
Vol.:(0123456789)1 3

Journal of Real-Time Image Processing (2021) 18:1979–1991
https://doi.org/10.1007/s11554-020-01069-5

ORIGINAL RESEARCH PAPER

Accelerating iterative CT reconstruction algorithms using Tensor Cores

Mohsen Nourazar1 · Bart Goossens1

Received: 15 July 2020 / Accepted: 28 December 2020 / Published online: 28 January 2021
© The Author(s) 2021

Abstract
Tensor Cores are specialized hardware units added to recent NVIDIA GPUs to speed up matrix multiplication-related tasks,
such as convolutions and densely connected layers in neural networks. Due to their specific hardware implementation and
programming model, Tensor Cores cannot be straightforwardly applied to other applications outside machine learning. In
this paper, we demonstrate the feasibility of using NVIDIA Tensor Cores for the acceleration of a non-machine learning
application: iterative Computed Tomography (CT) reconstruction. For large CT images and real-time CT scanning, the
reconstruction time for many existing iterative reconstruction methods is relatively high, ranging from seconds to minutes,
depending on the size of the image. Therefore, CT reconstruction is an application area that could potentially benefit from
Tensor Core hardware acceleration. We first studied the reconstruction algorithm’s performance as a function of the hard-
ware related parameters and proposed an approach to accelerate reconstruction on Tensor Cores. The results show that the
proposed method provides about 5 × increase in speed and energy saving using the NVIDIA RTX 2080 Ti GPU for the
parallel projection of 32 images of size 512 × 512 . The relative reconstruction error due to the mixed-precision computa-
tions was almost equal to the error of single-precision (32-bit) floating-point computations. We then presented an approach
for real-time and memory-limited applications by exploiting the symmetry of the system (i.e., the acquisition geometry).
As the proposed approach is based on the conjugate gradient method, it can be generalized to extend its application to many
research and industrial fields.

Keywords  Parallel iterative CT reconstruction · NVIDIA Tensor Core · GPU Acceleration · Mixed-precision real-time
computations · CUDA · Morton space filling curve

1  Introduction

Graphics Processing Units (GPUs), as one of the most feasi-
ble parallel structured processors, have proven their power in
facilitating research in a wide range of fields, including high-
performance computing, data centers, medical imaging, and
machine learning. Among these, GPU-based machine learn-
ing applications, and more specifically deep learning, have
significantly grown in use in recent years [18]. To address
this need, NVIDIA has introduced a specialized comput-
ing unit called Tensor Core that speeds up neural network

training and inferencing operations in deep learning by offer-
ing enormous acceleration in matrix computations [21].
Tensor Core-powered GPUs can offer more than a hundred
TFLOPS performance [4].

Although the Tensor Core’s tremendous performance is
tempting to use, its application is more restricted than gen-
eral CUDA core. First, Tensor Cores only perform a specific
form of matrix multiply–accumulate operation. Second, the
precision of Tensor Core floating-point operations is limited
to half-precision. Since every application with matrix opera-
tions at its core, including non-machine learning image and
video processing applications, could potentially benefit from
the performance improvements these newly introduced Ten-
sor Cores provide, it will be a valuable study to analyze the
performance and the effects of these constraints for these
non-machine learning applications.

Computed tomography (CT) is one of these applications
that has been widely applied to non-destructive testing and
contact-free inspection methods, such as medical imaging,

 *	 Bart Goossens
	 bart.goossens@ugent.be

	 Mohsen Nourazar
	 mohsen.nourazar@ugent.be

1	 Department of Telecommunications and Information
Processing, imec-IPI-Ghent University, 9000 Ghent,
Belgium

http://crossmark.crossref.org/dialog/?doi=10.1007/s11554-020-01069-5&domain=pdf

1980	 Journal of Real-Time Image Processing (2021) 18:1979–1991

1 3

age determination, and industrial materials testing [16].
Two main challenges in CT include decreasing radiation
exposure to reduce risk of biological and material dam-
age, and improving the reconstruction process by decreas-
ing processing time while increasing resolution. In this
regard, several hardware- and software-based approaches
have been proposed to address these concerns [10, 25].
Compared to the traditional methods used to reconstruct
CT images, Iterative Reconstruction (IR) methods provide
superior images but require more processing resources.
Thanks to improvements in processor performance, IR is
now considered the preferred reconstruction method due
to the simultaneous noise reduction and quality improve-
ment it can provide [25]. Although it has recently received
increasing attention from the high-performance computing
domain, reconstruction is still a resource-hungry appli-
cation [27, 28]. Thus, these novel parallel architectures
provide new opportunities for accelerating IR. And given
the increasing real-time applications in both medical and
non-medical scanning, there are many areas that would
benefit from this technology.

In this regard, we demonstrate the application of
NVIDIA Tensor Cores to accelerating CT forward-projec-
tion (FP) and back-projection (BP) algorithms, which are
of the most demanding kernels in iterative reconstruction
approaches. For this purpose, the distance-driven projec-
tion method is used to build a system matrix. Although any
other projection method can be used in our approach, dis-
tance-driven projection is used because of the advantages
of fast and accurate reconstruction [5, 6]. To take advan-
tage of GPU hardware acceleration, the Tensor Cores are
used to perform the forward-projection by multiplying
the system matrix with a vector consisting of the image
pixel intensities and the back-projection by multiplying the
transpose of the system matrix with a vector consisting of
the sinogram intensities. Because Tensor Cores operate in
a mixed 16-bit/32-bit floating-point precision, we expect a
loss in accuracy compared to a purely 32-bit floating-point
implementation. Therefore, our goal is to also investigate
whether this loss in accuracy is acceptable for CT recon-
struction applications.

The contributions of this paper can be summarized as
follows:

•	 Application of Tensor Cores to a non-machine learning
application; in particular, we discuss how to deal with
several algorithmic challenges when using Tensor Cores.

•	 A pseudo-Morton ordering algorithm is proposed to
improve the sparsity pattern of the system matrix, which
will improve performance and memory utilization.

•	 An approach is proposed for exploiting the symmetry
of the system and to further reduce the required system
matrix memory.

