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abstract

In the last few years, programming, computational thinking, and robotics are more
frequently integrated into elementary education. This integration can be done in many dif-
ferent ways. However, it is still unclear which teaching methods work in which situations.
To provide some clarity in this area, we compared two methods of integrating programming
into a primary robotics workshop for learners aged ten to twelve. In one method, students
create programs from scratch; in the other, they start with a faulty program they have to
fix. These teaching methods were evaluated using the framework of learning ecology, which
provides a holistic framework for assessing complex learning environments. We identified
different indicators of learning ecology and assessed our workshops using a mixed-methods
approach. Our results showed no difference between the groups on the intrinsic dimension
of a learning ecology. However, on the experiential dimension, the learners in the create
group scored better on all tests. Our results show the value of a multidimensional assess-
ment of learning ecology to understand different teaching techniques. Additionally, the
results provide us with important insights on how to integrate programming into a primary
robotics curriculum enabling teachers to select better methods for teaching computing in
their classroom.

Introduction

Primary school robotics covers a wide range of interrelated topics. One of these topics
is computer programming. Integrating programming into a robotics course can be done
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in a variety of ways (Kazakoff et al., 2013; Lee et al., 2014; Vasilopoulos & Van Schaik,
2019). However, many publications focus on exploring the effects of new teaching tools.
Consequently, the analysis of teaching methods based on established theoretical constructs
remains under-explored (Luxton-Reilly et al., 2018). One important theory often related
to programming is cognitive load theory (Sweller, 2011). Cognitive load theory elucidates
the relation between learning and the information processing system involving long-term
and short-term memory. It is based on the premise that the human mind has two types
of memory, a high capacity long-term memory which can more-or-less permanently store
information, and limited capacity short-term memory, also called working memory, respons-
ible for storing sensory information used for logical thinking and creativity (D. Shaffer et al.,
2003). Cognitive load theory argues that, for effective learning to take place, the capacity
of the working memory should not be exceeded. Working memory load can be affected by
both the learning task itself (intrinsic cognitive load) as well as the way that the learning
task is presented (extraneous cognitive load). Since these two types of cognitive load are
additive, learning tasks with high intrinsic cognitive load should be presented in a way
that limits extraneous cognitive load as much as possible (Van Merrienboer & Sweller,
2005). Certain types of instructional strategies like adding worked examples, reducing
split-attention, adding redundancy, and increased modality have been shown to reduce cog-
nitive load (Sweller, 2020). Getting insight into the best ways of mapping these strategies to
teaching techniques for specific domains like computing requires further research. Moreover,
determining which teaching techniques are effective in specific educational contexts is re-
quired to improve teaching practice. Malik and Coldwell-Neilson (2017) and Hsu et al.
(2018) stress the importance of examining different learning strategies and analyzing how
they relate to previously shown positive effects on computational thinking. Furthermore,
Popat and Starkey (2019) state that exploring different teaching methods and identifying
their effects on programming, as well as other educational outcomes, is an important topic
for future research.

Generally, not unlike language learning, learning programming is split into reading and
writing skills. Consequently, many proposed teaching techniques focus either on reading,
writing, or a combination of both. Numerous introductory programming courses mostly
expect learners to write code, also known as code generation (Van Merriënboer & De Croock,
1992). This teaching technique is often chosen since it is similar to what programmers do
in real life. Mimicking real life should provide an authentic learning environment (D. W.
Shaffer & Resnick, 1999). However, multiple studies have shown that this method has
drawbacks. Van Merriënboer and De Croock (1992) have shown that students often had
difficulties in finding a solution to the problems presented to them when having to generate
code. Additionally, they showed that learners taught using the code generation method
scored lower on a statements knowledge test, than students who were taught using code
completion problems. Moreover, Garner (2009) has shown that teaching programming using
the generation method required more time and triggered more questions from the learners
than the part-complete solution method they describe. The part-complete solution method
provides the learners with an incomplete program and requires them to add an element.
Abdul-Rahman and Du Boulay (2014) compared this part-complete solution method to
their proposed structure-emphasising method. The structure-emphasizing method requires
learners to read code and give an explanation of what the code does. Their results show



METHODS FOR PRIMARY SCHOOL PROGRAMMING 3

no significant differences in terms of learning outcomes between the groups however, they
show a plausible advantage of the code completion method in terms of learning efficiency.

While the generation method mostly focuses on code writing and the part-complete
solution method focuses mostly on reading, other methods have been proposed which lie
somewhere in between. An example of such a method is Parsons problems. These problems
give the learners a set of blocks, each containing a part of the final program. The learners
have to reorder these blocks to create a final solution (Du et al., 2020). Ericson et al.
(2017) showed that solving two-dimensional Parsons problems with distractors (blocks which
should not be added to the program) required less time than both writing the same code
and fixing equivalent code with the same errors as the distractors. However, they did
not show a statistically significant difference in knowledge retention one week after the
experiment. With the more recent resurgence of programming in the last two years of
primary school, other coding techniques have been created. One of the most prevalent is
block-based programming (Weintrop & Wilensky, 2015). Block-based programming, not
unlike code completion or Parsons problems, simplifies coding by reducing complexity. It
favors recognition over recall, groups computational patterns into blocks, and prevents errors
by limiting the syntactical changes learners can make (Bau et al., 2017).

Another strategy often used when teaching programming is making learners fix faulty
programs (Liu et al., 2017). Finding errors in your program and correcting them is an
essential skill programmers have to learn. Lee et al. (2014) have shown that teaching
programming through debugging can lead to more success when learners create their own
programs and possibly helps sustain learners’ motivation. Additionally, Ahmadzadeh et al.
(2005) argue that acquiring debugging skills increases a programmer’s confidence. Moreover,
studies have shown that teaching programming using this technique has a positive effect
on problem-solving skills in general and facilitates transfer of these skills to other domains
(Kim et al., 2018; Klahr & Carver, 1988; Witherspoon et al., 2017). Even though these
studies have shown the benefits of teaching programming through fixing, the conclusions
they draw are often speculative, based on limited empirical evidence. Consequently, further
empirical evidence should be collected and analyzed to support these preliminary conclu-
sions (McCauley et al., 2008).

