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Addressing limited weight 
resolution in a fully optical 
neuromorphic reservoir computing 
readout
Chonghuai Ma1*, Floris Laporte1, Joni Dambre2 & Peter Bienstman1

Using optical hardware for neuromorphic computing has become more and more popular recently, 
due to its efficient high-speed data processing capabilities and low power consumption. However, 
there are still some remaining obstacles to realizing the vision of a completely optical neuromorphic 
computer. One of them is that, depending on the technology used, optical weighting elements may 
not share the same resolution as in the electrical domain. Moreover, noise of the weighting elements 
are important considerations as well. In this article, we investigate a new method for improving 
the performance of optical weighting components, even in the presence of noise and in the case of 
very low resolution. Our method utilizes an iterative training procedure and is able to select weight 
connections that are more robust to quantization and noise. As a result, even with only 8 to 32 levels 
of resolution, in noisy weighting environments, the method can outperform both nearest rounding 
low-resolution weighting and random rounding weighting by up to several orders of magnitude in 
terms of bit error rate and can deliver performance very close to full-resolution weighting elements.

Machine learning is becoming ubiquitous in people’s daily lives. It can achieve outstanding performance on 
a variety of tasks1–3. However, the surge of the vast volumes of generated data is approaching the limits of the 
conventional Von Neumann architectures in electrical hardware, as Moore’s law appears to be coming to an end. 
Optical neuromorphic computing4–8, with its high-efficiency high-speed data processing capabilities, is becoming 
more and more a viable choice as a hardware implementation for neural networks, especially for problems with 
high data volumes where the input is already in the optical domain. Integrated silicon photonics neuromorphic 
systems have proven themselves as potential options, especially since they can exploit CMOS fabrication tech-
nology and are therefore suited for mass production9.

Photonic reservoir computing.  Reservoir computing (RC) is one of the machine learning paradigms10,11 
whose relaxed requirements make it well suited for a hardware implementation. A reservoir is inherently a ran-
domly initialized, untrained recurrent neural network (RNN), which acts as a temporal prefilter to transform 
a time dependent input into a higher-dimensional space, where it can be more easily classified by a linear clas-
sifier. Therefore, unlike RNNs, reservoir computing does not rely on optimizing the internal interconnection 
parameters of the network. Instead, it only optimizes the weights of the linear combination in the readout layer 
as shown in Fig. 1a. Because the performance of the reservoir is, within certain bounds, relatively insensitive to 
the exact internal weights of the reservoir, this technology is very interesting for a (photonic) hardware imple-
mentation, where fabrication tolerances are inevitable. Specific to photonic implementations are the so-called 
passive reservoirs, where the reservoir itself does not contain any nonlinearity, but where the photodetector in 
the readout (which converts a complex-valued light amplitude to a real-valued power intensity) provides the 
required non-linearity. Doing away with the need for internal nonlinearities reduces the power consumption. 
Photonic integrated circuits like these have been reported in4,12–14, solving parity bit tasks, header recognition 
and telecom signal regeneration tasks at data rates around 10 Gb/s. Laporte et al.5,15 use photonic crystal mixing 
cavities as the reservoir and also could solve the XOR task on neighboring bits, with the potential of achieving 
much higher speeds, theoretically up to several hundreds of Gb/s.

In the meantime, other neuromorphic computing approaches are gaining prominence. E.g. optical feed-
forward neural networks for deep learning are proposed by Shen et al.7, which cascade integrated coherent optical 
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matrix multiplication units embedded in programmable nanophotonic processors. The results show its utility 
for vowel recognition. As another approach, diffractive optical machine learning8 is achieved using diffractive 
elements as interconnection layers, which can solve various computational functions. A multiple-wavelength-
based system is presented in16.