Although—as far as we are aware of—applying Tensor
Cores to this purpose is not reported yet, GPU-accelerated
(non-Tensor Core) CT reconstruction algorithms have
already been reported for both CT and Positron Emission
Tomography (PET) applications, e.g., [13, 17, 26]. The work
presented in [9] developed a fast GPU-based algorithm for
reconstructing high-quality images from under-sampled and
noisy data. Xie et al. [29] proposed a 10–16 times faster
CUDA-based implementation for the projection in iterative
CT reconstruction algorithms. Both Li et al. [16] and Sabne
et al. [23] implemented a GPU-optimized Model-based
Iterative Reconstruction (MBIR). Finally, Hidayetoğlu
et al. [14] proposed a GPU-based memory-centric X-ray CT
reconstruction which is implemented using multi-stage buff-
ering, pseudo-Hilbert ordering, and sparse matrix–vector
multiplication (SpMV). Because of its memory-centricity,
it has some similarities with our work, such as dealing with
sparse matrix data structures and using space-filling curves.
However, our work focuses specifically on the application of
the Tensor Cores and its limitations (e.g., programming limi-
tations and precision limitations) in a non-machine learning
application. We use different data structures and a different
ordering method with lower computational complexity than
the ordering algorithm used in their work.

This paper is organized in five sections. Background
information on the concepts used later in the paper is pre-
sented in Sect. 2. Section 3 presents the proposed method
in detail. The experimental results and a discussion are pre-
sented in Sect. 4. Section 5 contains the conclusion.

2 � Background information

In this section, we give some background information on the
three main concepts we build our approach on: (1) the dis-
tance driven projection method, (2) representations for large
sparse matrices and (3) exploiting symmetries in the system.

2.1 � Distance‑driven projection

Projection and back-projection in CT reconstruction are typi-
cally conducted using one of these three main methods: pixel
driven, ray driven, and distance driven [5]. The pixel-driven
method works by passing a ray from the source through the
center of each pixel of interest to the detector cells and then
interpolates the contribution of two adjacent detector cells
to this projected pixel value. The ray-driven method works
by passing a ray from the source through the image to the
center of each interest detector cell and then integrates the
pixel values along this ray to calculate the projection value
for the detector cell. The distance-driven method, on the other
hand, converts the problem of projection–backprojection into
a one-dimensional re-sampling problem by mapping both the

1981Journal of Real-Time Image Processing (2021) 18:1979–1991	

1 3

detector cell boundaries and the pixel boundaries onto a com-
mon axis, e.g., the x-axis [5, 6]. It then calculates the length of
the overlap to determine the contribution of each pixel to the
corresponding detector cell.

Because of grid artifacts that tend to appear in the image
domain when using the ray-driven back-projection and in the
projection domain when using pixel-driven projection, the
ray-driven method is well suited for forward-projection, while
back-projection works well with the pixel-driven method [5,
6].

The distance-driven methods usually lead to better recon-
struction image quality than both ray-driven and pixel-driven
methods. Its projection and back-projection operations are
matched, or symmetric, and can be used in iterative recon-
struction algorithms where many projection and back-pro-
jections are performed [24]. In addition, this method has the
potential for better performance because of its sequential
memory access pattern (similar to the pixel-driven method)
and relatively low arithmetic complexity (comparable to the
ray-driven method), which make it more suitable for hardware
implementations [5, 6].

Figure 1 shows a schematic of the distance-driven projec-
tion for a given row, in which the pixel boundaries and the
detector cell boundaries are both mapped onto the x-axis. In
Fig. 1, detector boundaries are denote by Xi , pixel boundaries
by X′

i
 , detector values by di , and pixel values by Pi . In this

example, the value of detector d1 can be calculated by:

(1)d1 =
(X�

1
− X1)P0 + (X2 − X�

1
)P1

X2 − X1

,

which is a linear equation in P0 and P1 . This means that
the distance-driven projection describes a linear transfor-
mation from the image domain to the projection domain.
As described in section 3, this linear transformation can be
represented by a large sparse system matrix.

2.2 � Representation of large sparse matrices

When multiplying a large sparse matrix by a dense vec-
tor, even if the sparse matrix can be stored in memory, the
memory bandwidth for reading from memory would limit
its performance. Consequently, most algorithms store the
sparse matrix in a compressed format. Several compressed
data structure formats do compression by storing only the
non-zero values in a list, and the efficiency of these methods
usually depends on the required memory bytes for storing
the indices or pointers of the non-zero values. However,
when the application’s performance is essential, the required
memory bandwidth must also be taken into consideration
when choosing the appropriate data structure. The memory
bandwidth depends highly on the memory access pattern of
the application, and as a result, there is a trade-off between
memory usage and performance.

There are several well-known compressed data structures
for storing sparse matrices in scientific computing such as
COO, CSC, CCS, and CSR [22]. Among these formats,
compressed sparse rows (CSR) is one of the most efficient
and famous standard formats.

The CSR format stores the non-zero values of each matrix
row in consecutive memory locations as well as an index to
the first stored element of each row. In a common and gen-
eral-purpose version, the CSR directly stores sparse matrix
using a floating-point array and two one-dimension integer
arrays for storing the column indices (CI) and row indices
(RI). The non-zero values are stored in the floating-point
array, and the column indices of these non-zero values are
stored in the CI array. Then, the RI array stores the posi-
tion of the first element of each row inside the floating-point
array. Since the RI array contains an index for each row of
the sparse matrix, only m + nnz indices are required to store
an m × n sparse matrix containing nnz non-zero values.

Another compression format that is more suitable for
applications that require fetching a block of data from mem-
ory is the Block Compressed Sparse Row (BSR) format [22].
The BSR method stores two-dimensional non-empty blocks
of elements instead of storing only the non-zero values, and
uses a similar indexing format as the CSR method. Although
the block-based formats are less memory efficient, they can
provide better performance for the applications that work
on blocks of data, such as the application we present here.
Additional details on the data structure used in this work are
presented in Sect. 3.2

Fig. 1   Distance-driven projection, where the detector and the pixel
boundaries are mapped onto the x-axis

1982	 Journal of Real-Time Image Processing (2021) 18:1979–1991

1 3

2.3 � Tensor Cores

As mentioned in the Introduction, expanding AI and deep-
learning applications motivated NVIDIA to release its recent
architectures, Volta, Turing, and Ampere, with new special-
ized execution units designed specifically for performing
matrix operations, called Tensor Cores. A Tensor Core is
capable of performing one matrix-multiply-and-accumulate
operation on a 4 × 4 matrix in one GPU clock cycle. In its
first version introduced by the Volta architecture, the Tensor
Core was able to perform computations on half (according to
the IEEE 754-2008 standard) and mixed-precision floating-
point numbers. In both modes, Tensor Cores perform matrix
multiplication in half-precision, but the accumulation could
be performed in half or single precision. NVIDIA’s Turing
architecture, as the successor to the Volta, introduced a new
and enhanced version of the Tensor Core unit by adding
new integer modes, INT8 and INT4, for applications that
can tolerate inaccurate computations, such as neural net-
works. In this architecture, the Streaming Multiprocessor
(SM) consists of four processing blocks that NVIDIA refers
to as Sub-Cores, and each Sub-Core has two Tensor Cores
and one warp scheduler.

