumor reads. In the second job, the reads of the normal sample are aligned. The aligned reads (tumor and normal) are grouped
per chromosomal region. Next, for each genomic region independently, reads are sorted according to the position to which they align and read duplicates are marked.
This output is again persisted. Per genomic region, partial BQSR statistics are computed and merged into a genome-wide table. The last job uses this merged table to
apply the BQSR to each read and call the somatic variants in all regions. The variants are merged into a single VCF output file. Note that certain tools in the workflow
also require the (indexed) reference genome or dbSNP database. For simplicity, these input files are not shown.

zzoz Aenuep /1 uo 1sanb Aq 0Z15059/y609e16/20uUs10sEBI6/8601 "0 1 /I0p/a]01Ee/20Usiosebif/woo dno oiwspeoe//:sdiy woly papeojumoq

chunks (default size: 60 MB) that are distributed across worker
nodes in such a way that paired-end reads are kept together.
These chunks later serve as input for the alignment tasks that
are executed in Jobs 1 and 2 for the tumor and normal sample,
respectively.

For performance reasons, the process of splitting data into
chunks is multi-threaded. In case the data are provided as mul-
tiple read groups (and hence, multiple pairs of FASTQ files), this
preprocessing step is performed by multiple Spark executors
(i.e., multiple processes that are executed in parallel), 1 executor
per read group. Often, the runtime of this preprocessing step is
governed by data /0.

Alternatively, the input data can be provided as pre-aligned
BAM files. These BAM files are stored on the associated dis-
tributed file system (e.g., HDFS or Amazon S3) and parsed ef-
ficiently using Hadoop-BAM [30].

Read alignment, partitioning, and merging

Assuming unaligned input, multiple Spark executors run, in par-
allel, an instance of BWA [7] to align the reads of the tumor sam-
ple against the reference genome. Each BWA instance reads a
FASTQ chunk from disk and streams the aligned SAM records to
a PipedRDD. Because the total number of FASTQ chunks is typi-
cally much higher than the number of executors, each executor
has to process several chunks. Spark assigns chunks to execu-
tors such that the workload is evenly balanced while taking into
account data locality. In case multiple CPU cores are assigned per
executor, the multi-threading functionality of BWA is used. The
resulting RDD that holds the aligned SAM records is persisted
because it is a dependency for multiple later steps. Because this
RDD contains several hundreds of GB of data, it is persisted to
disk by default.

Next, the reference genome is partitioned into N non-
overlapping chromosomal regions. At a later stage, the prepro-
cessing and variant calling steps will be parallelized by these re-
gions. The value of N is user-defined (default: 1,800) and is typi-
cally much higher than the number of executors. The size of the
chromosomal regions is non-uniform and is determined such
that each region contains roughly the same number of aligned
(tumor) reads. By accounting for possible variance in coverage
among regions, we avoid regions with an excessive number of
aligned reads and we obtain better load balancing compared to
using uniformly sized regions. For efficiency reasons, only a rel-
atively small, randomly sampled subset of the tumor reads (de-
fault: 60N reads) is used to determine the size of the chromoso-
mal regions. This action concludes the first Spark job.

In the second Spark job, the reads of the normal sample are
aligned to the reference genome. The RDDs that contain the
aligned tumor and normal reads are merged and partitioned ac-
cording to the previously determined N chromosomal regions.
This task requires the shuffling of large volumes of aligned read
records and hence relies on inter-node communication. Read
pairs that span the boundary of adjacent regions are duplicated
in both regions.

Sorting, marking read duplicates, BQSR, and variant calling
After partitioning into regions, the reads are further sorted ac-
cording to the chromosomal position to which they align. Data
are spilled to disk if insufficient RAM is available, similar to how
SAMtools [29] sorts SAM records. Sorted reads are written to BAM
files on disk, 1 BAM file per chromosomal region.

PCR and optical read duplicates cannot be considered as in-
dependent observations during variant calling and should there-
fore be marked accordingly. To this end, per chromosomal region

independently, instances of the GATK “Mark Duplicates (Picard)”
module are run. The resulting RDD is again persisted to disk. Our
PipedRDD implementation supports running multiple instances
of GATK per executor. This yields a significant performance in-
crease when multiple CPU cores are assigned per executor and
when the tool does not efficiently support multi-threading. Be-
cause GATK shows an average CPU usage of 100-200%, we assign
1 GATK instance per 2 CPU cores.

