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Abstract: Inertial Measurement Units (IMUs) are frequently implemented in wearable devices.
Thanks to advances in signal processing and machine learning, applications of IMUs are not limited
to those explicitly addressing body movements such as Activity Recognition (AR). On the other
hand, wearing IMUs on the chest offers a few advantages over other body positions. AR and
posture analysis, cardiopulmonary parameters estimation, voice and swallowing activity detection
and other measurements can be approached through chest-worn inertial sensors. This survey tries
to introduce the applications that come with the chest-worn IMUs and summarizes the existing
methods, current challenges and future directions associated with them. In this regard, this paper
references a total number of 57 relevant studies from the last 10 years and categorizes them into
seven application areas. We discuss the inertial sensors used as well as their placement on the body
and their associated validation methods based on the application categories. Our investigations
show meaningful correlations among the studies within the same application categories. Then,
we investigate the data processing architectures of the studies from the hardware point of view,
indicating a lack of effort on handling the main processing through on-body units. Finally, we
propose combining the discussed applications in a single platform, finding robust ways for artifact
cancellation, and planning optimized sensing/processing architectures for them, to be taken more
seriously in future research.

Keywords: accelerometry; seismocardiography; heart rate; respiration rate; activity recognition;
posture analysis; pedestrian dead reckoning; voice activity detection; swallow detection; context
retrieval

1. Introduction

The use of wearable sensors has been significantly increased over the past years [1].
Early motivations to produce such wearables are found in medical applications. Screening
patients with heart, Parkinson’s and epilepsy diseases from home to enable early detection
of cardiac, Parkinsonian and seizure attacks are a few examples of such motivations [2].
Later advances in dimensions, performance, variety and affordability of wearable elec-
tronics let these devices address even wider areas of interest. Today, wearable sensors
provide solutions to many sectors from healthcare and wellness to entertainment, security
and so on. They are available in several wearable forms such as wristbands, chest-straps
and armbands with various sensors embedded in them: temperature and humidity sensors,
microphones and image sensors, pressure and force sensors, motion and inertial sensors
and a wide range of biomedical sensors, to name a few [3].

Inertial Measurement Units (IMUs) are among the most common sensors used in
wearable devices. They may consist of accelerometers, gyroscopes and magnetometers to
give a comprehensive sensing from the inertial status of the moving object. Studies indicate
that accelerometers are the most frequently implemented IMUs in wearable devices as well
as the most frequently addressed sensors by mobile apps [4].
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IMUs suggest various applications based on their use parameters. From a wearable
device perspective, an IMU provides a low-cost, low-power, locally-computed and thus
privacy-respecting sensing of movements that can lead to a continuous tracking of speed,
position and attitude of the person [5]. Advances in signal processing and Machine Learn-
ing (ML) techniques as well as the production of light-weight Micro-electro-mechanical
System (MEMS)-based inertial sensors have broadened the application domains of these
sensors. These application domains cover a wide range of movement signals from high-
speed running to weak heart-induced vibrations [6,7]. These applications are defined
for wearable inertial sensors depending on the placement of an IMU on the body and its
targeted moving object from which inertial information is sensed.

Wrists may be referred to as the most frequent hosts for smart wearables, and hence,
wrist-worn sensors serve as the most popular wearable devices in the market [3]. The
availability of a number of informative body signals such as Photoplethysmogram (PPG),
Electro-dermal Activity (EDA) and temperature on the wrist as well as the fashionability
of the wristbands have helped these wearables gain relatively higher attention from the
market. On the other hand, one can hardly name a smart wristband that does not include an
IMU. These IMUs enable the smart wristbands to not only track activities but also measure
sleep parameters such as sleep time and efficiency [8–10]. However, wristbands face several
limitations when it comes to measuring specific types of activities or body parameters.

To make a decision for placement of the wearable inertial sensor, one can roughly
categorize the body positions based on either of the following criteria:

1. The type, amount and range of the movements that the sensor measures.
2. The availability of the aimed signals at the selected position.

The former approach may be the best to consider for the purpose of applications,
where the movement of a body section plays the main role as in Activity Recognition (AR),
while the latter is best to inspect when it comes to measuring a biomedical parameter
from the body. Choosing the chest as the main focus of this survey should be investigated
within these two scopes. The next two paragraphs, discuss the chest based on the two
mentioned criteria, respectively.

To analyze details of some activities, such as running or tooth brushing, ankles and
wrists seem to be the best choices, respectively. However, chest and waist would serve
better in applications where the body’s center of mass is relevant. As a practical example,
Altini et al. [11] used five accelerometers worn on different parts of the body and showed
that the one on the chest is the most precise for estimation of Energy Expenditure (EE),
while the one on the wrist is the worst. Elbasiony and Gomaa [12] reviewed studies on
IMU-based AR topics and concluded that while wrist worn sensors can more efficiently
classify non-ambulation activities (such as hair combing, eating, etc.), chest- and waist-
mounted sensors show better performance for ambulation activities (such as running,
jumping etc.). On the other hand, among the advantages that add value to the chest-worn
wearables, being in close contact with the heart has always been on top.

Seismocardiography (SCG) is the act of analyzing vibrations of the chest wall induced
by the heart activity [13,14]. These vibrations are always modulated by the lungs’ motions,
making SCG a rich information source for cardio-respiratory analysis [14]. Although the
definition provided for SCG is wide enough to cover both rotational and axial vibrations,
some references tend to use a different term for analysis of the rotational components
measured by a gyroscope, i.e., Gyrocardiography (GCG) [15–17]. Within the scope of such
papers, SCG only refers to the axial vibrations usually captured using an accelerometer.
This survey, however, uses the term SCG to refer to the use of an IMU aiming to capture
and analyze the cardio-respiratory originated vibrations.

Despite all the efforts done using the chest-worn IMUs, we noticed the lack of a
comprehensive survey on the applications and methods associated with these sensors. This
could attract more attention to the current capabilities of such wearables, highlight the
existing challenges to be solved and address the undiscovered potential in this area. This
survey paper aims to identify and introduce a wide range of application domains that can
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be addressed through a chest-worn IMU. It is very interesting to see how much we can
perceive from a single simple sensor once we find the correct body area to put it on. The
chest is the key area as it is an intersection of a bunch of body signals, i.e., heart, respiration,
voice, swallowing and of course the movements of the whole body. Figure 1 shows the
area of interest of our paper.

Table 1 lists the most recent published reviews relevant to the current work to highlight
the difference. Cosoli et al. [18] systematically reviewed the latest wrist-worn and chest-
strap wearable devices to analyze their accuracy and metrological characteristics. Their
focus was mainly on finding validation standards for their analysis. They also limited their
scope to the devices for activity monitoring. Taebi et al. [7] reviewed the recent advances
in SCG up to 2018. They analyzed the measurement sensors and their placement as well
as the methods for different stages of the signal processing. Since SCG is a part of the
current survey, we have mainly put our focus on the SCG papers not included in their
work, i.e., published after 2018. However, to include enough references for both heart and
lung parameters analysis, there have been a few SCG studies referenced from before 2018.
Kröger et al. [4] reviewed the privacy implications of the accelerometer data. This is a short
review with a focus on listing all possible applications of the accelerometer data that can
interfere with the privacy of the user.

Z

Y

X

Figure 1. Area of interest of this survey.

Table 1. List of the recent relevant work together with their scopes.

Reference Year Target Wearable Scope

Cosoli et al. [18] 2020 Wrist- and chest-worn devices
Analysis of the accuracy and metrological

characteristics of wearable devices for the purpose
of activity monitoring.

Taebi et al. [7] 2019 Chest-worn SCG sensors Advances in measurement and signal processing
methods for the purpose of Seismocardiography.

Kröger et al. [4] 2019 Accelerometers carried out Possible applications of the acceleration data and the
privacy concerns associated with them.

Current survey 2021 Chest-worn inertial sensors Existing applications of inertial sensors worn on the
chest and their associated methods.