Although Tensor Cores perform 4 × 4 matrix multiplica-
tion at a hardware level, the programming interface exposes
the matrix operations only at the warp level and in terms of
larger matrices. This interface, the Warp Matrix Function
(WMMA) API, gives the programmer access to the Tensor
Cores as warp-wide operations. This means that all threads
in a warp must cooperatively work together to perform the
computation of D = A × B + C , where A,B,C and D can
be tiles of larger matrices. However, the programmer does
not have direct access to the 4 × 4 matrix multiplications.
Instead, the possible matrix sizes, called fragment sizes, are
specified by a WMMA API.

The fragment sizes are represented using the notation
M × N × K , where M × K is the dimension of Tile A , K × N
is the dimension of Tile B and thus C and D have dimension
M × N . Table 1 presents the possible configurations accord-
ing to the available fragment sizes on the latest version of
CUDA 10.2 for half-precision mode.

To program the Tensor Cores, CUDA code must be
adapted to (1) use the WMMA API and (2) to use the
available fragment sizes. For matrix multiplications of suf-
ficiently large matrices, the fragment size can be chosen

freely. However, for other tasks, the algorithm may have to
be modified to fit the Tensor Core architecture.

From a reconstruction quality perspective, accuracy may
be reduced due to the use of half-precision floating-point
used by matrix multiplication, compared to single-precision
floating-point calculations. Therefore, the choice of using
Tensor Cores presents an ‘accuracy versus speed-up’ trade-
off. The question is then whether this accuracy decrease is
acceptable for practical applications. We investigate this
further in Sect. 4.

3 � The proposed approach

3.1 � Overview

The distance-driven projection describes a linear transfor-
mation from the image domain to the projection domain, as
described in Sect. 2.1. Thus, reconstruction from projection
can be considered as solving a system of linear equations:

where A is a system matrix that describes the distance driven
projection, x is an N × 1 column vector that represents the
intensities of the image, and b is the projection data for each
angle and detector position collected by sensors. In this
notation, vectors are obtained from images using column
stacking. The dimensions of the system matrix are deter-
mined by the number of projection angels, m, the number
of projections per each angel, k, and the image dimensions,
w × h . Therefore, each entry of the system matrix has two
sub-indices, ij and rq, where sub-indices ij refer to the pixel
location and indices rq refer to projection number and ray
angle in each projection. That is, A is an M × N rectangular
matrix where M = mk and N = wh.

The reconstruction problem (2) may be either over-
determined or under-determined. Consequently, the system
is not uniquely solvable in general. Instead, we use least
squares minimization of ||Ax − b||2 ; its solution is given by
the pseudo-inverse:

Due to the size of the matrix A , direct inversion of (AT
A)−1

is not practical; therefore most methods in literature revert
to iterative approaches. In this work, the pseudo inverse is
calculated iteratively using the Conjugate Gradient method
(Algorithm 1). The resulting iterative CT reconstruction is
carried out as iterations of computing residual and gradi-
ent matrices by performing forward-projection ( Ax ) and its
adjoint, back-projection ( AT

b ), between image and projec-
tion domains. Therefore, each iteration contains two system
matrix multiplications. Even if the image and projection

(2)Ax = b,

(3)x̂ = (A
T
A)

−1
A
T
b.

Table 1   Available configurations based on the fragment size

Fragment size 16.16.16 32.8.16 8.32.16

Tile of A 16 × 16 32 × 16 8 × 16

Tile of B 16 × 16 16 × 8 16 × 32

Tile of C 16 × 16 32 × 8 8 × 32

1983Journal of Real-Time Image Processing (2021) 18:1979–1991	

1 3

sizes are as small as 512 × 512 and 720 × 512 , respectively,
more than 380 × 109 bytes of memory is needed to store
the system matrix when a 4-byte word is dedicated for each
element, which itself can be a great challenge. While the
memory problem could be skipped by instead performing
on-the-fly computations, the more than 2 × 1016 floating-
point operations which would be required for each projection
is beyond the tolerance for most of the applications even
with the acceleration provided by the NVIDIA Tensor Cores.

Luckily, as we will explain below, the system matrix
is sparse and significantly less memory and floating
point computations will be required by performing some
pre-computations.

As previously mentioned, the distance-driven projection
method is used in this work to generate the elements of the
system matrix. Accordingly, each row of the system matrix
gives the proportion of all image pixels from a single ray
going through the image. Therefore, most of the system
matrix elements are equal to zero, since only a small per-
cent of these pixels contribute to any individual ray. This
means the system matrix A can be considered as a large
sparse matrix and therefore, the required memory can be

greatly reduced by the use of the data formats described
in Sect. 2.2. Due to the requirements of Tensor Cores, the
BSR format with a non-square block size is used in this
work. The block sizes (size of Tile B) are defined based on
the fragment size of Tensor Cores, as presented in Table 1.

Since the efficiency of the sparse matrix data structures
depends on the sparsity pattern of the system matrix, an
application-specific coordinate mapping algorithm is used in
this work to improve the efficiency of the proposed approach.
The high-level block diagram of the proposed approach is
presented in Fig. 2. As we will explain, the coordinate map-
ping algorithm is also applied to the image and the projec-
tion matrices in addition to the system matrix.

Finally, we will show that by exploiting system’s symme-
try, even further improvements are possible in both compu-
tational performance and the forward-projection’s memory
requirements.

In the following sections, we will explain the BSR data
structure used to store the sparse system matrix, the applica-
tion-specific coordinate mapping algorithm to improve the
sparsity pattern, the method used to exploit the symmetry
of the system, and finally, the complete structure of the pro-
posed method.

3.2 � Data structure

Due to the hardware characteristics of Tensor Cores and
the requirements that are specified by the WMMA APIs,
the BSR data structure has been implemented in this work
for efficient storage of the system matrix. In the BSR for-
mat, non-empty blocks are the building elements, instead of
the non-zero values that are the basic elements of the CSR
method. In this format, a block containing at least one non-
zero element is considered a non-empty block.

