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Abstract

Topological data analysis is a recent and fast growing field that approaches the analysis of

datasets using techniques from (algebraic) topology. Its main tool, persistent homology

(PH), has seen a notable increase in applications in the last decade. Often cited as the most

favourable property of PH and the main reason for practical success are the stability theo-

rems that give theoretical results about noise robustness, since real data is typically contam-

inated with noise or measurement errors. However, little attention has been paid to what

these stability theorems mean in practice. To gain some insight into this question, we evalu-

ate the noise robustness of PH on the MNIST dataset of greyscale images. More precisely,

we investigate to what extent PH changes under typical forms of image noise, and quantify

the loss of performance in classifying the MNIST handwritten digits when noise is added to

the data. The results show that the sensitivity to noise of PH is influenced by the choice of fil-

trations and persistence signatures (respectively the input and output of PH), and in particu-

lar, that PH features are often not robust to noise in a classification task.

Introduction

Homology goes back to the beginnings of topology in Poincaré’s influential papers, who repre-

sented the notion of a connectivity of a space with its cycles of different dimensions (e.g., 0-, 1-

, and 2-dimensional cycles respectively correspond to connected components, loops, and cavi-

ties). These cycles are shown to organize themselves into abelian groups, called homology

groups, and their ranks (referred to as the Betti numbers of the space) are non-negative inte-

gers corresponding to the number of independent cycles in each dimension [1]. This homol-

ogy information can be very useful, as it allows to classify spaces and uncover the underlying

structure of a space. For a detailed study of homology, we refer to [2].

Real data are a finite set of observations and do not directly reveal any topological informa-

tion, since topological features are usually associated with continuous spaces. To circumvent

this issue, the underlying topological structure of the data (e.g., a point cloud, a finite set of

data points in space) can be estimated at different scales with a nested family of topological
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spaces, called filtration. The filtration is used to calculate the information about k-dimensional

cycles that persist across different scales of data, referred to as persistent homology (PH) [3–5].

More precisely, k-dimensional PH registers the scale (also referred to as resolution, or time) at

which every k-dimensional cycle appears and disappears in the filtration. This PH information

can be represented using different signatures, e.g., using sets, vectors, functions, or scalars. The

pipeline for PH is visualized in Fig 1, and explained in greater detail in the next section. For a

gentle, but detailed introduction to PH for a broad range of computational scientists, see [6].

Over the past two decades, persistent homology has found many applications in data sci-

ence, e.g., in the analysis of local behaviour of the space of natural images [7], analysis of

images of hepatic lesions [8], human and monkey fibrin [9], fingerprints [10], or diabetic reti-

nopathy images [11], analysis of 3D shapes [12, 13], neuronal morphology [14], brain artery

trees [15, 16], fMRI data [17–19], protein binding [20], genomic data [21] orthodontic data

[22], coverage in sensor networks [23], plant morphology [24], fluid dynamics [25], dynamical

systems describing the movement of biological aggregations [26], cell motion [27], models of

biological experiments [28], force networks in granular media [29], structure of amorphous

and nanoporous materials [30, 31], spatial structure of the locus of afferent neuron terminals

in crickets [32], or spread of the Zika virus [33]. An exhaustive collection of applications of

topological data analysis to real data can be found at [34].

The main reason behind the recent popularity of persistent homology in data analysis is

its proven stability: PH is robust under small perturbations in the input, which is of crucial

importance for practical applications due to the unavoidable presence of noise or measure-

ment error in real data [35]. Moreover, PH is commonly assumed to be a topological invariant

and therefore robust under affine transformations.

However, it is often overlooked in the literature how strongly the stability theorems are

influenced by the choice of a:

• filtration, the input for PH, or the medium through which the homology information is

extracted from data. Indeed, it is important to remember that PH is not directly calculated

on the data (e.g., an image, or a point cloud, see the first column in Fig 1), but on the filtra-

tion that approximates the shape of data at different scales (see the second column in Fig 1).

The filtration must satisfy the underlying assumptions in the stability theorem, which then

ensures robustness under minor perturbations in the input—filtration, not necessarily under

minor perturbations of the data. Moreover, the level of robustness is directly determined by

the filtration.