Completion problems, Parsons problems, fixing code, and block programming all have
their theoretical roots in cognitive load theory. The techniques described above aim to
limit cognitive load by abstracting away the details of programming language syntax and
grammar. Moreover, they reduce the number of options by grouping code into blocks.
Often, these techniques are used in combination with a learning path that uses repeated
examples and practice time to gradually introduce more complexities into the programs
the learners have to create. In block programming and Parsons problems, cognitive load is
reduced because these techniques limit syntax errors as well as constrain the problem space
the learners have to work in (Ericson et al., 2017). Similarly, code completion problems
limit the number of options learners have to choose from, reducing cognitive load. Learning
through fixing provides learners with most of the code, narrowing down the problem to
identifying the error, locating that error, and fixing it. It defines a clear procedure for
solving problems as opposed to generating code from scratch where multiple strategies can
lead to a solution. Having a clear strategy has been shown to reduce cognitive load (D.
Shaffer et al., 2003).
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In this paper we compare the learning outcomes and experiences associated with the
code generation and code fixing strategies. Since these teaching strategies can influence
different aspects of learning, we looked for a framework that enabled us to evaluate mul-
tiple relevant dimensions of learning in a structured way. Cobb et al. (2003) supports the
decision for a multidimensional approach by stating that analyzing one aspect in a complex
system limits our ability to establish theories about learning. Experiments should ideally
result in a greater understanding of a learning ecology, which they define as a complex
interacting system involving multiple elements of different types and levels. Jackson (2013)
gives us a more extensive definition of a learning ecology. They identify five key components
of an individual’s learning ecology: contexts, relationships, process, will and capability, and
resources. Luckin (2008) proposes a learning ecology of resources model. They define an
ecology of resources as a set of inter-related resource elements, including people and objects,
the interactions between which provide a particular context. They argue that different re-
sources are needed when different subjects are taught and propose a framework of learning
ecology in which different scaffolded exercises can be fitted. The model puts the learner
in the center and states the interactions she has with the curriculum, knowledge, organ-
ization, environment, administration, and resources. The different definitions of learning
ecology are synthesized by González-Sanmamed et al. (2019). In their paper, they use the
Delphi method to create a general model of learning ecology based on previous definitions
and expert knowledge. The model has intrinsic and experiential dimensions. The intrinsic
dimension structures learning dispositions using conceptions, motivation, and expectations.
The experiential dimension focuses on the learning process by analyzing relationships, re-
sources, actions, and context. In our experiment, we used this framework of learning ecology
as a basis for our assessment.

Research question

This study aims to provide some clarity about the benefits and drawbacks of teaching
programming through fixing code for novice programmers aged 10 to 12 years old. To do
this, we created two robotics workshops, one integrating programming using the traditional
code generation method, the other using faulty programs which the learners had to fix.
These workshops will further be referred to as the create- and fix-methods. The main
research question we try to answer is: Do teaching programming through fixing and teaching
programming through creating have a different effect on learning ecology in the last two years
of primary school? Our research focuses on both learning achievement as well as learning
experience which are both parts of the experiential dimension of learning ecology. To assess
the learning achievement, we look at the acquisition of both programming skills as well as
higher-level computational thinking skills. To assess learning experience we look at both the
emotion during the workshop, use of programming and computational thinking concepts, as
well as the interaction patterns with our programming environment. To get a sense of how
the dispositions of the learners differ between the experimental groups we used an attitude
test as a baseline measure.
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Assessment methods

Our research team consisted of: One full-time researcher, a master thesis student, a
teacher who could support us during some of the workshops, and a supervising professor.
With this team, we aimed to assess both the learning dispositions and learning processes
(González-Sanmamed et al., 2019) for both of the workshops we designed. To get a multi-
dimensional perspective on the learning process, we combined quantitative with qualitative
assessment. A wide range of assessment techniques was chosen to get a better perspective
on the learning process. Based on our experimental goals, we selected the following metrics:
(1) A quantitative assessment of attitude between test groups. (2) Quantitative assessment
of the learning achievement for computational thinking and programming. (3) Qualitative
assessment of programming, computational thinking, and emotion during the learning pro-
cess. (4) A quantitative assessment of programming data. In the following paragraphs, we
give more information about these assessment techniques and how they can be mapped to
the model of learning ecology as well as our research question.

Attitude. To quantitatively assess the intrinsic dimension of our learning ecology, we
selected the BRAINS test as a reference (Summers & Abd-El-Khalick, 2018). The test is
designed to evaluate the attitude towards science of children aged 10 to 15 years old. The
test includes 30 questions, which are split into five categories: attitude, intentions, beliefs,
control, and norms. We translated the questions into dutch and replaced the term “science”
with the term “science and technology”, which is the term that is generally used in Flemish
primary education to describe STEM subjects. We used an attitude test to assess the
intrinsic dimension of learning ecology because it represents the dispositions learners have
towards STEM. The BRAINS test specifically gives us information about the conceptions,
motivations, and expectations the learners have towards science and technology. This test
is not intended to compare the effect of our different workshops but to verify that there is
no intrinsic bias towards the content of the workshop in one of the experimental groups.

Learning achievement. Since the fix method should limit extraneous cognitive load
compared to the create method it should result in higher learning achievement (Abdul-
Rahman & Du Boulay, 2014). Moreover, it should facilitate the acquisition of higher-order
thinking skills (Klahr & Carver, 1988). Consequently, we created a set of programming
questions as a direct measure for the skills taught during the workshop as well as a set
of computational thinking questions to measure possible transfer to higher-order thinking.
The set of programming questions measure if the learners understood the concepts taught
during our workshop. These concepts are time behavior, iteration, selection, and condition.
The questions were asked by showing the students a short piece of code and asking for
the behavior this piece of code would exhibit; an example question is shown in Figure 1.
To create a measure for the higher-order thinking skills, we first looked at the different
definitions of computational thinking. Many definitions of CT exist: Lye and Koh (2014)
describe it as a series of problem-solving skills and attitudes in which they use computer
science concepts. Barendsen et al. (2015) define CT as a way to solve problems in a way
they can be implemented as a computer algorithm. Hsu et al. (2018) synthesized the many
definitions into a classification of CT. This classification defines:

• 19 skills, these are largely based on the ones proposed by Wing (2006) and include
abstraction, algorithm design, and decomposition.
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Figure 1 . Example multiple choice question to measure basic programming concept know-
ledge.

• 16 common learning strategies like problem-based learning, collaborative learning,
scaffolding, and teacher-centered lecturing.

• 14 tools for teaching CT, these range from older tools like LOGO (introduced by
Feurzeig et al. (1969)) to more modern ones like LEGO and Scratch.

No standardized test exists for measuring computational thinking skills. However, Chen
et al. (2017) describe a 23 item instrument to assess computational thinking in a robotics
context. Moreover, Román-González et al. (2017) use a test consisting of three types of
questions:

1. Computational concept questions. These assess if the students understand basic pro-
gramming concepts like loops and variables.