This survey reviews a total of 57 research articles making use of the chest-worn IMUs
and published since 2011 to the end of 2020. These referenced studies are listed in Table A1
in the Appendix A. All the statistics presented in the rest of this paper are based on these
referenced studies. The remainder of this survey includes five sections: Section 2 lists
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existing approaches on possible information to be gathered through chest-worn inertial
sensors; Section 3 provides an overview on available methods to measure inertial infor-
mation from the chest and discusses their validation methods; the existing literature is
then further analyzed from the data processing architecture point of view in Section 4;
processing stages and the hardware units performing those stages are investigated in this
Section; the opportunities to use chest-worn inertial sensors in multi-purpose applications
as well as the research challenges and the future directions are discussed in Section 5; and
finally, the conclusions are drawn in Section 6.

2. Applications

Measurement of movements is the basis of what IMUs provide; however, they suggest
much more than AR, thanks to the machine learning techniques supporting them. Kröger
et al. [4] provide references on more than twenty different user information categories
that can be inferred from accelerometer data. Interestingly, about half of these categories
represent behavioral information such as moods and emotions, driving behavior, smoking
behavior, etc.

To focus more on chest-worn IMUs, we have categorized the referenced studies into
seven distinct areas as listed in Table 2. The current section provides information on
these categories.

2.1. Seismocardiography

SCG is the measurement and analysis of vibrations on the chest wall induced by the
cardio-respiratory activity. Theoretically, there have been several methods to capture these
vibrations: IMUs, Laser Doppler vibrometers, Microwave Doppler radars and ultrasound-
based methods to name a few [7]; however, the use of IMUs on chest has been the most
frequent capture medium in SCG.

New advances in production of low-noise IMUs have improved the quality of SCG
recordings. Availability, low power consumption, small dimensions, light weight and
low cost of the MEMS IMUs have made them ideal choices for the extension of the SCG
applications from clinical diagnostics to real-life monitoring.

For heart monitoring, chest-worn IMUs have shown promising results in detection
of the heartbeats [19]. As a next step, analysis of Heart Rate (HR) [20] and Heart Rate
Variability (HRV) [16] is reported in the literature. Estimation of Inter-beat Interval (IBI) [21],
Aortic valve Opening (AO)-peaks [22], Pre-Ejection Period (PEP) [23] and Left Ventricular
Ejection Time (LVET) [24] ands identification of some heart anomalies [25,26] are also
conducted via chest-worn IMUs.

Respiratory parameters inferred through chest-worn IMUs, on the other hand, include
(but are not limited to) respiration rate [27,28], respiration volume [29], lung capacity [30]
and respiration phase [31].

2.2. Activity Analysis

Thanks to the abundance of the activity trackers, activity analysis may be the most
famous application of the inertial sensors among the others. Automatic recognition and
measurement of daily activities, exercises and routines are increasingly getting popular
around the world, as suggested by market trends [1].

Since the body’s center of mass is close to the chest, it is an ideal position for hosting
AR systems that aim to classify activities such as walking, running, cycling, jumping and
pushing up. AR [32,33], EE estimation [34], fall detection [35] and motion tracking [36] are
among the applications addressed using chest-worn IMUs.

2.3. Posture Analysis

Muting the phone by flipping it faced down or having its screen turned on by just
picking it up from a table are familiar applications of IMUs to many people. Posture detec-



Sensors 2021, 21, 2875 5 of 30

tion and gesture recognition are traditional use cases of the IMUs frequently experienced
while interacting with the smartphones.

IMUs have perfectly added posture analysis capabilities to wearable devices as well.
Posture detection, as an important part of sleep analysis, has been implemented via chest-
worn IMUs [10,37]. Moreover, postural control for both healthy adults [38] and patients
with Multiple Sclerosis (MS) decease [39] has been reported in the literature. As another
use case, adding a first step of posture detection has improved AR performance [35].

2.4. Localization

Localization is best known with the Global Navigation Satellite System (GNSS); how-
ever, satellite-based localization comes with limitations that reduce its effectiveness for
indoor positioning and also applications for which power consumption is a critical fac-
tor [40]. These applications would be better investigated using methods other than GNSS
such as Received Signal Strength Indicator (RSSI) and Pedestrian Dead Reckoning (PDR).

Within PDR, current position is calculated based on measured changes to a previously
estimated position. This is best done using an IMU, usually in combination with map
matching algorithms. In such cases, knowing the initial condition on the map is a key point
for the PDR algorithm to work.

2.5. Voice Analysis

Microphones are the main sensors for voice recording; however, there have always
been serious privacy and power concerns with them. Consequently, there has always been
a tendency to substitute microphones with less privacy-invasive and more low-power
sensors or to limit the scope of their usage based on the application. On the other hand,
performance of applications such as an Automatic Speech Recognition (ASR) system (which
rely on microphones) becomes gradually degraded by environmental noise, which is a
challenge to be tackled.

Voice Activity Detection (VAD) is the process of distinguishing between speech and
non-speech moments. It improves performance and accuracy of ASR while reducing its
power consumption. In noisy environments as well as in multi-speaker setups, VAD leads
to a more focused analysis of voice for the ASR. Limiting the scope of microphone usage is
another consequence of VAD which is an advantage from both privacy and power points
of view.

Use of an accelerometer, typically near the larynx, is a common approach for VAD [41,42];
however, chest-worn accelerometers have also been investigated for this purpose, leading
to comparable performance [43,44]. Neck-surface accelerometers have also been used for a
diagnostics approach. Mehta et al. [45,46] used a neck-surface accelerometer for measure-
ment of a few vocal functions, namely: time-domain perturbation, spectral harmonicity
and cepstral periodicity.

2.6. Swallow Analysis

Swallow analysis opens a window to another aspect of physical health, and swallow
detection can play an important role as a reflection of healthy behavior. An automated
swallow analysis can facilitate measurement of food intake to help monitor diet or treat
obesity. On the other hand, screening patients with dysphagia—swallowing difficulties
with certain foods or liquids—significantly adds to the importance of swallow analysis.

Swallowing accelerometry is a potential non-invasive method in this field. Use of neck-
worn accelerometers alongside PPG is reported for swallow detection [47], and the relation
of swallowing vibrations to hyoid bone movement has been investigated in patients with
dysphagia [48].

2.7. Context Retrieval

Several attempts have been made to retrieve context information through IMUs in
general [44,49,50]. However, most of them can also apply to the chest-worn IMUs; we
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found applications that explicitly retrieved their inertial data from the chest, two of which
rely on gait analysis as their first step.

Hashmi et al. [51] retrieved inertial data from a chest-worn smartphone for Emotion
Recognition (ER). They used the primary emotions model [52] and reported classification
of the six basic emotions—namely: happiness, sadness, anger, disgust, fear and surprise—with
an accuracy of 86%.

Riaz et al. [53] conducted an age estimation task based on analysis of normal walk
through 6-Degree of Freedom (DoF) IMUs. As the best reported performance, a Root Mean
Square Error (RMSE) of 2.94 years was achieved for their estimator under 10-fold Cross
Validation (CV) using smartphone’s IMU. Their investigations also pointed out the fact
that aging meaningfully affects gait.

Table 2. Applications of the chest-worn inertial sensors categorized according to the referenced studies.