BQSR corrects for systematic errors when the sequencing
machine estimates per-base quality scores. Per chromosomal
region independently, a BQSR table is constructed using the
“BaseRecalibrator” module of GATK. A BQSR table summarizes
empirically observed information on the quality score distri-
bution and is required for the actual recalibration step. We
avoid counting reads that span region boundaries (and that are
present in both regions) twice.

Because the accuracy of the BQSR depends on the volume of
the observed data and owing to variability among the chromo-
somal regions we choose to aggregate these partial tables into a
single genome-wide table using the TreeReduce action in Spark,
concluding the second job. Even though this process requires
inter-process communication and hence the synchronization of
the different subtasks, we observed that merging the partial
BQSR tables is essential to have a good correspondence between
the variants called by the original (sequential) pipeline and those
called by Halvade Somatic.

In the third Spark job, the merged BQSR table is distributed
to all executors and the “ApplyBQSR” module of GATK is exe-
cuted. Finally, somatic variants are called using either Mutect2
or Strelka2?, per chromosomal region independently, thus pro-
ducing 1 VCF file per chromosomal region that is stored using the
Spark saveAsTextFile action. These partial VCF files are merged
into a single VCF output file.

Optionally, if somatic variants from both Mutect2 and
Strelka2 are desired, the BAM file that resulted from the BQSR
step is persisted in order to avoid its recomputation. The sec-
ond somatic variant caller is then run as a fourth Spark job (not
shown in Fig. 2).

Spark configuration

The correct configuration of the number of executors per worker
node is essential for good performance. Note that the number of
executors per node remains fixed across the different Spark jobs.
In principle, a high number of executors is preferred to maxi-
mize parallelism in Spark. However, owing to limited hardware
resources, the number of executors is often restricted. When
read mapping is required (FASTQ input), an executor requires
~16 GB RAM (8 GB for the BWA instance, 6 GB for the executor,
and 2 GB for executor overhead). This constraint often limits the
number of executors. For example, for worker nodes with 64 GB
of RAM, this translates into 4 executors per worker node. When
the alignment step is not required (BAM input), the memory per
executor can be reduced to ~1 GB per GATK instance, 6 GB for
the executor, and 2 GB overhead. The availability of more mem-
ory can improve performance in Spark because it reduces the
chance of having to spill data to disk. The available CPU cores
are evenly assigned to the different executors. We run multiple
instances of a tool in parallel per executor if enough CPU cores
are available. With this we can effectively increase CPU utiliza-
tion and decrease overall runtime.

A second performance-critical parameter is the number of
chromosomal regions N. More (and hence: smaller) regions lead
to reduced memory requirements per executor but a higher tool
starting overhead (e.g., GATK tries to check whether it is run-

z20z Aenuer 71 uo isenb Aq 0Z15059/v609e16/00ua10seb16/2601 "0 L/10p/a1o1uE/20us10sebib/woo dnoolwapede//:sdiy woly papeojumoq

ning on a Google Cloud node, which can take several seconds).
Additionally, a higher value of N increases the number of reads
that need to be duplicated across adjacent regions. Nevertheless,
using only a few regions increases the volume of data per re-
gion, leading to increased memory requirements and difficulties
in evenly balancing the workload. From tests, we conclude that
using 1,500n-1,800n regions is optimal for a typical WGS sam-
ple and 250n-320n for a typical WES sample. Here, n denotes the
number of GATK instances per executor.

All WGS benchmarks were performed using 100-bp, paired-end
[llumina HiSeq 2000 reads of a breast cancer sample (HCC1395)
with a matched normal lymphoblastoid cell line (HCC1395 BL).
Data are available through the Genome Modeling System [31, 32]
project and consist of ~1 billion reads (normal sample) and 1.88
billion reads (tumor sample), translating to sequencing depths
of 34x and 62x, respectively.

WES benchmarks were performed using 100-bp, paired-end
[llumina reads of the TCGA-A8-A08F sample. Data are available
through the Cancer Genome Atlas Breast Invasive Carcinoma
(TCGA-BRCA) data collection. The tumor sequencing data con-
sist of 201 million reads, while the blood-derived normal se-
quencing data consist of ~156 million reads.

The Genome Reference Consortium Human build 38
(GRCh38) reference was used.