2. Automated assessment using the Dr. Scratch environment.

3. Computational thinking concepts using Bebras questions.

The authors show a correlation between the scores on the basic programming ques-
tions and Bebras questions, which indicates that Bebras questions can be used to assess
computational thinking. The Bebras questions are designed for the international Bebras
competition and aim to measure the computational thinking skills of participants outside a
computing context (Dagiene & Futschek, 2008). Each question tests one or more computa-
tional thinking concepts (Barendsen et al., 2015). Consequently, to test the computational
thinking skills, we selected Bebras questions that test the concepts abstraction, decompos-
ition, sequence, and algorithm design. We based our selection on previous classifications in
literature (Barendsen et al., 2015; Dagiene & Sentance, 2016). Table 1 shows the questions
used in the test using their official Bebras contest identifiers.
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Table 1
Pre- and posttest Bebras questions

Question id Name
2015-JP-04 Crane operating
2015-MY-01 Bracelet
2014-UA-05-1 Gold coins
2015-CZ-01 Chestnut animals
2015-JP-02 Animation
2013-SI-14 Waiter
2015-CZ-09 Height of animals
2014-SK-07 Bee robot
2014-LT-06 Robot stairs
2012-FR-06 Swapping

Experience. To get a deeper understanding of how the students experienced the learn-
ing process, we looked at when students used certain programming and computational
thinking concepts or express certain emotions. As described in the introduction, the two
teaching methods we compare could have a different effect on learning achievement. Ana-
lyzing how the learners experience programming and computational thinking should give us
insight into the possible causes of those differences in learning achievement. Additionally,
measuring emotion does not only provide us with a deeper insight into how the learners
experience the workshop itself, it can also be related to cognitive load (Plass & Kalyuga,
2019). Giving us an extra data point for comparing our two teaching methods.

To analyze these three elements, we made video recordings of multiple learners during
the sessions. To extract relevant information from the recordings, we defined three different
coding schemes, one for computational thinking skills, one for programming skills, and
one for emotion. The coding scheme for computational thinking is largely based on the
work of Brennan and Resnick (2012) and Chen et al. (2017). We took their definitions
of computational thinking and reduced the different elements they suggest to a set, which
was relevant for us by eliminating the components which would not be used during the
workshop we designed. Table 2 shows an overview of the coding scheme we used. We
created a similar coding scheme that defines programming concepts. This coding scheme
is mostly based on the coding constructs, which were used during the workshop. Table
3 shows the coding scheme that was used for programming concepts. Finally, we created
a coding scheme to measure the emotions during the workshop. The coding scheme is
based on the work of Bosch et al. (2013) who define 19 categories of emotion. According
to Lewis et al. (2010) the emotions fear and anxiety are hard to differentiate during an
observation. Consequently, these were combined into one concept (fear) for our experiment.
We compared their classification with the one proposed by Rodrigo and Baker (2009).
However, all the categories they proposed were already included in our coding scheme. We
added the categories pride, humor and affection as proposed by Else-Quest et al. (2008).
To simplify the classification of emotions we decided to remove the categories uncertainty
and helplessness since these mostly result in anger or sadness. Finally, we added the
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Table 2
Coding scheme used to encode the computational thinking concepts.
Code Category Description
1 Syntax The learners use the right programming blocks and

grammar defined by the environment.
2 Data The learners use the right data and datatypes.
3 Algorithms The learners use an algorithm that solves their prob-

lem.
4 Efficiency and effectivity The learners solve a problem in an efficient way.
5 Incremental and iterative The learners repeat some steps if necessary and choose

to adapt their way of solving the problem.
6 Abstraction The learners remove unnecessary information to get

a simplified representation of the problem.
7 Modularisation The learners get to a solution by combining solutions

to partial problems.
8 Testing and debugging The learners use a trial and error technique to resolve

errors.
9 Reuse The learners reuse previous solutions.
10 Decomposition The learners split the problem into sub-problems.
11 Logic The learners use if-then reasoning.
12 Generalisation The learners create a rule or theory based on the pat-

terns they observed.
13 Pattern recognition The learners recognize repetitive patterns when solv-

ing a problem.
14 None No computational thinking skills are used.

emotion engagement to the coding scheme since it was of interest to us. This resulted in
the coding scheme shown in table 4. For each of these coding schemes, we transcribed
different fragments to illustrate the interactions when some of the elements in the coding
scheme occur. This qualitative data gives us an understanding of the experiential dimension
of the learning process. It clarifies the relationships between learners, the actions they take,
and the context within which they learn.

Code interaction. The final measure we used is the interactions learners had with
the programming environment. Since we created the programming environment ourselves,
we were able to log all interactions learners had with the environment. We performed a
quantitative analysis of these interactions by counting how many times each of the following
interactions occurred: total number of code changes, number of programs containing a con-
ditional statement, number of programs containing a loop statement, number of programs
containing a wait instruction. This logging data gives us more insight into the actions
learners take and how they use the available resources resulting in more information about
the experiential dimension of a learning ecology.
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Table 3
Coding scheme used to encode the programming concepts.
Code Category Description
1 For-loops An instruction to repeat a certain set of instructions

a number of times
2 Debugging Finding errors in the program using step by step de-

bugging.
3 Conditions A statement which is evaluated to true or false.
4 Repetition Repetition of a set of instructions.
5 Sequence Putting a set of instructions in the right order.
6 Wait Using time to change the behaviour of a program.
7 Setup-block Startup block used to setup the environment.
8 Loop-block Startup block used to repeat a specific set of code

blocks.
9 Clear-lcd-block Clear the lcd-screen
10 DC-motor-block Controls the speed of a specific motor.
11 Play tone-block Plays a tone on the buzzer.
12 Sonar-block Contains the distance measured by a sonar sensor.
13 Led-block Turns a certain LED on or off.
14 If-then-else-block Block used to check a conditional statement and ex-

ecute the relevant result.
15 None None of the specified coding concepts were used dur-

ing programming.

Method

Our experiment was set up so the results should be easily transferable to the current
educational context. We believe our research should contribute practical information for
teachers allowing them to improve their teaching practice. Consequently, we took the
educational context in which teachers in the region of Flanders (Belgium) work today as
a reference for our experiment. Using this context as a reference, we identified multiple
constraints that both the instructional and experimental design had to meet. We identified
constraints enforced by both practice and policy. The first major constraint in primary
school is time. A governmental policy defines ten topics primary schools have to teach
(Vlaanderen, 1997). From these ten topics, one focuses on science. Within the science
topic, only a limited number of educational goals focus on technical systems and processes.
Consequently, in practice, teachers look for content that covers a wide range of educational
goals within a limited time. The second constraint teachers often face, is their limited
set of resources. Most of the budget provided by the government is used to pay teacher
salaries (Vlaanderen, 2019). This leaves little resources to invest in teaching materials,
especially for subjects that represent only a small part of the curriculum. The third and
final constraint we identified is teacher content knowledge. Primary school teachers have
minimal knowledge about more complex STEM topics since they were not educated to teach
them. Consequently, teachers often depend on external partners to help them bring more
complex content into the classroom. We took these constraints into account when creating
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Table 4
Coding scheme used to encode emotions.
Code Category Markers
1 Anger Inner eyebrows pointing downward, heightened upper

eyelids, lips pressed against each-other, heightened
upper lip.

2 Contempt Using a sarcastic tone of voice, voicing remarks, lifting
one side of the lips.

3 Boredom Looking around, moving around in their seat, fiddling
with something, resting their chin in the palm of their
hand, explicitly stating: "this is boring".

4 Confusion Scratching their head, repetitively looking at the same
things, having a discussion with teacher or peers:
"Why is this not working?"

5 Engagement Focus on the assignment, relaxed face and body, fo-
cused on the task, listing possible solutions to them-
selves, peers or computer.