Application Reference

Seismocardiography
Analysis of cardiac parameters [16,19–24,30,36,54–58]
Analysis of respiratory parameters [28–30,36,57]
Mapping SCG to BCG [59]
Identification of patients with CAD [25]
Relating SCG to ultrasound images [60]
Identification of heart failure states [26]

Activity Analysis
AR [32,33,35,61–66]
EE estimation [11,34]
Fall detection [35]
Body motion tracking [36]
Evaluation of transfer skills of wheelchair users [67]

Posture Analysis
Postural control for medical approach [38,39]
Posture detection for sleep analysis [10,37]

Localization
Indoor positioning with PDR [68–70]

Voice Analysis
Measurement of vocal functions [45,46]
VAD [41,43,44]
Voice onset detection [42]

Swallow Analysis
Swallow detection [47]
Swallow analysis for dysphagia investigation [48,71–75]

Context Retrieval
Emotion recognition from gait analysis [51]
Age estimation from gait analysis [53]
Age, gender and height estimation from gait analysis [76]
Detection of mood changes from VAD [44]
Stress and meditaion detection [77]
Biometric verification [78]

3. Measurement Methods

In this section, we have focused on the existing methods to measure different data
for the application areas provided in Section 2. First, we will look into measurement of
the inertial data from the chest. Specifications of the sensors as well as the body points
from which the data are measured have been discussed for this purpose. Then, we provide
information on the methods applied in combination with the inertial data to validate the
research outcomes. The importance of these validation methods can be discussed from
two points of view. On the one hand, they suggest existing agreed-upon standards to the
researchers who have just started in those areas and on the other hand, their variety show
the versatility of the inertial sensors from a new aspect.
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3.1. Sensor Specifications

All the referenced studies (except one [36]) use commercial off-the-shelf IMUs for
measurement of the vibrations and movements. They either have their own electronic
Printed Circuit Boards (PCBs) equipped with appropriate inertial sensors or incorporate a
research-grade off-the-shelf sensor board package such as Shimmer [79]. Moreover, some
studies assessed the use of the smartphone IMUs for their research. As quite available
devices, smartphones have become an important part of everyday lives making them
interesting choices for the studies. Promising results of such studies not only suggests
lower price but also can raise the Technology Readiness Level (TRL).

Gupta et al. [36] aim at encapsulating specifications of an accelerometer and a contact
microphone in a single chip to enable simultaneous monitoring of cardiopulmonary vibra-
tions and sounds as well as capturing and analyzing the body motions of the wearer. To
address such a wide domain, a carefully designed micro-sensor called an Accelerometer
Contact Microphone (ACM) is fabricated to be worn in contact with the sternum (Figure 2).
An ACM is claimed to be capable of measuring vibrations from frequencies below 1 Hz
(e.g., heart movements) up to 12 kHz (e.g., cardiopulmonary acoustic signals). It is also
claims to have a linear response in a wide dynamic range, from 10 µg to 16 g.

Figure 2. Use of ACM on the sternum to capture cardiopulmonary activity and sounds as well as
body motion and position [36].

The commercial off-the-shelf IMUs used in the referenced studies are listed in Table 3.
Looking at the sensitivity of the incorporated sensors reveals that, unsurprisingly, more
sensitive sensors are utilized for SCG applications with which smaller vibrations are
associated. Despite SCG, applications with higher-range movements such as localization
(PDR) and AR do not necessarily utilize very sensitive sensors.
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Table 3. Inertial sensors and their sensitivity versus their specific applications in the referenced studies. Preceding numbers in “Type” column reveal degree of freedom.

Sensor Manufacturer Type Sensitivity Use Case

IM
U

ICM-20602 TDK-InvenSense 6-MEMS-IMU 131 LSB/(dps)
16,384 LSB/g

SCG [54]

MPU-6050 TDK-InvenSense 6-MEMS-IMU 131 LSB/(dps)
16,384 LSB/g

Swallow detection [47]

MPU-9250 TDK-InvenSense 9-MEMS-IMU
131 LSB/(dps)
16,384 LSB/g
0.6 µT/LSB

SCG [20,29,30]
PDR [69]

LSM9DS0 STMicroelectronics 9-MEMS-IMU
8.75 mdps/LSB
0.061 mg/LSB
0.08 mgauss/LSB

SCG [80]

LSM6DS3 STMicroelectronics 6-MEMS-IMU 4.375 mdps/LSB
0.061 mg/LSB

SCG [24]

A
cc

el
er

om
et

er

ADXL327 Analog Devices 3-MEMS-xl 420 mV/g Swallow detection [48,71–73,75]
ADXL345 Analog Devices 3-MEMS-xl 256 LSB/g PDR [70]
ADXL354 Analog Devices 3-MEMS-xl 400 mV/g SCG [23,59]
ADXL355 Analog Devices 3-MEMS-xl 256,000 LSB/g SCG [19]
MMA8451Q NXP Semiconductors 3-MEMS-xl 4096 counts/g SCG [55,57]
LIS344ALH STMicroelectronics 3-MEMS-xl Vdd/5 V/g SCG [58]
1521 Silicon Designs 1-MEMS-xl 2000 mV/g SCG [60]
BMA280 Bosch Sensortec 3-MEMS-xl 4096 LSB/g SCG [26]
BU-27135-000 Knowles Electronics 1-xl −45.0 dB re 1V/g Voice analysis [41,45,46]

ADXL330 Analog Devices 3-MEMS-xl 300 mV/g
Voice analysis [42]
EE estimation [11]
AR [64]

ADXL210 Analog Devices 2-MEMS-xl 100 mV/g AR [63]
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Table 3. Cont.

Sensor Manufacturer Type Sensitivity Use Case

G
yr

o.

ITG-3200 TDK-InvenSense 3-MEMS-gyr 14.375 LSB/(dps) PDR [70]

MAX21000 Maxim Integrated 3-MEMS-gyr 960 digit/(dps) SCG [55]

ADXRS300 Analog Devices 1-MEMS-gyr 1 (dps)/V AR [63]

M
g.

HMC5883L Honeywell 3-MEMS-mg PDR [70]

Use Case

Pl
at

fo
rm

Smartphone 9-IMU
Postural control [39]
ER from gait analysis [51]
Age estimation from gait analysis [53]

Opal APDM 9-IMU
Postural control in MS patients [39]
Age [53], gender and height estimation [76]

BioPatch ZephyrLife 3-xl Posture detection for sleep analysis [37]

Physilog system GaitUp 6-IMU
Postural control [38]
AR [66]

GT3X+ Actigraph 3-xl Physical activity measurement [34]

NGIMU x-io Technologies 9-IMU PDR and indoor positioning [68]

Shimmer Shimmer 9-IMU

VAD [43,44]
Detection of mood changes from VAD [44]
AR [32,33,61,62,65]
AR and fall detection [35]

Note: xl: Accelerometer; gyr: Gyroscope; mg: Magnetometer
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3.2. Sensor Placement

The central part of the chest hosts a flat long bone called the sternum or breastbone.
The ribs are connected to the sternum, forming the rib cage, which protects the heart and
lungs. The sternum is formed of three parts: the manubrium, which is the most superior
part; the body, which is the middle part of the sternum; and the xiphoid process, which is the
most inferior portion.

Most of the time, the sternal area is chosen to host the inertial sensors. Figure 3
illustrates the distribution of the IMUs on the body based on the referenced studies. The
statistics are given per application area previously were discussed in Section 2. Based on
this figure, 100% of the referenced studies in the fields of posture analysis, localization and
context retrieval have chosen the two lower parts of the sternum (i.e., the midsternum and
the xiphoid process) to place their IMUs on. However, the neck is the preferred position for
voice and swallow analysis applications. Moreover, 29.4% of the references in SCG have
placed their sensors on the two sides of the sternum. The figure perfectly suggests that if
multi-purpose application research was the case, sternum would most likely best serve as
an inertial sensor host.

Seismocardiography

Activity Analysis

Posture Analysis

Localization

Voice Analysis

Swallow Analysis

Context Retrieval

Neck

Æ
0.0

Æ
0.0

Æ
0.0

Æ
0.0

Æ
80.0

Æ
100

Æ
0.0

0% 100%

Right of Sternum

Æ
5.9

Æ
0.0

Æ
0.0

Æ
0.0

Æ
0.0

Æ
0.0

Æ
0.0

0% 100%

Midsternum

Æ
41.2

Æ
50.0

Æ
75.0

Æ
00.0

Æ
20.0

Æ
0.0

Æ
80.0

0% 100%

Xiphoid Process

Æ
29.4

Æ
30.0

Æ
25.0

Æ
100

Æ
0.0

Æ
0.0

Æ
20.0

0% 100%

Left of Sternum

Æ
23.5

Æ
10.0

Æ
0.0

Æ
0.0

Æ
0.0

Æ
0.0

Æ
0.0

0% 100%

Manubrium

Æ
0.0

Æ
10.0

Æ
0.0

Æ
0.0

Æ
0.0

Æ
0.0

Æ
0.0

0% 100%

Æ

X
@ Application A

@ Position A

X percent of the referenced studies in @ Application A

placed their IMU on @ Position A

Figure 3. Distribution of the IMUs on chest per application area based on the referenced studies.
The percentages are calculated to represent the ratio of the referenced studies in an application area
that rely on a specific body site in proportion to the total referenced studies of that application area.