Readout system.  To fully exploit a coherent optical neuromorphic computing circuit, thus benefiting from 
its high data rates and low energy consumption, an integrated optical readout to calculate the weighted sum 
(Fig. 1b) is preferable. The critical aspect for such an optical readout is that the weights are applied in the optical 
domain, instead of converting optical signals to electrical signals, and then applying the weights on the electrical 
signals using a microcomputer (referred as electrical readout schemes as shown in Fig. 1c). Apart from speed, 
latency, and power efficiency advantages, such a fully optical readout system can also perform weighting on 
phase and amplitude separately, which results in more degrees of freedom, and thus more computation capabil-
ity.

One issue of an optical readout is that there is no longer an explicit electronic observability for each of the 
states, since in such systems it is desirable to only have one single photodiode and high-speed analog-to-digital 
converter after the linear combination. This observability problem was dealt with by Freiberger et al.17.

Another problem is that, depending on the technology, the resolution of the optical weights could be much 
lower compared to applying weights in the electrical domain, which can easily reach 16 bit and more. For a 
photonic reservoir with optical readout illustrated as Fig. 1b, the situation can be different depending on the 
weights are physically implemented. One option for the OM (optical modulator) is a heater-based optical inter-
ferometer. By driving the heater current to produce temperature changes on an integrated waveguide, the phase 
and amplitude of the optical signal can be modified. In this case, the resolution of the current source will be the 
limitation of the weighting resolution and the weights will be quantized by the resolution of the DAC that drives 
the current source. So, in this case, weight resolution will not be a problem, but this heater-based implementation 
consumes a lot of power and is volatile.

Another more extreme example is a Barium Titanate (BTO)18 weighting element, which has the critical advan-
tage of being non-volatile, consuming nearly zero power while weighing the signal. Unlike the heater-based OM, 
we control the BTO material properties by programming it with a voltage, instead of changing the temperature. 
However, due to the stability of the ferroelectric properties of the material, there are only very few levels available 
for adjustment, therefore causing a very low resolution on the order of 3–5 bit (10–30 levels). Additionally, this 
is coupled with some inevitable noise due to potential parameter drifting of the optical elements.

In this paper, we will consider the extreme example of a BTO weighting element and explore strategy to solve 
the low weighting resolution problem in a general way.

Weight quantization.  Network quantization is a important topic for deep learning researchers and devel-
opers, since the demand for applying machine learning tasks on low power consumption systems, e.g. mobile 
devices, has been increasing drastically19. However, almost all of the methods and algorithms have a focus on 
existing electrical hardware, like GPU or CPU. As hardware photonic neuromorphic computing networks have 
been thriving recently, and since the weighting method is completely different, it needs its own quantization 
strategy that suits its features and maximizes the performance from optical weighting elements. The differences 
are reflected in the following aspects.

Weighting resolution.  First, for deep learning network quantization in the electrical domain, the target resolu-
tion is mostly based on the application hardware. Vanhoucke et al.20 implemented an 8-bit integer resolution 
activation instead of 32-bit floating-point to optimize CPU performance. Courbariaux et al.21 explored binary 

Figure 1.   (a) Reservoir computing consists of a reservoir layer, which is inherently an untrained RNN, and a 
readout layer that weights and linearly combines of output channels of the reservoir. (b) An integrated optical 
readout takes advantage of standard optical modulators (OM) to weigh the optical signals from the reservoir 
in both amplitude and phase with no latency and very low energy cost. The linear combination of the optical 
signals can be achieved using optical combiners. (c) A Conventional integrated electrical readout requires an 
individual photodetector (PD) and Analog-To-Digital converter (ADC) for each output channel, as well as a 
microprocessor (MP) to perform the linear combination of the signals, which introduces unwanted latency and 
power consumption.
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weights to accelerate future dedicated low-power electrical deep learning hardware by replacing multiply-accu-
mulate operations by simple accumulations, which is called BinaryConnect method. However, for photonics, 
getting rid of multiplications is not so relevant, as these can be done in the analog optical domain instantly any-
how. The BinaryConnect method was later extended to a power-of-two setting by the Gudovskiy et al.22, but even 
then, the peculiarities of photonic hardware are such that a new discretisation strategy is required. Indeed, in 
integrated photonics systems weighting is usually achieved by controlling on-chip heaters or non-volatile mate-
rials in an optical interferometer to modulate the amplitude or phase of the coherent optical signal. Depending 
on the technology, the resolution varies between 3 and 6 bit, but more importantly, it is often impossible to 
achieve a weight identical to zero. This aspect needs to be accounted for explicitly, and hence a new discretiza-
tion strategy is required.

