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Abstract
Tensor Cores are specialized hardware units added to recent NVIDIA GPUs to speed up matrix multiplication-related tasks, 
such as convolutions and densely connected layers in neural networks. Due to their specific hardware implementation and 
programming model, Tensor Cores cannot be straightforwardly applied to other applications outside machine learning. In 
this paper, we demonstrate the feasibility of using NVIDIA Tensor Cores for the acceleration of a non-machine learning 
application: iterative Computed Tomography (CT) reconstruction. For large CT images and real-time CT scanning, the 
reconstruction time for many existing iterative reconstruction methods is relatively high, ranging from seconds to minutes, 
depending on the size of the image. Therefore, CT reconstruction is an application area that could potentially benefit from 
Tensor Core hardware acceleration. We first studied the reconstruction algorithm’s performance as a function of the hard-
ware related parameters and proposed an approach to accelerate reconstruction on Tensor Cores. The results show that the 
proposed method provides about 5 × increase in speed and energy saving using the NVIDIA RTX 2080 Ti GPU for the 
parallel projection of 32 images of size 512 × 512 . The relative reconstruction error due to the mixed-precision computa-
tions was almost equal to the error of single-precision (32-bit) floating-point computations. We then presented an approach 
for real-time and memory-limited applications by exploiting the symmetry of the system (i.e., the acquisition geometry). 
As the proposed approach is based on the conjugate gradient method, it can be generalized to extend its application to many 
research and industrial fields.

Keywords  Parallel iterative CT reconstruction · NVIDIA Tensor Core · GPU Acceleration · Mixed-precision real-time 
computations · CUDA · Morton space filling curve

1  Introduction

Graphics Processing Units (GPUs), as one of the most feasi-
ble parallel structured processors, have proven their power in 
facilitating research in a wide range of fields, including high-
performance computing, data centers, medical imaging, and 
machine learning. Among these, GPU-based machine learn-
ing applications, and more specifically deep learning, have 
significantly grown in use in recent years [18]. To address 
this need, NVIDIA has introduced a specialized comput-
ing unit called Tensor Core that speeds up neural network 

training and inferencing operations in deep learning by offer-
ing enormous acceleration in matrix computations [21]. 
Tensor Core-powered GPUs can offer more than a hundred 
TFLOPS performance [4].

Although the Tensor Core’s tremendous performance is 
tempting to use, its application is more restricted than gen-
eral CUDA core. First, Tensor Cores only perform a specific 
form of matrix multiply–accumulate operation. Second, the 
precision of Tensor Core floating-point operations is limited 
to half-precision. Since every application with matrix opera-
tions at its core, including non-machine learning image and 
video processing applications, could potentially benefit from 
the performance improvements these newly introduced Ten-
sor Cores provide, it will be a valuable study to analyze the 
performance and the effects of these constraints for these 
non-machine learning applications.

Computed tomography (CT) is one of these applications 
that has been widely applied to non-destructive testing and 
contact-free inspection methods, such as medical imaging, 
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age determination, and industrial materials testing [16]. 
Two main challenges in CT include decreasing radiation 
exposure to reduce risk of biological and material dam-
age, and improving the reconstruction process by decreas-
ing processing time while increasing resolution. In this 
regard, several hardware- and software-based approaches 
have been proposed to address these concerns [10, 25]. 
Compared to the traditional methods used to reconstruct 
CT images, Iterative Reconstruction (IR) methods provide 
superior images but require more processing resources. 
Thanks to improvements in processor performance, IR is 
now considered the preferred reconstruction method due 
to the simultaneous noise reduction and quality improve-
ment it can provide [25]. Although it has recently received 
increasing attention from the high-performance computing 
domain, reconstruction is still a resource-hungry appli-
cation [27, 28]. Thus, these novel parallel architectures 
provide new opportunities for accelerating IR. And given 
the increasing real-time applications in both medical and 
non-medical scanning, there are many areas that would 
benefit from this technology.

In this regard, we demonstrate the application of 
NVIDIA Tensor Cores to accelerating CT forward-projec-
tion (FP) and back-projection (BP) algorithms, which are 
of the most demanding kernels in iterative reconstruction 
approaches. For this purpose, the distance-driven projec-
tion method is used to build a system matrix. Although any 
other projection method can be used in our approach, dis-
tance-driven projection is used because of the advantages 
of fast and accurate reconstruction [5, 6]. To take advan-
tage of GPU hardware acceleration, the Tensor Cores are 
used to perform the forward-projection by multiplying 
the system matrix with a vector consisting of the image 
pixel intensities and the back-projection by multiplying the 
transpose of the system matrix with a vector consisting of 
the sinogram intensities. Because Tensor Cores operate in 
a mixed 16-bit/32-bit floating-point precision, we expect a 
loss in accuracy compared to a purely 32-bit floating-point 
implementation. Therefore, our goal is to also investigate 
whether this loss in accuracy is acceptable for CT recon-
struction applications.

The contributions of this paper can be summarized as 
follows:

•	 Application of Tensor Cores to a non-machine learning 
application; in particular, we discuss how to deal with 
several algorithmic challenges when using Tensor Cores.