We first assess the computational performance of Halvade So-
matic on a private computer cluster with 36 CPU cores (dual 2.30-
GHz Intel® Xeon® Gold 6140 CPUs) and 187 GB of RAM per node.
The worker nodes are connected to a General Parallel File Sys-
tem (GPFS) with a high-performance Enhanced Data Rate (EDR)
Infiniband network. We used Spark 3.0.0, Hadoop Yarn 2.9.2,
BWA 0.7.16a, Samtools 1.5, GATK 4.1.2.0, and Strelka 2.9.10. Hal-
vade Somatic further relies on the HadoopBAM 7.10.0 and Ht-
sJDK 2.11.0 libraries.

When input is provided as unaligned reads (FASTQ files), we
use 9 executors per worker node, except for the worker node that
also runs the Spark driver program, which has 8 executors. Each
executor is thus allocated 4 CPU cores and ~20 GB of memory. A
single instance of BWA with 4 threads is run per executor while
each executor runs 2 instances of GATK. When input is provided
as aligned reads (BAM files), we use 18 executors per node (17 for
the node that runs the driver), with 2 CPU cores and ~10 GB per
executor. In that case, a single instance of GATK per executor is
run.

Table 1 shows the runtimes of the original pipeline and Hal-
vade Somatic for different combinations of input (FASTQ or
BAM), different samples (WGS or WES), and somatic variant call-
ing tools (Mutect2, Strelka2, or both). The original pipeline can
be run only on a single node and multi-threading was enabled
for all tools that support it. Even on a single node, Halvade So-
matic considerably reduces the runtime: when Mutect2 is used
as a somatic variant calling tool, runtime is reduced from 84.57
to 19.45 h, a speedup of 4.34 times. Figure 3 shows a detailed
breakdown of the runtime over the different steps. Clearly, the
largest gains are obtained during Spark Jobs 2 and 3, owing to the
under-utilization of hardware resources by GATK and Mutect2.
Even though BWA has efficient support for multi-threading, Hal-

vade Somatic is able to slightly reduce the runtime of alignment
steps as well.

Strelka2 is considerably faster than Mutect2 and has effi-
cient support for multi-threading. However, using a single node,
Halvade Somatic is still 2.97 times faster (55.66 versus 18.74 h,
see Table 1) for the entire pipeline. Running both Mutect2 and
Strelka2 requires only a little extra runtime compared to run-
ning only Mutect2. Hence, the use of both variant callers appears
attractive to create a high-confidence set of somatic variants as
also proposed in the literature [17, 33].

When pre-aligned (BAM) input is provided, the alignment
step can be omitted and runtime decreases accordingly. The
relative gain from using Halvade Somatic is even more pro-
nounced, as in this case, the pipeline predominantly consists of
the GATK and Mutect2 steps. For example, when running both
variant callers on a single node on the WGS dataset, the runtime
is reduced from 72.99 to 12.77 h (see Table 1), a speedup of 5.72
times. Similarly, when using WES data, we observe, depending
on input type and variant caller, speedups ranging from 4.32 to
6.31 times.

For time-critical samples, Halvade Somatic can further re-
duce runtime by scaling to multiple worker nodes. Figure 4
shows the parallel speedup obtained for the WGS sample and
the different variant calling tools. The parallel speedup S, is the
ratio of runtime using a single node T; and the runtime using p
nodes Tp. In the ideal case, S, equals the number of nodes p. Ow-
ing to communication and synchronization overhead, the ob-
served speedups are slightly lower. Using 16 nodes and FASTQ
input, we observe an additional parallel speedup that ranges
between 14.4 times (Mutect2 pipeline) and 15.4 times (Strelka2
pipeline). This translates into a high parallel efficiency n, = S,/p
of, respectively, 89.7% and 96.3%, indicating that Halvade So-
matic efficiently uses the extra hardware resources to reduce
runtime. The value 1/n, — 1 (respectively, 11.4% and 3.8%) ex-
presses the additional cost (e.g., financial or energy) of a multi-
node run relative to single-node execution.

The combined effect of improved resource utilization of a
node and the use of multiple nodes is significant: using the Mu-
tect2 pipeline, the WGS sample, and FASTQ input, runtime is
reduced from 84.57 h (original pipeline, single node) to 1.36 h
(Halvade Somatic, 16 nodes), an overall speedup of 62.4 times.
Similarly, using the Strelka2 variant caller, runtime is reduced
from 55.66 h (original pipeline, single node) to 1.21 h (Halvade
Somatic, 16 nodes).