• persistence signature, the output of PH, or the medium used to represent PH. Indeed, the

stability theorems do not provide a guarantee of the noise robustness of PH in general, but

rather prove the stability of a selected signature (with the corresponding metric) (particular

choice in the third or fourth column in Fig 1).

In addition, the choice of filtration influences the type of information captured with PH: for

some filtrations, PH can reveal geometric information and thus not be invariant e.g., under

rotation or translation. Furthermore, even if the stability theorem holds for the given filtration

and signature, little attention has been paid to what these stability theorems mean in practice.

In particular, it is unclear if the stability results imply the noise robustness of PH features in a

classification task.

To investigate these issues, we carry out computational experiments that evaluate the noise

robustness of PH on the MNIST dataset of greyscale images, under different types of noise.

More precisely, the main objective of this work is to address the following research questions,

across different filtrations and persistence signatures:
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(RQ1) How much does PH change under noise in the data?

(RQ2) How discriminative is PH if the data contains noise?

The findings of this paper can therefore help to guide the choice of appropriate filtrations

and signatures, especially in the presence of noise in the data. To the best of our knowledge,

this issue has not been studied in literature so far. In the majority of studies that apply PH to

tackle a particular problem (and are thus not concerned with noise robustness in particular), a

single filtration and signature are commonly adopted, without a discussion on the motivation,

assumptions, and implications behind the specific choice. There are a few noteworthy exam-

ples in the literature, such as [36], which do consider multiple filtrations and/or signatures (on

the MNIST dataset), but they focus on the discriminative power, rather than the noise robust-

ness of PH features. The authors do conclude, however, that PH is reputed for its robustness to

noise, and suggest to conduct a similar study under different types of image noise [36].

The next section introduces the filtrations, persistence signatures and stability theorems.

We then proceed to evaluate the robustness of PH on the MNIST image dataset of handwritten

digits. The final section summarizes the findings and limitations of this work, and provides

suggestions for future research.

Materials and methods

This section provides more details about filtrations and persistence signatures, the input and

output of persistent homology, and the stability theorems. We focus on a few common exam-

ples of filtrations and signatures that will be used in our computational experiments, and also

discuss our choice of parameters.

Filtrations

Persistent homology can be calculated for various types of space S, whether it represents point

cloud, time series, graph or image data. To extract the PH information from a space, one must

define a suitable filtration. The construction of a filtration in general relies on structured

Fig 1. Persistent homology pipeline. PH can be calculated for different types of spaces S, which can represent a single data observation (typical for classification tasks)

or a complete dataset. In this figure, we calculate the PH information for an image. The input for PH is a filtration, a nested family of spaces that approximate the

structure of S at different scales r1 < r2 < . . . rt. For example, to approximate the structure of an image at scale r, we can look only at pixels within distance r from the

top left pixel (top panel). Alternatively, we can look at an image as a point cloud, and approximate its structure at resolution r by constructing an edge between two

points whenever they are within distance r (bottom panel). For a homological dimension k (in the figure, k = 1), PH registers the birth and death time r of every k-

dimensional cycle (connected component, loop, void, etc.) within the filtration, and is commonly summarized with a scatter plot of birth and death coordinates,

referred to as persistence diagram (PD). It is often interesting or even necessary to transform the PD into a different persistence signature, such as a persistence

landscape (PL, top panel) or a persistence image (PI, bottom panel).

https://doi.org/10.1371/journal.pone.0257215.g001
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complexes, a type of topological space that is particularly important in algebraic topology due

to their combinatorial nature that allows for the computation of homology.

When the space is a point cloud X � Rn
, the most common choice for a structured complex

is the simplicial complex, a set composed of simplices (points, line segments, triangles, tetrahe-

drons, and their k-dimensional counterparts, embedded in Rn), that is closed under taking

subsets (so that, for instance, if a triangle is in the simplicial complex, then all its edges and ver-

tices are also elements of the simplicial complex) [5, 6]. Probably the most well-known is the

Vietoris-Rips simplicial complex VR(X, r) [37], built by constructing (i) a line segment for any

pair of points in X within distance r of each other, (ii) a triangle, if the points in a triplet are all

within distance r of each other, and so forth. Different values of the so-called resolution param-

eter r create different simplicial complexes and reveal different cycles. Hence, a single value of

r captures information about the space X only at the given scale. However, the filtration VR
(X), defined as the nested family of subspaces

VRðX; r1Þ � VRðX; r2Þ � � � � � VRðX; rtÞ;

can be used to depict how k-dimensional cycles persist across different values r1 < r2 < . . . rt
of the resolution r (see Fig 1, bottom panel).