•	 A pseudo-Morton ordering algorithm is proposed to 
improve the sparsity pattern of the system matrix, which 
will improve performance and memory utilization.

•	 An approach is proposed for exploiting the symmetry 
of the system and to further reduce the required system 
matrix memory.

Although—as far as we are aware of—applying Tensor 
Cores to this purpose is not reported yet, GPU-accelerated 
(non-Tensor Core) CT reconstruction algorithms have 
already been reported for both CT and Positron Emission 
Tomography (PET) applications, e.g., [13, 17, 26]. The work 
presented in [9] developed a fast GPU-based algorithm for 
reconstructing high-quality images from under-sampled and 
noisy data. Xie et al. [29] proposed a 10–16 times faster 
CUDA-based implementation for the projection in iterative 
CT reconstruction algorithms. Both Li et al. [16] and Sabne 
et al. [23] implemented a GPU-optimized Model-based 
Iterative Reconstruction (MBIR). Finally, Hidayetoğlu 
et al. [14] proposed a GPU-based memory-centric X-ray CT 
reconstruction which is implemented using multi-stage buff-
ering, pseudo-Hilbert ordering, and sparse matrix–vector 
multiplication (SpMV). Because of its memory-centricity, 
it has some similarities with our work, such as dealing with 
sparse matrix data structures and using space-filling curves. 
However, our work focuses specifically on the application of 
the Tensor Cores and its limitations (e.g., programming limi-
tations and precision limitations) in a non-machine learning 
application. We use different data structures and a different 
ordering method with lower computational complexity than 
the ordering algorithm used in their work.

This paper is organized in five sections. Background 
information on the concepts used later in the paper is pre-
sented in Sect. 2. Section 3 presents the proposed method 
in detail. The experimental results and a discussion are pre-
sented in Sect. 4. Section 5 contains the conclusion.

2 � Background information

In this section, we give some background information on the 
three main concepts we build our approach on: (1) the dis-
tance driven projection method, (2) representations for large 
sparse matrices and (3) exploiting symmetries in the system.

2.1 � Distance‑driven projection

Projection and back-projection in CT reconstruction are typi-
cally conducted using one of these three main methods: pixel 
driven, ray driven, and distance driven [5]. The pixel-driven 
method works by passing a ray from the source through the 
center of each pixel of interest to the detector cells and then 
interpolates the contribution of two adjacent detector cells 
to this projected pixel value. The ray-driven method works 
by passing a ray from the source through the image to the 
center of each interest detector cell and then integrates the 
pixel values along this ray to calculate the projection value 
for the detector cell. The distance-driven method, on the other 
hand, converts the problem of projection–backprojection into 
a one-dimensional re-sampling problem by mapping both the 
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detector cell boundaries and the pixel boundaries onto a com-
mon axis, e.g., the x-axis [5, 6]. It then calculates the length of 
the overlap to determine the contribution of each pixel to the 
corresponding detector cell.

Because of grid artifacts that tend to appear in the image 
domain when using the ray-driven back-projection and in the 
projection domain when using pixel-driven projection, the 
ray-driven method is well suited for forward-projection, while 
back-projection works well with the pixel-driven method [5, 
6].

The distance-driven methods usually lead to better recon-
struction image quality than both ray-driven and pixel-driven 
methods. Its projection and back-projection operations are 
matched, or symmetric, and can be used in iterative recon-
struction algorithms where many projection and back-pro-
jections are performed [24]. In addition, this method has the 
potential for better performance because of its sequential 
memory access pattern (similar to the pixel-driven method) 
and relatively low arithmetic complexity (comparable to the 
ray-driven method), which make it more suitable for hardware 
implementations [5, 6].

Figure 1 shows a schematic of the distance-driven projec-
tion for a given row, in which the pixel boundaries and the 
detector cell boundaries are both mapped onto the x-axis. In 
Fig. 1, detector boundaries are denote by Xi , pixel boundaries 
by X′

i
 , detector values by di , and pixel values by Pi . In this 

example, the value of detector d1 can be calculated by:

(1)d1 =
(X�

1
− X1)P0 + (X2 − X�

1
)P1

X2 − X1

,

which is a linear equation in P0 and P1 . This means that 
the distance-driven projection describes a linear transfor-
mation from the image domain to the projection domain. 
As described in section 3, this linear transformation can be 
represented by a large sparse system matrix.

2.2 � Representation of large sparse matrices

When multiplying a large sparse matrix by a dense vec-
tor, even if the sparse matrix can be stored in memory, the 
memory bandwidth for reading from memory would limit 
its performance. Consequently, most algorithms store the 
sparse matrix in a compressed format. Several compressed 
data structure formats do compression by storing only the 
non-zero values in a list, and the efficiency of these methods 
usually depends on the required memory bytes for storing 
the indices or pointers of the non-zero values. However, 
when the application’s performance is essential, the required 
memory bandwidth must also be taken into consideration 
when choosing the appropriate data structure. The memory 
bandwidth depends highly on the memory access pattern of 
the application, and as a result, there is a trade-off between 
memory usage and performance.