Given � and � as the block size parameters, the
BSR method partitions the M × K sparse matrix A into

Fig. 2   High-level block diagram of the proposed approach

1984	 Journal of Real-Time Image Processing (2021) 18:1979–1991

1 3

M∕� × N∕� blocks. No compression is applied inside blocks,
and blocks contain both zero and non-zero values. Therefore,
a fixed amount of memory is allocated for each non-empty
block. An example application of the BSR method is dis-
played in Fig. 3. As shown, a one-dimension floating-point
array, blocks[� × � × NEB] , is allocated to store the values of
non-empty blocks, and two one-dimension integer arrays are
dedicated for storing the indices of these non-empty blocks,
row_indices[1 +M∕�] and col_indices[NEB] , where NEB is
the number of non-empty blocks.

Finally, since the Tensor Cores perform mixed-precision
matrix operations, the data type for storing the blocks array
is considered to be a half-precision floating point.

3.3 � Pseudo‑Morton ordering algorithm

The efficiency of using Tensor Cores for sparse matrix mul-
tiplications highly depends on the sparsity pattern of the
matrix. Maximum performance will be achieved when the
density of the non-empty blocks is maximal, which also
means having the minimum number of non-empty blocks.

Although the sparsity pattern of the system matrix and,
consequently, the sparsity pattern of non-empty blocks
depends on the physics of the system, this pattern can be
improved by applying an appropriate mapping algorithm.
However, the system matrix pattern must first be analyzed
to determine the optimal mapping algorithm, .

As mentioned in Sect. 3, the system matrix entries give
the proportion of pixel ij from the ray rq passing from source
to the detector. Therefore, pixels close to each other will
likely have a similar proportion of rays passing through the
region.

According to the locality properties of the system
matrix, space-filling curves and especially Morton space-
filling curves are a good candidate [3, 8, 14, 19]. Morton
codes are constructed by interleaving bits of integer coor-
dinates representing a spatial position. Therefore, Morton
codes map n-dimensional data points to a one-dimensional
space while preserving the spatial locality of the data

points. As a result, coordinates that are spatially close to
each other in the N-dimensional space will have Morton
numbers that are also close to each other.

In addition, since the Morton code has a lower com-
putational cost compared to other space-filling curves, a
pseudo-Morton mapping has been applied to the system
matrix in this work. For efficiency, our pseudo-Morton
mapping does not convert the coordinate indices all the
way down to Morton codes, but instead performs bit shuf-
fling operations directly onto the coordinate indices them-
selves, hence the name pseudo-Morton. We assume blocks
of size Bx and By where Bx and By are both powers of 2.
The main idea is that for a subsequent range of BxBy 1D
indices, the corresponding 2D coordinates are all within
the same block of size Bx × By . It is not necessary to map
the log2(Bx) + log2(By) least significant bits onto Morton
codes, as this does not bring any improvements to the
rest of our algorithm, allowing the operation to be imple-
mented using a limited number of bitwise operations. The
proposed mapping algorithm is shown in Alg. 2, where Bx
and By are the mapping block sizes.

The mapping algorithm is applied to both the row indi-
ces as well as the column indices. Hence, to reverse the
effect of the applied permutation to the system matrix, the
mapping algorithm was also applied to the images before
performing the multiplications and to the result matrices.

Fig. 3   An example of storing a sparse matrix using the BSR method

1985Journal of Real-Time Image Processing (2021) 18:1979–1991	

1 3

3.4 � Exploiting symmetries of the system matrix

Symmetry can be considered one of the most important
properties of any system, especially when dealing with sys-
tem matrices. In a symmetric system,1 a part of a system
matrix becomes exactly the same as the other part by apply-
ing some kinds of transformation such as rotation and flip-
ping of the input image; as a result, the size of the system
matrix can be greatly reduced.

In addition, symmetric system matrices are of great inter-
est for parallel structured computing architectures. By load-
ing a single part of the system matrix from memory, several
parallel kernels can perform their computations. However,
the extra computation required for performing the transfor-
mation can itself limit the maximum achievable performance
[7].

In Sect. 3.1, it is explained that in forward-projection, x
is a column matrix and the representative of a single input
image. Since the Tensor Cores perform matrix–matrix mul-
tiplications instead of matrix–vector multiplications, x must
be used as a 2D matrix with dimension according to the
selected fragment size for Tensor Core operations. Filling
the other columns of x with zeros is not an option, because
then the advantages of using Tensor Cores for acceleration
disappear. A better alternative relies on filling the matrix
x with several input images. This works well, e.g., when
multiple CT slices or volumes must be reconstructed in par-
allel (assuming the data fits in CPU or GPU memory). How-
ever, for real-time applications in which a time dimension
is present (e.g., real-time reconstruction during a surgical

procedure), it can not be considered an ideal method, since
latency is increased.

Our approach relies on splitting a single input image into
several columns. Due to the symmetry of the system, it is
possible by splitting the input image into several sub-images
and then use the transformed version of the resulting sub-
images as the columns of matrix x . In addition to exploiting
the maximum performance of Tensor Cores, this approach
reduces the size of the system matrix by the same factor,
which is advantageous for memory consumption.

However, there is one practical restriction on the possible
transformations: the symmetry transformations should not
impose heavy computations by requiring re-sampling of the
pixel grid. Therefore, only rotations of 90◦ and reflections
that do not require re-sampling of the pixel grid are accept-
able [7]. While other inexpensive schemes could be con-
sidered [1], these sampling schemes are not required in our
application because 8 symmetries nicely lead to the minimal
required number of columns of x (i.e., eight, see Sect. 2.3).
Fig. 4 shows the eight available transformations (combina-
tions of 90◦ rotations and reflections, taking into account the
restriction) and the section that will be extracted from each
transformed image to fill the columns of x.

In addition to the transformations applied to the input
image, as displayed in Fig. 5, a new transformation kernel
including shifts and flipping is applied to the columns of
the projection matrix to reverse the initial image transfor-
mations. Then, the transformed columns of the projection
matrix are summed to build the final projection image.
Finally, a masking kernel is applied to the system matrix to
remove the unused elements.

In this work, the application of this idea is only proposed
for forward-projection. Therefore, the extension of this idea
to back-projection and consequently to the entire iterative
reconstruction process is considered as future work.