6 Happiness High-fives, laughter, clapping their hands, fist in the
air, "Wow!", "Cool!", "Yes!".

7 Fear Tense body, tense mouth, raised eyebrows.
8 Frustration Outburst, sharp movements, slamming keyboard or

mouse, cursing, less intense facial expressions than
seen with anger.

9 Sadness Corners of the mouth face downward, inner eyebrows
up, eyelids down, crying.

10 Surprised Suddenly sitting upright, gasping for air, expressions
like: "Huh?", "Oh".

11 Affection Soft voice, giving compliments, physical attention.
12 Humor Smiling, laughing, more intense expressions than cat-

egory 6.
13 Pride Sitting up straight, showing off, similar expressions as

category 6.
14 Neutral n.a.
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our instructional and experimental designs. In the following sections, we describe both of
these designs in more detail and explain how we met the constraints listed above.

Experimental group

Since STEM education is getting a more prevalent role in primary education in Flanders,
our experiment focuses on the last two years of primary school. The learners who parti-
cipated in our experiment were between the ages of ten and twelve. They were randomly
selected from 10 different primary schools in Flanders (the Dutch speaking part of Belgium).
Since we selected a random sample from Flemish primary education, our experimental group
(N=211) reflects the underlying cultural and gender distributions present in primary edu-
cation. Our results show our final group had 53% girls and 46% boys 1% preferred not
to identify their gender. About 70% of participants indicated speaking mostly Flemish at
home while about 20% sporadically or never speaks Flemish at home. These distributions
match the ones for all of primary school provided by the Flemish government 1.

Instructional design

We combined the constraints described above with the requirements dictated by our
research questions to create an authentic learning path containing multiple different learning
experiences. The learning path consists of three workshop sessions of about 150 minutes,
resulting in 7 hours and 30 minutes of learning. The workshops took place in the classroom
of the students. The teachers of the classes were always present to help where possible and
to help keep order in the classroom. However, the workshops themselves were given by
either a researcher or a supporting teacher who was part of the research team. Using an
expert teacher reflects how STEM is often integrated in primary school today. Since primary
school teachers lack the necessary content knowledge, they often rely on external partners
to fulfill some parts of the curriculum. When selecting content for the educational design,
we took into account the governmental educational goals and aimed to match the content
with a selection of these goals. After careful consideration, we created a physical computing
learning path that seamlessly integrates the governmental educational goals about technical
systems and processes. To test our hypotheses, we created two variations of the learning
path in which we change the way the learners program the physical system. The first
variation focuses on creating programs from scratch allowing learners to build their program
step by step. This learning path incrementally introduces new programming concepts by
explaining them using an example and asking the students to solve one or more exercises
using that concept. The exercises require the learners to write a program from scratch trying
to achieve the functionality we requested. The second variation uses a learning approach
that focuses on changing and fixing programs. In this setup, similar to the create workshop,
the learners first get a short explanation of a specific coding concept using an example. After
each concept is introduced, the learners perform one or more exercises on that concept. In
the exercises, they get a faulty or incomplete program and have to change the program to
reach their goal. To keep the focus on a specific concept, the learners only have to either
change one block in the program or add one block to the program. Moreover, during the

1https://onderwijs.vlaanderen.be/nl/nl/onderwijsstatistieken/statistisch-jaarboek/statistisch-jaarboek-
van-het-vlaams-onderwijs-2018-2019
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first session, the learners are instructed to write down the answers to the following questions:
(1) What should the program do? (2) What does the program do now? (3) At what point
in the program does it go wrong? (4) How can we fix the error? These questions provide a
strategy for tackling the problems facilitating the learning process. In the second and third
session we did not explicitly ask the learners to answer these questions enabling them to
choose the solution strategy they wanted.

Figure 2 shows an overview of the learning path with the variations labeled as create
and fix. All building and programming activities were done in groups of two. We paired
up the students for multiple reasons. Firstly, a robotics workshop requires a lot of hard-
ware including a robot kit with mechanical and electrical components as well as a laptop.
Classrooms simply don’t have the physical space to provide each learner with a full setup.
Secondly, previous research suggests pair programming is advantageous for the learning
process. Zhong et al. (2016) have shown that learning to program in pairs did not affect
achievement and confidence among groups but did make girls more productive and confid-
ent. Moreover, Celepkolu and Boyer (2018) have shown that programming in pairs exposes
learners to different ideas, reduced their frustrations, and helped them form social connec-
tions. Additionally, McDowell et al. (2003) have shown that programming in pairs improves
pass rates and retention. Because literature shows working in pairs has mostly benefits and
limited shortcomings, we found it appropriate for our experiment. Thirdly, having stu-
dents work together will reveal more of the thinking patterns in our video recordings since
communicating their thoughts is essential when working together. Consequently, it allowed
us to get insights into their thinking patterns through the social interactions during the
learning process.

Each workshop session contains at least one hour of programming exercises. The content
of these exercises is different between the fix and create workshops. A detailed list of the
exercises for each track is also shown in Figure 2. In addition to the coding sessions, the
workshop contains two CSUnplugged activities (Bell et al., 2009). These familiarize the stu-
dents with a computational concept which they are going to need during the exercises that
follow. The first Unplugged activity familiarizes the learners with the concept of program-
ming by making them write a program that lets their teacher make a sandwich. The second
activity introduces the concept of conditional statements by making the students perform
a certain act (for example: jump in the air) when the condition shown on the blackboard
is true for them. Even though the fix and create workshops use different exercises, their
objectives are the same. An overview of the learning objectives for the sessions is shown in
List A.

To reach these learning goals, we created a custom set of teaching tools specifically
designed for our workshop. These teaching tools include: (1) A custom-designed Arduino-
based microcontroller board for robotics in education. The main features of the board
include: An LCD-screen, 9 LED-lights, a buzzer, five buttons, and a built in motor driver
to control different types of motors. The board enables learners to connect and control the
components of a basic robot easily. (2) A custom robotics kit, designed to be inexpensive
and easy to produce in a maker lab. It includes two inexpensive DC-motors with wheels, a
set of laser-cut parts to construct a frame, a sonar sensor, and a set of standard screws. (3)
A tailor-made open-source graphical programming environment based on Google Blockly
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Figure 2 . Graphical overview of the instructional design for the intervention. In the center,
a high-level description of each session is given. Above and below a list of programming
exercises for the create and fix group are given respectively.

2, which includes a robotic simulator and debugger. Figure 3 shows a screen-shot of the
environment. It has the standard elements like the Google Blockly toolbox and workspace
but extends on it in different ways. The most important extension is the simulator view.
This view provides the learners with a simulated environment in which they can test their
code. All the tools are open source and designed to be inexpensive so they can be used in
all schools, even with a limited budget for STEM education.