There are several well-known compressed data structures 
for storing sparse matrices in scientific computing such as 
COO, CSC, CCS, and CSR [22]. Among these formats, 
compressed sparse rows (CSR) is one of the most efficient 
and famous standard formats.

The CSR format stores the non-zero values of each matrix 
row in consecutive memory locations as well as an index to 
the first stored element of each row. In a common and gen-
eral-purpose version, the CSR directly stores sparse matrix 
using a floating-point array and two one-dimension integer 
arrays for storing the column indices (CI) and row indices 
(RI). The non-zero values are stored in the floating-point 
array, and the column indices of these non-zero values are 
stored in the CI array. Then, the RI array stores the posi-
tion of the first element of each row inside the floating-point 
array. Since the RI array contains an index for each row of 
the sparse matrix, only m + nnz indices are required to store 
an m × n sparse matrix containing nnz non-zero values.

Another compression format that is more suitable for 
applications that require fetching a block of data from mem-
ory is the Block Compressed Sparse Row (BSR) format [22]. 
The BSR method stores two-dimensional non-empty blocks 
of elements instead of storing only the non-zero values, and 
uses a similar indexing format as the CSR method. Although 
the block-based formats are less memory efficient, they can 
provide better performance for the applications that work 
on blocks of data, such as the application we present here. 
Additional details on the data structure used in this work are 
presented in Sect. 3.2

Fig. 1   Distance-driven projection, where the detector and the pixel 
boundaries are mapped onto the x-axis
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2.3 � Tensor Cores

As mentioned in the Introduction, expanding AI and deep-
learning applications motivated NVIDIA to release its recent 
architectures, Volta, Turing, and Ampere, with new special-
ized execution units designed specifically for performing 
matrix operations, called Tensor Cores. A Tensor Core is 
capable of performing one matrix-multiply-and-accumulate 
operation on a 4 × 4 matrix in one GPU clock cycle. In its 
first version introduced by the Volta architecture, the Tensor 
Core was able to perform computations on half (according to 
the IEEE 754-2008 standard) and mixed-precision floating-
point numbers. In both modes, Tensor Cores perform matrix 
multiplication in half-precision, but the accumulation could 
be performed in half or single precision. NVIDIA’s Turing 
architecture, as the successor to the Volta, introduced a new 
and enhanced version of the Tensor Core unit by adding 
new integer modes, INT8 and INT4, for applications that 
can tolerate inaccurate computations, such as neural net-
works. In this architecture, the Streaming Multiprocessor 
(SM) consists of four processing blocks that NVIDIA refers 
to as Sub-Cores, and each Sub-Core has two Tensor Cores 
and one warp scheduler.

Although Tensor Cores perform 4 × 4 matrix multiplica-
tion at a hardware level, the programming interface exposes 
the matrix operations only at the warp level and in terms of 
larger matrices. This interface, the Warp Matrix Function 
(WMMA) API, gives the programmer access to the Tensor 
Cores as warp-wide operations. This means that all threads 
in a warp must cooperatively work together to perform the 
computation of D = A × B + C , where A,B,C and D can 
be tiles of larger matrices. However, the programmer does 
not have direct access to the 4 × 4 matrix multiplications. 
Instead, the possible matrix sizes, called fragment sizes, are 
specified by a WMMA API.

The fragment sizes are represented using the notation 
M × N × K , where M × K is the dimension of Tile A , K × N 
is the dimension of Tile B and thus C and D have dimension 
M × N . Table 1 presents the possible configurations accord-
ing to the available fragment sizes on the latest version of 
CUDA 10.2 for half-precision mode.

To program the Tensor Cores, CUDA code must be 
adapted to (1) use the WMMA API and (2) to use the 
available fragment sizes. For matrix multiplications of suf-
ficiently large matrices, the fragment size can be chosen 

freely. However, for other tasks, the algorithm may have to 
be modified to fit the Tensor Core architecture.

From a reconstruction quality perspective, accuracy may 
be reduced due to the use of half-precision floating-point 
used by matrix multiplication, compared to single-precision 
floating-point calculations. Therefore, the choice of using 
Tensor Cores presents an ‘accuracy versus speed-up’ trade-
off. The question is then whether this accuracy decrease is 
acceptable for practical applications. We investigate this 
further in Sect. 4.

3 � The proposed approach

3.1 � Overview

The distance-driven projection describes a linear transfor-
mation from the image domain to the projection domain, as 
described in Sect. 2.1. Thus, reconstruction from projection 
can be considered as solving a system of linear equations:

where A is a system matrix that describes the distance driven 
projection, x is an N × 1 column vector that represents the 
intensities of the image, and b is the projection data for each 
angle and detector position collected by sensors. In this 
notation, vectors are obtained from images using column 
stacking. The dimensions of the system matrix are deter-
mined by the number of projection angels, m, the number 
of projections per each angel, k, and the image dimensions, 
w × h . Therefore, each entry of the system matrix has two 
sub-indices, ij and rq, where sub-indices ij refer to the pixel 
location and indices rq refer to projection number and ray 
angle in each projection. That is, A is an M × N rectangular 
matrix where M = mk and N = wh.