Although the aforementioned system matrix symmetries
are not present in all CT systems, there do exist solutions to

Fig. 4   The eight available transformations, obtained by mirroring,
flipping and 90◦ rotation

1  Note that we here also consider symmetries other than symmetry
along the matrix diagonal, as in linear algebra.

1986	 Journal of Real-Time Image Processing (2021) 18:1979–1991

1 3

mitigate the lack of symmetry for certain cases. In particular,
CT systems may contain a detector pixel offset with a frac-
tional (non-integer) part, causing the symmetry to break. By
performing band-limited re-sampling of the detector array
(e.g., sinc-interpolation with a Kaiser window), any asym-
metries due to the offsets can be avoided. In addition, yet
another solution consists in quantizing the slopes of the rays
(i.e., the tangents of the ray angles) to rational numbers—
this will induce the weight functions to be periodic as a func-
tion of the system matrix row and/or column. While this
technique can also be exploited to reduce the system matrix
memory requirements, we did not consider it for this work
because it involves an approximation of the ray angles which
may degrade the accuracy of the reconstruction.

Finally, the back-projection uses the transposed version of
the forward-projection. Since the transposition can be done
on-the-fly when reading out the matrix coefficient blocks,
no separate data structure is required for the backward-
projection. Remarkably, this observation also applies to the
implementation with eight symmetry transformations.

4 � Results

In this section, the experimental setup and the sizes con-
sidered for images and projection are explained. After that,
the efficiency of the applied mapping algorithm on reducing
the size of the system matrix is presented. The results of the
proposed iterative reconstruction are given next, followed
by the measured error of reconstruction. As mentioned in
Sect. 3.4, the idea proposed for exploiting symmetries of the

system matrix is only implemented for the forward-project.
Thus, the last results are dedicated to the projection of a
single image split into 8 sectors based on the proposed idea.

4.1 � Experimental setup and configurations

To evaluate the performance and efficiency of the proposed
method, the experiments have been carried out on a system
containing a GeForce RTX 2080 Ti, an i7-9800X CPU, and
32GB of DDR4 RAM. The operating system was Ubuntu
18.04 and CUDA 10.2 was used to build the kernels.

The NVIDIA GeForce RTX 2080 Ti has a TU102 GPU,
which is designed based on the Turing architecture. The full
implementation of the TU102 includes more than 18 billion
transistors produced on the production process of TSMC’s
12 nm FFN and contains 72 Streaming Multiprocessors
(SMs), with each SM containing 64 CUDA Cores and 8
Tensor Cores. In total, it includes 4608 CUDA cores and
576 Tensor Cores. However, the GPU integrated in RTX
2080 Ti includes 68 SM and 544 Tensor Cores. Each Tensor
Core can perform up to 64 floating-point fused multiply–add
(FMA) operations per clock using FP16 inputs. The 8 Tensor
Cores in an SM can perform a total of 512 FP16 multiply
and accumulate operations per clock, or 1024 total floating-
point operations per clock.

The evaluations are performed by considering a
fixed size for projections, 720 × 512 , and six differ-
ent sizes for input image matrix. The image sizes are:
512 × 512, 384 × 384, 320 × 320, 256 × 256, 128 × 128 , and
64 × 64 . Specifications of the system matrix for different
image matrix sizes are presented in Table 2.

Fig. 5   High-level block diagram of the forward-projection using the proposed approach for exploiting the symmetry of the system

Table 2   System matrix
specifications

Image size

64 × 64 128 × 128 256 × 256 320 × 320 384 × 384 512 × 512

System matrix size ( ×109) 1.5 6 24 37.8 54.3 96.6
Non-zero values ( ×106) 37.9 78.4 159.5 200 240.8 321.9
Sparsity (%) 97.49 98.7 99.34 99.47 99.56 99.67

1987Journal of Real-Time Image Processing (2021) 18:1979–1991	

1 3

4.2 � Mapping algorithm

Our approach’s computational and memory efficiency
strongly depends on the sparsity pattern of the system
matrix, which can be controlled by adjusting the parameters
of the mapping algorithm. In practice, we found the choice
Bx = 4,By = 2 to give good sparsity patterns. A visualization
of its effect is shown in Fig. 6. Figure 6a, b display a random
section of the system matrix before and after applying the
mapping algorithm, where the black points indicate the pres-
ence of non-zero values.

Table 3 presents the percent of non-empty blocks (which
in fact determines the size of system matrix) depending on
the available fragment sizes. As shown in Table 3, the map-
ping code reduces the matrix size by a factor 2 to 3. In addi-
tion, it shows that the minimum percent of non-empty blocks
and consequently, the smallest system matrix, is achieved
when the fragment size is 8.32.16. Therefore, it can be
expected that the best performance will also be achieved for
this fragment size.

As Table 3 shows, fragment size 32.8.16 presents the
worst result among the other fragment sizes. Whereas, to
exploit the symmetry of the system using the eight available
transformations as explained in Sect. 3.4, it is required to use
the fragment size 32.8.16. This restriction justifies the value
of the further investigation on other inexpensive sampling

schemes to increase the number of available transforma-
tions up to 16 or even 32, respectively, for the fragment size
16.16.16 and 8.32.16.

4.3 � Evaluation of Tensor Cores for iterative
reconstruction

In this section, the results of the proposed iterative recon-
struction which consists of both accelerated forward and
back-projection are presented. To provide a better compari-
son of the performance of Tensor Cores for this application,
several non-tensor approaches are evaluated: ASTRA [26],
Tigre [2], Tomopy [12]. All three are open-source libraries
for high-performance 2D and 3D tomographic data process-
ing and image reconstruction. For the ASTRA toolbox, we
have tested three different reconstruction methods: CGLS,
SIRT, and SART. We have used the CGLS method for Tigre
toolbox and the SIRT method for Tomopy.

In addition to these, we have implemented four other
non-tensor GPU accelerated approaches. The half2 imple-
mentation employs the NVIDIA’s direct half-precision arith-
metic [15] by using the half2 datatype. This is because the
maximum throughput for half-precision operations can be
achieved when using the half2 datatype [15]. The second
implementation uses the CUDA sparse matrix library (cuS-
PARSE), in which the basic CSR with single (32-bit) preci-
sion floating-point data type is used. The third approach,
implemented in Quasar [11], performs the iterative recon-
struction using on-the-fly computation without pre-compu-
tation of the system matrix. This reference method is added
to assess the impact of memory latency versus latency of the
computations: the method performs the weight calculation
on the fly, which is computationally much more costly but
at the same time avoids weight memory accesses. Finally,
the last implementation is a Quasar implementation for the
MLEM reconstruction method [20].

In this experiment, by assuming a multi-slice fan-beam
method, several images (slices) are reconstructed in parallel
by loading into the columns of the image matrix. The image
matrix x must have at least 8, 16, and 32 columns for the
fragment size 32.8.16, 16.16.16, and 8.32.16, respectively, to
allow straightforward mapping onto the GPU Tensor Cores.
However, to reconstruct the same number of images, it is
assumed that 32 images are reconstructed in parallel for all
the fragment sizes.