Inertial sensors are usually attached to the chest using elastic straps ([30,54]) or dif-
ferent kinds of adhesives ([29,60]). Applications such as SCG, voice and swallow analysis
require the IMU to be in direct contact with the skin; however, wearing the IMU over the
clothes would meet the requirements for other application areas most of the time [10,62,68].
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Using a necklace ([34]), fitting the sensor into garments ([33,61]) and holding it in the hand
along with the sternum ([39]) are among the other methods used to wear the IMUs in the
referenced studies. Figure 4 shows examples of IMU attachments.

 

 

(a) (b) (c)

(d) (e)

Figure 4. Examples of IMU attachments on the body taken from the referenced studies. (a): IMU
attached to skin for SCG [54]. (b): Use of stretching strap to attach the IMU over clothes for localiza-
tion [68]. (c): Elastic strap used to attach smartphone over clothes for ER [51]. (d): Use of a soft nylon
necklace over and underneath clothes for EE estimation [34]. (e): Attachment of IMU over the skin
using adhesive tape for voice analysis [42].

3.3. Validation Methods

The variety of the applications associated with chest-worn IMUs necessitate various
methods to validate the research outcomes. For example, while the decision of an AR
classifier may be simply validated by an observer, the HR calculated through SCG would
definitely need special measurement devices for validation.

Table 4 lists the validation methods used in the referenced studies versus their appli-
cation area. It also showcases the usage percentage of uni-/bi-/tri-axial accelerometers,
gyroscopes and magnetometers in the studies. This information is given per application
area so that a comparison among the use of different IMU types becomes possible. The
percentages in the table indicate the ratio of the studies within an application area that
utilized a specific type of IMU or validation method.

Based on the table, tri-axial accelerometers are the most frequently used inertial
sensors in the referenced studies while magnetometers are the least. Since the term SCG
correlates to measuring a wide range of parameters from both the heart and the lungs,
there come a lot of validation methods for it (more than any other application area) with
Electrocardiography (ECG) as the most frequent one.
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Table 4. Inertial sensors and validation methods used in the referenced studies versus their application.
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Total references screened 20 13 4 3 5 7 6
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Se
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or

Accelerometer
uni-axial 25% 60%
bi-axial 14.3%
tri-axial 70% 100% 100% 100% 40% 85.7% 100%

Gyroscope
uni-axial 10%
tri-axial 20% 23.1% 100% 50%

Magnetometer
tri-axial 5% 33.3%
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Electrocardiography (ECG) 80%
Impedance Cardiogram (ICG) 5%
Sphygmomanometry 5%
Spirometry 5%
Blood Pressure Cuff 5%
Optoelectronic Plethysmography 5%
Respiration Belt 5%
Electronic Stethoscope 5%
Motion Capture System 7.7%
Indirect Calorimetry 7.7%
Multiple IMUs 7.7% 25%
Polysomnography 50%
Microphone 40%
Glottal airflow 20%
Video Recordings 20%
Videofluoroscopy 85.7%
Emotion Elicitation 33.3%
Self-reported questionnaires 50%
Observer Assessment 76.9% 25% 100% 20% 14.3% 16.7%

4. Data Processing

The use of signal processing and machine learning techniques on inertial data has been
widely investigated and reviewed in several papers; however, there has been less focus
on where in the hardware architecture the data are processed at each stage. Paying too
much attention to the processing algorithms has distracted from the fact that the sensing-
processing architecture also plays a relatively similar role in determining the usability of the
deployed system. This is especially important in the sense that it determines whether or not
the hardware design is capable of being implemented out of laboratories or in daily lives.

We covered the measurement methods and hardware in Section 3. In line with the
same approach, in this section, we start with investigating different setups used as the
sensing-processing architecture in the referenced studies. Next, we present a list of the
machine learning approaches used by the referenced studies and provide references for a
more comprehensive overview on them. Finally, the publicly available datasets used in the
referenced studies are presented.

4.1. Sensing-Processing Architecture

Depending on the unit responsible for each processing stage, the following six stages
were found to be determinant with respect to the referenced studies: sensing, acquisition,
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transmission, storage, preprocessing and processing. Moreover, the following distinctive
processing units were found to be operational based on the setups: the on-body hardware,
the middleware and the main processing station.

The on-body hardware is always responsible for the sensing stage. This originates
from the focus of this survey, which is the inertial data taken through chest-worn sensors.
The first processing unit that reads the inertial measurement is the acquisition handler. This
stage is either done by the same on-body hardware or by a separate middleware, which
usually collects data from more than one sensor units. The middleware can either be a
Data Acquisition (DAQ) system [59] or a smartphone device [45,46]. The acquired data
are then stored by the same data acquirer or transmitted to another unit for storage. The
preprocessing and the processing stage is always done by a computer except in two cases.
In [65], the processing is handled online using a smartphone as the proccessing station and
in [28] part of the preprocessing is done by a smartphone as the middleware. Table 5 shows
the setups used in the referenced studies regarding the above-mentioned categorization.

Table 5. Processing units used for different stages in the referenced studies. J Shows that the on-body hardware is responsible
for the stage, h indicates that the stage is handled by a middleware and ¢ shows that an off-body processing station handles
the stage.

Description Se
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Reference

S.
1

Data are collected from the IMU
on-body and transmitted to a
middleware for preprocessing
and storage. Data are then
downloaded to a station for
processing.

J J J h h ¢ [28]

S.
2

Data are collected from the IMU
on-body and transmitted to a
middleware for storage. Raw
data are then downloaded to a
station for processing.

J J J h ¢ ¢ [38]

S.
3

A data acquisition middleware
collects and stores the IMU data.
Raw data are then downloaded to
a station for processing.

J h h ¢ ¢ [45,46,63]

S.
4

IMU data are collected by a data
acquisition middleware and
directly transmitted to a station
for storage and any processing.

J h h ¢ ¢ ¢ [23,36,48,58–60,71–73,75]

S.
5

IMU data are collected on-body
and directly transmitted to a
station for storage and any
processing.

J J J ¢ ¢ ¢
[10,19,29,30,33,35,47,54,62,65,67,68,

74]

S.
6

IMU data are collected and stored
on-body. Data are then
downloaded to a station for any
processing.

J J J ¢ ¢ [24,26,34,37,39,41,55,57,61,66]

Note: ‘S.’ stands for “Setup” | J : On body / h : Middleware / ¢ : Station.

The on-body processing unit is generally one of the following: a sensor platform from
those listed in Table 3, a commercial off-the-shelf processor board or a specially designed
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processing board for the purpose of the study, which consists of a microcontroller. Table 6
lists the on-body processing units on which details were given by the referenced studies. A
look over those studies that provided information on the power source shows that, along
with battery, USB was used in some studies, which is a reason for stopping the hardware
from being used outside laboratory.

The middleware devices used in the referenced studies are listed in Table 7. The first
part of the table lists the commercial DAQ systems, of which the related information was
given in the referenced studies. In all of these studies, the incorporated inertial sensor has
an analog interface, and the signals are read by the Analog to Digital Converter (ADC)
channels of the DAQ system. Mehta et al. [45,46] use a smartphone with a principally
similar setup of a DAQ system. Their setup uses the handsfree input socket of the smart-
phone to read the analog vibration signal of a 1-DoF accelerometer. Cesareo et al. [28] used
a smartphone to collect the inertial data from their on-body unit through the Bluetooth
interface. In their setup, the smartphone preprocesses and stores the data as a middleware.

Table 6. On-body processor hardware used in the referenced studies along with the use case and how the unit was powered.