The reconstruction problem (2) may be either over-
determined or under-determined. Consequently, the system 
is not uniquely solvable in general. Instead, we use least 
squares minimization of ||Ax − b||2 ; its solution is given by 
the pseudo-inverse:

Due to the size of the matrix A , direct inversion of (AT
A)−1 

is not practical; therefore most methods in literature revert 
to iterative approaches. In this work, the pseudo inverse is 
calculated iteratively using the Conjugate Gradient method 
(Algorithm 1). The resulting iterative CT reconstruction is 
carried out as iterations of computing residual and gradi-
ent matrices by performing forward-projection ( Ax ) and its 
adjoint, back-projection ( AT

b ), between image and projec-
tion domains. Therefore, each iteration contains two system 
matrix multiplications. Even if the image and projection 

(2)Ax = b,

(3)x̂ = (A
T
A)

−1
A
T
b.

Table 1   Available configurations based on the fragment size

Fragment size 16.16.16 32.8.16 8.32.16

Tile of A 16 × 16 32 × 16 8 × 16

Tile of B 16 × 16 16 × 8 16 × 32

Tile of C 16 × 16 32 × 8 8 × 32
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sizes are as small as 512 × 512 and 720 × 512 , respectively, 
more than 380 × 109 bytes of memory is needed to store 
the system matrix when a 4-byte word is dedicated for each 
element, which itself can be a great challenge. While the 
memory problem could be skipped by instead performing 
on-the-fly computations, the more than 2 × 1016 floating-
point operations which would be required for each projection 
is beyond the tolerance for most of the applications even 
with the acceleration provided by the NVIDIA Tensor Cores.

Luckily, as we will explain below, the system matrix 
is sparse and significantly less memory and floating 
point computations will be required by performing some 
pre-computations.

As previously mentioned, the distance-driven projection 
method is used in this work to generate the elements of the 
system matrix. Accordingly, each row of the system matrix 
gives the proportion of all image pixels from a single ray 
going through the image. Therefore, most of the system 
matrix elements are equal to zero, since only a small per-
cent of these pixels contribute to any individual ray. This 
means the system matrix A can be considered as a large 
sparse matrix and therefore, the required memory can be 

greatly reduced by the use of the data formats described 
in Sect. 2.2. Due to the requirements of Tensor Cores, the 
BSR format with a non-square block size is used in this 
work. The block sizes (size of Tile B) are defined based on 
the fragment size of Tensor Cores, as presented in Table 1.

Since the efficiency of the sparse matrix data structures 
depends on the sparsity pattern of the system matrix, an 
application-specific coordinate mapping algorithm is used in 
this work to improve the efficiency of the proposed approach. 
The high-level block diagram of the proposed approach is 
presented in Fig. 2. As we will explain, the coordinate map-
ping algorithm is also applied to the image and the projec-
tion matrices in addition to the system matrix.

Finally, we will show that by exploiting system’s symme-
try, even further improvements are possible in both compu-
tational performance and the forward-projection’s memory 
requirements.

In the following sections, we will explain the BSR data 
structure used to store the sparse system matrix, the applica-
tion-specific coordinate mapping algorithm to improve the 
sparsity pattern, the method used to exploit the symmetry 
of the system, and finally, the complete structure of the pro-
posed method.

3.2 � Data structure

Due to the hardware characteristics of Tensor Cores and 
the requirements that are specified by the WMMA APIs, 
the BSR data structure has been implemented in this work 
for efficient storage of the system matrix. In the BSR for-
mat, non-empty blocks are the building elements, instead of 
the non-zero values that are the basic elements of the CSR 
method. In this format, a block containing at least one non-
zero element is considered a non-empty block.

Given � and � as the block size parameters, the 
BSR method partitions the M × K  sparse matrix A into 

Fig. 2   High-level block diagram of the proposed approach
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M∕� × N∕� blocks. No compression is applied inside blocks, 
and blocks contain both zero and non-zero values. Therefore, 
a fixed amount of memory is allocated for each non-empty 
block. An example application of the BSR method is dis-
played in Fig. 3. As shown, a one-dimension floating-point 
array, blocks[� × � × NEB] , is allocated to store the values of 
non-empty blocks, and two one-dimension integer arrays are 
dedicated for storing the indices of these non-empty blocks, 
row_indices[1 +M∕�] and col_indices[NEB] , where NEB is 
the number of non-empty blocks.

Finally, since the Tensor Cores perform mixed-precision 
matrix operations, the data type for storing the blocks array 
is considered to be a half-precision floating point.

3.3 � Pseudo‑Morton ordering algorithm

The efficiency of using Tensor Cores for sparse matrix mul-
tiplications highly depends on the sparsity pattern of the 
matrix. Maximum performance will be achieved when the 
density of the non-empty blocks is maximal, which also 
means having the minimum number of non-empty blocks.

Although the sparsity pattern of the system matrix and, 
consequently, the sparsity pattern of non-empty blocks 
depends on the physics of the system, this pattern can be 
improved by applying an appropriate mapping algorithm. 
However, the system matrix pattern must first be analyzed 
to determine the optimal mapping algorithm, .

As mentioned in Sect. 3, the system matrix entries give 
the proportion of pixel ij from the ray rq passing from source 
to the detector. Therefore, pixels close to each other will 
likely have a similar proportion of rays passing through the 
region.