Docker image
We provide a Docker image to facilitate the deployment of Hal-
vade Somatic on a node without native Spark installation. The
image contains all necessary software packages and libraries.
The use of a Docker image imposes virtually no computa-
tional overhead: using a node with 32 CPU cores (dual 2.30 GHz
Intel® Xeon® CPU E5-2698 v3) and 256 GB of memory, we mea-
sured a runtime for the WGS sample of 20.59 and 9.55 h for
FASTQ and BAM input, respectively. For the WES sample we
measured a runtime of 2.10 and 1.25 h for FASTQ and BAM input,
respectively.

Amazon EMR

Halvade Somatic can also be deployed on public cloud compute
platforms such as Amazon EMR. Input data, reference files, bina-
ries, and libraries should be uploaded to Amazon S3 storage. We
provide a bootstrap script to copy certain files from Amazon S3

z20z Aenuer 71 uo isenb Aq 0Z15059/v609e16/00ua10seb16/2601 "0 L/10p/a1o1uE/20us10sebib/woo dnoolwapede//:sdiy woly papeojumoq

Decapetal. | 7

Table 1. Runtime of the original pipeline and Halvade Somatic for different combinations of samples (WGS or WES), input (FASTQ or BAM), and

somatic variant calling tools (Mutect2, Strelka2, or both).

Original
Input Variant caller pipeline (h) Halvade Somatic (h)
1 node 1 node 2 nodes 4 nodes 8 nodes 12 nodes 16 nodes
WGS
FASTQ Mutect2 84.57 19.45 9.35 4.81 2.47 1.74 1.36
FASTQ Strelka2 55.66 18.74 9.19 4.45 2.31 1.57 1.21
FASTQ Both 86.03 21.89 10.50 5.22 2.74 1.90 1.51
BAM Mutect2 71.53 10.09 5.28 2.47 1.21 0.94 0.73
BAM Strelka2 42.62 9.94 5.24 2.28 1.07 0.83 0.61
BAM Both 72.99 12.77 6.91 2.99 1.53 1.13 0.96
WES
FASTQ Mutect2 12.59 2.38 1.21
FASTQ Strelka2 7.03 1.63 0.82
FASTQ Both 12.66 2.65 1.36
BAM Mutect2 10.72 1.70 0.85
BAM Strelka2 5.16 0.86 0.42
BAM Both 10.79 1.90 1.04
Runtime per step on a single node
45 | — T T T T
Halvade job 1 415
Halvade job 2
40 Halvade job 3 === 7
Tumor alignment E=>3
Normal alignment ©=22
34.7
35 Sort m/—3 4
Merge 7000000
Mark Duplicates ©===1 0 //
30 || Base Recalibrator NI E
Apply BQSR &=—= A2
Mutect? =—= ’ ////
S 7 I
Py AN
E SN
= 20 NN R
NN
15 nmem .
R
10 8.4 8.5 e -
6.6
[XXX KKK XK
5¢ [SSIKEKS] 4.1 |
0 0000099,
Poedelele%e%%!
0 |
Job 1 Job 3

Figure 3: Comparison and breakdown of the runtime of Halvade Somatic and the original Mutect2 pipeline on a single node. Owing to efficient multi-threading support
in BWA, the reduction in runtime for Job 1 is limited. Jobs 2 and 3 show a significant reduction in runtime due to the limited support for multi-core architectures in

GATK/Mutect2.

storage to the individual worker nodes, a task that requires ~10
minutes. We benchmarked Halvade Somatic using an r5d.xlarge
node (2 CPU cores, 32 GB of RAM, and a single 150-GB NVMe SSD)
to run the driver program and r5d.8xlarge nodes (16 CPU cores,
256 GB of RAM, and 2 x 600 GB NVMe SSDs) as worker nodes. The
runtime of Halvade Somatic for the Mutect2 pipeline is reported
in Table 2 for the different samples, input type, and a different
number of nodes, along with the total financial cost using stan-
dard Amazon pricing.