A filtration can alternatively be calculated using a filtration function � : Rn
! R, simply by

considering the sublevel sets of ϕ, determined by a scale cut-off r:

Xr ¼ fy 2 R
n
j �ðyÞ � rg ðr 2 RÞ:

The Rips filtration is obtained with ϕ = δX, where δX(y) is the minimum distance between y 2
Rn

and any point x 2 X on the point cloud. Indeed, according to the definition of the sublevel

set of the distance function δX,

Xr ¼ fy 2 R
n
j dXðyÞ � rg ¼ [x2XBðx; rÞ;

where B(x, r) is a ball with radius r centred around x; this union of balls approximates VR(X, r)
[35, 38]. However, the distance function δX is extremely sensitive to outliers and noise (“even

one outlier is deadly”, or, in the language of robust statistics, the distance function has break-

down point zero [39]). To circumvent this issue, [38] propose to rather consider distance-to-a-

measure (DTM) δX,m as the filtration function, which is defined as the average distance from a

given number of nearest neighbours in X (and is thus a smooth version of the distance func-

tion) [40]. The number of neighbours that are considered is determined by the parameter m,

which represents the percentage of the total number of point cloud X points. In our computa-

tional experiments, we will quantify how much robustness to noise is actually gained in prac-

tice with PH on the DTM (with m = 0.1, a commonly suggested and typically default value)

compared to the Rips filtration.

In this paper, we are interested in calculating PH for an image. Let Z be a greyscale image,

i.e., Z = [zuv], where zuv is the greyscale value of the pixel (u, v), u 2 {1, 2, . . ., nx}, v 2 {1, 2, . . .,

ny}, nx and ny are the numbers of pixels in respectively x and y direction. We can consider the

image Z as a 2D point cloud XðZ; z0Þ � R
2

consisting of all ðu; vÞ 2 R2
corresponding to pixels

with a greyscale value above a fixed user-given threshold z0. A possibility is then to define the

filtration for the image Z via the Rips (Fig 1, bottom panel) or DTM filtration of the point

cloud X(Z, z0).

However, a point cloud (and its simplicial complex) is not the most natural representation

of an image. Indeed, this representation does not exploit the natural grid structure of images

[36]. For an image Z, we can rather consider its so-called cubical complex K(Z), the cubical

analogue to a simplicial complex, in which the role of simplices is played by cubes of different
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dimension (points, line segments, squares, cubes, and their k-dimensional counterparts) [41].

The squares correspond to the image pixels, the edges to the sides of the pixels, and the points

to the pixel corners. Another way to construct a cubical complex from an image is to consider

the dual of the cubical complex defined above: the points reflect the pixels, the line segments

the intersections of pairs of non-diagonally neighbouring pixels, and squares reflect the inter-

sections of four pixels [42].

To define a filtration function � : KðZÞ ! R; it is thus necessary to define the value of ϕ on

each cube in K(Z). A natural filtration function on a cubical complex assigns to each square

the value of the image on the corresponding pixel, and we use ϕ(u, v) to denote the value of the

filtration function on the square corresponding to pixel (u, v). The filtration function on the

line segments and points is defined as the minimum value of all bordering pixels. A natural fil-

tration function on the dual cubical complex assigns the pixel values as the values of the func-

tion on the points, and sets the function values for line segments and squares as the maximum

value of all bordering simplices. These two methods differ with respect to the diagonally neigh-

bouring pixels, as they are considered connected with the first approach, but not the second,

what can result in substantially different persistent homology [42]. From such a filtration func-

tion, it is straightforward to build a filtration Kr1
� Kr2

� � � � � Krt
; where Kr is the union of

all cubes corresponding to pixels (u, v) with ϕ(u, v)� r (Fig 1, top panel, and Fig 2). This fam-

ily of nested subspaces is commonly referred to as the filtered cubical complex. Note that this

means that (the cubes corresponding to) the pixels with the lowest filtration function value

appear first and persist the longest in the filtration.