According to the locality properties of the system 
matrix, space-filling curves and especially Morton space-
filling curves are a good candidate [3, 8, 14, 19]. Morton 
codes are constructed by interleaving bits of integer coor-
dinates representing a spatial position. Therefore, Morton 
codes map n-dimensional data points to a one-dimensional 
space while preserving the spatial locality of the data 

points. As a result, coordinates that are spatially close to 
each other in the N-dimensional space will have Morton 
numbers that are also close to each other.

In addition, since the Morton code has a lower com-
putational cost compared to other space-filling curves, a 
pseudo-Morton mapping has been applied to the system 
matrix in this work. For efficiency, our pseudo-Morton 
mapping does not convert the coordinate indices all the 
way down to Morton codes, but instead performs bit shuf-
fling operations directly onto the coordinate indices them-
selves, hence the name pseudo-Morton. We assume blocks 
of size Bx and By where Bx and By are both powers of 2. 
The main idea is that for a subsequent range of BxBy 1D 
indices, the corresponding 2D coordinates are all within 
the same block of size Bx × By . It is not necessary to map 
the log2(Bx) + log2(By) least significant bits onto Morton 
codes, as this does not bring any improvements to the 
rest of our algorithm, allowing the operation to be imple-
mented using a limited number of bitwise operations. The 
proposed mapping algorithm is shown in Alg. 2, where Bx 
and By are the mapping block sizes.

The mapping algorithm is applied to both the row indi-
ces as well as the column indices. Hence, to reverse the 
effect of the applied permutation to the system matrix, the 
mapping algorithm was also applied to the images before 
performing the multiplications and to the result matrices.

Fig. 3   An example of storing a sparse matrix using the BSR method
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3.4 � Exploiting symmetries of the system matrix

Symmetry can be considered one of the most important 
properties of any system, especially when dealing with sys-
tem matrices. In a symmetric system,1 a part of a system 
matrix becomes exactly the same as the other part by apply-
ing some kinds of transformation such as rotation and flip-
ping of the input image; as a result, the size of the system 
matrix can be greatly reduced.

In addition, symmetric system matrices are of great inter-
est for parallel structured computing architectures. By load-
ing a single part of the system matrix from memory, several 
parallel kernels can perform their computations. However, 
the extra computation required for performing the transfor-
mation can itself limit the maximum achievable performance 
[7].

In Sect. 3.1, it is explained that in forward-projection, x 
is a column matrix and the representative of a single input 
image. Since the Tensor Cores perform matrix–matrix mul-
tiplications instead of matrix–vector multiplications, x must 
be used as a 2D matrix with dimension according to the 
selected fragment size for Tensor Core operations. Filling 
the other columns of x with zeros is not an option, because 
then the advantages of using Tensor Cores for acceleration 
disappear. A better alternative relies on filling the matrix 
x with several input images. This works well, e.g., when 
multiple CT slices or volumes must be reconstructed in par-
allel (assuming the data fits in CPU or GPU memory). How-
ever, for real-time applications in which a time dimension 
is present (e.g., real-time reconstruction during a surgical 

procedure), it can not be considered an ideal method, since 
latency is increased.

Our approach relies on splitting a single input image into 
several columns. Due to the symmetry of the system, it is 
possible by splitting the input image into several sub-images 
and then use the transformed version of the resulting sub-
images as the columns of matrix x . In addition to exploiting 
the maximum performance of Tensor Cores, this approach 
reduces the size of the system matrix by the same factor, 
which is advantageous for memory consumption.

However, there is one practical restriction on the possible 
transformations: the symmetry transformations should not 
impose heavy computations by requiring re-sampling of the 
pixel grid. Therefore, only rotations of 90◦ and reflections 
that do not require re-sampling of the pixel grid are accept-
able [7]. While other inexpensive schemes could be con-
sidered [1], these sampling schemes are not required in our 
application because 8 symmetries nicely lead to the minimal 
required number of columns of x (i.e., eight, see Sect. 2.3). 
Fig. 4 shows the eight available transformations (combina-
tions of 90◦ rotations and reflections, taking into account the 
restriction) and the section that will be extracted from each 
transformed image to fill the columns of x.

In addition to the transformations applied to the input 
image, as displayed in Fig. 5, a new transformation kernel 
including shifts and flipping is applied to the columns of 
the projection matrix to reverse the initial image transfor-
mations. Then, the transformed columns of the projection 
matrix are summed to build the final projection image. 
Finally, a masking kernel is applied to the system matrix to 
remove the unused elements.

In this work, the application of this idea is only proposed 
for forward-projection. Therefore, the extension of this idea 
to back-projection and consequently to the entire iterative 
reconstruction process is considered as future work.

