
sensors

Article

Depth Completion and Super-Resolution with Arbitrary Scale
Factors for Indoor Scenes †

Anh Minh Truong * , Wilfried Philips and Peter Veelaert

����������
�������

Citation: Truong, A.M.; Philips, W.;

Veelaert, P. Depth Completion and

Super-Resolution with Arbitrary

Scale Factors for Indoor Scenes.

Sensors 2021, 21, 4892. https://

doi.org/10.3390/s21144892

Academic Editors: Dae-Ki Kang and

Sukho Lee

Received: 7 April 2021

Accepted: 15 July 2021

Published: 18 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims

in published maps and institutional

affiliations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

TELIN-IPI, Ghent University—imec, St-Pietersnieuwstraat 41, B-9000 Ghent, Belgium;
Wilfried.Philips@UGent.be (W.P.); Peter.Veelaert@ugent.be (P.V.)
* Correspondence: anhminh.truong@UGent.be; Tel.: +32-456-21-63-97
† This paper is an extended version of our paper published in Truong, A.M.; Philips, W.; Veelaert, P. Depth Map

Inpainting and Super-Resolution With Arbitrary Scale Factors In Proceedings of 2020 IEEE International
Conference on Image Processing (ICIP 2020), Abu Dhabi, United Arab Emirates, 25–28 October 2020.

Abstract: Depth sensing has improved rapidly in recent years, which allows for structural information
to be utilized in various applications, such as virtual reality, scene and object recognition, view
synthesis, and 3D reconstruction. Due to the limitations of the current generation of depth sensors,
the resolution of depth maps is often still much lower than the resolution of color images. This
hinders applications, such as view synthesis or 3D reconstruction, from providing high-quality
results. Therefore, super-resolution, which allows for the upscaling of depth maps while still retaining
sharpness, has recently drawn much attention in the deep learning community. However, state-of-
the-art deep learning methods are typically designed and trained to handle a fixed set of integer-scale
factors. Moreover, the raw depth map collected by the depth sensor usually has many depth data
missing or misestimated values along the edges and corners of observed objects. In this work, we
propose a novel deep learning network for both depth completion and depth super-resolution with
arbitrary scale factors. The experimental results on the Middlebury stereo, NYUv2, and Matterport3D
datasets demonstrate that the proposed method can outperform state-of-the-art methods.

Keywords: depth super-resolution; depth completion; deep guided filter

1. Introduction

In practice, the resolution of a depth map acquired by an affordable depth sensor is
lower than that of the corresponding RGB image, due to technological limitations. This
limits the accuracy of applications that require depth information obtained by depth
sensors. To address this problem, many studies have considered super-resolution for
depth maps [1–9]. The goal of DSR is to obtain high-resolution depth maps from low-
resolution input depth maps. Recent research on DSR [6–9] has designed and trained
specific upscaling modules for a fixed number of integer scaling factors (e.g., ×2, ×4, or
×8). Although deep learning methods can outperform other classical approaches, existing
deep learning methods are often designed only for upscaling depth maps with an integer
scaling factor. However, arbitrary scaling is important in hybrid camera networks with
RGB and depth sensors, where the sensors have different resolutions, such as indoor
camera networks for novel view synthesis. For example, consider a camera network with
an Intel RealSense R200 (640× 480 depth map) and an RGB camera with a resolution of
2048× 1536. If the magnifications of the lenses are equal, the scale factor is 3.2, which is not
an integer. In this paper, we mainly focus on indoor camera networks, where both depth
completion and DSR need to be considered.

In addition to the limited resolution of depth maps collected from depth sensors, depth
values around the corners and along the edges of observed objects are usually inaccurate
or missing [10]. Depth completion is the process of reconstructing regions with missing
depth values based on the depth information of the remaining part of the depth map and

Sensors 2021, 21, 4892. https://doi.org/10.3390/s21144892 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-2376-927X
https://orcid.org/0000-0003-4746-9087
https://doi.org/10.3390/s21144892
https://doi.org/10.3390/s21144892
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21144892
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21144892?type=check_update&version=2


Sensors 2021, 21, 4892 2 of 24

the visual information of the color image. Similar to DSR, researchers have intensively
studied depth completion over the last decade, in order to improve the quality of depth
maps acquired by depth sensors [11–15].

To the best of our knowledge, although methods for depth completion and DSR have
been proposed, all previous work has treated depth completion as an issue separate from
DSR. This also means that depth completion and DSR cannot be jointly solved. For example,
Li et al. [15] proposed a pipeline to obtain reconstructed depth super-resolution images. In
this pipeline, depth completion is applied to the result of DSR. Thus, depth completion
needs to be processed on high-resolution images, which leads to a high computational cost.
Furthermore, upscaling the resolution of the LR depth map also means increasing the size
of the missing areas. Thus, the size of the depth completion network must also be larger
(i.e., with a larger receptive field), in order to effectively recover the missing areas on the
SR depth map; this also increases the computational cost.

In addition, DSR and depth completion require local information of a different nature.
DSR requires local information from neighboring pixels in a small area around the pixel,
in order to analyze the characteristics of the textures in the low-resolution image. Then,
high-quality textures are generated, based on these characteristics, in the super-resolution
image. On the other hand, depending on the size of the holes on the depth map, depth
completion might require local information from a much larger area around the pixel, in
order to derive the value of the area with missing information. Therefore, joint optimization
of the DSR and depth completion tasks is also a challenging problem, due to the different
nature of these tasks. In our work, we propose a novel method to perform both depth
completion and DSR with arbitrary scale factors. We summarize the contributions of the
proposed novel approach as follows:

• In our work, we propose a novel DSR network that reuses the extracted features from
the completion network on LR images, in order to minimize the network size and
computation time for real-time applications;

• We upscale low-resolution depth maps with an arbitrary scaling factor, based on the
combination of the results of different projection functions. These projection functions
are learned to project the pixels in the LR depth map to an SR depth map, based on
a DCNN;

• We propose a deep neural network for depth completion, based on a deep guided
filter, in order to produce better reconstructed depth maps than state-of-the-art depth
completion methods.

The remainder of this paper is organized as follows. In Section 2, we review the
previous studies focused on various topics related to DSR and depth completion. In
Section 3, we explain the proposed method for DSR with arbitrary scaling factors and
depth completion, as well as the implementation details. We present the experimental
setups, evaluation metrics, experimental results, and detailed analysis of our experiments
in Section 4. Finally, Section 5 concludes the paper.

2. Related Work

Depth estimation. Depth estimation is a problem with a long history of research. The
goal of depth estimation is to find the corresponding depth of pixels in the scene. The
estimated depth can then be used for other purposes, such as in 3D vision applications.
Traditionally, depth estimation has been performed based on triangulation and stereo
matching in stereo vision systems [16,17]. Alternatively, depth estimation can be
accomplished using depth sensors, such as the Kinect sensor [18]. However, accurately
estimating depth from just a single RGB image remains a huge challenge [19]. With the
development of machine learning algorithms, many studies have shown promising results
in recent years [19–25]. Although estimating depth from a single image is not as accurate
and detailed as estimating depth from a depth sensor, these results show that we can apply
feature learning methods to extract the spatial features from color images. Furthermore,



Sensors 2021, 21, 4892 3 of 24

these features can be used as secondary information, in order to improve the quality and
fill in missing depth values of the depth map captured by the depth sensor.

Eigen et al. estimated the depth map from a single image using a multiscale DCNN [20].
Lee et al. generated multiple overlapping depth maps from different parts of a single
image using a DCNN based on Fourier domain analysis [22]. Then, they combined these
overlapping depth maps to generate the final depth map. In [22], the authors also proposed
a depth-balanced Euclidean loss, in order to balance the impact of distant and near objects
during the training process. Thus, the network can estimate the depth of both near and far
objects equally well. Fu et al. [23] proposed atrous spatial pyramid pooling with multiple
large receptive fields through dilated convolutional operations, in order to extract the
spatial features of the scene at multiple scales. In [24,25], the lightweight deep network
also showed impressive performance, in terms of speed and accuracy, in depth estimation
and semantic segmentation. In [25], this method improved the skip connection of the UNet
architecture [26], by replacing the concatenation operation with chained residual pooling
to better capture contextual information.

Although single-image depth estimation is not our primary goal, the above work
elucidates which architectures are suitable for estimating the spatial structure of a scene.
In our work, one of the goals is to quickly fill in missing information regions in depth
maps captured by depth sensors for real-time applications. Therefore, we also investigated
lightweight DCNN architectures to strike a balance between accuracy and speed for depth
completion and DSR.

Image inpainting. Image inpainting is the process of reconstructing missing areas in
an image, which can used for a number of applications such as filling missing areas for
novel view interpolation or image editing to remove unwanted objects. Depth completion
is a specific case of inpainting. However, the error in depth completion is usually much
more serious than the error in RGB inpainting. In image inpainting, the result usually
does not need to be numerically accurate, as long as it looks realistic enough to a human.
Typically, a mask is also provided to indicate the missing area on an image; however,
this information may become faded after passing through a few layers in the DCNN.
Liu et al. [27] introduced partial convolution, in order to reinforce the information of the
missing area in the DCNN. Mimicking textures from other regions using a contextual
attention mechanism has been shown to be effective [28,29].