Experimental design

Our experimental design aims to identify the differences between the two test groups
(create and fix). The design can be split in two main parts: quantitative assessment and
qualitative assessment. As discussed in the assessment section on page 5, the quantitative
assessment was done through a programming test, a computational thinking test, an atti-
tude survey, and the logging of interactions with the environment. The data logging was
done during all workshops. The attitude test was administered after the workshop together
with the programming and computational thinking tests, which were presented to the stu-
dents as one knowledge test. Note that, in the results section, we show the results for two
different programming tests and two different computational thinking tests. The reason we
have two tests is that we initially opted for a pre-posttest design where pre- and posttest
are flipped between groups. However, after analyzing the results for the pretest, we noticed
a low internal consistency score (α = 0.53) on the programming test, indicating the test
was filled out more or less randomly by the learners because they had little to no know-
ledge about the subject. Consequently, we opted to compare the groups solely based on
the results on the posttest. Table 5 shows an overview of the participant distribution. The
students in this distribution come from 10 different class groups from 7 different schools.

2https://developers.google.com/blockly
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Figure 3 . Overview of the custom programming environment. (1) The toolbox repository
with all the blocks that can be used. (2) The workspace area, this is where programs are
constructed. (3) The microcontroller board simulation. (4) A simulation of a riding robot
similar to the one they build during the sessions. (5) Controls for saving, restoring and
uploading the code to the microcontroller board

Table 5
Overview of participants distribution. (N=211) Since our initial experimental setup aimed
to measure the learning progress on a pre-and posttest, we designed two tests. Consequently,
Test 1 and Test 2 have different but topic matched questions. For half of the groups test 1
was used as a pretest and test 2 as a posttest. However, since the results on the pretest were
not internally consistent, we decided to only compare the groups using the posttest. Note
that the test groups presented here vary in size, this is because we had to remove some of
the groups from our analysis since teachers did not administer the test correctly rendering
it invalid.

Test 1 Test 2 Total
Create 36 47 83
Fix 87 41 128
Total 123 88 211



METHODS FOR PRIMARY SCHOOL PROGRAMMING 15

For our qualitative assessment, we opted for video recording of specific learners during
the workshop. According to Koch and Zumbach (2002) this is one of the methods which
results in thorough encoding. Concretely, we randomly selected four student duos from
which we recorded video and audio data during the full workshop3. These four duos came
from both experimental groups, two in the create group, and two in the fix group. These
recordings were analyzed using the three coding schemes discussed in the assessment section
on page 5. To encode the data streams, we split them into sections of 30 seconds. To each
section, we assigned three codes, one for computational thinking skills, one for programming
skills, and one for emotion. Additionally, we selected specific interactions between learners
as examples to support the findings from the coding process.

Results

To analyze our results, we refer back to the model of learning ecology by González-
Sanmamed et al. (2019). We start by analyzing the differences between the create and fix
groups on the intrinsic dimension. Afterward, we analyze the differences in the experiential
dimension. Finally, we combine both dimensions to get an overview of the learning ecology
in both groups.4

Intrinsic dimension

The intrinsic dimension is shaped by inter-subjective elements that characterize the self.
It is mainly influenced by an individual’s life trajectory, which includes different learning
experiences. To understand the learning dispositions in the intrinsic dimension, we first
describe the four duos whom we recorded during the workshops. The goal is to understand
the affinity the learners have with programming.

Duo 1 (create) Mary and Susan: Mary and Susan came into contact with pro-
gramming only once before during a small workshop. According to the teacher, they had
not done any programming this year. Neither indicated that they had done any STEM
activities outside of school.

Duo 2 (create) James and Lisa: James and Lisa indicated they had programmed
before using Minecraft. James had more knowledge about STEM than the rest of the
class because he won a local STEM competition that year. He told us he also had to
program during that competition. Additionally, during one of the sessions, he said he had
a programmable robot with sensors at home.

Duo 3 (fix) David and Mark: David and Mark had some experience in program-
ming. They had multiple programming sessions at school this year using Minecraft and
Scratch. David said he had an Arduino at home, which he used to program a traffic light.

Duo 4 (fix) Ruth and Sarah: Ruth and Sarah have some programming experience.
During the instruction, they imply having programmed in Minecraft before. This is illus-
trated when the teacher asks them to think of a condition which can be true or false, they
suggest: "If there is lava, put down a block".

3We obtained active, informed consent from the parents of learners who were videotaped. The other
students in the group received a passive consent form explaining the anonymous data we collected.

4The data that support the findings of this study are available on request from the corresponding author.
The data are not publicly available due to privacy or ethical restrictions.
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Table 6
Average attitude score for each test group per dimension (Attitude, Intentions, Beliefs, Con-
trol, Norms). Significance of the differences between test groups was calculated using t-test.

Attitude Intentions Belief Control Norms Total
Create 3.220 2.577 3.231 3.280 2.402 3.025
Fix 3.081 2.456 3.269 3.281 2.400 2.984

p-value 0.426 0.368 0.669 0.995 0.967 0.686
Significance None None None None None None

From these descriptions, we can identify minor dispositions some of the learners have.
Some learners, like James and David, are clearly intrinsically motivated for STEM and
programming activities since they had voluntarily done it at home. Moreover, all the
learners seem to have at least some experience with programming. However, this experience
is limited to some irregular workshops and not part of the curriculum. Apart from some
minor differences, the duos seem to have similar learning dispositions. To validate this
observation, we compared the attitude towards science and technology between the create
and fix groups. As described in the assessment section on page 5, all learners (N=211)
filled out an attitude questionnaire assessing the dimensions: attitude, intentions, beliefs,
control, and norms. An overview of the results is shown in table 6. The table clearly shows
no significant differences between the groups on any of the dimensions. Consequently, both
groups have equal dispositions, which imply there was no intrinsic bias about science and
technology in each of the groups.

Experiential dimension

Before describing the results of the coding schemes defined in the assessment section on
page 5, we provide a brief description of the learning experiences of each duo we followed.

Duo 1 (create) Mary and Susan: Mary and Susan quickly solved the first pro-
gramming assignments. Generally, they solved the assignments more quickly than the other
students in the group. Building the robot frame went smoothly. Mary indicates that she
is not dexterous when it comes to building the robot. Both of them were focused during
the workshop. However, when they got the opportunity to experiment, they acted more
playful. Nevertheless, in those moments, they were always focused on the robot without
being distracted. During the last session, Mary started losing focus from time to time. She
started talking to other groups and asked for help more quickly, but only when they had
been stuck for a while. Even though Mary was more distracted, Susan kept her focus and
kept trying to solve the problems. When the duo finished an assignment more quickly than
the other children in the group, they voluntarily started helping other groups. Mary and
Susan were proud when they found a solution, and they wanted to share their solutions with
other groups in the classroom and showed the result to the camera that was recording them.
Collaboration between the duo went without issues. When they had a different method in
mind, they talked with each other to get to the best solution.