For single image reconstruction, we have explained in
Sect. 3.4 that the symmetry of the system can be exploited
to reconstruct single images in the configuration 32.8.16.
We also note again that for this experiment, the approach
explained for exploiting the symmetry of the system is not
applied.

The average reconstruction time per image for a single
iteration is presented in Table 4 for the evaluated approaches.

Fig. 6   Visualizing the effect of mapping algorithm on the sparsity
pattern of the system matrix; (a) a random section of system matrix
before mapping; (b) the same random section after mapping

Table 3   Number of non-empty blocks (NEBs) before and after apply-
ing the pseudo-Morton mapping code

* Block size ( �, � ) is equal to the dimension of Tile A

Fragment size 16.16.16 32.8.16 8.32.16

Block size ( �, �)∗ 16 × 16 32 × 16 8 × 16

Blocks count ( ×106) 377.5 188.7 755
NEBs before (%) 5.19 8.83 3.36
NEBs after (%) 2.01 2.57 1.55

1988	 Journal of Real-Time Image Processing (2021) 18:1979–1991

1 3

Since our implementation is a gradient-based method, it is
better to be compared with other gradient-based implemen-
tations. Because, each method requires a different number
of iterations for convergence and also has a different error
at convergence. Thus, while we present the execution time
of different methods (including CGLS, SART, SIRT, and
MLEM), it is better to consider reconstruction error (see
Sect. 4.4) when comparing the execution time of different
methods. It must be emphasized that our approach is not
limited to the conjugate gradient and is a general approach
that can work with other reconstruction methods.

According to Table 4, the maximum performance is
achieved for the fragment size 8.32.16, which is faster than
all other implementations and is about 5 times faster than
the cuSPARSE implementation. Compared to the on-the-
fly method, this result shows the advantage of storing the
weights in memory and hence using the proposed BSR data
structure. Compared to the ASTRA SART implementation,
it should be noted that the SART method processes only one
single projection direction in each iteration.

Table 4 also presents the average reconstruction per
image energy that is consumed by the NVIDIA GPU dur-
ing the execution of a single iteration. The average energy
consumption values are obtained by polling the nvml APIs
during kernel execution. According to Table 4, the proposed
approach consumes 3–5 times less power compared to other
implementations.

Finally, Table 5 presents the required memory for storing
the system matrix for the cuSPARSE implementation (the
basic CSR with 32-bit single-precision floating-point data
type) and Tensor Core implementation (the BSR data struc-
ture explained in Sect. 3.2 with half-precision floating-point
data type). Since the Half2 implementation uses the same
data structure as the Tensor Core method, it is not presented
in Table 5.

4.4 � Reconstruction error

Since Tensor Cores perform mixed-precision floating-point
operations, a larger numerical error is expected than in the

Table 4   Reconstruction time and energy consumption per image (for a single iteration)

* Each iteration of SART processes one single projection direction

Precision Image size

64 × 64 128 × 128 256 × 256 320 × 320 384 × 384 512 × 512

Time (ms) Tensor Core (32.8.16) Mixed 0.08 0.12 0.28 0.38 0.50 0.80
Tensor Core (8.32.16) Mixed 0.7 0.11 0.22 0.29 0.38 0.62
Tensor Core (16.16.16) Mixed 0.06 0.11 0.23 0.33 0.44 0.73
cuSPARSE 32-bit 0.28 0.56 1.30 1.73 2.16 3.12
Half2 arithmetic Mixed 0.19 0.37 0.86 1.16 1.50 2.30
On-the-fly 32-bit 1.25 1.61 2.55 3.24 4.22 6.72
ASTRA (CGLS) 32-bit 0.92 0.97 1.58 2.08 3.03 4.55
ASTRA (SIRT) 32-bit 0.81 0.87 1.46 1.94 2.90 4.40
ASTRA (SART)∗ 32-bit 0.43 0.44 0.44 0.44 0.48 0.48
Tigre (CGLS) 32-bit 210 210 226 230 240 250
TomoPy (SIRT) 32-bit 40 60 80 90 120 140
MLEM 32-bit 0.47 0.75 1.73 2.51 3.01 4.79

Energy (nJ) Tensor Core (32.8.16) Mixed 7 17 60 87 117 190
Tensor Core (8.32.16) Mixed 6 15 50 70 93 151
Tensor Core (16.16.16) Mixed 6 14 55 80 106 179
cuSPARSE 32-bit 47 117 306 412 530 782
Half2 arithmetic Mixed 29 82 213 296 383 592

Table 5   Memory usage for
storing the system matrix
(GigaBytes)

Format Image size

64 × 64 128 × 128 256 × 256 320 × 320 384 × 384 512 × 512

Tensor Core (32.8.16) BSR(Half) 0.26 0.63 1.68 2.35 3.13 4.98
Tensor Core (8.32.16) BSR(Half) 0.23 0.52 1.20 1.60 2.04 3.04
Tensor Core (16.16.16) BSR(Half) 0.25 0.57 1.42 4.94 2.53 3.92
cuSPARSE CSR(32-bit) 0.23 0.47 0.96 1.2 1.45 1.93

1989Journal of Real-Time Image Processing (2021) 18:1979–1991	

1 3

case of single-precision floating-point calculations. There-
fore, we measure the reconstruction error in comparison
with 32-bit floating-point reconstructions. In this paper, the
relative reconstruction error is calculated as follows:

where Po is the original image and P is the reconstructed
image generated using the different reconstruction imple-
mentations. ‖.‖F denotes the Frobenius norm.

For measuring the error, a dataset containing 23 input
images of class uint8 with the size of 512 × 512 was used.
The input images are reconstructed images, collected from
existing CT scanners (e.g., the X-O CT system, Gamma
Medica-Ideas, Northridge, California, USA). Figure 7
displays four examples of the dataset. To generate the pro-
jection data required for reconstruction, we have used the
distance driven forward-projection for the Tensor core and
Quasar implementations, and we have used the “line-fanflat”
algorithm for the ASTRA implementation.

Figure 8 presents the average error versus the number of
iterations measured from different implementations. It shows
that the conjugate gradient based methods perform well for
the provided dataset. Although it was expected to have a
larger error using the Tensor cores due to the mixed-preci-
sion datatype, as shown in Fig. 8, the accuracy of both the
Tensor CG and the non-Tensor (32-bit CG) implementations
are nearly equivalent—indicating that the mixed-precision
computation offered by Tensor Cores has the potential to be
used for CT reconstruction.