While some concepts of image inpainting are also very useful for depth completion,
image inpainting and depth completion are still very different. For image inpainting, we
have only one source of information. As for depth completion, we have the additional
information from the color image. Therefore, in many cases, the spatial structure of the
missing parts in the depth map can still be derived from the color image, which can be
helpful for the depth completion problem. On the other hand, mimicking information from
other image regions—which can be quite powerful in image inpainting—is often not a
good idea for depth completion. The main goal of depth completion is to estimate correct
depth values for the missing areas, rather than simply mimicking the texture from other
areas in the image.

Depth completion. The goal of depth completion is to fill in missing holes in depth
maps, based on the raw depth observations and corresponding RGB images [13]. In Zhang’s
work [13], the authors extracted the structural information of the scene geometry, based
on the surface normals and occlusion boundaries from the RGB image. Then, the depth
values were interpolated, based on the local neighborhood and the extracted structural
information. In [30], Huang et al. applied the contextual attention mechanism to modify
the interpolation, based on the depth completion method of [13]. Although the method
achieved high accuracy, using multiple submodules of the DCNN is computationally
expensive. Furthermore, References [13,30] only exploited the guidance information for
depth completion based on the predicted surface normals and occlusion boundaries
estimated by the DCNN. This means that the error in the prediction of the surface
normals and the occlusion boundaries can mislead the depth completion process. In



Sensors 2021, 21, 4892 4 of 24

our work, we tried to extract the guidance information directly from color images. This
allows the proposed network to use spatial information other than surface normals and
occlusion boundaries.

Depth super-resolution. DSR is the process of improving the spatial resolution of
depth maps. DSR methods can be divided into two main classes: those that use the high-
resolution color image as a guide to improve the spatial resolution and those that use
only the depth map. Conventional and deep learning methods have been proposed in
both classes. Some examples of conventional learning methods are Markov random fields,
autoregressive models [1–3,5,31], rigid body self-similarity [32], sparse representation, and
dictionary methods [4,33–37]. Song et al. [7] proposed one of the early works of DSR
based on an end-to-end DCNN. Riegler et al. [8,38] proposed the use of anisotropic total
generalized variation regularization in a DCNN to model the piecewise affine structures
in depth data. Meanwhile, Hui et al. [39] upscaled from LR depth maps based on
deconvolutions (fractionally strided convolutions).

Later, Song et al. [9] proposed considering the DSR task as a series of novel-view
synthesis steps, where a pixel in the LR depth map is upscaled into r × r pixels in the
SR depth map (r is the DSR scale factor). The authors accomplished this by upscaling a
pixel from the LR depth map to the SR depth map using r× r projection functions. Each
projection function in [9] was implemented by a separate DCNN. Thus, r× r “virtual” depth
maps were generated. The final SR depth map was then generated by rearranging the r× r
“virtual” depth maps. In particular, the authors implemented four fixed deep networks
to synthesize four different “virtual” depth maps. Song et al. then rearranged them to
generate an SR depth map (with the scale factor equal to two). Their approach greatly
improved the accuracy of DSR, compared to previous works. However, this approach does
not work in the case of noninteger numbers, where one pixel in the SR depth map is the
combination of multiple pixels in the LR depth map. Furthermore, this approach requires a
different set of subnetworks for each integer scaling factor. Despite the impressive accuracy,
the authors in [9] considered the upscaling problem as the projection of a pixel in the LR
depth map to r× r pixels in the SR depth map. Thus, it is not suitable for noninteger upscale
factors, where a pixel in the SR map can be the combination of two or more pixels. In [40],
we produced several candidate depth maps using a RDN [41]. Then, these candidate depth
maps were projected onto the SR image plane. Finally, the candidates were fused based
on the weight matrices generated by the meta upscale module [42]. In [40], we applied
a classical image inpainting method for depth completion. The filled depth values were
simply interpolated, based on the neighboring pixels. Thus, this approach only works for
small missing depth regions.

3. Proposed Method

Let DHR denote the HR depth map, IHR denote the HR color image, DLR denote
the low-resolution depth map, ILR denote downscaled image (to match the resolution of
DLR), and MLR denote the mask. Note that MLR can be obtained from the confidence map
provided by the depth sensors (by thresholding), in order to indicate pixels without depth
values. The architecture of our network is depicted in Figure 1. The network consists
of three main modules: A Weight Prediction Module, a Generator Module, and a Depth
Completion Module. In our work, the low-resolution input depth map DLR and low-
resolution (downscaled) RGB input image ILR are first fed into the Depth Completion
Module, in order to extract the deep features and produce the inpainted depth map DC.
The inpainted depth map is then projected onto the SR image plane. Then, it is modulated
by the residual maps (generated by the Generator Module) based on the elementwise
summation of two matrices. The deep features extracted at the last convolutional layer
of the Depth Completion Module are also fed into the Generator Module. The Generator
Module then generates the “virtual” depth maps from these deep features. The Weight
Prediction Module generates the weight maps, which are then used to fuse the “virtual”



Sensors 2021, 21, 4892 5 of 24

depth maps. Finally, the output is synthesized based on the weighted average of the
generated depth values from the “virtual” depth maps.

[L (i, r) , L (j, r) , 1/r] F
C

R
eL

U

F
C

(a) Weight prediction module

R
eL

U

N
o
rm ...

(1× T )

i′, j′

DLR

i′ =
⌊
i
r

⌋
, j′ =

⌊
j
r

⌋

Depth+RGB+Mask

G
en
er
a
to
r

(c) Generator module

...

(T × 1)

⊕
...

(T × 1)

⊗ i, j

Output

Depth completion

(b) Depth completion module

Projection

DC

FFB
1

Figure 1. The architecture of the proposed networks for depth completion and depth super-resolution
with arbitrary scale factors. This figure depicts the process used to synthesize the output at location
i, j in the SR depth map: (a) the Weight Prediction Module; (b) the Depth Completion Module; and
(c) the Generator Module. Note that ⊕ and ⊗ represent the elementwise summation of two matrices
and matrix multiplication, respectively.

In this paper, we upscaled the low-resolution depth map DLR with scale factor r by
combining the different projections of the input LR depth map to the SR image plane.
The projections are generated by the RDN in the Generator Module. We considered
each channel of the output from the Generator Module as a residual map, which is then
combined with the original depth values to generate the possible depth values on the SR
depth map. The result of this process is multiple projected depth maps on the SR image
plane. Finally, the depth values of the SR depth map are synthesized based on the projected
depth maps and the guidance of the weight map (generated at the Weight Prediction
Module). Thus, the network can learn to select and combine the SR from the projected
depth maps, with respect to the scale factors.

3.1. Depth Completion Module

The architecture of the proposed Depth Completion Module is depicted in Figure 2.
The module is composed of four multistage DCNN branches: A Depth branch, a Guidance
branch, a Mask branch, and a Fusion branch. We denote the color feature map and the
guidance feature map by FCB

l and FGB
l , respectively, extracted from the color image by the

Guidance branch in the l stage. Let FDB
l denote the depth feature map output of the Depth

branch in the lth stage, FMB
l denote the validity feature map output of the Mask branch

in the l stage, and FFB
l denote the fusion feature map generated by combining the depth

feature map and the color feature map in the l stage with the fusion feature map in the
(l + 1) stage.

In our work, we first extracted multiscale depth feature maps from the LR depth map
to capture the spatial structures of the scenes, through the process of spatial dimension
reduction in the Depth branch (Figure 2). These features are the main source of information
used to synthesize the inpainted depth map later in the network. The spatial dimension



Sensors 2021, 21, 4892 6 of 24

reduction also reduces the area of large hole regions. This allows the convolutional kernels
for pixels located in the middle of large holes to gather information (as deep features) of
the nonhole surrounding regions. These features are then used to estimate the depth values
of pixels located in hole regions. Although this can be done by applying convolutional
layers with sufficient times, downsampling the spatial dimension (by 16 times) in the fifth
stage of the depth branch can reduce both the computational cost and the required memory
space of the network. However, downscaling the feature maps also degrades fine details,
such as edges. Thus, the extracted depth features of previous stages of the depth branch
are also retained, in order to synthesize the inpainted depth map.

LR Depth

Output

LR RGB

LR Mask

Stage 1
Stage 2

Stage 3
Stage 4

Stage 5

Stage 1
Stage 2

Stage 3
Stage 4

Stage 5

Depth branch Guidance branch Mask branch Fusion branch

Figure 2. Architecture of the Depth Completion Module. The module consists of four DCNN
branches: A Depth branch, a Guidance branch, a Mask branch, and a Fusion branch.

Even though the extracted multiscale depth features can describe the information
from neighboring regions, the network still has very few clues to complete the missing
regions from just these features. For example, the network cannot know the shape of an
object or where the boundary of an object is. Surface normals and occlusion boundaries
estimated by the DCNN from color images were used as guidance information to complete
the missing regions in [13,30]. However, as shown in [24,25], the network can also estimate
the depth values from just a color image. Thus, in this paper, we attempted to extract the
guidance features directly from the color image using the DCNN in the Guidance branch
to synthesize the depth values. The depth features extracted from the LR depth map can
be combined, based on the guidance information extracted by the Fusion branch, in order
to fill in the missing depth areas.