Number of parameters.  Most deep neural networks have a substantial number of trainable parameters; some 
of them may reach tens of millions, leading to a significant redundancy in deep learning models23. Network 
pruning is often a feasible option for reducing the size of the network in parallel to quantization. However, for 
optical systems like passive reservoir computing chips, the number of trainable parameters in the readout system 
is typically in the hundreds or fewer, which leads to a reduced parameter redundancy and therefore a potentially 
much more severe impact on the performance by the weight quantization. On the other hand, each trainable 
parameter is corresponding to a real optical channel, which also makes pruning not possible, since it would 
result in additional optical loss.

Quantization details.  As mentioned above, weighting in a coherent photonic neuromorphic hardware is differ-
ent compared to weighting in a CPU or GPU. One of the differences lies in the nature of the quantized weight 
values. In21, the quantized weights can be chosen from 1 or − 1, and for the majority of deep learning networks, 
there is no restriction on the distribution of the weight values. However, for amplitude weighting in the coher-
ent photonic neuromorphic hardware, it is not possible to achieve a weight value of exactly 0, due to inevitable 
hardware imperfection. As a example, an optical interferometer has a ’on’ state and an ’off ’ state, but because of 
fabrication imperfections causing loss imbalance, the ratio between the intensity of the ’on’ state and the intensity 
of the ’off ’ states can never reach infinity. This ratio is so-called extinction ratio of highest to lowest weight, which 
is an important implementation aspect. For phase weighting on the other hand, there is no such restriction, and 
the values can range from 0 to 2π.

Noise.  Another difference is that for quantization in a CPU- or GPU-based deep networks, since they are digi-
tal systems, there should be negligible noise on the quantization weights. Although some networks apply noise 
on the weights to improve the robustness of the system24, the added noise is often really small compared to the 
quantization interval. In contrast, in hardware optical weighting elements, noise is inevitable, and can sometimes 
be significant, which represents additional challenges.

Due to the many intrinsic differences between a photonic weighting system and an electrical weighting 
mechanism as discussed above, it is very difficult to apply a deep learning quantization method directly to 
photonic hardware. In such a context, it is of great importance to train a readout system for coherent optical 
neuromorphic computing systems, so that the performance is less sensitive to the quantization and the noise of 
the weights. This is the exact problem we want to tackle in this paper.

The rest of this paper is structured as follows. In “Methods” section, we introduce our modeling method of 
the optical weighting hardware, in amplitude and phase, by taking into consideration the number of quantization 
levels, the extinction ratio of the elements, and the noise after quantization. The explorative quantization retrain-
ing technique used in this work will also be highlighted. In “Results” section, we show our simulation results 
based on our quantization method with respect to the different hardware parameters mentioned in “Methods” 
section. We also discuss the quantization result for various tasks.

Methods
In this part, we introduce the concept of our quantization method and present the implementation details like 
the discretization model, the type of regularization and the training procedure.

Explorative quantization weight selection.  The explorative quantization weight selection in this work 
is inspired by methods that have been used in deep learning quantization. Typically, after a full precision model 
has been trained, a subset of weights is identified to be either pruned25 or kept fixed26. The other weights are then 
retrained in full precision and requantized. If necessary, this step can be repeated in an iterative fashion, retrain-
ing progressively smaller subsets of the weights in order to find the most optimal and stable solution.

A crucial part of these methods is selecting a subset of weights to be left fixed or to be pruned. Random 
selection of weights is not a good idea, because there is a high probability of eliminating ‘good’ weights that 
convey important information. Han et al.25 and Zhou et al.26 tackle this problem by choosing the weights with 
the smallest absolute value.