(4)Error = ‖P − Po‖F∕‖P
o‖F,

4.5 � Forward‑projection by exploiting the symmetry
of the system

The last set of results is dedicated to evaluating the pro-
jection of a single image split into 8 sectors based on the
proposed method and the transformations for exploiting
the symmetry of the system, as explained in Sect. 3.4. This
approach has identical numerical accuracy with multi-slice
approach in case the detector pixel offset is zero. The execu-
tion time of the forward-projection, the consumed energy,
and the memory usage for storing the system matrix are
presented in Tables 6, 7. The achieved results not only show
the efficiency of the proposed method for real-time appli-
cations, but also highlight that the reasonable size of the
system matrix warrants extending this method to the whole
reconstruction process.

5 � Conclusion

In this paper, we demonstrated the feasibility of using
NVIDIA Tensor Cores for accelerating iterative CT recon-
struction, as an example of a non-machine learning applica-
tions. For this purpose, we used the Tensor Cores to perform
the sparse matrix–matrix multiply–accumulate operations
of the projection and back-projection kernels. To overcome
the hardware and software limitations of using Tensor Cores
and also the challenges of implementing a memory-centric
iterative reconstruction, we proposed and implemented an
approach using compressed BSR data structure for stor-
ing the sparse system matrix, a pseudo-Morton encoding
to improve the sparsity pattern of the system matrix, and
a method to exploit the symmetry of system which makes
this approach a practical solution for real-time or memory
limited CT applications.

The proposed approach is evaluated by measuring the
performance, power, accuracy and memory usage. The
presented performance results indicate approximately 5x
speedup and energy saving is achieved with the proposed

Fig. 7   Four example images of the dataset used for error measure-
ment

Fig. 8   Average relative reconstruction error

1990	 Journal of Real-Time Image Processing (2021) 18:1979–1991

1 3

method, compared to a cuSPARSE-based implementation on
the same GPU. The accuracy results show that using mixed-
precision computing of Tensor Cores does not impose any
significant reconstruction error.

In future work, in addition to extending the proposed idea
of exploiting symmetry to the entire reconstruction process,
we plan to investigate the extension of our approach to cone-
beam (3D) reconstruction and helical CT reconstruction.

Acknowledgements  The authors would like to thank Asli Kumcu for
proofreading the manuscript. This research received funding from the
Flemish Government under the “Onderzoeksprogramma Artificiële
Intelligentie (AI) Vlaanderen” programme.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creat​iveco​mmons​.org/licen​ses/by/4.0/.

References

	 1.	 Akenine-Moller, T.: An extremely inexpensive multisampling
scheme. Aug 15, 03–14 (2003)

	 2.	 Biguri, A., Dosanjh, M., Hancock, S., Soleimani, M.: TIGRE: a
MATLAB-GPU toolbox for CBCT image reconstruction. Bio-
medical Physics & Engineering Express 2(5), 055010 (2016)

	 3.	 Buluc, A., Fineman, J.T., Frigo, M., Gilbert, J.R., Leiserson, C.E.:
Parallel sparse matrix-vector and matrix-transpose-vector multi-
plication using compressed sparse blocks. In: Proceedings of the

Twenty-First Annual Symposium on Parallelism in Algorithms
and Architectures, pp. 233–244 (2009)

	 4.	 Carrasco, R., Vega, R., Navarro, C.A.: Analyzing GPU tensor core
potential for fast reductions. In: 2018 37th International Confer-
ence of the Chilean Computer Science Society (SCCC), pp. 1–6.
IEEE (2018)

	 5.	 De Man, B., Basu, S.: Distance-driven projection and backpro-
jection. In: 2002 IEEE Nuclear Science Symposium Conference
Record, vol. 3, pp. 1477–1480. IEEE (2002)

	 6.	 De Man, B., Basu, S.: Distance-driven projection and backprojec-
tion in three dimensions. Physics in Medicine & Biology 49(11),
2463 (2004)

	 7.	 Donne, S., Meeus, L., Quang Luong, H., Goossens, B., Philips,
W.: Exploiting reflectional and rotational invariance in single
image superresolution. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition Workshops, pp. 47–53
(2017)

	 8.	 Engel, W.: GPU PRO 360 Guide to GPGPU. CRC Press (2018)
	 9.	 Flores, L.A., Vidal, V., Mayo, P., Rodenas, F., Verdú, G.: CT

image reconstruction based on GPUs. Procedia Computer Sci-
ence 18, 1412–1420 (2013)

	10.	 Geyer, L.L., Schoepf, U.J., Meinel, F.G., Nance Jr, J.W., Bas-
tarrika, G., Leipsic, J.A., Paul, N.S., Rengo, M., Laghi, A., De
Cecco, C.N.: State of the art: iterative CT reconstruction tech-
niques. Radiology 276(2), 339–357 (2015)

	11.	 Goossens, B.: Dataflow management, dynamic load balancing,
and concurrent processing for real-time embedded vision applica-
tions using Quasar. International Journal of Circuit Theory and
Applications 46(9), 1733–1755 (2018)

	12.	 Gürsoy, D., De Carlo, F., Xiao, X., Jacobsen, C.: TomoPy: a
framework for the analysis of synchrotron tomographic data.
Journal of synchrotron radiation 21(5), 1188–1193 (2014)

	13.	 Herraiz, J., España, S., Cabido, R., Montemayor, A., Desco, M.,
Vaquero, J.J., Udías, J.M.: GPU-based fast iterative reconstruction
of fully 3-d pet sinograms. IEEE Transactions on Nuclear Science
58(5), 2257–2263 (2011)

	14.	 Hidayetoğlu, M., Biçer, T., de Gonzalo, S.G., Ren, B., Gürsoy, D.,
Kettimuthu, R., Foster, I.T., Hwu, W.M.W.: MemXCT: memory-
centric X-ray CT reconstruction with massive parallelization. In:
Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, p. 85. ACM
(2019)

Table 6   Execution time and energy consumption of the forward-projection kernel

Precision Image size

64 × 64 128 × 128 256 × 256 320 × 320 384 × 384 512 × 512

Time (ms) Tensor Core (32.8.16) Mixed 0.10 0.19 0.44 0.59 0.78 1.22
cuSPARSE 32-bit 0.72 0.71 1.13 1.23 1.55 2.10
Half2 arithmetic Mixed 0.22 0.35 0.72 0.97 1.25 1.83