Model Manufacturer Description Use Case Power Source

Off-the-shelf boards

Uno R3 µC board Arduino

Based on the ATmega328P
(AVR RISC 8b, 32 KB ISP
Flash, 1 KB EEPROM, 2
KB SRAM)

Data acquisition (1 kHz) and
storage (memory card) [41]

Leonardo µC board Arduino

Based on the ATmega32u4
(AVR RISC 8b, 32 KB ISP
Flash, 1 KB EEPROM, 2.5
KB SRAM)

Data acquisition (250 Hz) and
transmission (serial) [30] USB

Pro-Mini µC board Arduino

Based on ATmega168
(Flash memory: 16 KB,
SRAM: 1 KB, EEPROM:
512 bytes)

Data acquisition (I2C, 40 Hz)
and transmission (BLE) [28] Battery (Li-Po)

Mega µC board Arduino

Based on ATmega2560
(Flash memory: 256 KB,
SRAM: 8 KB, EEPROM: 4
KB)

Data acquisition and
transmission (wireless) [70] Battery

Raspberry Pi Zero W Raspberry Pi

1GHz, single-core CPU,
512 MB RAM, wireless
LAN and Bluetooth
connectivity

Data acquisition (550 Hz) and
transmission (Wi-Fi) [29]

FRDM-KL25Z NXP Semiconductor

Based on
MKL25Z128VLK4 (Arm
Cortex-M0+, 48 MHz, 128
KB flash, 16 KB SRAM)

Data acquisition (800 Hz) and
storage (memory card) [57]

CC2650STK SimpleLink Texas Instruments Multi-sensor board with
ARM Cortex-M3 processor

Data acquisition (250 Hz) and
transmission [20] Battery (CR2032)

Researcher-designed hardware

STM32F411CEY6 STMicroelectronics
Arm Cortex-M4 32b
MCU+FPU, 125 DMIPS,
512 KB Flash, 128 KB RAM

Data acquisition (SPI, 800 Hz)
and transmission (serial) [54] USB

ATMEGA1284P Microchip
AVR RISC 8b, 128 KB ISP
Flash, 4 KB EEPROM, 16
KB SRAM

Data acquisition (500 Hz) and
storage (memory card) [26] Battery

MSP430 Texas Instruments 16-bit RISC CPU, up to 512
KB flash and 64 KB RAM

Data acquisition (60 Hz) and
transmission (wireless) [10]
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Table 7. Middleware devices used in the referenced studies to handle some part of the processing chain from on-body
sensor to the processing station.

Model Manufacturer Application

Data Acquisition System
MP150 BIOPAC Acquisition and transmission of acceleration, ECG and BCG [59];

Acquisition and transmission of acceleration, gyration, ECG, BCG and
ICG [23]

MP36 BIOPAC Acquisition and transmission of acceleration, respiration (thoracic
piezoresistive band) and ECG [58]

IX-228/S iWorx Acquisition and transmission of acceleration and ECG [60]

6210 DAQ National Instruments Acquisition and transmission of acceleration [48,71–73,75] and
microphone [48,71,72,75]

Smartphone
Nexus S Google/Samsung Acquisition and storage of acceleration [45,46]
<not reported> – Gathering, storage and preprocessing signals from three IMUs [28]

4.2. Machine Learning

As a branch of Artificial Intelligence (AI), ML represents data-driven computer al-
gorithms that improve by learning the patterns found in the data. ML algorithms are
categorized into two major classes: supervised learning and unsupervised learning. In
supervised algorithms, the machine learns the data by looking at the relationship between
the inputs and their resultant outputs; however, in unsupervised algorithms, machine
learns the patterns found in the input data to build up its model parameters without having
any knowledge about the outputs [81].

Use of signal processing and machine learning techniques on inertial data has been
vastly investigated and reviewed in several papers. Table 8 lists the ML methods used by
the referenced studies. Based on this table, Regression Models, Support Vector Machine
(SVM), k-Nearest Neighbor (k-NN) and Random Forest were among the most frequently
used ML algorithms by the studies taking advantage of the chest-worn inertial sensor. For
a comprehensive overview of the existing methods of signal processing on inertial data
from preprocessing and feature extraction to classification, we would refer the readers to
the following papers: [7,81–83].

4.3. Datasets

Despite the wide range of applications associated with chest-worn inertial sensors,
still no relevant benchmark dataset is presented to the researchers. The absolute majority
of the referenced studies have collected their own data by recruiting participants of whom
the required parameters are measured. However, the five datasets listed in Table 9 were
used by a few referenced studies. These datasets are publicly available, and one may access
them through the provided references in the bibliography.
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Table 8. Machine learning methods used in the referenced studies versus application area. Acronyms used in this table:
AdaBoost—Adaptive Boosting; ANN—Artificial Neural Network; CNN—Convolutional Neural Network; DNN—Deep
Neural Network; GMM—Gaussian Mixture Model; k-NN—k-Nearest Neighbor; LDA—Linear Discriminant Analysis; ML—
Machine Learning; MLP—Multilayer Perceptron; PCA—Principal Component Analysis; SVM—Support Vector Machine;
VAE—Variational Autoencoder.
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AdaBoost [61]
ANN, MLP [33,62] [53]
CNN [21] [77]
Decision Tree [33,62] [72]
DNN [71]
GMM [78]
k-NN [26] [32,33,61,64] [43] [44]
LDA, PCA [28] [74]
Naïve Bayes [33,62,67] [43] [72] [44]
Regression Models [23,25,56] [11,67] [37,38] [68,69] [72]
Random Forest [35,67] [51,53,76,77]
SVM [33,61,62] [43] [47,72] [44,51,53]
U-Net [59]
VAE [21]

Table 9. Specifications of the datasets used in the referenced studies.

Dataset Sensor details
Type: Part# (Manufacturer)

Participant Statistics
Total (M:F)

Item (Unit): Range (mean ± SD)

Description Use Case

Mechanocardiograms
with ECG

References [55,84]

3-xl: MMA8451Q (NXP) and
3-gyr: MAX21000 (Maxim)
On sternum (upper chest);

2-lead ECG: ADS1293 (TI)

29 (29 : 0)
Age: 23-41 (29 ± 5)

Height(cm): 170–190 (179 ± 5)
Weight(kg): 60–98 (76 ± 11)

BMI(kg/m2): 18–30 (24 ± 3.00)

Mechanocardiogram recordings (3-axis
accelerometer and 3-axis gyroscope signals)
with ECG reference were collected from
healthy subjects lying either in the supine
position or on their left or right side. Sensors
attached to the subjects’ sternum using
double-sided tape.

SCG [16]

WESAD [85]

3-xl on lower chest
and on wrist;

ECG, EDA, EMG,
respiration and temperature;

15 (12 : 3)
Age: (27.5 ± 2.4)

WESAD database is a collection of motion
(acceleration) and physiological signals from
both chest and wrist of the participants for
stress and affect detection. The three affective
states of neutral, stress and amusement were
elicited in the participants, and the signals
were recorded accordingly.

Context
Retrieval [77]

MHEALTH [65]

9-IMU: Shimmer (Shimmer)
On chest
left ankle,
right wrist

10

Participants performed 12 daily living
activities, including Walking, Sitting and
relaxing, Standing still, Lying down, Climbing
stairs, Running and Cycling. The dataset also
includes 2-lead ECG recordings of the
participants.

AR [65]

Combined
measurement of

ECG, Breathing and
Seismocardiogram

(CEBS) [58,86]

3-xl: LIS344ALH (ST)
On chest;

Piezoresistor: SS5LB (BIOPAC)
On Thorax;

2-lead ECG

17 (11 : 6)
Age: (24.7 ± 3.9)

BMI(kg/m2): (24.7 ± 3.9)

ECG, respiration and acceleration of 17
subjects in supine position were collected.
First the basal state of the subjects was
recorded for 5 min. Then, the subjects listened
to music for approximately 50 min. Finally, all
5 additional minutes of data were recorded
from the subjects after the music ended.