Sensors 2021, 21, 4892 7 of 24

Furthermore, in practice, depth sensors can only sense depth information within a
fixed range. In other words, the depth sensors cannot estimate the depth in areas outside
the depth range. This creates large areas of missing depth values in the depth map (see,
e.g., Figure 3). If a hole area is larger than the receptive field of the DCNN, the DCNN
cannot fill in the pixels located deep in the center of this hole area. In this case, the spatial
information extracted from the color image provides information to estimate the depth
values. For instance, missing edges in the depth image usually coincide with color image
edges, and this fact can be used to restrict the depth values to be completed. Thus, we
also generate validity maps (through the Mask branch; see Figure 2) to indicate where
the features extracted from the color image are more important than those extracted from
the depth map. To do this, we first extract the color feature map FCB

l using the DCNN in
the lth stage of the Guidance branch. Then, FGB

l in the lth stage of the Guidance branch is
computed, based on FCB

l and FMB
l , as follows:

FGB
l = FMB

l � FCB
l , (1)

where� denotes elementwise multiplication. This allows the network to amplify the values
of the guidance features in necessary regions and reduce the values of
unimportant features.

(a) HR (b) LR

(c) UNet output (d) EfficientNet output.
Figure 3. The visual comparison of the depth completion on the Matterport3D dataset [43]. Note
that (c) was produced using the Guidance branch based on UNet [26] and (d) was produced using
the Guidance branch based on EfficientNet [44].

Finally, the inpainted depth map is progressively synthesized in the Fusion branch. In
our work, the Fusion branch starts with the combination of the fifth-stage depth feature
map and the fifth-stage guidance feature map. Due to the large receptive field at this
stage, the network is better able to fill possible large hole regions. The fusion results in
the fifth stage are then gradually upscaled and combined with the guidance features from
the fourth stage to the first stages. As explained earlier, this helps the network to improve
the details that were degraded after the spatial dimension of the depth feature maps was
reduced. In this paper, we propose the Fusion Block (Figure 4), in order to fuse the depth
features and the guidance features, based on the idea of a trainable guided filter [45]. It
receives three different feature maps: FGB

l , FFB
l+1, and FDB

l . In the Fusion Block, both the
linear coefficients Al and Bl of the deep guided filter are learned from the data through



Sensors 2021, 21, 4892 8 of 24

the Conv Block (Figure 4). The Conv Block consists of two different 3× 3 convolutional
layers with Leaky ReLU activation [46]. The linear coefficient matrix Al is learned, in
order to dynamically select depth features for each channel and each spatial location on
the depth feature maps. On the other hand, the linear coefficient matrix Bl is learned to
reinforce the information on the depth feature maps, when needed. As mentioned earlier,
to enhance the details of the reconstructed depth map, FDB

l and FFB
l+1 are fused to generate

the merged depth feature map FM
l . We generate the merged depth feature map based on

the residual learning FM
l = FFB

l+1 + FDB
l [21]. Residual learning has proven its effectiveness

to preserve the details of the output image while performing feature map upsampling
within the network [21]. Note that, as there is no previously fused feature map in the fifth
stage, the first merged depth feature map is computed as FM

l = FDB
l instead. Then, the

guided feature map FG
l is computed as follows:

FG
l = Al � FM

l + Bl . (2)

As modification based on image color can sometimes be misleading (e.g., the edges in
a color image do not always coincide with the edges in the corresponding depth map), the
output depth maps may contain minor artifacts. Thus, we apply an RDN with 8 layers to
FG

l , in order to obtain a better fused feature map FFB
l . To produce the inpainted depth map,

we apply a single 3× 3 convolutional layer with ReLU activation to obtain the final fused
feature map FFB

1 . Finally, both the reconstructed depth map and the final fused feature map
FFB

1 are fed into the next stage of the network, in order to produce the SR depth map.

FGB
l

FFB
l+1

FDB
l

Conv Block

⊕

Al

Bl

FM
l

Merge layer RDN FFB
l

Figure 4. The architecture of the Fusion Block. Note that ⊕ represents the elementwise summation of
two matrices.

3.2. Upscaling with Arbitrary Scale Factors

In [9], Song et al. projected a pixel in an LR depth map to an SR depth map using
r× r networks. Their approach was designed for integer scale factors only. In the case of
a noninteger scale factor, one might think that applying a good traditional interpolation
method, such as bicubic interpolation, to the upscaled depth map (the closest integer scale
factor) could accomplish the task. However, our experimental results showed that the
quality of the interpolated depth maps was greatly reduced (which will be shown later
in Section 4.5). This might occur due to the fact that interpolating float values is much
more difficult than integer value interpolation. Furthermore, the upscaled depth maps
produced by the network already contain some incorrectly estimated depth values. These
errors are very small (e.g., the average RMSE of scale factor 2.0 on the Middlebury dataset
was 0.891 on a scale of 255); however, it might have a bad impact on the interpolation
results. Thus, the depth value of a pixel in the SR depth map should be interpolated
directly from the depth values in the LR depth map. The main idea of our work was to
synthesize the depth value of a pixel on an LR depth map, based on a set of multiple
learnable projection functions, to handle the arbitrary scale factor. Moreover, we selected



Sensors 2021, 21, 4892 9 of 24

only the relevant projection functions, based on both the relative location of the pixel and
scale factor, through the learnable weight prediction module. To do so, we first generate
multiple “virtual” depth maps using the Generator Module (Figure 1). Then, we selectively
combine them with a specific weight vector for each scale and location in the depth map,
based on the guidance of the Weight Prediction Module.

Indeed, this process is very similar to the nearest neighbor upscaling method. However,
at location (i, j) in the SR depth map, multiple possible depth values (from the “virtual”
depth maps) are generated by the Generator Module, rather than just one value at location(

i′ =
⌊

i
r

⌋
, j′ =

⌊
j
r

⌋)
in the completed LR depth map. Then, the proper depth value at

location (i, j) in the SR depth map is combined, based on the weight vector produced by
the weight prediction module, with regard to the relative location and scale factor r. At
first glance, it may seem very naive to consider only the information from a single location
on the LR depth map. However, the depth values of the “virtual” depth maps generated
by the DCNN are slightly modified from the original values, based on the neighboring
pixels. Thus, instead of selecting the same depth value from location (i′, j′) in the LR, the
proposed network generates the depth values for different scales and relative locations
Lrelative(i, j, r) with respect to location (i, j) in the SR depth map.

The Generator Module (upscaling module) first takes the reconstructed depth map DC

as the input to DSR. It has been shown, in [21,47], that the RDN can produce better image
quality for image generation tasks. Thus, we applied the idea of residual learning based on
the RDN [47] to generate multiple residual maps. These residual maps are combined with
the original depth values to generate the “virtual” depth maps by the Generator Module.
Then, the “virtual” depth maps are projected onto the SR image plane. Let DV

t,i,j denote the

projected depth value of the tth “virtual” depth map to the location (i, j) in the SR depth
map. Then, DV

t,i,j is computed as follows:

DV
t,i,j = DC

b i
r c,
⌊

j
r

⌋ + R
t,b i

r c,
⌊

j
r

⌋ , (3)

where R
t,b i

r c,
⌊

j
r

⌋ is the residual value at location
(⌊

i
r

⌋
,
⌊

j
r

⌋)
, DC
b i

r c,
⌊

j
r

⌋ is the depth value

of the LR depth map at location R
t,b i

r c,
⌊

j
r

⌋, and r is the scale factor.

As a result of this process, T projected “virtual” depth maps (DV
0 , DV

1 , ..., DV
T ) are

generated. Finally, the SR depth map is constructed by combining the projected “virtual”
depth maps, with regard to the guidance weight vectors generated by the Weight Prediction
Module (see Figure 1):

DSR
i,j =

T

∑
t=0

(
WGB

t,i,j ·DV
t,i,j

)
, (4)

where WGB
t,i,j is the guidance weight of the tth projected “virtual” depth map at location

(i, j) and · represents the multiplication operator. Instead of using the location of the pixel
as an input to the Weight Prediction Module, we applied the same idea of using relative
location as [40,42]. We did not use the locations of the pixels, as the number of locations in
an image can be very large. Then, for interpolation of the pixel at location (i, j) in the SR
depth map, the location of the source information on the LR depth map can be computed
as
(⌊

i
r

⌋
+
{

i
r

}
,
⌊

j
r

⌋
+
{

i
r

})
. As the integer shift in the integer parts of the location is

just a translation, it is enough to consider the fractional part of the location for optimal
interpolation. For each depth value at location (i, j) in the SR depth map, we compute the
relative location with regard to the scale factor Lrelative(i, j, r) = (L(i, r), L(j, r), 1/r) and



Sensors 2021, 21, 4892 10 of 24

feed it into the Weight Prediction Module. The Weight Prediction Module then produces
the WGB

t,i,j at location (i, j), as mentioned earlier. The L(·) function is described as follows:

L(i, r) =
i
r
−
⌊

i
r

⌋
. (5)

By using only the fractional part of the location, not only is the range of values
normalized to [0, 1), but the redundant integer shift can also be omitted. This allows the
Weight Prediction Module to learn the weights for arbitrary scale factors effectively.