Although the aforementioned system matrix symmetries 
are not present in all CT systems, there do exist solutions to 

Fig. 4   The eight available transformations, obtained by mirroring, 
flipping and 90◦ rotation

1  Note that we here also consider symmetries other than symmetry 
along the matrix diagonal, as in linear algebra.
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mitigate the lack of symmetry for certain cases. In particular, 
CT systems may contain a detector pixel offset with a frac-
tional (non-integer) part, causing the symmetry to break. By 
performing band-limited re-sampling of the detector array 
(e.g., sinc-interpolation with a Kaiser window), any asym-
metries due to the offsets can be avoided. In addition, yet 
another solution consists in quantizing the slopes of the rays 
(i.e., the tangents of the ray angles) to rational numbers—
this will induce the weight functions to be periodic as a func-
tion of the system matrix row and/or column. While this 
technique can also be exploited to reduce the system matrix 
memory requirements, we did not consider it for this work 
because it involves an approximation of the ray angles which 
may degrade the accuracy of the reconstruction.

Finally, the back-projection uses the transposed version of 
the forward-projection. Since the transposition can be done 
on-the-fly when reading out the matrix coefficient blocks, 
no separate data structure is required for the backward-
projection. Remarkably, this observation also applies to the 
implementation with eight symmetry transformations.

4 � Results

In this section, the experimental setup and the sizes con-
sidered for images and projection are explained. After that, 
the efficiency of the applied mapping algorithm on reducing 
the size of the system matrix is presented. The results of the 
proposed iterative reconstruction are given next, followed 
by the measured error of reconstruction. As mentioned in 
Sect. 3.4, the idea proposed for exploiting symmetries of the 

system matrix is only implemented for the forward-project. 
Thus, the last results are dedicated to the projection of a 
single image split into 8 sectors based on the proposed idea.

4.1 � Experimental setup and configurations

To evaluate the performance and efficiency of the proposed 
method, the experiments have been carried out on a system 
containing a GeForce RTX 2080 Ti, an i7-9800X CPU, and 
32GB of DDR4 RAM. The operating system was Ubuntu 
18.04 and CUDA 10.2 was used to build the kernels.

The NVIDIA GeForce RTX 2080 Ti has a TU102 GPU, 
which is designed based on the Turing architecture. The full 
implementation of the TU102 includes more than 18 billion 
transistors produced on the production process of TSMC’s 
12 nm FFN and contains 72 Streaming Multiprocessors 
(SMs), with each SM containing 64 CUDA Cores and 8 
Tensor Cores. In total, it includes 4608 CUDA cores and 
576 Tensor Cores. However, the GPU integrated in RTX 
2080 Ti includes 68 SM and 544 Tensor Cores. Each Tensor 
Core can perform up to 64 floating-point fused multiply–add 
(FMA) operations per clock using FP16 inputs. The 8 Tensor 
Cores in an SM can perform a total of 512 FP16 multiply 
and accumulate operations per clock, or 1024 total floating-
point operations per clock.

The evaluations are performed by considering a 
fixed size for projections, 720 × 512 , and six differ-
ent sizes for input image matrix. The image sizes are: 
512 × 512, 384 × 384, 320 × 320, 256 × 256, 128 × 128 , and 
64 × 64 . Specifications of the system matrix for different 
image matrix sizes are presented in Table 2.

Fig. 5   High-level block diagram of the forward-projection using the proposed approach for exploiting the symmetry of the system

Table 2   System matrix 
specifications

Image size

64 × 64 128 × 128 256 × 256 320 × 320 384 × 384 512 × 512

System matrix size ( ×109) 1.5 6 24 37.8 54.3 96.6
Non-zero values ( ×106) 37.9 78.4 159.5 200 240.8 321.9
Sparsity (%) 97.49 98.7 99.34 99.47 99.56 99.67
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4.2 � Mapping algorithm

Our approach’s computational and memory efficiency 
strongly depends on the sparsity pattern of the system 
matrix, which can be controlled by adjusting the parameters 
of the mapping algorithm. In practice, we found the choice 
Bx = 4,By = 2 to give good sparsity patterns. A visualization 
of its effect is shown in Fig. 6. Figure 6a, b display a random 
section of the system matrix before and after applying the 
mapping algorithm, where the black points indicate the pres-
ence of non-zero values.

Table 3 presents the percent of non-empty blocks (which 
in fact determines the size of system matrix) depending on 
the available fragment sizes. As shown in Table 3, the map-
ping code reduces the matrix size by a factor 2 to 3. In addi-
tion, it shows that the minimum percent of non-empty blocks 
and consequently, the smallest system matrix, is achieved 
when the fragment size is 8.32.16. Therefore, it can be 
expected that the best performance will also be achieved for 
this fragment size.

As Table 3 shows, fragment size 32.8.16 presents the 
worst result among the other fragment sizes. Whereas, to 
exploit the symmetry of the system using the eight available 
transformations as explained in Sect. 3.4, it is required to use 
the fragment size 32.8.16. This restriction justifies the value 
of the further investigation on other inexpensive sampling 

schemes to increase the number of available transforma-
tions up to 16 or even 32, respectively, for the fragment size 
16.16.16 and 8.32.16.

4.3 � Evaluation of Tensor Cores for iterative 
reconstruction

In this section, the results of the proposed iterative recon-
struction which consists of both accelerated forward and 
back-projection are presented. To provide a better compari-
son of the performance of Tensor Cores for this application, 
several non-tensor approaches are evaluated: ASTRA [26], 
Tigre [2], Tomopy [12]. All three are open-source libraries 
for high-performance 2D and 3D tomographic data process-
ing and image reconstruction. For the ASTRA toolbox, we 
have tested three different reconstruction methods: CGLS, 
SIRT, and SART. We have used the CGLS method for Tigre 
toolbox and the SIRT method for Tomopy.