SCG [21,22]

Daily Life Activities
(DaLiAc) [61]

6-IMU: Shimmer (Shimmer)
On chest
right hip,
left ankle,
right wrist

23 (13 : 10)
Age: (27 ± 7)

BMI(kg/m2): (24.0 ± 3.5)

A total of 23 healthy subjects performed 13
daily life activities: Sitting, Lying, Standing,
Washing dishes, Vacuuming, Sweeping,
Walking outside, Ascending stairs,
Descending stairs, Treadmill running (8.3
km/h), Bicycling (50 watt), Bicycling (100
watt) and Jumping rope chosen according to
their MET values

AR [32]
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5. Research Challenges and Future Directions

Several applications are associated with the chest-worn inertial sensors, each of which
faces its own challenges: HR detection is highly affected by movement artifacts, fall
detection lacks enough real falling data, indoor localization may not solely depend on
inertial sensors for a precise reasoning, etc. However, in line with the previous sections,
the focus of this section remains on the challenges associated with the chest-worn inertial
sensors in general rather than an application-based point of view. Size, power consumption
and fashionability of the wearable device would highly affect its capability of daily use. It is
of high importance to more strongly highlight these aspects as keys to the user-friendliness
of the device for the future work. We will address these issues as well as the challenge of
having multiple applications combined in one framework as it would be an interesting
research direction with its own limitations and obstacles.

5.1. Lack of Well-Acknowledged Benchmark Datasets

Data collection is a critical stage of conducting research. Quality, variety, correctness
and amount of data have impacts on the results. Readily available datasets are very
important keys not only to facilitate starting a study, but also to prepare benchmark test-
beds for various methods to be compared under similar circumstances.

Lack of well-acknowledged benchmark datasets has urged researchers to collect
their own data in most of the referenced studies. Therefore, preparation of common
comprehensive datasets of chest-worn IMUs for different applications would provide
valuable bases for interested researchers.

5.2. Robustness and Artifact Cancellation

While several sources affect the quality of the inertial measurements, researchers try
to improve the signal quality in different ways. Taking care of the signal quality begins
long before the start of the measurements. Use of low-noise electronic elements, robust
power and clock design and perfect attachment of the sensor in contact with its target are
important keys to improve the quality of the signals for a robust experiment design.

High frequency noise, power line noise, and movement artifacts are the major disrup-
tive factors in quality of the signals. Naturally, there comes high frequency noise associated
with the measurements. Such noise is usually defeated by implementing a low-pass filter
which is conducted by means of a filter in the preprocessing stage [36,38,56,60]. Band-stop
and band-pass filters can address resolving power line noise [56]. More generally different
types of band-pass filtering are repeatedly incorporated to limit any out-of-band noise
when the frequency band of interest is known [26,37,41,57].

Defeating movement artifact is more critical, especially in applications where the
vibration signals of interest are relatively weak which is mainly the case for SCG, voice
and swallow analysis. In such cases, a sturdy sensor-skin contact helps reduce the effect of
sensor displacement a source of movement artifact. As another workaround, the subjects
are often asked to stay motionless during the experiment [23,29,30,59,87]; however, on the
one hand, the applicability of this solution in practice is challenging, and on the other
hand, it implicitly reduces the extensibility of these studies to real-life implementations.
For real-life SCG estimation, a few motionless seconds are said to be enough. Since these
motionless seconds take place several times a day, a solution is to use these events to feed
SCG system with noiseless inertial measurements from the chest [88]. This solution works
for cases such as daily monitoring of the elderly; however, the issue remains challenging
for live monitoring of athletes’ cardiopulmonary parameters. Yu and Liu [54] address such
challenge by proposing an algorithm for motion artifact removal from SCG signals.

5.3. Combined Applications

Few sensors may be found with similar diversity of the application areas as the
inertial sensors can bring. This diversity may firstly suggest use of a single chest-worn
inertial sensor for simultaneously benefiting from all those applications. However, only
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few studies used these sensors for multiple simultaneous purposes (only [36] from the
referenced studies). The reason may be sought for in the challenges associated with the
combined applications.

The application areas investigated in this survey are quite different in the intensity and
frequency band of the signals of interest. Applications that deal with weak bio-vibrations
require sensors with more sensitivity and less dynamic range, while the applications
associated with intense movements need higher dynamic range while being less strict about
the sensitivity. However, when using the commercial off-the-shelf IMUs, the dynamic range
of the sensor must be set programmatically. The lower the dynamic range set, the higher
the sensitivity of the IMU would be. Most of the typical commercial accelerometers suggest
the predefined options ±2 g, ±4 g, ±8 g and ±16 g for their dynamic range selection
with their highest sensitivity reached when the ±2 g option was selected (e.g., MPU-9250,
TDK-InvenSense and LSM6DS3, STMicroelectronics). Similar conditions apply for the
gyroscopes and the magnetometers.

The trade-off between high sensitivity and high dynamic range affect the ability
to have simultaneous combined applications when using the commercial off-the-shelf
IMUs. Of course, this is less seen in combining applications with a smaller gradient
of requirements. This is why combined applications of AR and posture analysis are
easily found in the literature [35,89,90]. To keep using commercial IMU for the combined
applications, a smart management algorithm that actively programs the dynamic range of
the sensor with respect to the measured input would be needed. Such an algorithm would
also be beneficial for detecting the motionless moments for SCG analysis as described
before. As another workaround, Gupta et al. [36] managed to design the ACM that enjoys
the benefit of high sensitivity while covering a high dynamic range. ACM was used to
combine SCG with AR (Figure 2).

5.4. Sensor-Related Challenges

To employ IMUs in practice, choosing the right place within the chest area is the first
question. This is especially more in the spotlight for the purpose of combined applications
since changing the sensor place can impact the received signal. As shown in Figure 3, while for
most of the applications, the sensors are perfectly distributed around the sternum, the neck
is the preferred target for voice and swallow analysis. This gives rise to a research question:
“where is the perfect position on the body from where swallow, voice and cardiopulmonary
signals as well as the activity and posture are best mutually measured?”. A good starting
point to consider may be the top of the manubrium where the bone tissue starts, as it
can still transform vibrations of the voice and swallowing while not being prone to the
additional degrees of freedom for making movements as the neck has.

Two other sensor-related issues are tied up with the name of the IMUs: sensor mass
and sensor calibration. Few studies have investigated the effects of the sensor mass for
the applications addressed in this survey. A study about seismocardiography by Yang
and Tavassolian [15] proposed a simplified model for the mechanical coupling of the
IMU to the chest wall. They set up an experiment consisting of an IMU wrapped in two
different boxes with different dimensions and masses. They compared the data taken
through accelerometers and gyroscopes from the two boxes. Their results showed that
linear acceleration is less influenced by the differences of the two boxes than angular
velocity; however, they could not completely explain these differences with their simplified
model [15]. The mass loading effect is also to be deeper investigated in future studies to
better determine its effects on the chest-worn IMUs.

Regarding sensor calibration, it is of high importance to give special attention to
perfect alignment of the sensor coordinates with the desired body axes. This is always the
fundamental step of running the experiments in the referenced studies. Figure 5 shows
examples of reporting sensor alignment from the referenced studies.
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(a) (b) (c)

Figure 5. Examples of IMU coordinates alignment on body taken from the referenced studies.
(a,b): IMU acceleration coordinates with respect to body axes for SCG, respectively, from [19,29].
(c): Calibration of the IMU pose with initial heading of the subject within the world map frame for
PDR [68].

5.5. User Friendliness

While users mostly prefer the wrist site for their wearable sensors, positions with
less mobility have shown to be more promising for certain applications. Zhang et al. [34]
compare wrist, waist and chest for physical activity measurement and report that the
participants found the chest site more acceptable than the waist site.

Therefore, it is important to keep on trying to find fashionable, user-friendly and
convenient ways of producing chest-worn wearables that still provide acceptable contact
for conducting the measurements. Using adhesives does not seem to be applicable for a
recurring usage, and having a loosely worn strap does not meet the requirement of a sturdy
contact for an artifact-free SCG. Thinking of more innovative ways such as screen printing
of the PCB on the garments, adding the ability to have the sensor pierced on the skin, having
the hardware as small and low-power as possible and making use of energy-harvesting
techniques seems to be necessary for the future of the chest-worn inertial sensors.

6. Conclusions

Wearing IMUs on the chest offers a few advantages over other body positions: being
in close contact with the heart and the lungs, being close to the body’s center of mass and
facing more general rather than detailed movements of the body. The applications that can
be taken advantage of using the chest-worn IMUs are extended thanks to the advances
in signal processing and machine learning methods. In this survey, a total number of
57 studies that benefit from the chest-worn inertial sensors were screened and categorized
into seven application domains, namely: Seismocardiography, Activity Analysis, Posture
Analysis, Localization, Voice Analysis, Swallow Analysis and Context Retrieval.