This is reasonable in deep learning models, since the millions of weights can provide enough tolerance when 
it comes to accidentally selecting the ‘wrong’ weights. However, in the readout systems we are investigating here, 
we have much fewer weights and a much more limited resolution with severe noise. In this case, the absolute 
value will not provide enough information, as a combination of many small weights could be important in fine-
tuning the performance of the network. This will lead to a risk of a huge accuracy loss when specific ‘wrong’ 
connections (that are more sensitive to perturbations) are chosen to be retrained.
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Instead, we adopt a different (albeit more time-consuming) approach. The specific procedure is as follows. We 
start with a pre-trained model, which consists of all the full-resolution weights and perform a nearest rounding 
quantization on the complex weights. After quantization, the weights are divided into two groups, one of them 
will be retrained and the other group not. This partition of the weights in groups is done not once, but several 
times in parallel by random selection (the number of parallel weights partitions is chosen from 2 to 20 depend-
ing on the number of residual weights to be retrained). For each partition, after retraining, the weights will be 
quantized again to evaluate the performance based on the BER on the training data set. By comparing the task 
performance for these different partitions, we can pick the best one.

We iteratively conduct the procedure above. In each iteration, the ratio of weights to be retrained decreases 
by a factor of two, starting from an initial value of 0.5. We typically perform 4 iterations, so for our 16-node 
reservoir, the number of trained weights in each iteration is 8, 4, 2, 1. As the iteration proceeds, we also decrease 
the number of partitions to be evaluated from 20 in the beginning to 2 at the end, as fewer and fewer weight 
combinations become available. In order to increase the stability of the procedure, weights that have been selected 
as fixed in previous iterations remain fixed in future iterations as well.

Quantization of the optical weighting elements.  Here, we describe in more detail what model has 
been used for the quantization procedure itself. We aim to provide a high-level model for the weighting ele-
ments (both amplitude and phase) that is as generic as possible, without being tied to any specific hardware 
implementation details. Rather, in the quantization process, we take three major aspects into account: extinction 
ratio, resolution, and noise. Figure 2a shows the quantization of complex weights in the complex plane, without 
weighting noise.

Amplitude quantization.  The readout systems that we model here are supposed to be an optical system without 
amplification. In this case, the largest weight of the amplitude will be 1 (light passing through without being 
affected) and the lowest weight will be 0 (light is fully blocked by the weighting elements). However, in a realistic 
optical weighting element, the fully blocked weight ‘0’ is often not achievable. Most elements have an extinction 
ratio describing how much optical power it can block compared to the maximum power that can pass through. 
For example, given an an extinction ratio of 10 and a maximum weight of 1, the minimum weight will be 0.1.

The resolution of the weights is characterized as a number of bits or number of levels. All the possible weight-
ing levels are uniformly distributed within the same interval, taking into account the minimum weight because 
of the extinction ratio. Figure 2b illustrates this in more detail. The minimum weight the readout system can 
reach is given by:

After quantization, weights that are below this level will be rounded up to this value.
The distance between two adjacent weighting values is given by:

where N is the number of available weighting levels, determined by the resolution of the optical element.

wmin = 1/Extinction ratio

�w = (1− wmin)/(N − 1)

Figure 2.   (a) An illustration of complex weights quantization in a coherent photonic readout system. Small 
black dots are all available quantization weights in the complex plane. Red dots represents the pre-trained 
full resolution weights, Green dots are corresponding quantized weights. Weighting noise in this figure is set 
to 0. (b) An illustration of amplitude quantization model for a general optical weighting element. The green 
shadowed areas represent noise probability distribution.
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Noise and drift are of course very dependent on the details of the hardware used, but for our purposes, we 
will abstract the noise as a Gaussian distribution. The noise level numbers we give in the following section are 
based on the standard deviation σ of the Gaussian distribution as follows:

Phase quantization.  In the phase quantization process, the extinction ratio issue will not play a role, and there 
will only be resolution and noise. The quantization will be implemented between [0, 2π) . All the levels are also 
evenly distributed. Noise is also modeled as Gaussian distribution.