Assessment of variant accuracy

The resulting VCF file can differ slightly between a parallelized
Halvade Somatic run and the corresponding sequential pipeline.
We emphasize that the set of somatic variants called by the orig-

inal pipeline most likely does not fully correspond to the bio-
logical ground truth and is hindered by false-positive and false-
negative variant calls. It is well known that somatic variant call-
ing is a notoriously difficult problem and different somatic vari-
ant calling tools often show limited overlap in their output (see,
e.g., [34]). In this section, we pinpoint the origins of the small
differences that arise purely as a result of the parallelization of
the pipeline itself.

Using the original, sequential GATK/Mutect2 pipeline and
WGS data, we find 116,791 somatic variants after filtering with
the GATK “FilterMutectCalls” module. Starting from FASTQ in-
put, Halvade Somatic identifies 116,661 overlapping (99.89%),
130 missed (0.11%), and 79 additional (0.07%) somatic variants
(see Fig. 5). Most of these differences are due to differential

z20z Aenuer 71 uo isenb Aq 0Z15059/v609e16/00ua10seb16/2601 "0 L/10p/a1o1uE/20us10sebib/woo dnoolwapede//:sdiy woly papeojumoq

8 | Halvade somatic: Somatic variant calling with Apache Spark

Pipeline runtimes

100
Original pipeline

g4.6 86.0

Runtime (h)

32
Halvade Somatic Original pipeline mmm—
1 node =
2nodes mmmm | og
4 nodes M=
8 nodes
16 nodes mmmmm | o4
Speedup —e—

Parallel speedup w.r.t. Halvade Somatic on a single node

Sy 4, & S 7 &
re/‘_ae l/,ecfé, o, re“_ae l/,eC‘f(—) Oty
Figure 4: Runtime and parallel speedup for the WGS sample using FASTQ input.
Table 2. Runtime of Halvade somatic for the Mutect2 pipeline on FASTQ input BAM input
Amazon EMR 106 ‘ ‘ ‘ ‘ ‘ ‘ ‘
Corresponding — Corresponding —
Halvade Original only — Original only —
Somatic Halvade only —— Halvade only ——
. 5
Input No. of nodes runtime (h) Cost (USD) 10
2
WGS &
FASTQ 8 3.25 83.81 <§1
BAM 8 1.43 41.90 °
WES 3
FASTQ 1 2.75 8.80 §1
FASTQ 2 1.42 11.02 (]:.)
BAM 1 1.88 5.87 =
BAM 2 1.08 11.02 =4
S
The cost is calculated using standard pricing of region eu-west-1 (Ireland) at the (3
time of writing. 1
10
read alignment: because of parallelization, the order in which
(paired-end) reads are presented to BWA causes output differ- 100 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
ences. This is due to the random placement of repetitive reads 0 02 04 06 08 10 02 04 06 08 1
Tumor VAF Tumor VAF

and the fact that the fragment size of paired-end reads may
be estimated slightly differently for different FASTQ chunks. To
confirm this, we ran the original GATK/Mutect2 pipeline on a
shuffled FASTQ file and observed the same degree of variability
in resulting somatic variants (data not shown).

When using Halvade Somatic with pre-aligned BAM
input, we eliminate this source of variation and iden-
tify 116,779 overlapping (99.99%), 12 missed (0.01%), and
20 additional (0.017%) somatic variants. These small dif-
ferences in output are caused by subtle variability dur-
ing the mark duplicates step that may occur for reads
that span region boundaries. Additionally, Mutect2 uses
random downsampling at positions with extremely high
coverage.

We conclude that the variants called by Halvade Somatic
match those of the original pipeline to a very high degree and
that very small differences in output are mostly due to random
effects.

Figure 5: Cumulative number of corresponding and discordant somatic variants
between the original, sequential pipeline and Halvade Somatic as a function of
the tumor variant allele frequency (VAF) for FASTQ input (left) and BAM input
(right). “Corresponding” refers to somatic variants identified by both methods;
“Original only” refers to somatic variants called only by the original, sequential
pipeline; “Halvade only” refers to somatic variants identified only by Halvade
Somatic. In all cases, the Mutect2 variant caller was used.