The referenced studies were investigated to extract the following information out of
them: the sensors used, their placement details, the validation methods and the hardware
details of their sensing-processing architecture. The investigations show meaningful
correlations within individual application domains; however, diversity of the requirements
among the applications is a challenge in the way of benefiting from multiple applications
simultaneously. Moreover, noise and artifact removal is still a significant issue to address,
especially when it comes to combining the applications or maintaining the user-friendliness
of the worn hardware.
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Abbreviations
The following abbreviations are used in this manuscript:

ACM Accelerometer Contact Microphone
AdaBoost Adaptive Boosting
ADC Analog to Digital Converter
AI Artificial Intelligence
ANN Artificial Neural Network
AO Aortic valve Opening
AR Activity Recognition
ASR Automatic Speech Recognition
BCG Ballistocardiogram
BP Blood Pressure
CAD Coronary Artery Disease
CEBS Combined measurement of ECG, Breathing and Seismocardiogram
CNN Convolutional Neural Network
CV Cross Validation
DaLiAc Daily Life Activities
DAQ Data Acquisition
DB Database
DNN Deep Neural Network
DoF Degree of Freedom
ECG Electrocardiography
EDA Electro-dermal Activity
EE Energy Expenditure
EMG Elegtromyogram
ER Emotion Recognition
GCG Gyrocardiography
GMM Gaussian Mixture Model
GNSS Global Navigation Satellite System
gyr Gyroscope
HF Heart Failure
HR Heart Rate
HRV Heart Rate Variability
I2C Inter-Integrated Circuit
IBI Inter-beat Interval
ICG Impedance Cardiogram
IMU Inertial Measurement Unit
k-NN k-Nearest Neighbor
LDA Linear Discriminant Analysis
LVET Left Ventricular Ejection Time
MCU Microcontroller Unit
MEMS Micro-electro-mechanical System
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MET Metabolic Equivalent of Task
mg Magnetometer
ML Machine Learning
MLP Multilayer Perceptron
MS Multiple Sclerosis
PCA Principal Component Analysis
PCB Printed Circuit Board
PCG Phonocardiogram
PEP Pre-Ejection Period
PDR Pedestrian Dead Reckoning
PPG Photoplethysmogram
RMSE Root Mean Square Error
RSSI Received Signal Strength Indicator
SCG Seismocardiography
SPI Serial Peripheral Interface
SoC System on Chip
SVM Support Vector Machine
TRL Technology Readiness Level
VAD Voice Activity Detection
VAE Variational Autoencoder
XGBoost Extreme Gradient Boosting
xl Accelerometer



Sensors 2021, 21, 2875 22 of 30

Appendix A. Referenced Studies

Table A1. List of the referenced studies with their applications and measurement methods. Preceding numbers in “Sensor” column reveal degree of freedom.

Reference Sensor Worn on Fixation Application

Seismocardiography

Gupta et al. [36] 3-ACM: Own fabrication Midsternum Elastic strap over skin SCG for heart and respiration parameters and body
motion

Yu and Liu [54] 3-xl: ICM-20602 (TDK-InvenSense) Left side of the sternum and right side of the
back Strap over skin Motion artifact removal from SCG for heartbeat

detection

Hersek et al. [59] 3-xl: ADXL354 (Analog Devices) and a modified
weighting scale for BCG measurement [91] Midsternum Kinesio tape Mapping SCG to BCG

Sieciński et al. [16] Used DB: Mechanocardiograms with ECG References [55,84] HRV analysis

Mora et al. [21] Used DB: CEBS [58,86] SCG for heartbeat detection and IBI estimation

Choudhary et al. [22] Used DB: CEBS [58,86] SCG for detection of AO-peaks

Ahmaniemi et al. [24] 3-xl: LSM6DS3 (STMicroelectronics) and PCG Heart apex Pocket of a belt SCG for estimation of HR, PEP and LVET

Cocconcelli et al. [19] 3-xl: ADXL355 (Analog Devices) Midsternum SCG for heartbeat detection

Shandhi et al. [23] 3-xl: ADXL354 (Analog Devices) and 3-gyr:
QGYR330HA (Qualtre) Midsternum SCG for PEP estimation

Dehkordi et al. [25] 1-xl: ultra low-frequency piezoelectric crystal
accelerometer (Seismed Instruments) Xiphoid process SCG to identify patients with CAD

Hernandez and Cretu [20] 1-gyr: MPU-9250 (TDK-InvenSense) Xiphoid process Elastic fabric belt Estimation of HR during sleep

D’Mello et al. [30] 3-xl: MPU-9250 (TDK-InvenSense) Xiphoid process Strap Cardio-respiratory analysis
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Kaisti et al. [55] 3-xl: MMA8451Q (NXP Semiconductors);
3-gyr: MAX21000 (Maxim Integrated); Midsternum Double-sided tape SCG for heartbeat detection

Sørensen et al. [60] 1-xl × 2: 1521 (Silicon Designs) Xiphoid process and fourth intercostal space Double adhesive tape over skin Relating SCG to ultrasound images

Inan et al. [26] 3-xl: BMA280 (Bosch Sensortec) Midsternum Adhesive-backed gel electrodes Identification of heart failure states

Selvaraj and Reddivari [56] 3-xl and ECG and PPG Left side of the chest Adhered over skin BP measurement

García-González et al. [58] 3-xl: LIS344ALH (STMicroelectronics) Chest Heartbeat detection and RR time series analysis

Skoric et al. [29] 3-xl-gyr: MPU-9250 (TDK-InvenSense) Xiphoid process Double-sided tape Respiration rate and volume

Cesareo et al. [28] 9-IMU: LSM9DS0 (STMicroelectronics) [80] Chest (right side), abdomen and coccyx Respiration analysis

Jafari Tadi et al. [57] 3-xl: MMA8451Q (NXP Semiconductor) MidSternum Elastic strap Gating nuclear imaging based on cardio-respiratory
analysis

Activity Analaysis

Barbareschi et al. [67] 3-xl Chest (manubrium) Double-sided tape Evaluating transfer skills of wheelchair users

Nazarahari and Rouhani [66] 3-xl: Physilog system (GaitUp) Chest (midsternum) Medical tape AR

Zhang et al. [34] 3-xl: GT3X+ (Actigraph) Chest (xiphoid process), wrist and waist A soft nylon necklace underneath
clothes Physical activity measurement

Awais et al. [32] Used DB: DaLiAc dataset [61] AR with 13 classes

Altini et al. [11] 3-xl: ADXL330 (Analog Devices) Chest, Thigh, Ankle, Wrist and Waist Elastic strap EE estimation
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Banos et al. [65] 3-xl: Shimmer Chest, Ankle and Wrist Elastic strap AR with 12 classes

Gao et al. [33] 3-xl: Shimmer Chest (midsternum), under-arm, waist and
thigh

Fitted into a garment worn over other
clothes AR with 5 classes

Gjoreski et al. [35] 3-xl: Shimmer Chest (xiphoid process) and thigh Elastic Velcro straps AR with 6 classes and fall detection

Leutheuser et al. [61] 3-xl-gyr: Shimmer Chest (midsternum), wrist, hip and ankle Embedded in special clothes AR with 13 classes

Cleland et al. [62] 3-xl: Shimmer Chest (xiphoid process), wrist, lower back,
hip, thigh and foot Elastic strap and holster over clothes AR with 7 classes

Godfrey et al. [63] 3-xl: ADXL210 (Analog Devices); 3-gyr: ADXRS300
(Analog Devices) Midsternum Strap over clothes AR with 8 classes

Atallah et al. [64] 3-xl: ADXL330 (Analog Devices) Chest (midsternum), ear, arm, wrist, waist,
knee and ankle Strap over clothes AR with 5 classes

Posture Analysis

Hsieh and Sosnoff [39] 3-xl: Smartphone Midsternum Held along the sternum with hand Postural control in MS patients