In this paper, we consider the following filtration functions KðZÞ ! R on the cubical com-

plex K(Z) of an image Z = [zuv], described previously in [36].

• binary: The binary filtration function considers binary values of pixels by introducing a grey-

scale threshold z0:

�z0
ðu; vÞ ¼

(
0 zuv � z0

1 otherwise:

PH with respect to this filtration function corresponds to the homology of the image [36],

meaning that it only determines the number of cycles (Betti numbers). It is of crucial impor-

tance that the greyscale threshold parameter z0 is sufficiently low, so that all dark pixels are

part of the filtration immediately at scale r = 0. Indeed, if only a single pixel along some hole

has a greyscale value below the given threshold z0, this pixel will only be a part of the filtra-

tion at resolution r = 1, as any other pixel in the image, so that the hole is never seen at any

scale in the filtration.

Fig 2. Filtration on a cubical complex. The first image represents the values [0, 100] of the filtration function ϕ. The next nine figures show the cubical complexes K10

� K20� K30� � � � � K90, where Kr corresponds to the union of all cubes, i.e., pixels (u, v) with the filtration value ϕ(u, v)� r. There is only one 1-dimensional cycle,

i.e., hole (one-pixel hole in the third row and third column), which is first seen in K40, and then disappears or closes in K70.

https://doi.org/10.1371/journal.pone.0257215.g002
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• greyscale: In order to study how cycles persist with respect to the greyscale value, a nonbi-

nary filtration function is a more natural choice. In the greyscale filtration function, one

relates each pixel to its greyscale value:

�grscðu; vÞ ¼ maxðZÞ � zuv:

An advantage of the greyscale compared to other considered filtrations is that it is parame-

ter-free. In particular, it does not require an a-priori defined greyscale threshold. Next to

the number of cycles, PH with respect to the greyscale filtration function thus also captures

information about the brightness of the cycles.

• density: If the greyscale value of a single pixel changes significantly (e.g., from black to

white), an existing hole in an image might get disconnected, or an additional single-pixel

hole might appear. To avoid such sensitivity to outlying greyscale values, we can rather con-

sider the density filtration function. Thereby, we relate each pixel to the number of “dark-

enough” pixels in its neighbourhood. More precisely, let the neighbourhood N((u, v), d0, z0)

be the set of all pixels (u0, v0) with zu0v0 � z0 (for a given threshold z0), that are within given

distance from pixel (u, v):

kðu0; v0Þ � ðu; vÞk2 � d0:

Density filtration function is then defined as:

�d0 ;z0
ðu; vÞ ¼ Nðd0Þ � jNððu; vÞ; d0; z0Þj;

where N(d0) is the total number of pixels within distance d0, for any (u, v). The threshold

parameter z0 is not of crucial importance. For instance, if only one pixel along a hole is very

bright, the hole will never be seen in the binary filtration, but it will persist from early on in

the density filtration, for most of the values of z0. A good choice for the size of the neighbour-

hood d0 obviously depends on the size of the image. For the dataset of 28 × 28 MNIST

images, we take d0 = 1.

• radial: While the greyscale and density filtration capture information about the brightness of

cycles, it is possible to capture other information. For example, the position of cycles is cap-

tured with PH if one considers the radial filtration function defined as the distance from a

given reference pixel (u0, v0):

�ðu0;v0Þ;z0
ðu; vÞ ¼

(
kðu; vÞ � ðu0; v0Þk2

zuv � z0

maxðu0 ;v0Þkðu0; v0Þ � ðu0; v0Þk2; otherwise:

Similar as for the binary filtration function, the greyscale threshold z0 is crucial for the radial

filtration as well, whereas the density and Rips filtration are less sensitive to this parameter

(point cloud points corresponding to non-neighbouring pixels can still be connected with

an edge, for a sufficiently large resolution r). However, to be consistent, we take the same

threshold value z0 = 0.5 max(Z) for the Rips, DTM, binary, density and radial filtrations.

The choice of the reference pixel (u0, v0) depends on where the important topological fea-

tures are expected to be located in an image, and how this location differs across classes of

data. For instance, if we consider (u0, v0) to be a pixel in the centre of the image, the holes in

digits 6 and 9 would be seen at the same resolution r in the filtration. Since we aim to differ-

entiate between digits 6 and 9, we will consider (u0, v0) = (0, 0).