Discussion and Conclusion

The accurate identification of somatic variants from NGS data is
time consuming, especially when WGS data are used. Individ-
ual tools for read mapping, data preparation, and variant call-
ing have matured but often lack support for multi-node and
sometimes even multi-core computer systems. This, in turn,
translates to high execution times—often days—to process raw
sequencing data. For germline variant calling several software

z20z Aenuer 71 uo isenb Aq 0Z15059/v609e16/00ua10seb16/2601 "0 L/10p/a1o1uE/20us10sebib/woo dnoolwapede//:sdiy woly papeojumoq

tools have been proposed in the literature that leverage Big Data
platforms such as MapReduce or Spark to strongly reduce run-
time. For the problem of somatic variant calling, however, such
tools are lacking.

Halvade Somatic implements the somatic variant calling
pipeline according to the GATK best practices recommenda-
tions. It supports both the Mutect2 and Strelka2 variant callers
and takes advantage of the Apache Spark framework to call
somatic variants with high computational performance, scala-
bility, and reliability. Most of the workload can be parallelized:
reads can be mapped in parallel, while data preprocessing
steps and variant calling can be parallelized by genomic re-
gion. Spark is used to create and manage parallel data streams
and run multiple instances of tools in parallel on subsets of
the data. To partition and sort aligned SAM records, and to
build a genome-wide BQSR table, we rely on Spark communi-
cation primitives to exchange the relevant data among worker
nodes.

Halvade Somatic drastically reduces runtimes even on a
single node: depending on the exact set-up (WES or WGS,
FASTQ or BAM input, choice of variant caller), we measured a
speedup ranging from 2.97 to 6.31 times. Halvade also scales well
across multiple nodes if a larger cluster is available. We observe
parallel speedups of 13.27 times and higher when scaling to
16 nodes.

Extensive documentation is available online (https://halvad
eforspark.readthedocs.io). A Docker image is provided to run
Halvade on a single node. Cloud support is available through
Amazon EMR and the Google Cloud.

® Project name: Halvade Somatic

°* Project home page: https://bitbucket.org/dries_decap/halva
deforspark/src/master/

® Operating system(s): Linux

® Programming language: Scala

® Otherrequirements: Apache Spark 3.0 or higher, GATK 4.1.2.0

or higher, Samtools 1.5 or higher, and BWA 0.7.16 or higher

biotoolsID: halvade_somatic

® RRID: SCR.021771

License: GPL v3.0

The human genome reference GRCh38 and all re-
quired reference files wused in this article are pub-
licly available through the Resource bundle of GATK at
https://console.cloud.google.com/storage/browser/genomics-
public-data/resources/broad/hg38/v0/. We used the Homo.
sapiens_assembly38.fasta reference file and Homo_sapiens.
assembly38.known_indels.vcf.gz, which contains the known
variants. The HCC1395 WGS sample [31] used in all
benchmarks in this article is publicly available as well at
http://genomedata.org/pmbio-workshop/fastqs/all/. The WES
sample are available through the TCGA-BRCA data collection at
https://portal.gdc.cancer.gov/cases/0a017f15-1c6b-45e7-8d55-
e0a71df1b2e8. Detailed documentation to run and use Halvade
is available at https://halvadeforspark.readthedocs.io/en/latest.
Snapshots of our code and other data further supporting this
work are openly available in the GigaScience repository, GigaDB
[35].

API: Application Programming Interface; BAM: Binary Sequence
Alignment/Map; bp: base pairs; BQSR: Base Quality Score Re-
calibration; BWA: Burrows-Wheeler Aligner; CPU: central pro-
cessing unit; EDR: enhanced data rate; GATK: Genome Analysis
ToolKit; GPFS: General Parallel File System; HCC: Human Can-
cer Cell Line; HDFS: Hadoop Distributed File System; GRCh38:
Genome Reference Consortium Human build 38; NGS: next-
generation sequencing; RAM: random-access memory; RDD: Re-
silient Distributed Datasets; SAM: Sequence Alignment/Map For-
mat; TCGA: The Cancer Genome Atlas Program; TCGA-BRCA:
Cancer Genome Atlas Breast Invasive Carcinoma; VAF: variant
allele frequency; VCF: Variant Call Format; WGS: whole-genome
sequencing; WES: whole-exome sequencing.

The authors declare that they have no competing interests.

This research is conducted within the project entitled “ATHENA
- Augmenting Therapeutic Effectiveness through Novel Analyt-
ics,” project No. HBC.2019.2528, funded by VLAIO (Flanders In-
novation & Entrepreneurship).