Regularization.  The regularization method used in this work is L2 regularization. In the photonic hardware 
readout system, there is no significant redundancy of connections or weights, and each weight is realized by a 
real waveguide through which the optical signals are passing. It is not practical to ’cut’ or ’prune’ any hardware 
optical connections. Therefore we choose L2 over L1 regularization since we do not want to waste any readout 
waveguide and L1 tends to result in zero weights. Choosing the best regularization parameter is crucial to pre-
vent overfitting and to help the system to be robust against noise and quantization27.

Baselines.  In this paper, we choose two baseline methods to compare our results with. The first is nearest 
rounding quantization, which is referred to as ‘naive quantization’ in the rest of the paper. The second baseline 
is randomized rounding quantization28, which will be referred to as ‘random rounding’. Random rounding is a 
reasonable baseline to compare our method too, since it also gives an optimized performance by statistic selec-
tion of better weight choices. In our implementation of random rounding, we set the rounding probability based 
on the distance of a weight to a nearby quantization value. We repeat this procedure 20 times and pick the result 
with the lowest error rate.

Training procedure.  The original idea of reservoir computing is to use linear (ridge) regression to train the 
weights of a readout system. This saves a lot of training time compared to using gradient descent, as weighing 
the reservoir output signals is just a linear regression and can be calculated explicitly. In a coherent photonics 
reservoir however, the outputs of the reservoir are coherent optical signals containing amplitude and phase 
information, i.e. complex numbers. In the readout system, these optical signals are mixed together and interfere 
with each other to produce a final optical signal injected into a photodetector. Therefore the output of such a 
readout system is a single electrical signal containing only intensity information. This is a nonlinear conversion 
from a complex-valued optical signal with an amplitude and phase to a purely real intensity. To incorporate 
such a nonlinear conversion, we can no longer use the one-step solution based on the Moore–Penrose inverse 
of linear ridge regression, since there is no unique way to choose a phase of the signal before the photodiode 
that gives rise to the desired amplitude after the photodiode. Therefore, in our learning phase, we optimize the 
weights with gradient descent, explicitly taking the nonlinear photodiode into account. Using this method gives 
us more robust results and increases the computation capability of our reservoir system.

Another decision we made is to use the Mean Squared Error (MSE) as a loss function to optimize the optical 
weights. One could argue to use logistic regression instead, because the tasks we are trying to solve are all clas-
sification tasks. However, to build an optical neuromorphic computing system, we have to consider the hardware 
implementation of each signal processing step. In our hardware system, the output electrical signal from the 
final photodetector will be used as the final prediction signal without further signal processing. Using logistic 
regression would assume another layer of nonlinear calculation, the sigmoid function. This process would result 
in a more complex integration technology and induce more latency and energy cost.

Results
In this section, we present simulation results for the performance of the proposed method on two tasks: header 
recognition and a boolean XOR operation. The bit sequences will be encoded to optical signals before the simula-
tion. The architecture we choose for these tasks is the 4-port swirl reservoir network29 with 16 nodes. We train all 
the tasks on fully integrated passive photonic reservoirs with optical integrated readout systems. We treat the full 
resolution weighting performance with weighting noise as the idealized best performance the system can achieve, 
and also compare our method with the performance of ‘naive’ quantization and random rounding quantization.

The simulation consists of two parts. The first one is to generate the reservoir signal. We use Caphe30 to 
simulate the reservoir circuit with subsampling of 20 points per bit on the intensity-modulated input signal. 
The delays in the photonic reservoir are optimized for an input signal speed of 32 Gbps. The response of the 
photonic reservoir will be the complex output signals from each of the nodes, consisting of amplitude and phase 
information. The second part is the training and quantization of the weights using our proposed method. We 
use PyTorch31 to implement this.