Duo 2 (create) James and Lisa: Since James had much knowledge about pro-
gramming, the duo quickly solved the programming assignments. At the end of the final



METHODS FOR PRIMARY SCHOOL PROGRAMMING 17

session, the instructor had to give them an extra assignment because they had finished all
the exercises before all other groups. James and Lisa collaborated very well. James took
the responsibility of the programming while Lisa spent her time building and modifying
the robot. The duo was calm during the workshop. They were not playful or loud. During
the moments of instruction, they were focused and listened carefully. When they finished
an assignment early, they quietly waited for a new assignment. James was very focused
during all workshops, and this was articulated in the way he worked. While programming,
he always talked to himself, describing what he was doing and how he tried to solve specific
problems. He was also very self-demanding when the duo had to program the robot to ride
a square pattern on the floor, both Lisa and the teacher found their solution acceptable.
However, James kept going because he wanted it to be a perfect square. When testing
his code on the real robot, James sometimes got frustrated because it did not do what he
expected. The real world often introduces unexpected conditions like different friction on
each of the wheels of the robot. Consequently, theoretically correct solutions do not show
the desired behavior in the real world. James clearly had not experienced problems like
these before. Lisa spent most of her time building the robot and testing the code James had
written. She had limited input in the programming process an often asked James if he knew
the solution. She was more inclined to ask for help when they did not immediately find the
solution to a problem. Especially in the final session, Lisa often got impatient and did not
take the time to think about how to solve the problem. James and Lisa were proud when
they solved the problem, and they even showed one of their solutions to the ICT-teacher
who was in the room next to the one of the workshop.

Duo 3 (fix) David and Mark: David and Mark were able to solve most assignments
during the workshop. However, they did experience difficulties during some of the exercises.
For example, in one of the exercises, they had to identify why the LCD-screen did not show
a word that was present in the code and add a wait-block to solve the problem. The duo
identified the problem but was not able to add the correct code block to solve it. When
David finally found the solution, his animated reaction demonstrated his excitement. When
the duo was trying to make the robot stop at a wall using a sensor, they were stuck. After
trying to correct the error using trial-and-error for 10 minutes, they asked the teacher for
help. The problem seemed to be that they did not know what the smaller or equal sign
meant. Once the teacher explained the sign, they were able to solve the problem. While
building the robot, they did not experience any issues. Both took turns constructing part
of the robot, David let Mark take over the construction when they had to tighten the small
screws because he was bad at it. David and Mark were mostly focused during the workshop.
Only when they finished an assignment faster than the other groups, David left his seat and
started interacting with other groups. After a few minutes, Mark went looking for him and
brought him back to help with the next assignment. The duo collaborated very well during
programming, one was controlling the computer while the other helped thinking, and they
often voluntarily switched places.

Duo 4 (fix) Ruth and Sarah: Ruth and Sarah quickly familiarized themselves with
the programming environment. However, they did have some troubles during the workshop.
When building the robot, they had difficulties attaching some of the screws. They often
sighed, and Sarah cursed while trying to attach the motor. When they had to correct a
program that should stop at the wall, they spent much time looking for the problem but
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were unable to find a solution. After they got help, they found out their sensor was malfunc-
tioning. Sarah got frustrated and looked sad. She lost all motivation and stopped actively
participating in the process. Ruth did not give up, and she kept looking for a solution to
the problem. Most of the time, the duo kept the focus on the assignments. When they
finished an assignment before the other groups, Ruth suggested to try and build their own
program. Ruth and Sarah collaborated very well. Most of the time, they helped each other
to reach a solution. However, at a certain point when building the robot, they disagreed
about how the sensor should be attached, which resulted in an angry reaction of Sarah: "If
you know better, you do it!".

These four descriptions provide some insight into the learning process. Even from these
small summaries, we can deduce that the learners in the fix group had more difficulties
solving the assignments than the ones in the create group. These difficulties sometimes
resulted in more anger and frustration during the workshop, which led to a loss in motivation
for some learners. To get a more in-depth insight into the differences between the two groups,
we apply the coding schemes described in the assessment section on page 5. Table 7 shows
a list of programming concepts and the number of time steps (=30sec). The learners talked
about this concept when programming. These results reveal some interesting insights, first
and foremost, there seems to be a big difference in the number of concept mentions between
the create and the fix groups. The create group talked more about the selected programming
concepts. A second insight this data demonstrates is how little some coding concepts are
used, especially in the fix group. It makes sense that the create group uses more of the
programming concepts since none of the code is provided to them. However, in the fix
group, most of the concepts are only mentioned a few times, indicating less meaningful
interaction with the code. This discrepancy could be explained by the process itself. In the
create group the learners have to select the blocks they are going to use in their program.
This selection process sparks discussion about the different blocks they should use. In the
fix group, much time is spent identifying the error in a program. Once the fault has been
identified the learners try to match the code where they think the error is with structures
of blocks they have seen before or are present in the code currently on the screen. If they
find a similar structure they match it at the place where they think the error is without
thinking about the specific coding concepts present. When this technique does not work, the
learners mostly try to solve the problem using trial-and-error by modifying the code. This
trial-and-error process puts less focus on understanding the code and more on identifying
how the output changes when a specific element of the code is changed. Often the students
find the solution just by spending a lot of time trying different things instead of finding a
solution by understanding how the program works.

To continue our analysis, we investigated the interactions using the computational think-
ing coding scheme explained in section 2. Table 8 shows the number of time slots the learners
use one of the specified computational thinking concepts. As with the programming con-
cepts, the learners in the create group generally use more of the computational thinking
concepts than the fix group. Remarkably, the create group uses the concept testing and
debugging more often than the fix group. The only way we can explain this difference is
that the learners in the create group spend less time reading through the code. They can
start writing small parts of the program and testing them. That way they incrementally
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Table 7
Number of lesson phases in which students talk about a certain programming concept. Group
one and two participated in the create workshop, group three and four participated in the
fix workshop. The significance is shown just as an indication, and we do not believe it has
much value on a small group like this.

Concepts Group 1 and 2 Group 3 and 4 Both X2 (p-value)
For-loop 7 0 7 5.489(.019)
Debugging 0 1 1 1.29(.256)
Conditions 6 4 10 0.057(.812)
Repetition 2 3 5 0.543(.461)
Sequence 8 7 15 0.055(.815)
Wait-block 33 4 37 17.17(.000034)*
Setup-block 2 4 6 1.297(.255)
Loop-block 8 1 9 3.936(.047)
Clear-lcd-block 20 6 26 4.669(.031)
DC-motor-block 7 2 3 4.500(.034)
Play-tone-block 2 1 3 0.132(.717)
Sonar-block 4 1 5 1.150(.284)
Led-block 5 1 6 1.798(.180)
If-then-else-block 5 0 5 3.910(.048)
None 289 274 563 15.759(.000072)*
* Bonferroni-corrected significance p < 0.05/15

construct their programs. The students in the fix group spend a lot of time just executing
a program to see what it does. They need more time before they can start identifying the
problem and testing possible solutions.

The emotions learners had during the workshop are shown in table 9. Again there is a
noticeable difference between the create and fix groups. The students in the create group
showed more engagement while the students in the fix group were more surprised. The fix
group seems to have more negative emotions like anger, contempt, boredom, frustration, and
sadness than the create group. The differences in each of these emotions are not significant.
However, when looking at all negative emotions, we do observe a general trend.