Fig 3 visualizes the filtration functions discussed in this section.
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Persistent homology information in dimension k captures the values of resolution r when

each k-dimensional cycle is born and when it dies in a filtration, denoted with b and d. The

cardinality of this multi-set of persistence intervals (bi, di) ði 2 NþÞ counts the number of k-

dimensional cycles (although many or even a majority might only show up in the filtration for

a brief while, i.e., for a small range of resolution values r, yielding very short lifespans or persis-

tence li = di − bi, and as will be explained later in the paper, can thus be considered as irrele-

vant). However, the choice of the filtration defines the interpretation of the birth values and

death values, which can reflect additional topological or geometric information, such as their

size or position (Fig 4).

Obviously, the choice of filtration has an important influence on the noise robustness and

discriminative power of PH. If PH only registers the number of holes, it is of topological nature

and is invariant under rotations, translations, or stretching (in topology, a coffee mug is equiv-

alent to a doughnut), which can be useful in some applications, such as recognition of animals,

cars, or people in images. If PH also captures the position of holes, it is sensitive to rotation,

but able to differentiate, e.g., between digits 6 and 9. If the size of the holes is also captured, the

PH information is not robust to rescaling, but it enables us to differentiate between a 6 and a 0.

In this paper, we consider the binary-, greyscale-, density-, and radial-filtered cubical

complexes, and the Rips and DTM-filtered simplicial complexes as the input for PH. Other

filtrations have been introduced in the literature, such as the kernel distance or kernel density

estimate (which inherit some reconstruction properties of DTM) [43], dilation (the smallest

distance to a black pixel, thus representing a cubical analogue to the Rips filtration), erosion

(inverse dilation), signed distance (a combination of dilation and erosion) [36], etc. Our goal is

to emphasize how PH with different filtrations capture different information, and our selection

is thus sufficient to illustrate this issue.

Persistence signatures

As already mentioned, k-dimensional persistent homology is a multi-set of intervals (bi, di),
with bi and di corresponding to the scale r 2 R when a k-dimensional cycle i appears and dis-

appears in the filtration. In order to represent this information visually, or to apply statistical

inference or machine learning on PH, different methods are available, where the multi-set of

birth-death values is represented using diagrams, functions, vectors, or even scalars. Below we

provide an intuitive introduction to the persistence signatures used in this paper, which are

the most common in the literature, and refer the reader to the relevant references for more

details.

• persistence diagram (PD): Persistence diagram is the most straightforward representation

of PH as a scatter plot of points (bi, di), counted with their multiplicity, and union all points

on the diagonal, counted with infinite multiplicity [44, 45] (Fig 1).

Fig 3. Filtrations. The first plot shows an example MNIST image Z, with greyscale pixel values in [0, 250]. The next four plots respectively show the heat map for the

binary, greyscale, density and radial filtration function � : KðZÞ ! R; where K(Z) is the cubical complex corresponding to the given example image. The final two

plots visualize the heat map of � : KðZÞ ! R; where ϕ is the discretized version of the Rips and DTM filtration functions dXðZ;z0Þ
: R2
! R and dXðZ;z0Þ;m

: R2
! R; and

X(Z, z0) is the point cloud corresponding to the image Z.

https://doi.org/10.1371/journal.pone.0257215.g003
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An advantage of PDs compared to other persistence signatures is that they are parameter-

free, but they also have an important disadvantage: they are not convenient for statistical

inference, because their complicated structure makes common algebraic operations—such

as addition, division, and multiplication—challenging [9] (so that, for instance, the mean

might not be unique [46]). Furthermore, although PDs can be equipped with a metric struc-

ture (discussed below) which enables to perform a variety of machine learning techniques

such as some clustering algorithms, many other machine learning tools (decision tree classi-

fication, neural networks, feature selection, some dimension reduction methods, and others)

require more than a metric structure—they require a vector space [35].