D.D. designed and developed Halvade Somatic. P.C., C.H., and
R.W. assisted with the performance analysis. L.S.B., M.L., and
K.M. aided with the accuracy assessment. J.F. supervised the
work. D.D. and J.F. wrote the manuscript. All authors read and
approved the manuscript.

The computational resources (Stevin Supercomputer Infrastruc-
ture) and services used in this work were provided by the VSC
(Flemish Supercomputer Center), funded by Ghent University,
FWO, and the Flemish Government—department EWI. The re-
sults reported in this work are in part based upon data generated
by the TCGA Research Network: https://www.cancer.gov/tcga.

1. Cancer Genome Atlas Research Network, Weinstein JN, Col-
lisson EA, et al. The Cancer Genome Atlas Pan-Cancer anal-
ysis project. Nat Genet 2013;45(10):1113-20.

2. Barretina], Caponigro G, Stransky N, et al. The Cancer
Cell Line Encyclopedia enables predictive modelling of an-
ticancer drug sensitivity. Nature 2012;483:603-7.

3. Zhang J, Bajari R, Andric D, et al. The International Can-
cer Genome Consortium Data Portal. Nat Biotechnol 2019;37:
367-9.

4. Dagogo-Jack I, Shaw AT. Tumour heterogeneity and resis-
tance to cancer therapies. Nat Rev Clin Oncol 2018;15(2):
81-94.

5. Illumina. Evaluating Somatic Variant Calling in Tu-
mor/Normal Studies. Illumina; 2014. https://www.illumina.
com/content/dam/illumina-marketing/documents/products/
whitepapers/whitepaper_-wgs_tn_somatic_variant_calling.pdf.
Accessed 25 December 2021.

6. Van der Auwera GA, O’Connor BD. Genomics in the Cloud:

z20z Aenuer 71 uo isenb Aq 0Z15059/v609e16/00ua10seb16/2601 "0 L/10p/a1o1uE/20us10sebib/woo dnoolwapede//:sdiy woly papeojumoq

https://halvadeforspark.readthedocs.io
https://bitbucket.org/dries_decap/halvadeforspark/src/master/
https://console.cloud.google.com/storage/browser/genomics-public-data/resources/broad/hg38/v0/
http://genomedata.org/pmbio-workshop/fastqs/all/
https://portal.gdc.cancer.gov/cases/0a017f15-1c6b-45e7-8d55-e0a71df1b2e8
https://halvadeforspark.readthedocs.io/en/latest
https://www.cancer.gov/tcga

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Using Docker, GATK, and WDL in Terra. Sebastopol, CA:
O’Reilly; 2020.

Li H, Durbin R. Fast and accurate short read align-
ment with Burrows-Wheeler transform. Bioinformatics
2009;25(14):1754-60.

Broad Institute. Picard Tools. 2021. http://broadinstitute.git
hub.io/picard/. Accessed 26 July 2021.

McKenna A, Hanna M, Banks E, et al. The Genome
Analysis Toolkit: a MapReduce framework for analyz-
ing next-generation DNA sequencing data. Genome Res
2010;20(9):1297-303.

Cibulskis K, Lawrence MS, Carter SL, et al. Sensitive de-
tection of somatic point mutations in impure and het-
erogeneous cancer samples. Nat Biotechnol 2013;31(3):
213.

Zaharia M, Chowdhury M, Franklin MJ, et al. Spark: clus-
ter computing with working sets. In: Proceedings of the
2nd USENIX Conference on Hot Topics in Cloud Computing
HotCloud’10, Boston, MA. Berkeley, CA: USENIX Association;
2010:10.

Scheffler K, Halpern AL, Bekritsky MA, et al. Strelka2: fast
and accurate calling of germline and somatic variants. Nat
Methods 2018;15:591-4.

Xu C. A review of somatic single nucleotide variant call-
ing algorithms for next-generation sequencing data. Comput
Struct Biotechnol] 2018;16:15-24.

Decap D, Reumers J, Herzeel C, et al. Halvade: scal-
able sequence analysis with MapReduce. Bioinformatics
2015;31(15):2482-8.

Decap D, Reumers J, Herzeel C, et al. Halvade-RNA: parallel
variant calling from transcriptomic data using MapReduce.
PLoS One 2017;12(3): doi:10.1371/journal.pone.0174575.
Dean], Ghemawat S. MapReduce: simplified data processing
on large clusters. Commun ACM 2008;51(1):107-13.