Now that we have established the differences between the small subgroup of learners
in our qualitative assessment, we look at our knowledge test if these results match the
established trend. As stated before, both the create and fix groups were each split into
two test groups. One of the test groups filled out test 1 the other test 2. Consequently,
about half of the learners in the create group answered the questions in test 1, the other
half answered the questions in test 2. Similarly, about half of the learners in the fix group
answered the questions in test 1 while the other half answered the questions in test 2. As
described in the assessment section on page 5, the test had both programming questions and
Bebras questions. We checked the internal consistency of all tests using Cronbach’s alpha,
and this resulted in an internal consistency score greater than 0.95 for all tests. As shown
in table 10, the create group scores consistently higher than the fix group on all tests. For
both programming tests, this difference is significant, with a p-value less than 0.05. The
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Table 8
Number of lesson phases in which students talk about certain computational thinking con-
cepts. Group one and two participated in the create workshop, group three and four parti-
cipated in the fix workshop. The significance is shown just as an indication, and we do not
believe it has much value on a small group like this.
Concepts Group 1 and 2 Group 3 and 4 Both X2 (p-value)
Syntax 21 1 22 14.153(.000169)*
Data 20 17 37 0.080(.778)
Efficiency and effectivity 28 2 30 17.469(.000029)*
Incremental and iterative 22 10 32 2.114(.146)
Abstraction 14 8 22 0.498(.481)
Testing and debugging 170 137 307 0.187(.666)
Decomposition 5 3 8 0.127(.722)
Logic 22 4 26 8.800(.003)*
Generalisation 0 1 6 4.698(.265)
Pattern recognition 6 0 6 4.698(.030)
None 90 126 216 27.048(<.0001)*
* Bonferroni-corrected significance p < 0.05/11

Table 9
Number of lesson phases in which students express certain emotions. Group one and two
participated in the create workshop, group three and four participated in the fix workshop.
The significance is shown just as an indication, and we do not believe it has much value on
a small group like this.

Emotions Group 1 and 2 Group 3 and 4 Both X2 (p-value)
Anger 0 1 1 1.290(.256)
Contempt 0 2 2 2.583(.108)
Boredom 0 1 1 1.290(.256)
Confusion 34 36 70 1.883(.170)
Engagement 160 64 224 30.524(<.0001)*
Happiness 47 47 94 1.746(.186)
Fear 1 0 1 0.777(.378)
Frustration 6 10 16 2.350(.125)
Sadness 2 4 6 1.297(.255)
Surprised 4 14 18 8.715(.003)*
Affection 1 4 5 2.696(.101)
Humor 7 9 16 1.047(.306)
Pride 12 7 19 0.374(.541)
Neutral 124 110 234 1.551(.213)
* Bonferroni-corrected significance p < 0.05/14
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Table 10
Average score on each of the knowledge tests with the significance of the difference between
the two test groups using a t-test.

Test 1 Test2

Programming
Create (N=36) Fix (N=87) Create (N=47) Fix (N=41)

2.389 1.885 1.680 1.073
p = 0.034 0.006

Bebras
Create (N=36) Fix (N=87) Create (N=47) Fix (N=41)

2.610 2.340 1.550 1.366
p=0.286 p=0.430

differences in the Bebras questions are not statistically significant. However, there does
seem to be a general trend indicating a lower performance of fix group.

The final dimension we analyzed is the logging data collected from our programming
environment. During the workshops, we saved all interactions learners had with the pro-
gramming environment. It includes each time the learners changed an aspect of the code,
and each time a new block was created by dragging it from the toolbox. To compare the
concepts condition/selection, for-loops and time-delay, we looked at the percentage of code
changes that were done on code containing one of these concepts. This can be interpreted
as the percentage of the time in which that concept was present in the learners’ code. Table
11 shows an overview of the results. Clearly, the create group used a lot more blocks from
the toolbox than the fix group. Additionally, the create group interacted more with the
code, which is demonstrated by the number of code changes. Interestingly, even though the
create group interacted more with the code than the fix group, the relative occurrence of
the programming concepts varies across the groups. In the following paragraph, we give a
possible explanation for these differences.

Condition/selection is more present in the fix group. Since the exercises in the fix
group never required the learners to add a conditional statement, only to modify existing
conditional statements, this percentage can be interpreted as the time learners spent on
the challenges containing a selection statement. In the create group, the learners had to
understand when and where to use the selection statement. Once they understood, less
work was required to finish the challenge. In the fix group, the learners got a program with
a selection statement. Consequently, before they understood what the statement meant,
they interacted with the code to figure out the problem and fix it. The same reasoning
can be used to explain the difference in occurrences of time-delays. However, for-loop are
used a lot more often by the create group than by the fix group. This is probably because
the for loop makes the code writing process faster, and the end result more readable. This
is especially the case in block-based graphical programming environments since the blocks
are very verbose, quickly cluttering up the workspace. Consequently, we believe that the
learners in the create group see more value in the usage of a loop. For them using loops
makes the coding process faster and more clear. This is in contrast to the fix group, which
was required to use loops in some assignments to make their code more clear and concise
but saw less value in them since they were never required to add a lot of code themselves,
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Table 11
Logging data results for the create and fix groups. The values for condition/selection, for-
loop and time-delay are represented as number of times they occurred in the code when a
code change occurs.

Create Fix
Blocks created 8772 2769
Code changes 52401 33834

Condition/selection 6255(11.9%) 5429(16.0%)
For-loop 14575(27.8%) 5173(15.3%)

Time-delay 34698(66.2%) 29667(87.7%)

only modify the incorrect code they got.
Looking at the different elements in the experiential dimension, it is clear that the

learners in the create group performed better than the ones in the fix group. Moreover, the
students in the create group were more engaged and showed less negative emotions. This
stands in contrast to the results for the intrinsic dimension, where we did not observe any
differences between the groups. In the discussion section, we elaborate on the differences
between the two groups and link all evaluation metrics together.

Discussion and conclusions

Figure 4 visualizes the global comparison between the two workshops. We generated
this figure by selecting indicators from the different assessed dimensions, normalizing them
(by dividing the score on one dimension by the sum of the scores for both dimensions), and
plotting them in a spider web plot. The following dimensions are visualized: total score
on the attitude test, number of programming concepts used by the videotaped students,
number of computational thinking concepts used by the videotaped students, number of
times engagement was observed in the group of taped students, the average score on both
programming tests, the average score on both computational thinking tests and the number
of code changes. Clearly, the create workshop scores better than the fix workshop. Only
the scores on the attitude test are at the same level.