• (vectorized) persistence landscape (PL): Persistence landscape is a function l : N� R!
R obtained by “stacking isosceles triangles” whose bases are the PH intervals (bi, di), and

Fig 4. Persistent homology across filtrations. Persistent homology is a multi-set of persistence intervals (bi, di), where bi and di are respectively the time when a cycle i
(a connected component, loop, void, etc.) is born, and when it dies in a filtration. The table lists 1-dimensional PH calculated for a few example MNIST images (or an

image with an outlying pixel), across selected filtrations. The notation (b, d)� implies that multiple cycles appear and disappear at the same time (thus, PH is a multi-set,

where each element has its multiplicity). The notation (b, d)�� implies that there are multiple intervals with a similar birth and death value. The cardinality of the set of

persistence intervals determines the number of cycles. However, the definition of the filtration implies the interpretation of birth and death times, so that PH with

different filtrations captures different topological (and geometric) information, what further influences its noise robustness and discriminating power. For example, an

additional point at an outlying distance from a point cloud can have an important influence on PH with the Rips filtration (e.g., an additional black pixel within a hole

will change the persistence of that hole, see persistence intervals in red), but this is less true for the DTM filtration, as the outlier will have a large distance from the

nearest point cloud neighbours and will thus appear only very late in the filtration. A reverse example is a pixel with an outlying greyscale value (e.g., white pixel in a

dark region) which has an important influence on PH with the binary, greyscale and radial filtration (in blue), but much less for the density, Rips and DTM filtration.

If geometric information is captured, PH becomes sensitive under some affine transformations. Furthermore, 1-dimensional PH with binary, greyscale and density

filtration cannot differentiate between digits 0, 6 and 9 (as they all have one hole of similar brightness), but radial filtration allows to discriminate between digits 6 and

9 (as the holes have a different position), and the Rips and DTM filtration enable to distinguish between 0 and 6 (as the holes are of different size).

https://doi.org/10.1371/journal.pone.0257215.g004
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whose heights reflect the so-called lifespans (or persistence) li = di − bi (Fig 1, top panel).

Alternatively, it may be thought of as a sequence of functions lj : R! R; where λj(r) = λ(j,
r) depicts how long the j-th most dominant cycle has lived until the moment r in the filtra-

tion (r − bi), or how long from r before it dies (di − r) (Fig 1, top panel, two functions in

green and orange).

In contrast to PDs, persistence landscapes lie in a Banach space, and are thus easy to combine

with tools from statistics: they obey a strong law of large numbers and a central limit theo-

rem, and the space of landscapes does have a unique mean [47]. However, for many machine

learning tasks, it is necessary to consider finite vectors rather than functions, and a discreti-

zation of the function λ into a vector PL requires two additional parameters: we need to

decide on the maximum number of first landscape functions λj to consider, and on the num-

ber of points where each of these functions is evaluated, referred to as the landscape resolu-

tion. The number of main connected components or holes in the MNIST dataset is typically

0, 1 or 2. However, additional cycles might appear in noisy images, and we thus consider the

first 10 landscapes (j 2 {1, 2, . . ., 10}); although we immediately note that this means that PLs

and PDs do not necessarily capture the same information (e.g., if there are more than 10

cycles in this case). Obviously, this number should be higher if we expect a large number of

important cycles that discriminate between classes of data. We set the landscape resolution

to 100.

• persistence image (PI): Persistence image is constructed by superimposing a grid over a PD,

and depicting the volume below the weighted sum of Gaussian probability density functions,

on each grid cell [35] (Fig 1, bottom panel). This is a more sophisticated variant of counting

the number of cycles in each of the grid bins [48]. Since there are no points below the PD
diagonal, it makes sense to first apply a linear transformation which transforms the multi-set

of birth-death (b, d) to birth-persistence (b, d − b) = (b, l) coordinates. Each of the Gaussian

functions is centred at a point (b, l), with the height of the peak influenced by a given non-

negative weight function r : R2
! R.

Typically, ρ reflects some information about the cycles, and it usually depends only on the

vertical persistence coordinate l (corresponding to the lifespan of the cycle, l = d − b); we

choose ρ(b, l) = l2. In our experiments, we consider a grid of size 10 × 10, and set the Gauss-

ian function variance to 5% of the maximum death value in PDs for the given filtration func-

tion and homological dimension. An important advantage of PIs is their flexibility, since it

is possible to tweak their definition with different grid resolution, weight function, but also

different probability density function (and their associated parameters). However, this

requirement to make a choice about the PI parameters is also its weakness, since the choice

is noncanonical [35].