4. Experiments and Results

In this work, we implemented three different variants of the proposed network, in
order to find out which architecture was the best for extracting spatial features from color
images. These variants are named DCSN-RGBM, DCSN-EfficientNet, and DCSN-UNet,
respectively. In the first variant, DCSN-RGBM, the Guidance branch was implemented
based on EfficientNet, while the Depth branch was implemented based on UNet [26].
We chose EfficientNet as it has shown impressive results on the ImageNet dataset [48].
This variant was implemented not only for DSR, but also depth completion, as the
downsampling layers can increase the size of the receptive field of the network. In the
second variant, DCSN-EfficientNet, the Guidance branch was also implemented based
on EfficientNet, while both the Depth and Mask branches were implemented based on
UNet. For the third variant, DCSN-UNet, we replaced EfficientNet in the Guidance branch
with a UNet encoder [26]. For the Depth and Fusion branches, we used the encoder and
decoder architectures of UNet. For DSR, RDN has been used in most state-of-the-art DSR
methods [7,9]. Thus, we also implemented a variant DCSN-RDN of the proposed method
by replacing the Depth Completion Module with an RDN with 8 convolutional layers. This
version of the network was much smaller than DCSN-RGBM, DCSN-EfficientNet, and
DCSN-UNet.

We first evaluated the performance of DCSN-RGBM, DCSN-EfficientNet, and DCSN-
UNet, trained for the depth completion task on the Matterport3D dataset [43]. We trained all
the variants on the training set and tested them on the testing set. We show the comparison
of these variants, along with state-of-the-art methods, in Section 4.4.

To evaluate the DSR performance of the proposed method, we selected the Middlebury
Stereo and NYUv2 Depth datasets [17,49–53]. As DCSN-EfficientNet achieved the best
performance for the depth completion task, we only evaluated this variant in the DSR task.
Although the Middlebury stereo dataset has been widely used to evaluate the performance
of DSR methods, this dataset was not captured by depth sensors. Therefore, the depth
maps in the Middlebury stereo dataset do not have the same characteristics as the depth
maps captured by real depth sensors (e.g., noise and edges). Thus, we evaluated the DSR
performance of the proposed method on the NYUv2 dataset. We first trained and evaluated
DCSN-EfficientNet and DCSN-RDN on the Middlebury dataset. Then, we evaluated the
pretrained models on the Middlebury dataset, in order to study the generalization ability of
the proposed method. After that, we fine-tuned both DCSN-EfficientNet and DCSN-RDN
on the NYUv2 Depth dataset, in order to evaluate the performance of the DSR task on the
data captured by depth sensors.

Finally, we evaluated the network trained for both depth completion and DSR tasks
on the Matterport3D dataset. Note that, for the depth completion task, the network needs
not only to fill in the missing depth values, but also to modify incorrect depth values in the
raw depth map. Furthermore, the Middlebury and NyuV2 datasets do not have the ground
truth for the depth completion task. To evaluate the DSR on the Middlebury and NyuV2
datasets, we downsampled the raw depth maps to generate the LR depth maps and kept
the raw depth maps as the ground truth. On the other hand, the ground truth of the depth
completion task is generated from the 3D reconstruction of the whole scene. Therefore,
noise and misestimated depth values are also reduced in the ground truth for the depth
completion task. Therefore, we did not test the DSR performance of the proposed network



Sensors 2021, 21, 4892 11 of 24

(which was trained on Matterport3D) on the Middlebury and NyuV2 datasets. Since the
network is supposed to modify the depth map to reduce noise and false estimated depth
values, the errors were higher than those of the model trained only for the DSR task.

4.1. Datasets

Middlebury stereo dataset [17,49–52]. The dataset we used consists of 59 RGB-D
images from the Middlebury stereo dataset (7, 2, 9, 23, and 18 images from the 2001, 2003,
2005, 2006, and 2014 datasets, respectively). We trained our network with 55 images.
Instead of using whole images to train the network, we randomly extracted small patches
from the original images to be used as the input of the network. As the resolutions of the
original depth maps vary, the sizes of the patches also vary, from 64× 64 to 256× 256.
We also augmented the data by rotating and flipping the extracted patches. Finally, we
evaluated the super-resolution performance of our proposed method on the Cones, Teddy,
Tsukuba, Venus, Jadeplant, Motorcycle, Playtable, and Flower images (these images have been
used in a previous work [9] on DSR)

NYUv2 dataset [53]. This dataset consists of 1449 pairs of aligned RGB and depth
images from a variety of indoor scenes captured using a Microsoft Kinect. We used
795 samples to fine-tune the model, which was previously trained on the Middlebury
stereo dataset, and 654 samples to test the performance of the proposed method. We split
the dataset into training and testing sets, as in [53]. We did not conduct depth completion
experiments on the NYUv2 depth dataset [53], as the ground truth for depth completion
was not available.

Matterport3D [43]. This large-scale indoor dataset consists of over 110,000 RGB-D
images of 90 scenes. For the depth completion task, Yinda et al. [13] generated the ground
truth from reconstructed meshes for each scene in the Matterport3D dataset. Due to the
large number of samples and the availability of the ground truth for depth completion, we
decided to evaluate the proposed method on this dataset.

4.2. Evaluation Metrics

In this study, we used the following standard metrics to evaluate depth completion:
RMSE, MAE, PSNR, and SSIM. Both RMSE and MAE directly evaluate the accuracy of the
predicted depth maps; however, the RMSE is more sensitive to larger deviations, while the
MAE is much less sensitive to the magnitude of the deviation. In other words, the RMSE
can evaluate both the accuracy and consistency of the model (not producing outliers), while
the MAE only focuses on the accuracy that the model can achieve overall. On the other
hand, SSIM is used to evaluate the structural similarity between the ground truth and the
completed depth map. We also evaluated the proposed method, based on the percentage of
pixels within the error range t, as proposed in [13,30]. This assessment was used to further
evaluate the number of inliers produced by the depth completion method. The error range
is defined in Equation (6):

δt =
1

w× h

w

∑
i=0

h

∑
y=0

, δt(i, j) (6)

where t ∈ 1.05, 1.10, 1.25, 1.252, 1.253, w and h are the width and height of the HR depth
map, respectively, and δt(i, j) is defined in Equation (7):

δt(i, j) =





1, max
(

DSR(i,j)
DHR(i,j) , DHR(i,j)

DSR(i,j)

)
> t

0, otherwise
. (7)

4.3. Experimental Setup

In our work, we optimized the network parameters using AdamW [54], with the
initial learning rate set to 10−4. The AdamW (or Adam with decoupled weight decay)
algorithm is a variant of Adam [55], which is used to speed up convergence. Note that
the initial learning rate is the upper bound of the learning rate for AdamW. The learning



Sensors 2021, 21, 4892 12 of 24

rates of the parameters are further modified by AdamW. We used the standard exponential
decay rates and weight decay rate as follows: β1 = 0.9, β2 = 0.999, and λ = 0.01. After
every 10 epochs, we reduced the upper bound of the learning rate by half, in order to
accelerate convergence. Finally, the model converged after 50 epochs. We implemented the
depth completion model in Python 3.7, using the PyTorch 1.3 library. We conducted all the
experiments on an Nvidia GeForce GTX 1080 Ti.

4.4. Comparison of Depth Completion Methods on the Matterport3D Dataset

In this experiment, we scaled the depth map and image to 320× 256, as in [13,30].
The training process included two stages. In the first stage, we froze the Refinement
Module and trained only the network for the DSR task. In the second stage, we trained
the entire network, considering both the DSR and depth completion tasks. We used the
PyTorch implementation of EfficientNet from the Segmentation Models library [56] in
this work. Finally, we implemented only the Guidance branch with EfficientNet to limit
the computational time and required memory. On a GeForce GTX 1080 Ti graphics card,
the computational time of the network doubled when we implemented all branches with
EfficientNet, but the quality of the results did not change significantly. Thus, we decided to
implement only the Guidance branch with EfficientNet to gain speed.

Table 1 shows the comparison of the experimental results on the Matterport3D
dataset, considering our method and the methods proposed by Zhang et al. [13] and
Huang et al. [30]. Note that this is the result of the networks trained for depth completion
only. The RMSE and MAE were calculated in meters. The results showed that the proposed
method with the Guidance branch based on UNet was slightly worse than the method
proposed in [30]. However, it is noticeable that it had a higher percentage of inliers, as
shown by the δt and SSIM values. It seems to be that the UNet architecture slightly overfit
the training data. Thus, UNet tended to produce more outliers on the test set. Therefore, it
increased both the RMSE and MAE. On the other hand, EfficientNet has been shown to have
better generalization on the ImageNet dataset. It can produce better results and outperform
state-of-the-art methods. We provide a visual comparison of the depth completion task for
the proposed method on the Matterport3D dataset in Figure 3.