In addition to these, we have implemented four other 
non-tensor GPU accelerated approaches. The half2 imple-
mentation employs the NVIDIA’s direct half-precision arith-
metic [15] by using the half2 datatype. This is because the 
maximum throughput for half-precision operations can be 
achieved when using the half2 datatype [15]. The second 
implementation uses the CUDA sparse matrix library (cuS-
PARSE), in which the basic CSR with single (32-bit) preci-
sion floating-point data type is used. The third approach, 
implemented in Quasar [11], performs the iterative recon-
struction using on-the-fly computation without pre-compu-
tation of the system matrix. This reference method is added 
to assess the impact of memory latency versus latency of the 
computations: the method performs the weight calculation 
on the fly, which is computationally much more costly but 
at the same time avoids weight memory accesses. Finally, 
the last implementation is a Quasar implementation for the 
MLEM reconstruction method [20].

In this experiment, by assuming a multi-slice fan-beam 
method, several images (slices) are reconstructed in parallel 
by loading into the columns of the image matrix. The image 
matrix x must have at least 8, 16, and 32 columns for the 
fragment size 32.8.16, 16.16.16, and 8.32.16, respectively, to 
allow straightforward mapping onto the GPU Tensor Cores. 
However, to reconstruct the same number of images, it is 
assumed that 32 images are reconstructed in parallel for all 
the fragment sizes.

For single image reconstruction, we have explained in 
Sect. 3.4 that the symmetry of the system can be exploited 
to reconstruct single images in the configuration 32.8.16. 
We also note again that for this experiment, the approach 
explained for exploiting the symmetry of the system is not 
applied.

The average reconstruction time per image for a single 
iteration is presented in Table 4 for the evaluated approaches. 

Fig. 6   Visualizing the effect of mapping algorithm on the sparsity 
pattern of the system matrix; (a) a random section of system matrix 
before mapping; (b) the same random section after mapping

Table 3   Number of non-empty blocks (NEBs) before and after apply-
ing the pseudo-Morton mapping code

* Block size ( �, � ) is equal to the dimension of Tile A

Fragment size 16.16.16 32.8.16 8.32.16

Block size ( �, �)∗ 16 × 16 32 × 16 8 × 16

Blocks count ( ×106) 377.5 188.7 755
NEBs before (%) 5.19 8.83 3.36
NEBs after (%) 2.01 2.57 1.55
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Since our implementation is a gradient-based method, it is 
better to be compared with other gradient-based implemen-
tations. Because, each method requires a different number 
of iterations for convergence and also has a different error 
at convergence. Thus, while we present the execution time 
of different methods (including CGLS, SART, SIRT, and 
MLEM), it is better to consider reconstruction error (see 
Sect. 4.4) when comparing the execution time of different 
methods. It must be emphasized that our approach is not 
limited to the conjugate gradient and is a general approach 
that can work with other reconstruction methods.

According to Table 4, the maximum performance is 
achieved for the fragment size 8.32.16, which is faster than 
all other implementations and is about 5 times faster than 
the cuSPARSE implementation. Compared to the on-the-
fly method, this result shows the advantage of storing the 
weights in memory and hence using the proposed BSR data 
structure. Compared to the ASTRA SART implementation, 
it should be noted that the SART method processes only one 
single projection direction in each iteration.

Table 4 also presents the average reconstruction per 
image energy that is consumed by the NVIDIA GPU dur-
ing the execution of a single iteration. The average energy 
consumption values are obtained by polling the nvml APIs 
during kernel execution. According to Table 4, the proposed 
approach consumes 3–5 times less power compared to other 
implementations.

Finally, Table 5 presents the required memory for storing 
the system matrix for the cuSPARSE implementation (the 
basic CSR with 32-bit single-precision floating-point data 
type) and Tensor Core implementation (the BSR data struc-
ture explained in Sect. 3.2 with half-precision floating-point 
data type). Since the Half2 implementation uses the same 
data structure as the Tensor Core method, it is not presented 
in Table 5.

4.4 � Reconstruction error

Since Tensor Cores perform mixed-precision floating-point 
operations, a larger numerical error is expected than in the 

Table 4   Reconstruction time and energy consumption per image (for a single iteration)

* Each iteration of SART processes one single projection direction

Precision Image size

64 × 64 128 × 128 256 × 256 320 × 320 384 × 384 512 × 512

Time (ms) Tensor Core (32.8.16) Mixed 0.08 0.12 0.28 0.38 0.50 0.80
Tensor Core (8.32.16) Mixed 0.7 0.11 0.22 0.29 0.38 0.62
Tensor Core (16.16.16) Mixed 0.06 0.11 0.23 0.33 0.44 0.73
cuSPARSE 32-bit 0.28 0.56 1.30 1.73 2.16 3.12
Half2 arithmetic Mixed 0.19 0.37 0.86 1.16 1.50 2.30
On-the-fly 32-bit 1.25 1.61 2.55 3.24 4.22 6.72
ASTRA (CGLS) 32-bit 0.92 0.97 1.58 2.08 3.03 4.55
ASTRA (SIRT) 32-bit 0.81 0.87 1.46 1.94 2.90 4.40
ASTRA (SART)∗ 32-bit 0.43 0.44 0.44 0.44 0.48 0.48
Tigre (CGLS) 32-bit 210 210 226 230 240 250
TomoPy (SIRT) 32-bit 40 60 80 90 120 140
MLEM 32-bit 0.47 0.75 1.73 2.51 3.01 4.79