Reynard et al. [38] 3-xl: Physilog system (GaitUp) Midsternum Belt over clothes Medical approach (postural control)

Razjouyan et al. [37] 3-xl: BioPatch ZephyrLife Midsternum Adhesive patch over skin Posture detection for sleep analysis

Nam et al. [10] 3-xl Xiphoid process Belt over clothes Posture detection for sleep analysis
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Localization

Lu et al. [68] 3-xl-gyr and barometer: NGIMU (x-io Technologies) Xiphoid process Stretching strap over clothes Indoor positioning (PDR)

Tateno et al. [69] 3-xl-gyr: MPU-9250 (TDK-InvenSense) and RSSI Xiphoid process Strap over clothes Indoor positioning (PDR)

Hu et al. [70] 3-xl: ADXL345 (Analog Devices); 3-gyr: ITG-3200
(TDK-InvenSense); 3-mg: HMC5883L(Honeywell) Chest Velcro belt over clothes Indoor positioning (PDR)

Voice Analysis

Dubey et al. [41] 1-xl: BU-27135-000 (Knowles Electronics) Neck Double sided tape and Blenderm tape
over skin VAD (medical approach)

Mehta et al. [45] 1-xl: BU-27135-000 (Knowles Electronics) Neck Hypoallergenic double-sided tape over
skin Measurement of vocal functions (medical approach)

Mehta et al. [46] 1-xl: BU-27135-000 (Knowles Electronics) Neck Hypoallergenic double-sided tape over
skin Measurement of vocal functions (medical approach)

Vitikainen et al. [42] 3-xl: ADXL330 (Analog Devices) Neck Adhesive tape over skin Voice onset detection (medical approach)

Matic et al. [43] 3-xl: Shimmer Midsternum Elastic strap over skin VAD

Swallow Analysis

Khalifa et al. [71] 3-xl: ADXL327 (Analog Devices) contact microphone Anterior neck overlying the cricoid cartilage Swallow detection in patients

Donohue et al. [72] 3-xl: ADXL327 (Analog Devices) contact microphone Anterior neck at the level of the cricoid
cartilage Adhesive tape Swallow comparing between healthy people and

Neurodegenerative patients
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Donohue et al. [73] 3-xl: ADXL327 (Analog Devices) Anterior neck Adhesive tape Investigating swallowing vibrations

Steele et al. [74] 2-xl Anterior neck, below the palpable lower
border of the thyroid cartilage Single-use, disposable fixation unit Swallow analysis for dysphagia detection

He et al. [75] 3-xl: ADXL327 (Analog Devices) and contact
microphone

Anterior neck over the palpable arch of the
cricoid cartilage Double-sided tape Investigating swallowing vibrations

Li et al. [47] 3-xl: MPU-6050 (TDK-InvenSense) [92] and PPG Throat (cricoid cartilage) Medical adhesive tape over skin Swallow detection

Zahnd et al. [48] 3-xl: ADXL327 (Analog Devices) Throat (cricoid cartilage) Adhesive tape over skin Investigating swallowing vibrations

Context Retrieval

Hashmi et al. [51] 3-xl-gyr: Smartphone Midsternum Elastic strap over clothes ER from gait analysis with 6 classes

Riaz et al. [53] 3-xl-gyr: Smartphone and Opal (APDM) Midsternum Elastic strap over clothes Age estimation from gait analysis

Uddin and Canavan [77] Used DB: WESAD [85] Stress and Meditation Detection

Riaz et al. [76] 3-xl-gyr: Opal (APDM) Chest (xiphoid process), wrist, ankle and
lower back Elastic strap over clothes Estimation of age, gender and height from gait analysis

Matic et al. [44] 3-xl: Shimmer Midsternum Elastic strap over skin Correlation of VAD and mood changes

Vural et al. [78] 3-xl Midsternum Strap over clothes Biometric verification



Sensors 2021, 21, 2875 27 of 30

References

1. Mück, J.E.; Ünal, B.; Butt, H.; Yetisen, A.K. Market and Patent Analyses of Wearables in Medicine. Trends Biotechnol. 2019,
38, 129–133. [CrossRef] [PubMed]

2. Bonato, P. Advances in wearable technology and its medical applications. In Proceedings of the 2010 Annual International
Conference of the IEEE Engineering in Medicine and Biology Society, Buenos Aires, Argentina, 31 August–4 September 2010;
pp. 2021–2024. [CrossRef]

3. Berglund, M.E.; Duvall, J.; Dunne, L.E. A survey of the historical scope and current trends of wearable technology applications.
In Proceedings of the International Symposium on Wearable Computers, Heidelberg, Germany, 12–16 September 2016; IEEE
Computer Society: New York, NY, USA, 2016; pp. 40–43. [CrossRef]

4. Kröger, J.L.; Raschke, P.; Bhuiyan, T.R. Privacy implications of accelerometer data: A review of possible inferences. Acm Int. Conf.
D Ser. 2019, 81–87. [CrossRef]

5. You, Z. Space Microsystems and Micro/Nano Satellites; Elsevier Inc.: Amsterdam, The Netherlands, 2017; pp. 1–427. [CrossRef]
6. Filippeschi, A.; Schmitz, N.; Miezal, M.; Bleser, G.; Ruffaldi, E.; Stricker, D. Survey of Motion Tracking Methods Based on Inertial

Sensors: A Focus on Upper Limb Human Motion. Sensors 2017, 17, 1257. [CrossRef] [PubMed]
7. Taebi, A.; Solar, B.; Bomar, A.; Sandler, R.; Mansy, H. Recent Advances in Seismocardiography. Vibration 2019, 2, 5. [CrossRef]
8. Jones, S.E.; van Hees, V.T.; Mazzotti, D.R.; Marques-Vidal, P.; Sabia, S.; van der Spek, A.; Dashti, H.S.; Engmann, J.; Kocevska, D.;

Tyrrell, J.; et al. Genetic studies of accelerometer-based sleep measures yield new insights into human sleep behaviour. Nat.
Commun. 2019, 10, 1585. [CrossRef]

9. Van Hees, V.T.; Sabia, S.; Jones, S.E.; Wood, A.R.; Anderson, K.N.; Kivimäki, M.; Frayling, T.M.; Pack, A.I.; Bucan, M.; Trenell, M.I.;
et al. Estimating sleep parameters using an accelerometer without sleep diary. Sci. Rep. 2018, 8, 12975. [CrossRef]

10. Nam, Y.; Kim, Y.; Lee, J. Sleep Monitoring Based on a Tri-Axial Accelerometer and a Pressure Sensor. Sensors 2016, 16, 750.
[CrossRef]

11. Altini, M.; Penders, J.; Vullers, R.; Amft, O. Estimating energy expenditure using body-worn accelerometers: A comparison of
methods, sensors number and positioning. IEEE J. Biomed. Health Inform. 2015, 19, 219–226. [CrossRef]

12. Elbasiony, R.; Gomaa, W. A Survey on Human Activity Recognition Based on Temporal Signals of Portable Inertial Sensors. In
Advances in Intelligent Systems and Computing; Springer: Berlin/Heidelberg, Germany, 2020; Volume 921, pp. 734–745. [CrossRef]

13. Inan, O.T.; Migeotte, P.F.; Park, K.S.; Etemadi, M.; Tavakolian, K.; Casanella, R.; Zanetti, J.; Tank, J.; Funtova, I.; Prisk, G.K.;
Di Rienzo, M. Ballistocardiography and Seismocardiography: A Review of Recent Advances. IEEE J. Biomed. Health Inform. 2015,
19, 1414–1427. [CrossRef]

14. Zakeri, V.; Akhbardeh, A.; Alamdari, N.; Fazel-Rezai, R.; Paukkunen, M.; Tavakolian, K. Analyzing seismocardiogram cycles to
identify the respiratory phases. IEEE Trans. Biomed. Eng. 2017, 64, 1786–1792. [CrossRef]

15. Yang, C.; Tavassolian, N. Combined Seismo-and Gyro-Cardiography: A More Comprehensive Evaluation of Heart-Induced
Chest Vibrations. IEEE J. Biomed. Health Inform. 2018, 22, 1466–1475. [CrossRef]
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