Our research question focused on analyzing the differences between the create and fix
methods from the perspective of learning ecology. To assess the experiential dimension,
we looked at both learning achievement as well as learning experience. Looking at the
differences in learning achievement, it can be observed that, on our set of programming
questions, the learners in the fix group scored significantly lower than the ones in the create
group (Table 10). This is surprising since literature indicates that teaching programming
through fixing should not have negative effects on programming knowledge acquisition (Lee
et al., 2014). Moreover, code completion strategies, similar to the ones in our fix workshop
also should not negatively affect knowledge acquisition (Chang et al., 2000; Garner, 2009;
Van Merriënboer & De Croock, 1992). We suspect this negative effect on programming
knowledge acquisition is a result of a disproportionate cognitive load. Previous research has
shown that reading and understanding code is a different and more difficult skill than writing
code (Lister et al., 2009). Moreover, others have shown that young learners experience
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debugging as intellectually challenging (Liu et al., 2017). This challenging environment can
lead to extraneous cognitive load resulting in lower learning efficiency, higher frustration
and fewer engagement (Kester et al., 2006).

The idea that the fix method induces a higher cognitive load is supported by our com-
parison of the learning experiences during the workshop. Looking at the interactions of
the learners (page 16), some subtle differences arise. Learners in the fix group had more
difficulties solving the assignments, perform less code interactions, use multiple different
programming concepts less often, and are less engaged while coding than the learners in the
create group (Table 7 and Table 9). These difficulties resulted in more anger and frustration
during the workshop leading to a loss in motivation. These observations are confirmed by
the results of our emotion coding scheme (Table 9) which shows that learners in the create
group show less negative emotions, more positive emotions and are more engaged than the
learners in the fix group. These results are backed up by our programming data analysis.
The learners in the create group create more blocks, change the code more often, and use
different coding concepts more often. Most likely this is because the learners in the fix
group spend more time reading and understanding the code than actually modifying it.

Even though teaching programming through fixing should reduce the cognitive load
by providing a large part of the program, limiting the space of possibilities, and having
a clear goal learners have to work towards (Garner, 2009), it seems that this reduced
load is not offset by the additional intellectual challenges introduced by having to find
the specific location of the error and figuring out how to fix it. It seems like there is a
delicate balance between the extra scaffolding the fixing strategy provides and the additional
cognitive challenges it imposes. In our experiment, these extra cognitive challenges take the
upper hand resulting in a higher cognitive load. This increased cognitive load leads to
more frustration (Kester et al., 2006), which again leads to lower performance. Some argue
that, because teaching programming through debugging is more cognitively challenging
and requires multiple types of computational thinking skills, it is better for supporting the
acquisition of higher-order thinking skills (Klahr & Carver, 1988; Román-González et al.,
2017). Even though this might be the case for more extensive programming courses, we
were not able to confirm this. Table 10 shows no significant differences in scores between
the groups on the computational thinking test.

We are aware that our results highly depend on the instructional design, changing
aspects of this design might yield different results. When teachers have more time available
to teach programming it is plausible that including debugging exercises might be beneficial.
However, determining the proper mix of creating and debugging exercises requires further
research. Another possible drawback of our analysis is the limited information we collected
about the experiential dimension of learning ecology. To establish a valid baseline for the
comparison between the two teaching methods we analyzed, we used an attitude test as well
as an analysis of the learners in our qualitative study (Table 6 and page 15). Even though
our results show no noticeable differences between the groups, the techniques we used only
provide a limited view of the actual dispositions of the learners. Attitude provides only a
momentary image of the learners underlying dispositions. Additionally, other dispositions
like prior knowledge or family context were not considered. However, we do believe that the
aspects we have analyzed strengthen our assumption that there was no bias between our
two experimental groups. A third important limitation of our study is that, even though our
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workshop included one and a half days of learning, the overall scores on the programming
tests are still low. This indicates that our workshop was not very effective at improving
the comprehension of programming concepts in both groups. This shows that it might not
be feasible to have the learners in this age group acquire a sufficient understanding of the
programming concepts taught in our workshop in a limited time. Nevertheless, this does
not invalidate the differences between the two groups. The fix group does learn significantly
less than the create group.

Based on our results we can formulate some concrete guidelines for teachers helping
them to improve the integration of programming into their curricula. Firstly, when choos-
ing a set of programming exercises, the teacher should be aware of the additional cognitive
load fixing-problems impose. Consequently, limiting those problems is important. We do
not suggest not using these kinds of problems since they can be an important tool to provide
faster learners with extra challenges. Secondly, the teaching method chosen has a limited
effect on computational thinking skills. When computational thinking is a goal, teachers
should select teaching techniques proven to be beneficial for the improvement of computa-
tional thinking and not purely only rely on programming problems. Thirdly, teachers should
be aware that specific types of problems can affect negative emotions in students leading to
less engagement. This should be avoided as much as possible to limit long-term negative
effects. Finally, primary school teachers should be aware that letting learners freely explore
programming can lead to a more positive programming experience and a better under-
standing of programming concepts. Currently, some teachers prefer ready-to-use scaffolded
programming assignments defining a clear context for teaching, assessment, and grading.
Our results should encourage teachers to explore more open teaching environments allowing
more exploration.

Overall, our study has shown that integrating programming into a realistic primary
robotics workshop is best done using the create method. It gives learners the freedom to
explore different programming concepts at their own pace. This gives them more insight
into the programming concepts and shows the value of concepts like iteration, which facil-
itates the learning process. This method takes a more gentle approach when introducing
programming resulting in a more pleasant learning process with less negative emotions and
more engagement. This pleasant learning experience also results in better test scores.
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Figure 4 . Scores on the analyzed dimensions for both the create and fix workshops. The
following dimensions are first normalized and then visualized: total score on the attitude
test, number of programming concepts used by the taped students, number of computational
thinking concepts used by the taped students, number of times engagement was observed
in the group of taped students, the average score on both programming tests, the average
score on both computational thinking tests and the number of code changes.
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Appendix
Appendix A

• Session 1

1. The learners know that a program is a sequence of instructions that are accurate
and in the right order;

2. The learners write, change, run, upload code in the DwenguinoBlockly environ-
ment;

3. The learners know how to connect the microcontroller board to the computer;
4. The learners print text to the lcd-screen;
5. The learners know the difference between setup and loop;
6. The learners correctly use the wait-block;
7. The learners use counting loops and can identify when and why they are useful;
8. The learners control LEDs and the buzzer on the microcontroller board;
9. The learners convert microseconds into seconds;

• Session 2

1. The learners construct a two-wheeled riding robot using the Dwengo robot kit:
(a) The learners connect the structural parts using nuts and bolts;
(b) The learners connect the battery using a rubber band;
(c) The learners connect the motors the microcontroller board using a screw-

driver;
2. The learners use the DC-motor block to make their robot ride;
3. The learners run their program inside the simulator;
4. The learners use the wait-block to add time-based behavior to their robot;
5. The learners make their robot drive into different shapes, line, square, circle;

• Session 3

1. The learners connect a sonar distance sensor to their robot;
2. The learners understand the function of a sensor;
3. The learners evaluate conditionals and perform different actions when they are

true or false;
4. The learners use an if statement with the condition to read the distance from a

sonar sensor;
5. The learners program their robot to act on sensor input;
6. The learners understand the effect of the real world on the programming process;
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