Table 1. The RMSE, MAE, SSIM, and the percentages of pixels within different error ranges for depth completion on the
Matterport dataset. The best result is shown in bold. The RMSE of the FCN is from [21], that for the MRF is from [57], and
that for the bilateral filter was given in [30]. For the RMSE and MAE, lower is better. For SSIM and the error ranges, higher
is better.

RMSE MAE SSIM δ1.05 δ1.10 δ1.25 δ1.252 δ1.253

Bilateral 3.0186 3.4961 0.507 0.385 0.497 0.613 0.689 0.730
MRF [57] 3.6726 4.2625 0.692 0.506 0.556 0.651 0.780 0.856
FCN [21] 3.6726 4.2625 0.605 0.397 0.527 0.681 0.808 0.868

Zhang et al. [13] 1.316 0.461 0.762 0.657 0.708 0.781 0.851 0.888
Huang et al. [30] 1.092 0.342 0.799 0.661 0.750 0.850 0.911 0.936

DCSN-UNet 1.104 0.338 0.800 0.702 0.776 0.860 0.913 0.937
DCSN-RGBM 1.045 0.308 0.809 0.712 0.788 0.870 0.922 0.945

DCSN-EfficientNet 1.031 0.305 0.811 0.717 0.794 0.871 0.922 0.945

4.5. Comparison of Depth Super-Resolution Methods on the Middlebury Dataset

In this section, we focus on evaluating the DSR performance of the proposed method
on the Middlebury dataset. To improve the quality of the SR depth map, we also performed
refinement based on the HR color image. First, we extracted the deep features from both the
coarse SR depth map and the HR color image using the RDN [41]. Then, the features from
the coarse SR depth map and the HR color image were concatenated. After concatenation,
we applied another RDN to produce the refined SR depth map. Each RDN had eight
convolutional layers with a sixty-four-channel feature map. Each convolutional layer in
the RDN had 64 channels.



Sensors 2021, 21, 4892 13 of 24

In this experiment, the upper bound of the learning rate was reduced by 10 percent
every 25 epochs, due to the size of the dataset, instead of reducing the upper bound by
half after every 10 epochs, due to the size of the dataset. The DSR network converged after
750 epochs.

We compared the upscaling results with integer scaling factors of ×2 and ×4 with
the baseline upscaling methods, the methods proposed by Yang et al. [3], Kiechle et al. [4],
Song et al. [9], and Truong et al. [40], and the proposed method, with respect to the RMSE;
the results are provided in Table 2. In this experiment, the baseline upscaling methods
were bicubic and Nearest Neighbor (NN). We highlight the best RMSE for each evaluation
with bold text and the second best with underlines. In this work, we trained the network
only with arbitrary scale factors between one and four, as the difference in the resolution of
the depth map and the color image usually falls within this range. The proposed method
obtained the best results in most cases and also had better performance on average. Two
variants of the proposed method obtained very similar results, but DCSN-EfficientNet
performed better when the scale factor was greater than ×2.5. Figure 5 shows the RMSE
of different upsampling factors ([1.1, 1.2, 1.3, ..., 3.7, 3.8, 3.9, 4.0]) with different methods. To
obtain the upscaled depth maps for noninteger scale factors when using the method of
Song et al. [9], we applied bicubic interpolation to the upscaled result at the nearest integer
scale factor. For example, we downsampled the upscaled depth map with a scale factor
of four, based on bicubic interpolation, to obtain the results for scale factor of three-point-
seven. As mentioned in Section 3.1, although the interpolated results for noninteger scale
factors of the method of Song et al. [9] were better than using the bicubic interpolation
directly, the RMSE of [9] for the different scale factors on the Middlebury dataset was much
higher than that of the proposed method, especially for larger scale factors. This could be
due to the errors in the upscaled depth maps with integer scale factors. Thus, the second
interpolation to rescale the upscaled depth map to the desired noninteger scaling factors
may have amplified such errors. On the other hand, MetaDSR [40] had a very similar RMSE
to the proposed method for scale factors in the range [2.5, 4.0]. However, the proposed
method had much better performance for smaller scale factors. We believe that the main
factor affecting the results for smaller scale factors was the different strategy used to project
the feature maps onto the SR image plane. In [40], the feature map extracted from the LR
depth map was projected to create an SR feature map that had the same spatial dimension
(resolution) as the SR depth maps. Then, the depth value at location (i, j) in the SR depth
map was produced by applying a 3× 3 kernel, generated by the meta-upscale module
at (i, j). In [40], this reduced the block effect on the final SR depth map. However, it also
reduced the sharpness of the edges on the SR depth maps, as the meta-upscale module does
not consider edge information (only scale and relative location). In addition, as scale factors
in the range (1, 2.5] are simpler than the larger scale factors, the gaps in RMSE between the
proposed method and MetaDSR [40] were much higher for lower scale factors. We show
a visual comparison of the proposed method on the noise-free Middlebury dataset with
different scale factors in Figure 6.

Table 2. The RMSE of upsampling factors (×2.0 and ×4.0) for different methods. We report the results of the modality
in [40] trained with arbitrary scale factors, instead of that trained with specific scale factors. The best result is shown in bold,
and the second best is underlined. For other methods, we used the RMSE given in [40] (for which lower is better).

Method ×2.0 ×4.0
Venus Tsukuba Cones Teddy Venus Tsukuba Cones Teddy

Bicubic 1.058 2.582 2.666 2.601 1.532 3.701 3.620 3.358
NN 0.997 2.397 2.440 2.448 1.525 3.450 3.439 3.282

Yang et al. [3] 1.237 5.631 2.421 1.894 2.755 13.174 5.139 4.066
JID [4] 0.688 3.742 1.745 1.268 0.963 5.903 3.037 1.804

Song et al. [9] 0.278 1.651 0.876 0.761 0.499 4.384 2.196 1.517
MetaDSR [40] 0.484 1.413 1.040 1.042 0.697 2.487 1.393 1.434

Ours 0.420 1.152 0.651 0.567 0.628 1.962 1.220 1.201



Sensors 2021, 21, 4892 14 of 24

1 2 3 4

0.5

1

1.5

2

Scale factor

R
M

S
E

Bicubic Song et al. MetaDSR DCSN-RDN DCSN-EfficientNet

Figure 5. The RMSE of different upsampling factors [1.1, 1.2, 1.3, ..., 3.8, 3.9, 4.0] using different methods.
We report the results of the modality in [40] trained with arbitrary scale factors, instead of that trained
with specific scale factors. Note that the results for the method of Song et al., in noninteger cases, were
obtained by applying bicubic interpolation to the upscaled results of the nearest integer scale factor.

(a) HR (b) x1.5

(c) x2.5 (d) x3.5
Figure 6. Visual comparison of DSR for the proposed method on the Art depth map with different
scale factors.

We also tested the proposed method on the same setup with noisy input, as in [9]. The
proposed method produced the best average RMSE on the noisy Middlebury dataset, as
shown in Figure 7. We illustrate the visual results of the proposed method for DSR on the
noisy Middlebury dataset in Figure 8.



Sensors 2021, 21, 4892 15 of 24

1 2 3 4

1

1.5

2

Scale factor

R
M

S
E

Song et al. MetaDSR DCSN-RDN DCSN-EfficientNet

Figure 7. The RMSE of different methods for different upsampling factors [1.1, 1.2, ..., 3.9, 4.0] on
noisy input depth maps. We report the results of the model in [40] trained with arbitrary scale factors,
rather than the model trained with specific scaling factors, for a fair comparison. Note that the
results of the method of Song et al. for noninteger scale factors were obtained by applying bicubic
interpolation to the upscaled results of the nearest integer scale factor.

(a) LR Depth map (b) ×2.7

(c) ×3.9 (d) HR Depth map
Figure 8. Visual comparison of DSR by the proposed method on the noisy Middlebury
dataset [17,49–52] with different scale factors.

We further assessed the ability of the proposed method to handle noisy data with
missing depth values [58]. This dataset was generated based on the Middlebury dataset,
by removing the depth values based on two types of masks: random missing masks and
textual masks. Although the distribution of missing depth values in this dataset was not
realistic, it was still useful to evaluate the performance of the proposed method in handling
noisy data. In this experiment, we computed the PSNR value of the proposed method, as
this was the main evaluation metric for this dataset. As this dataset was mainly designed for



Sensors 2021, 21, 4892 16 of 24

the noise reduction task, we computed the denoised depth map by applying the proposed
method to the depth maps with the scale factor of 1.0. Table 3 shows that our method
achieved the best average PSNR value on this dataset, compared to the state-of-the-art
methods. This proves that the proposed method can handle different types of noisy inputs
better than the state-of-the-art methods. Note that the DCSN-EfficientNet variant of the
proposed method achieved much better results than DCSN-RDN, as it included a Depth
Completion Module. Thus, DCSN-EfficientNet could handle missing depth values much
better than DCSN-RDN. Figure 9 shows the average PSNR values obtained by the proposed
method on the missing depth value dataset [58] for the DSR task. We show illustrations of
DSR for the proposed method on depth maps with missing values in Figure 10.