Header recognition.  The header we use in the header recognition task is a 4-bit header ‘1101’. We want 
the final readout signal to be ‘1’ whenever the chosen header appears in the input signal, and ‘0’ otherwise. The 
reservoir architecture is a 4× 4 , 16 node reservoir. Although header recognition can be solved in a multi-class 
classifier, the optical readout hardware we use here is not suited for multi-channel optical output. As mentioned, 
we use an MSE loss function with L2 regularization and train our models with gradient descent using Adam32.

We now discuss the influence of resolution, noise and extinction ratio on the performance. For the following 
figures indicating the performance in terms of BER, error bars represent the standard deviation of the results 

Noise level = σ/�w
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from 10 different reservoirs. It indicates the performance consistency of our method over different reservoir 
chips with random fabrication imperfections.

Noise.  Noise has a very significant influence on performance. Figure 3 shows the performance evaluation of 
the Bit Error Rate (BER) at different noise levels at 8-level, 16-level and 32-level resolution on the 4-bit header 
recognition task. The top figure with 8-level resolution shows that overall, the quantized weights obtained by 
our explorative retraining method consistently provide performances very close to the full resolution weights. 
For more substantial noise levels of the optical weighting elements, as shown in the far right part of the graphs, 
the BER increases significantly, which reflects the severe impact that the noise of the optical weighting elements 
brings to system performance, even for a full-resolution system. Apart from those situations of large noise lev-
els, the retrain method is performing well throughout and gives several orders of magnitude better BER than 
the ‘naive’ quantization of the weights where the readout is trained and quantized only once. When there is no 
noise on the weights, the retrain method gives almost the same performance on the limited resolution readout 
system compared to a full resolution readout system. This result is rather surprising, given that the resolution 
here is only 8 levels. The random rounding method also fails to deliver a reasonable performance at these levels 
of resolution.

For higher resolutions, namely 16 levels and 32 levels, the explorative retraining method provides even closer 
performance to the full resolution readout systems. As the resolution increases, the ‘naive’ quantization method 
also achieves lower bit error rates, however still not comparable to the full resolution and explorative retrained 
weights.Random rounding only provides comparable performance to the full resolution weights at 32-level 
resolution. For lower resolutions, its performance is considerably worse. When the noise levels are high, all four 
sets of weighting strategies are giving a similar performance (especially at 16 and 32 levels resolution all four 
results are indistinguishable), The reason is that, as the resolution increases, the interval between two adjacent 
weighting level is in the same range of the variance of the noise. These three weighting methods will provide 
similar weighting values statistically.

Extinction ratio.  Figure  4 illustrates the influence of the extinction ratio of the optical weighting elements. 
The figure shows that for directly quantized weights, a higher resolution always gives better BER regardless of 
the extinction ratio of the weighting components. However, when the extinction ratio gets higher, the perfor-

Figure 3.   Performance comparison of three different weighting resolutions, 8 levels (left), 16 levels (middle), 
32 levels (right) for the 4-bit header recognition task over different noise levels. The blue curve represents the 
performance of full-resolution weights; the orange curve represents ‘naive’ quantization weights; the green curve 
for explorative retrained quantization weights.

Figure 4.   Performance comparison of three different extinction ratio, 2 (left), 5 (middle), 10 (right) for the 4-bit 
header recognition task over different resolutions. The blue curve represents the performance of full-resolution 
weights; the orange curve represents ‘naive’ quantization weights; the green curve for explorative retrained 
quantization weights.
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mance from the 32-level ‘naive’ quantized weights and random rounding weights are closer to the full resolution 
weights. This result is intuitive since higher extinction ratio means the weight range is more preserved after 
quantization, and when the extinction ratio is low, more initially lower weights will be rounded up to the lowest 
weighting value that the extinction ratio allows. In this task, extinction ratios of 5.0 and 10.0 do not give much 
difference compared to the huge performance drop for the extinction ratio of 2.0. For photonics weighting 
components, an extinction ratio of 5.0 to 10.0 is not a very strict requirement, and therefore photonics reservoir 
hardware systems should be able to deliver the required extinction ratio for this task.