Energy (nJ) Tensor Core (32.8.16) Mixed 6 11 29 42 62 108
cuSPARSE 32-bit 130 150 260 300 390 530
Half2 arithmetic Mixed 20 40 117 193 266 431

Table 7   Memory usage for
storing the system matrix
(GigaBytes)

Image size

Format 64 × 64 128 × 128 256 × 256 320 × 320 384 × 384 512 × 512

Tensor Core (32.8.16) BSR(Half) 0.04 0.09 0.23 0.31 0.41 0.63
cuSPARSE CSR(32-bit) 0.04 0.08 0.16 0.20 0.25 0.33

http://creativecommons.org/licenses/by/4.0/

1991Journal of Real-Time Image Processing (2021) 18:1979–1991	

1 3

	15.	 Ho, N.M., Wong, W.F.: Exploiting half precision arithmetic in
nvidia GPUs. In: 2017 IEEE High Performance Extreme Comput-
ing Conference (HPEC), pp. 1–7. IEEE (2017)

	16.	 Li, X., Liang, Y., Zhang, W., Liu, T., Li, H., Luo, G., Jiang, M.:
cuMBIR: An Efficient Framework for Low-dose X-ray CT Image
Reconstruction on GPUs. In: Proceedings of the 2018 Interna-
tional Conference on Supercomputing, pp. 184–194. ACM (2018)

	17.	 Ma, B., Ca, V., Im, C., et al.: Cuda parallel implementation of
image reconstruction algorithm for positron emission tomography.
Open Med. Imaging J. 6(1), 108–118 (2012)

	18.	 Markidis, S., Der Chien, S.W., Laure, E., Peng, I.B., Vetter, J.S.:
Nvidia tensor core programmability, performance & precision.
In: 2018 IEEE International Parallel and Distributed Processing
Symposium Workshops (IPDPSW), pp. 522–531. IEEE (2018)

	19.	 Nocentino, A.E., Rhodes, P.J.: Optimizing memory access on
GPUs using morton order indexing. In: Proceedings of the 48th
Annual Southeast Regional Conference, pp. 1–4 (2010)

	20.	 Nuyts, J., Michel, C., Dupont, P.: Maximum-likelihood expec-
tation-maximization reconstruction of sinograms with arbitrary
noise distribution using NEC-transformations. IEEE transactions
on medical imaging 20(5), 365–375 (2001)

	21.	 NVIDIA: NVIDIA Tesla V100 GPU Architecture (2017)
	22.	 NVIDIA: The API reference guide for cuSPARSE, the CUDA

sparse matrix library. http://docs.nvidi​a.com/cuda/cuspa​rse/index​
.html (2020). Accessed 24 Jan 2020

	23.	 Sabne, A., Wang, X., Kisner, S.J., Bouman, C.A., Raghunathan,
A., Midkiff, S.P.: Model-based iterative CT image reconstruction
on GPUs. ACM SIGPLAN Notices 52(8), 207–220 (2017)

	24.	 Schlifske, D., Medeiros, H.: A fast GPU-based approach to
branchless distance-driven projection and back-projection in cone
beam CT. In: Medical Imaging 2016: Physics of Medical Imag-
ing, vol. 9783, p. 97832W. International Society for Optics and
Photonics (2016)

	25.	 Stiller, W.: Basics of iterative reconstruction methods in computed
tomography: A vendor-independent overview. European journal
of radiology 109, 147–154 (2018)

	26.	 Van Aarle, W., Palenstijn, W.J., De Beenhouwer, J., Altantzis, T.,
Bals, S., Batenburg, K.J., Sijbers, J.: The ASTRA toolbox: A plat-
form for advanced algorithm development in electron tomography.
Ultramicroscopy 157, 35–47 (2015)

	27.	 Wang, X., Sabne, A., Kisner, S., Raghunathan, A., Bouman, C.,
Midkiff, S.: High performance model based image reconstruction.
In: ACM SIGPLAN Notices, vol. 51, p. 2. ACM (2016)

	28.	 Wang, X., Sabne, A., Sakdhnagool, P., Kisner, S.J., Bouman, C.A.,
Midkiff, S.P.: Massively parallel 3d image reconstruction. In: Pro-
ceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, p. 3. ACM (2017)

	29.	 Xie, L., Hu, Y., Yan, B., Wang, L., Yang, B., Liu, W., Zhang,
L., Luo, L., Shu, H., Chen, Y.: An effective cuda parallelization
of projection in iterative tomography reconstruction. PloS one
10(11), e0142184 (2015)

Publisher’s Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Mohsen Nourazar  was born in Zanjan, Iran, in 1986. He received the
B.Sc. degree in communication engineering and the M.Sc. and Ph.D.
degrees in electronics engineering from electrical and computer engi-
neering department, the University of Zanjan, Iran in 2009, 2011, and
2018, respectively. Currently, he is a postdoc researcher in the imec-IPI
group of Ghent University, Belgium. His research interests include
hardware accelerators, alternative computing, computer architecture,
memristive systems, and FPGA implementation.

Bart Goossens  is a professor in the Image Processing and Interpreta-
tion group of Ghent University, where he currently supervises research
on image/video processing, computer vision, AI and heterogeneous
platforms mapping tools. He is also a core principal investigator at
imec. He earned his master’s degree in Computer Science Engineering
from Ghent University, Belgium in 2006 and the Ph.D. degree from the
same university in 2010. In Oct. 2013 he became a professor at Ghent
University. His interests in the efficient mapping of image processing
and computer vision techniques onto hardware architectures such as a
GPU have resulted in the design and development of Quasar (gepura.
io/quasar), a brand new high-performance CPU/GPU-programming
solution that offers greatly reduced development time. He is author of
more than 100 scientific papers in journals and conference proceedings.

http://docs.nvidia.com/cuda/cusparse/index.html
http://docs.nvidia.com/cuda/cusparse/index.html

	Accelerating iterative CT reconstruction algorithms using Tensor Cores
	Abstract
	1 Introduction
	2 Background information
	2.1 Distance-driven projection
	2.2 Representation of large sparse matrices
	2.3 Tensor Cores

	3 The proposed approach
	3.1 Overview
	3.2 Data structure
	3.3 Pseudo-Morton ordering algorithm
	3.4 Exploiting symmetries of the system matrix

	4 Results
	4.1 Experimental setup and configurations
	4.2 Mapping algorithm
	4.3 Evaluation of Tensor Cores for iterative reconstruction
	4.4 Reconstruction error
	4.5 Forward-projection by exploiting the symmetry of the system

	5 Conclusion
	Acknowledgements
	References