1 1.5 2 2.5 3 3.5 4
23

24

25

26

27

28

29

30

31

32

33

Scale factor

P
S
N

R

DCSN-RDN DCSN-EfficientNet

Figure 9. Average PSNR for different upsampling factors [1.1, 1.2, 1.3, ..., 3.7, 3.8, 3.9, 4.0] using the
proposed method on the missing depth value dataset [58].

(a) LR Depth map (b) ×1.3

(c) ×3.8 (d) HR Depth map
Figure 10. Visual comparison of DSR on the noisy Middlebury dataset [17,49–52] with different
scale factors.



Sensors 2021, 21, 4892 17 of 24

Finally, we compared the computational time for upscaling the Art depth map to
its full resolution (1390× 1110), between the proposed method and the other considered
methods, in Figure 11. In [9], the author consecutively applied the base network for a scale
factor of two to upscale the depth maps to times four. Thus, the computational time of
the method in [9] sharply jumps up at the scale factor of three, as we interpolated the SR
depth maps from the times four upscaled depth map. In contrast, the DCSN-RDN variant
of the proposed method still managed the same computation time at all scaling factors.
DCSN-EfficientNet, with a much larger network, acquired 15 FPS; which is still suitable for
real-time applications.

1 2 3 4

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Scale factor

T
im

e
(S

e
c
o
n
d
)

Song et al. MetaDSR DCSN-RDN DCSN-EfficientNet

Figure 11. Computational time (seconds) for different upsampling factors [1.1, 1.2, ..., 3.9, 4.0] using
different methods on the Art depth map. Note that the results for the method of Song et al. for
noninteger scale factors were obtained by applying bicubic interpolation to the upscaled results of
the nearest integer scale factor.

Table 3. Average PSNR of different methods on the missing depth value dataset [58] for the denoising
task (a higher PSNR is better). LRL0 denotes Low Rank Matrix Completion and LRL0ψ denotes Low
Rank Matrix Completion with low gradient regularization [58].

LRL0 [58] LRL0ψ [58] WNNM [59] DCSN-RDN DCSN-
EfficientNet

22.625 23.029 27.375 33.383 27.489

4.6. Comparison of Depth Super-Resolution Methods on the NyuV2 Dataset

In this experiment, we further evaluated the accuracy of different DSR methods and
the two above-mentioned variants of the proposed method on the NYUv2 dataset. All
methods were trained on the Middlebury stereo dataset, without any fine-tuning on the
NYUv2 dataset. Figure 12 shows the RMSE (in meters) of the different methods for different
upsampling factors [1.1, 1.2, 1.3, ..., 3.9, 4.0]. The proposed method was the only method
that had comparable results to bicubic interpolation. In fact, compared to the bicubic
interpolation, the proposed method had a better RMSE in 66% of the cases. This was
expected, as the characteristics of the disparity maps in Middlebury were very different
from the depth maps captured by depth sensors. For example, the depth maps in NyuV2
(Figure 13) contained many noisy pixels, while the depth maps in the Middlebury dataset



Sensors 2021, 21, 4892 18 of 24

were noise-free. The results showed that the proposed method based on RDN had the
best generalization, compared to state-of-the-art methods. On the other hand, the DCSN-
EfficientNet variant had slightly worse results, as it was much larger than DCSN-RDN.
Figure 14 shows the RMSE of the different methods for different upsampling factors after
fine-tuning on the training set of the NYUv2 dataset. The proposed method had the best
performance, with regard to the RMSE, in most cases. We show examples of DSR on
NYUv2 in Figure 13.

1 2 3 4

0.0

0.03

0.07

0.11

0.15

Scale factor

R
M

S
E

Bicubic Song et al. MetaDSR DCSN-RDN DCSN-EfficientNet

Figure 12. The RMSE of different methods for different upsampling factors [1.1, 1.2, ..., 3.9, 4.0] on
the NYUv2 dataset without fine-tuning. We report the results of the modality in [40] trained with
arbitrary scale factors, instead of the one that was trained with specific scale factors. Note that the
results of the method of Song et al. for noninteger scale factors were obtained by applying bicubic
interpolation on the upscaled results of the nearest integer scale factor.

4.7. The Performance for Both the DSR and Depth Completion Tasks

In this experiment, we evaluated the performance of both DSR and depth completion.
As the resolution of 320× 256 is quite small, the downscaled depth map could lead to the
loss of many details. Thus, we rescaled the depth maps in the Matterport3D dataset to
different resolutions. We evaluated the results on these resolutions for the HR depth maps.
The resolutions included 320× 256, 640× 512, and 1280× 1024.

Figure 15 shows the results for the RMSE of the proposed network with the Guidance
branch based on EfficientNet for depth completion and DSR on the Matterport3D dataset.
For the 1240× 1024 resolution, we first reduced the resolution of the input images and
depth maps by half. Then, we leveraged the DSR module of the proposed method to
upscale back to the 1240× 1024 resolution. This helped to reduce the required memory
and computational time of the proposed method. Furthermore, the receptive field of the
proposed method was also not able to cover the whole area of large missing regions. The
errors of the proposed method at the resolution of 320× 256 tended to grow larger when
the scale factor was increased. As mentioned above, this was predictable, due to the low
resolution of the input. For the resolutions of 640× 512 and 1240× 1024, the results were
worse with the scaling factor of 1.0. However, the RMSE of the upscaled depth maps
slightly decreased when the scale factor increased. This was because the size of the holes
in LR depth maps are much larger when the scale factors are smaller. Thus, it is much
harder to fill in the depth information. Although the task is much more complicated, the



Sensors 2021, 21, 4892 19 of 24

proposed method still had errors that were not too different than when just performing
depth completion. We show a visual comparison of DSR and depth completion by the
proposed method on the Matterport3D dataset with different resolutions and scale factors
in Figure 16.

(a) LR RGB (b) LR Depth map

(c) SR Depth map (d) HR Depth map
Figure 13. Visual comparison of the DSR on the NYUv2 dataset [53] with a scale factor of 3.3.

1 2 3 4

0.0

0.03

0.07

0.11

Scale factor

R
M

S
E

Bicubic Song et al. MetaDSR DCSN-RDN DCSN-EfficientNet

Figure 14. The RMSE of different methods for different upsampling factors [1.1, 1.2, ..., 3.9, 4.0] on the
NYUv2 dataset after fine-tuning. We report the results of the modality in [40] trained with arbitrary
scale factors, instead of the one that was trained with specific scale factors. Note that the results of the
method of Song et al. for noninteger scale factors were obtained by applying bicubic interpolation on
the upscaled results of the nearest integer scale factor.



Sensors 2021, 21, 4892 20 of 24

Table 4. The computational time (seconds) of the depth completion on the Matterport dataset. Note
that the computational times of both Zhang et al. and Huang et al. were reported as the computational
time of surface normal estimation and boundary estimation. Both of the above methods require the
surface normals and boundaries to be extracted from the RGB image for depth inference. This step
took 0.02 s (Huang et al. used the same method as Zhang et al. to estimate the surface normals and
boundaries).

Method Surface Normal and Boundary
Estimation (s)

Depth Inference
(s) Total (s)

Zhang et al. [13] 0.020 1.430 1.450
Huang et al. [30] 0.020 0.005 0.025

Ours N/A 0.008 0.008

Table 4 shows a comparison of the computational time for the depth completion
task (at 320× 256 resolution). The methods in [13] and [30] used the same architecture
for surface normal estimation and boundary estimation. Thus, we also included the
computational time of this step, as it is required for these methods to fill in missing depth
values. We used the official source code of these methods to measure the computational
time. The computational time required by the proposed method was much lower than that
of the state-of-the-art methods. As the global optimization in [13] needs to be performed
on a CPU, the computational time of this method was the highest. On the other hand,
Huang et al. [30] proposed a method that uses multiple DCNNs for different purposes,
such as surface normal estimation, coarse depth completion, and refinement. The proposed
method has multiple stages, but each stage contains only a few convolutional layers. Thus,
the proposed method succeeded in keeping the computational time low. We also report
the FPS of the proposed method on the 1240× 1024 resolution images in Figure 15. Note
that we downscaled the depth maps and color images by the scaling factor r and used
the network to upscale the LR depth map back to the original resolution. The results
were measured using the average FPS of the proposed method on the entire Matterport3D
dataset. This provided us with a closer look at the speed of the proposed network when
performing depth completion and DSR in real applications.

1 2 3 4
0.95

1.1

1.25

1.4

Scale factor

R
M

S
E

46

47

48

49

50

51

52

53

54

55

56

57

58

F
P
S

1280 × 1024 (RMSE) 620 × 512 (RMSE)

320 × 256 (RMSE) 1280 × 1024 (FPS)

Figure 15. The RMSE and FPS of different upsampling factors [1.0, 1.1, 1.2, 1.3, ..., 3.7, 3.8, 3.9, 4.0] of
the proposed method on the Matterport3D dataset.