In contrast, the retraining method gives consistently better performance because the weights are continually 
evolving to adapt to the weighting range that the extinction ratio defines. The performance levels are always very 
close to those of the full resolution, with a limited impact from the extinction ratio.

Training time.  The training time of the explorative method takes longer due to iterations of training and weight 
connection selecting. For the header recognition task, training the 16-node photonic reservoir system using 
nearest rounding takes around 2 minutes, with CUDA enabled on a Nvidia GeForce GTX 970 GPU. The explora-
tive training procedure takes around 18 minutes and random rounding method takes 5 minutes. For a reservoir 
that has more nodes, the training time does not scale up quickly with the number of nodes, since the training 
utilizes the parallel processing of the GPU. Moreover, as mentioned, the number of nodes in a photonics reser-
voir is usually below one hundred to control optical loss.

Although it is a more time-consuming training procedure, the extra training time does not impact to the run 
time the system after programming. As mentioned, the training of the system is done off-line. Once the system 
is trained, the photonic reservoir computing works in the all-optical domain without any optical-electrical 
conversion and can have an extremely high bandwidth. Therefore the off-line training time does not result in 
any runtime latency.

4‑Bit delayed XOR.  We chose 4-bit delayed XOR (i.e. calculating the XOR of the current bit and 4 bits ago) 
as our second task. The reason is that XOR is a more nonlinear task compared to the header recognition, so it is 
interesting to see how it behaves under weight quantization situations.

Figure 5 presents the performance of our quantization retraining method on low-precision weights (8, 16, 32 
levels) at different noise levels. From the blue curve, it can be seen that 4-bit delayed XOR is indeed a harder task 
to tackle since even with full precision, the BER increases significantly with a small amount of noise. Moreover, 
the task is also very sensitive to low precision weights, as shown from the ‘naive’ quantization weights (orange 
curves), at the 8 levels resolution, the tasks is unsolvable even without any noise involved. In the meantime, 
we also observe that our explorative retrained weights are capable of providing very close performance to full 
resolution weights, except for 8 levels resolution, where due to the extra nonlinearity requirement of the task, 
retrained weights find themselves hard to follow. But still, ‘naive’ direct quantized weights and random round-
ing quantized weights are severely outperformed by our explorative retraining method at the overall spectrum 
of the different noise levels.

The performance dependence on resolution and extinction ratio is shown in Fig. 6. The noise level here is 
0.0025. Similar to the header recognition task, a higher extinction ratio provides better direct quantization per-
formance. Weighting elements with an extinction ratio of 2 are not able to provide enough weighting range for 
direct quantized weights to deliver workable performance regardless of the weighting resolution. The explorative 
retraining method is also affected at the 8 levels resolution. When the extinction ratio is 10, the quantization 
retraining method delivers performance close to the full resolution, from which we can draw a statement that 
an extinction ratio of 10 is sufficient for this task. For random rounding weights, it always delivers slightly better 
results compared to the ’naive’ quantization method. However, it is outperformed by the explorative retraining 
method by a big margin, especially in higher resolutions regardless of extinction ratios.

Figure 5.   Performance comparison of three different weighting resolutions, 8 levels (left), 16 levels (middle), 32 
levels (right) for the 4-bit delayed XOR task vs different noise levels. The blue curve represents the performance 
of full-resolution weights; the orange curve represents ‘naive’ quantization weights; the green curve for 
explorative retrained quantization weights.
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Conclusion
In this paper, we addressed the limited weight resolution in an integrated all-optical readout system for pho-
tonic reservoir computing systems. A high-level general modeling for realistic integrated optical weighting 
elements enables us to characterize the influence of the weighting resolution, noise, and extinction ratio on the 
system performance. Our proposed explorative retraining method focused on identifying the best weights to be 
retrained. It is shown that in situations where both the number of output channels and the weighing resolution 
is extremely limited, our proposed method still delivers performance very close to that of full resolution weights 
over a large span of weighting noises.
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