Energy (nJ) Tensor Core (32.8.16) Mixed 7 17 60 87 117 190
Tensor Core (8.32.16) Mixed 6 15 50 70 93 151
Tensor Core (16.16.16) Mixed 6 14 55 80 106 179
cuSPARSE 32-bit 47 117 306 412 530 782
Half2 arithmetic Mixed 29 82 213 296 383 592

Table 5   Memory usage for 
storing the system matrix 
(GigaBytes)

Format Image size

64 × 64 128 × 128 256 × 256 320 × 320 384 × 384 512 × 512

Tensor Core (32.8.16) BSR(Half) 0.26 0.63 1.68 2.35 3.13 4.98
Tensor Core (8.32.16) BSR(Half) 0.23 0.52 1.20 1.60 2.04 3.04
Tensor Core (16.16.16) BSR(Half) 0.25 0.57 1.42 4.94 2.53 3.92
cuSPARSE CSR(32-bit) 0.23 0.47 0.96 1.2 1.45 1.93
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case of single-precision floating-point calculations. There-
fore, we measure the reconstruction error in comparison 
with 32-bit floating-point reconstructions. In this paper, the 
relative reconstruction error is calculated as follows:

where Po is the original image and P is the reconstructed 
image generated using the different reconstruction imple-
mentations. ‖.‖F denotes the Frobenius norm.

For measuring the error, a dataset containing 23 input 
images of class uint8 with the size of 512 × 512 was used. 
The input images are reconstructed images, collected from 
existing CT scanners (e.g., the X-O CT system, Gamma 
Medica-Ideas, Northridge, California, USA). Figure  7 
displays four examples of the dataset. To generate the pro-
jection data required for reconstruction, we have used the 
distance driven forward-projection for the Tensor core and 
Quasar implementations, and we have used the “line-fanflat” 
algorithm for the ASTRA implementation.

Figure 8 presents the average error versus the number of 
iterations measured from different implementations. It shows 
that the conjugate gradient based methods perform well for 
the provided dataset. Although it was expected to have a 
larger error using the Tensor cores due to the mixed-preci-
sion datatype, as shown in Fig. 8, the accuracy of both the 
Tensor CG and the non-Tensor (32-bit CG) implementations 
are nearly equivalent—indicating that the mixed-precision 
computation offered by Tensor Cores has the potential to be 
used for CT reconstruction.

(4)Error = ‖P − Po‖F∕‖P
o‖F,

4.5 � Forward‑projection by exploiting the symmetry 
of the system

The last set of results is dedicated to evaluating the pro-
jection of a single image split into 8 sectors based on the 
proposed method and the transformations for exploiting 
the symmetry of the system, as explained in Sect. 3.4. This 
approach has identical numerical accuracy with multi-slice 
approach in case the detector pixel offset is zero. The execu-
tion time of the forward-projection, the consumed energy, 
and the memory usage for storing the system matrix are 
presented in Tables 6, 7. The achieved results not only show 
the efficiency of the proposed method for real-time appli-
cations, but also highlight that the reasonable size of the 
system matrix warrants extending this method to the whole 
reconstruction process.

5 � Conclusion

In this paper, we demonstrated the feasibility of using 
NVIDIA Tensor Cores for accelerating iterative CT recon-
struction, as an example of a non-machine learning applica-
tions. For this purpose, we used the Tensor Cores to perform 
the sparse matrix–matrix multiply–accumulate operations 
of the projection and back-projection kernels. To overcome 
the hardware and software limitations of using Tensor Cores 
and also the challenges of implementing a memory-centric 
iterative reconstruction, we proposed and implemented an 
approach using compressed BSR data structure for stor-
ing the sparse system matrix, a pseudo-Morton encoding 
to improve the sparsity pattern of the system matrix, and 
a method to exploit the symmetry of system which makes 
this approach a practical solution for real-time or memory 
limited CT applications.

The proposed approach is evaluated by measuring the 
performance, power, accuracy and memory usage. The 
presented performance results indicate approximately 5x 
speedup and energy saving is achieved with the proposed 

Fig. 7   Four example images of the dataset used for error measure-
ment

Fig. 8   Average relative reconstruction error
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method, compared to a cuSPARSE-based implementation on 
the same GPU. The accuracy results show that using mixed-
precision computing of Tensor Cores does not impose any 
significant reconstruction error.

In future work, in addition to extending the proposed idea 
of exploiting symmetry to the entire reconstruction process, 
we plan to investigate the extension of our approach to cone-
beam (3D) reconstruction and helical CT reconstruction.
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