Sensors 2021, 21, 4892 21 of 24

(a) Ground truth (b) Raw depth (c) RGB

(d) ×1.5 (320× 256) (e) ×2.5 (320× 256) (f) ×3.5 (320× 256)

(g) ×1.5 (640× 512) (h) ×2.5 (640× 512) (i) ×3.5 (640× 512)

(j) ×1.5 (1280× 1024) (k) ×2.5 (1280× 1024) (l) ×3.5 (1280× 1024)
Figure 16. Visual comparison of DSR and depth completion on the Matterport3D dataset [43] using
the resolutions of 320× 256, 640× 512, and 1280× 1024.

5. Conclusions

In this paper, we proposed a novel DSR method that simultaneously performs DSR
and depth completion for arbitrary scale factors. The proposed method only requires
storing a single model to perform the DSR task for multiple arbitrary scale factors and
outperformed state-of-the-art DSR and depth completion methods. When combining DSR
and depth completion, the proposed method achieved excellent results, compared to the
other methods, which only consider depth completion. Finally, by leveraging the features
extracted from the depth completion module for DSR, the proposed method also requires
a relatively low computational time. Furthermore, the DSR network was designed to
reuse the extracted features from the depth completion network on the LR map. Thus, the
proposed method can minimize both the size of the depth completion network and the
computational time of the depth completion network.

Although the proposed model applies spatial dimension reduction for feature extraction,
the depth details of large empty regions are often blurred. This happens because very little
depth information is transmitted to the pixels in the center of the hole region. Therefore,
we will try to develop an iterative model to solve this problem in future research. The
depth information can then be transmitted more efficiently to the deeper regions of the



Sensors 2021, 21, 4892 22 of 24

void. Although the proposed model can be extended to videos by processing each frame
independently, the lack of temporal features may negatively affect the final result of the
model. In the future, we will focus on modifying the model to allow for the extraction of
temporal features from video sequences for depth completion and DSR.

Author Contributions: Methodology, A.M.T.; Supervision, W.P. and P.V.; Writing–original draft,
A.M.T.; Writing–review & editing, W.P. and P.V. All authors have read and agreed to the published
version of the manuscript.

Funding: This work was financially supported by the Flemish Fund for Scientific Research FWO-
Flanders through Grant 3G014718.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

DSR Depth Super-Resolution
DCNN Deep Convolutional Neural Network
RDN Residual Dense Network
PSNR Peak Signal-to-Noise Ratio
LR Low-Resolution
HR High-Resolution
SR Super-Resolution
RMSE Root Mean Squared Error
MAE Mean Absolute Error
SSIM Structural Similarity Index Measure
MRF Markov Random Field
FCN Fully Connected Convolution Network
FPS Frames Per Second

References
1. Diebel, J.; Thrun, S. An Application of Markov Random Fields to Range Sensing. In Advances in Neural Information Processing

Systems; Weiss, Y., Schölkopf, B., Platt, J., Eds.; MIT Press: Cambridge, MA, USA, 2006; Volume 18, pp. 291–298.
2. Aodha, O.M.; Campbell, N.D.F.; Nair, A.; Brostow, G.J. Patch Based Synthesis for Single Depth Image Super-Resolution. In

Proceedings of the European Conference on Computer Vision, Florence, Italy, 7–13 October 2012; pp. 71–84.
3. Yang, J.; Ye, X.; Li, K.; Hou, C. Depth Recovery Using an Adaptive Color-Guided Auto-Regressive Model. In Computer

Vision—ECCV 2012; Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C., Eds.; Springer: Berlin/Heidelberg, Germany,
2012; pp. 158–171.

4. Kiechle, M.; Hawe, S.; Kleinsteuber, M. A Joint Intensity and Depth Co-sparse Analysis Model for Depth Map Super-resolution.
In Proceedings of the 2013 IEEE International Conference on Computer Vision, Sydney, NSW, Australia, 1–8 December 2013;
pp. 1545–1552.

5. Xie, J.; Feris, R.S.; Sun, M. Edge guided single depth image super resolution. In Proceedings of the 2014 IEEE International
Conference on Image Processing (ICIP), Paris, France, 27–30 October 2014; pp. 3773–3777.

6. Dong, C.; Loy, C.C.; He, K.; Tang, X. Learning a Deep Convolutional Network for Image Super-Resolution. In Proceedings of the
European Conference on Computer Vision, Zurich, Switzerland, 6–12 September 2014; pp. 184–199.

7. Song, X.; Dai, Y.; Qin, X. Deep Depth Super-Resolution: Learning Depth Super-Resolution Using Deep Convolutional Neural
Network. In Proceedings of the Asian Conference on Computer Vision, Taipei, Taiwan, 20–24 November 2016; pp. 360–376.

8. Riegler, G.; Rüther, M.; Bischof, H. ATGV-Net: Accurate Depth Super-Resolution. In Proceedings of the IEEE European
Conference Computer Vision, Amsterdam, The Netherlands, 11–14 October 2016; pp. 268–284.

9. Song, X.; Dai, Y.; Qin, X. Deeply Supervised Depth Map Super-Resolution as Novel View Synthesis. IEEE Trans. Circuits Syst.
Video Technol. 2019, 29, 2323–2336. [CrossRef]

http://doi.org/10.1109/TCSVT.2018.2866399


Sensors 2021, 21, 4892 23 of 24

10. Nguyen, C.V.; Izadi, S.; Lovell, D. Modeling Kinect Sensor Noise for Improved 3D Reconstruction and Tracking. In Proceedings of
the 2012 Second International Conference on 3D Imaging, Modeling, Processing, Visualization Transmission, Zurich, Switzerland,
13–15 October 2012; pp. 524–530.

11. Doria, D.; Radke, R.J. Filling large holes in LiDAR data by inpainting depth gradients. In Proceedings of the IEEE Computer
Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Providence, RI, USA, 16–21 June 2012;
pp. 65–72.

12. Matsuo, K.; Aoki, Y. Depth image enhancement using local tangent plane approximations. In Proceedings of the 2015 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 3574–3583.

13. Zhang, Y.; Funkhouser, T. Deep Depth Completion of a Single RGB-D Image. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June 2018; pp. 175–185.

14. Xiang, S.; Deng, H.; Zhu, L.; Wu, J.; Yu, L. Exemplar-based depth inpainting with arbitrary-shape patches and cross-modal
matching. Signal Process. Image Commun. 2019, 71, 56–65. [CrossRef]

15. Li, J.; Gao, W.; Wu, Y. High-Quality 3D Reconstruction With Depth Super-Resolution and Completion. IEEE Access 2019,
7, 19370–19381. [CrossRef]

16. Szeliski, R. Computer Vision: Algorithms and Applications, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2010.
17. Scharstein, D.; Szeliski, R.; Zabih, R. A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. Int. J.

Comput. Vis. 2002, 47, 7–42. [CrossRef]
18. Tran, V.; Lin, H.Y. A Structured Light RGB-D Camera System for Accurate Depth Measurement. Int. J. Opt. 2018, 2018, 1–7.

[CrossRef]
19. Saxena, A.; Chung, S.H.; Ng, A.Y. 3-D Depth Reconstruction from a Single Still Image. Int. J. Comput. Vis. 2008, 76, 53–69.

[CrossRef]
20. Eigen, D.; Puhrsch, C.; Fergus, R. Depth Map Prediction from a Single Image using a Multi-Scale Deep Network. In Proceedings

of the 27th International Conference on Neural Information Processing Systems (NIPS) - Volume 2, Montreal, QC, Canada, 8–13
December 2014; pp. 2366–2374.

21. Laina, I.; Rupprecht, C.; Belagiannis, V.; Tombari, F.; Navab, N. Deeper Depth Prediction with Fully Convolutional Residual
Networks. In Proceedings of the 2016 Fourth International Conference on 3D Vision (3DV), Stanford, CA, USA, 25–28 October
2016; pp. 239–248.

22. Lee, J.H.; Heo, M.; Kim, K.R.; Wei, S.E.; Kim, C.S. Single-Image Depth Estimation Based on Fourier Domain Analysis. In
Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA,
18–23 June 2018.

23. Fu, H.; Gong, M.; Wang, C.; Batmanghelich, K.; Tao, D. Deep Ordinal Regression Network for Monocular Depth Estimation. In
Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June
2018; pp. 2002–2011.

24. Wofk, D.; Ma, F.; Yang, T.-J.; Karaman, S.; Sze, V. FastDepth: Fast Monocular Depth Estimation on Embedded Systems. In
Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019.

25. Nekrasov, V.; Dharmasiri, T.; Spek, A.; Drummond, T.; Shen, C.; Reid, I. Real-Time Joint Semantic Segmentation and Depth
Estimation Using Asymmetric Annotations. In Proceedings of the 2019 International Conference on Robotics and Automation
(ICRA), Montreal, QC, Canada, 20–24 May 2019; pp. 7101–7107.

26. Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of the
Proc. Int. Conf. Medical Image Comput. Comput.-Assisted Intervention, Munich, Germany, 5–9 October 2015; pp. 234–241.

27. Liu, G.; Reda, F.A.; Shih, K.J.; Wang, T.C.; Tao, A.; Catanzaro, B. Image Inpainting for Irregular Holes Using Partial Convolutions.
In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018.