Wang M, Luo W, Jones K, et al. SomaticCombiner: improv-
ing the performance of somatic variant calling based on
evaluation tests and a consensus approach. Sci Rep 2020;10:
12898.

Guo R, Zhao Y, Zou Q, et al
plications on Apache Spark. Gigascience
doi:10.1093/gigascience/giy098.

Abuin JM, Pichel JC, Pena TF, et al. BigBWA: approaching the
Burrows-Wheeler aligner to Big Data technologies. Bioinfor-
matics 2015;31(24):4003-5.

Pireddu L, Leo S, Zanetti G. SEAL: a distributed short
read mapping and duplicate removal tool. Bioinformatics
2011;27(15):2159-60.

Shvachko K, Kuang H, Radia S, et al. The Hadoop Dis-
tributed File System. In: 2010 IEEE 26th Symposium on

Bioinformatics ap-
2018;7(8):

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

Mass Storage Systems and Technologies (MSST). 2010:
doi:10.1109/MSST.2010.5496972.

Abuin JM, Pichel JC, Pena TF, et al. SparkBWA: speeding up
the alignment of high-throughput DNA sequencing data.
PLoS One 2016;11(5):e0155461.

Mushtaq H, Ahmed N, Al-Ars Z. Streaming distributed DNA
sequence alignment using Apache Spark. In: 2017 IEEE 17th
International Conference on Bioinformatics and Bioengi-
neering (BIBE). IEEE; 2017:188-93.

Mushtaq H, Liu F, Costa C, et al. SparkGA: a Spark frame-
work for cost effective, fast and accurate DNA analysis at
scale. In: Proceedings of the 8th ACM International Confer-
ence on Bioinformatics, Computational Biology, and Health
Informatics ACM-BCB '17. New York, NY: ACM; 2017:148-57.
Mushtaq H, Ahmed N, Al-Ars Z. SparkGA2: production-
quality =~ memory-efficient ~ Apache Spark based
genome analysis framework. PLoS One 2019;14(12):
doi:10.1371/journal.pone.0224784.

Al-Ars Z, Wang S, Mushtaq H. SparkRA: enabling big data
scalability for the GATK RNA-seq Pipeline with Apache
Spark. Genes (Basel) 2020;11(1):53.

Herzeel C, Costanza P, Decap D, et al. Multithreaded
variant calling in elPrep 5. PLoS One 2021;16(2):
doi:10.1371/journal.pone.0244471.

Massie M, Nothaft F, Hartl C, et al. ADAM: Genomics Formats
and Processing Patterns for Cloud Scale Computing. EECS
Department, University of California, Berkeley; 2013.

Li H, Handsaker B, Wysoker A, et al. The Sequence
Alignment/Map format and SAMtools. Bioinformatics
2009;25(16):2078-9.

Niemenmaa M, Kallio A, Schumacher A, et al. Hadoop-BAM:
directly manipulating next generation sequencing data in
the cloud. Bioinformatics 2012;28(6):876-7.

Griffith M, Griffith OL, Smith SM, et al. Genome modeling sys-
tem: a knowledge management platform for genomics. PLoS
Comput Biol 2015;11(7): doi:10.1371/journal.pcbi.1004274.
The Genome Modeling System. https://github.com/genome/
gms/wiki. Accessed 26 July 2021.

de Schaetzen van Brienen L, Larmuseau M, Van der Eecken
K, et al. Comparative analysis of somatic variant calling on
matched FF and FFPE WGS samples. BMC Med Genomics
2020;13:94.

Cai L, Yuan W, Zhang Z, et al. In-depth comparison of so-
matic point mutation callers based on different tumor next-
generation sequencing depth data. Sci Rep 2016;6:36540.
Decap D, de Schaetzen van Brienen L, Larmuseau M, et al.
Supporting data for “Halvade Somatic: Somatic Variant Call-
ing with Apache Spark.” GigaScience Database 2021. http:
//dx.doi.org/10.5524/100964.

z20z Aenuer 71 uo isenb Aq 0Z15059/v609e16/00ua10seb16/2601 "0 L/10p/a1o1uE/20us10sebib/woo dnoolwapede//:sdiy woly papeojumoq

http://broadinstitute.github.io/picard/
https://github.com/genome/gms/wiki
http://dx.doi.org/10.5524/100964