28. Yu, J.; Lin, Z.; Yang, J.; Shen, X.; Lu, X.; Huang, T.S. Generative Image Inpainting with Contextual Attention. In Proceedings
of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018;
pp. 5505–5514.

29. Yu, J.; Lin, Z.; Yang, J.; Shen, X.; Lu, X.; Huang, T. Free-Form Image Inpainting With Gated Convolution. In Proceedings of the
2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Korea, 27 October–3 November 2019; pp. 4470–4479.

30. Huang, Y.; Wu, T.; Liu, Y.; Hsu, W.H. Indoor Depth Completion with Boundary Consistency and Self-Attention. In Proceedings
of the 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW), Seoul, Korea, 27–28 October 2019;
pp. 1070–1078.

31. Shabaninia, E.; Naghsh-Nilchi, A.R.; Kasaei, S. High-order Markov random field for single depth image super-resolution. IET
Comput. Vis. 2017, 11, 683–690. [CrossRef]

32. Hornácek, M.; Rhemann, C.; Gelautz, M.; Rother, C. Depth Super Resolution by Rigid Body Self-Similarity in 3D. In Proceedings
of the 2013 IEEE Conference on Computer Vision and Pattern Recognition, Portland, OR, USA, 23–28 June 2013; pp. 1123–1130.

33. Freeman, W.T.; Jones, T.R.; Pasztor, E.C. Example-based super-resolution. IEEE Comput. Graph. Appl. 2002, 22, 56–65. [CrossRef]
34. Park, J.; Kim, H.; Yu-Wing Tai.; Brown, M.S.; Kweon, I. High quality depth map upsampling for 3D-TOF cameras. In Proceedings

of the 2011 International Conference on Computer Vision, Barcelona, Spain, 6–13 November 2011; pp. 1623–1630.
35. Mahmoudi, M.; Sapiro, G. Sparse Representations for Range Data Restoration. IEEE Trans. Image Process. 2012, 21, 2909–2915.

[CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.image.2018.07.005
http://dx.doi.org/10.1109/ACCESS.2019.2895653
http://dx.doi.org/10.1023/A:1014573219977
http://dx.doi.org/10.1155/2018/8659847
http://dx.doi.org/10.1007/s11263-007-0071-y
http://dx.doi.org/10.1049/iet-cvi.2016.0373
http://dx.doi.org/10.1109/38.988747
http://dx.doi.org/10.1109/TIP.2012.2185940
http://www.ncbi.nlm.nih.gov/pubmed/22287242


Sensors 2021, 21, 4892 24 of 24

36. Tosic, I.; Drewes, S. Learning Joint Intensity-Depth Sparse Representations. IEEE Trans. Image Process. 2014, 23, 2122–2132.
[CrossRef] [PubMed]

37. Ferstl, D.; Rüther, M.; Bischof, H. Variational Depth Superresolution Using Example-Based Edge Representations. In Proceedings
of the 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015; pp. 513–521.

38. Riegler, G.; Ferstl, D.; Rüther, M.; Bischof, H. A Deep Primal-Dual Network for Guided Depth Super-Resolution. BMVC 2016,
arXiv:1607.08569v1.

39. Hui, T.W.; Loy, C.C.; Tang, X. Depth Map Super-Resolution by Deep Multi-Scale Guidance. In Proceedings of the European
Conference on Computer Vision (ECCV), Amsterdam, The Netherlands, 11–14 October 2016.

40. Truong, A.M.; Veelaert, P.; Philips, W. Depth Map Inpainting And Super-Resolution With Arbitrary Scale Factors. In Proceedings
of the 2020 IEEE International Conference on Image Processing (ICIP), Abu Dhabi, United Arab Emirates, 25–28 October 2020;
pp. 488–492.

41. Zhang, Y.; Tian, Y.; Kong, Y.; Zhong, B.; Fu, Y. Residual Dense Network for Image Super-Resolution. In Proceedings of the 2018
IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Salt Lake City, UT, USA, 18–22 June
2018; pp. 2472–2481.

42. Hu, X.; Mu, H.; Zhang, X.; Wang, Z.; Tan, T.; Sun, J. Meta-SR: A Magnification-Arbitrary Network for Super-Resolution. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June
2019; pp. 1575–1584.

43. Chang, A.; Dai, A.; Funkhouser, T.; Halber, M.; Niessner, M.; Savva, M.; Song, S.; Zeng, A.; Zhang, Y. Matterport3D: Learning
from RGB-D Data in Indoor Environments. In Proceedings of the International Conference on 3D Vision (3DV), Qingdao, China,
10–12 October 2017.

44. Tan, M.; Le, Q. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. In Proceedings of the 36th International
Conference on Machine Learning; Chaudhuri, K., Salakhutdinov, R., Eds.; Proceedings of Machine Learning Research; PMLR: Long
Beach, CA, USA, 2019; Volume 97, pp. 6105–6114.

45. Wu, H.; Zheng, S.; Zhang, J.; Huang, K. Fast End-to-End Trainable Guided Filter. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June 2018.

46. Maas, A.L.; Hannun, A.Y.; Ng, A.Y. Rectifier nonlinearities improve neural network acoustic models. In Proceedings of the ICML
Workshop on Deep Learning for Audio, Speech and Language Processing, Atlanta, GA, USA, 16–21 June 2013.

47. Kim, J.; Lee, J.K.; Lee, K.M. Accurate Image Super-Resolution Using Very Deep Convolutional Networks. In Proceedings of the
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 1646–1654.

48. Deng, J.; Dong, W.; Socher, R.; Li, L.; Li, K.; Li, F.F. ImageNet: A large-scale hierarchical image database. In Proceedings of the
2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 248–255.

49. Scharstein, D.; Szeliski, R. High-accuracy stereo depth maps using structured light. In Proceedings of the 2003 IEEE Computer
Society Conference on Computer Vision and Pattern Recognition, Madison, WI, USA, 18–20 June 2003; Volume 1, pp. 195–202.

50. Scharstein, D.; Pal, C. Learning Conditional Random Fields for Stereo. In Proceedings of the 2007 IEEE Conference on Computer
Vision and Pattern Recognition, Minneapolis, MN, USA, 17–22 June 2007; pp. 1–8.

51. Hirschmuller, H.; Scharstein, D. Evaluation of Cost Functions for Stereo Matching. In Proceedings of the 2007 IEEE Conference
on Computer Vision and Pattern Recognition, Minneapolis, MN, USA, 17–22 June 2007; pp. 1–8.

52. Scharstein, D.; Hirschmüller, H.; Kitajima, Y.; Krathwohl, G.; Nešić, N.; Wang, X.; Westling, P. High-Resolution Stereo Datasets
with Subpixel-Accurate Ground Truth. In Pattern Recognition; Springer International Publishing: Cham, Switzerland, 2014;
pp. 31–42.

53. Nathan Silberman; Derek Hoiem, P.K.; Fergus, R. Indoor Segmentation and Support Inference from RGBD Images. In Proceedings
of the European Conference on Computer Vision, Florence, Italy, 7–13 October 2012.

54. Loshchilov, I.; Hutter, F. Decoupled Weight Decay Regularization. arXiv 2019, arXiv:1711.05101.
55. Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. In Proceedings of the 3rd International Conference on

Learning Representations, ICLR 2015, San Diego, CA, USA, 7–9 May 2015.
56. Yakubovskiy, P. Segmentation Models (Python Library with Neural Networks for Image Segmentation Based on PyTorch). 2020.

Available online: https://github.com/qubvel/segmentation_models.pytorch (accessed on 1 Octobet 2020).
57. Harrison, A.; Newman, P. Image and Sparse Laser Fusion for Dense Scene Reconstruction. In Field and Service Robotics; Howard,

A., Iagnemma, K., Kelly, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 219–228.
58. Xue, H.; Zhang, S.; Cai, D. Depth Image Inpainting: Improving Low Rank Matrix Completion with Low Gradient Regularization.

IEEE Trans. Image Process. 2017, 26, 4311–4320. [CrossRef] [PubMed]
59. Satapathy, S.; Ranjan Sahay, R. Exploiting Low Rank Prior for Depth Map Completion. In Proceedings of the 2020 National

Conference on Communications (NCC), Kharagpur, India, 21–23 February 2020; pp. 1–6.

http://dx.doi.org/10.1109/TIP.2014.2312645
http://www.ncbi.nlm.nih.gov/pubmed/24723574
https://github.com/qubvel/segmentation_models.pytorch
http://dx.doi.org/10.1109/TIP.2017.2718183
http://www.ncbi.nlm.nih.gov/pubmed/28644807

	Introduction
	Related Work
	Proposed Method
	Depth Completion Module
	Upscaling with Arbitrary Scale Factors

	Experiments and Results
	Datasets
	Evaluation Metrics
	Experimental Setup
	Comparison of Depth Completion Methods on the Matterport3D Dataset
	Comparison of Depth Super-Resolution Methods on the Middlebury Dataset
	Comparison of Depth Super-Resolution Methods on the NyuV2 Dataset
	The Performance for Both the DSR and Depth Completion Tasks

	Conclusions
	References