A more detailed, step-by-step procedure to construct PLs and PIs from PDs can be found in

the literature, see, for example, [19] Figs 6 and 7. Figs 5 and 6 show 0- and 1-dimensional PDs,

PLs and PIs for an example MNIST image, across selected filtrations.

In order to evaluate the noise robustness of PH, we are interested in computing the distance

between PH information of two images. These two images will, for example, be the non-noisy

and noisy version of an image. Different metrics can be considered on the space of any persis-

tence signatures. The most common distance between PDs is the Wasserstein distance:

WpðPD1; PD2Þ ¼ inf
t

X

i

kðbi; diÞ � tðbi; diÞk
p
1

 !1
p

; ð1Þ

where the infimum is taken across all bijections τ: PD1! PD2, and the sum across all
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Fig 5. Noise robustness of 0-dimensional persistent homology on an example image. Illustration of the effect of

various image transformations when the image is represented with its filtration function values (1st row of each

filtration), or 0-dimensional persistence diagram (2nd row), persistence landscape (3rd row), or persistence image (4th

row).

https://doi.org/10.1371/journal.pone.0257215.g005
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Fig 6. Noise robustness of 1-dimensional persistent homology on an example image. Illustration of the effect of

various image transformations when the image is represented with its filtration function values (1st row of each

filtration), or 1-dimensional persistence diagram (2nd row), persistence landscape (3rd row), or persistence image (4th

row).

https://doi.org/10.1371/journal.pone.0257215.g006
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persistence intervals (bi, di) 2 PD1 [42]. There exists a bijection between any two PDs, since it

is possible to add as many points on the PD diagonal as necessary [45]. This notion of distance

is popular in computer vision [49], and it is the common metric for optimal transportation

problem [50] (with a bijection τ from PD1 to PD2 corresponding to a transport plan). In the

computational experiments, we will consider the Wasserstein W2 metric between PDs, and the

l2 = k�k2 metric for the vector persistence signatures PLs and PIs. The parameter p in both Wp

and lp determines the importance of long compared to short distances.

Furthermore, for a chosen p, the choice of persistence signature also influences the impor-

tance of cycle lifespans. Indeed, it is easy to see that the Wasserstein Wp
p and lpp distances

between PDs and PLs or PIs corresponding to PH1 = {(b, d)} and PH2 = ; reflect (d − b)p, (d −
b)p+1 and ρp(b, d − b). Since we consider ρ(b, d − b) = (d − b)2 as the weight function for persis-

tence images, this means that the cycles that persist for a short time matter the least for PIs,

and the most for PDs (Table 1).

The choice of persistence signature, and the corresponding metric, therefore has an impor-

tant influence on the noise robustness and discriminative power of PH, although, surprisingly,

little research has been carried out in this area before [51]. Recently, [51] evaluated the overlap

between the lp distances between persistence landscapes and persistence images, and the Was-

serstein Wp distances between persistence diagrams, on three different datasets (including

MNIST images). The results clearly show that the distances between vectorized persistence

summaries greatly differ from the distances between PDs. Another recent and detailed investi-

gation of the distance correlation between different persistence signatures can be found in

[52]: the authors conclude that the considered signatures are “same but different”, as they com-

monly contain the same information, but are shown to yield different results from statistical

analyses since they lie in different metric spaces. In addition, the classification accuracy is

shown to vary greatly when distances between shapes are given by the distances between their

PDs, PLs or PIs in [35, Table 1].

Some other persistence signatures have been introduced in the literature, such as: Betti

numbers (across scales) [53, 54]; silhouette [55], which combines all layers of persistence land-

scape functions into a single, weighted average function, with greater weight assigned to fea-

tures with longer lifespans [9]; persistence intensity function [56], which is evaluated on a grid

to obtain a persistence image [9]; or Euler characteristic, the difference between the number of

connected components and the number of holes (across scales) [24]. As already indicated in

the Introduction, persistent homology information can also be summarized with a scalar, for

instance with: amplitude, distance from empty persistence diagram [36]; entropy, a real num-

ber calculated using the lifespans of all features [36], which thus only depends on the persis-

tence but not on the particular birth or death times; or an algebraic function of bi and di − bi,

Table 1. Persistent homology across signatures.

Persistence signature Limiting behaviour of δ2(PH, ;)

PD O(l2)

PL O(l3)

PI, with weight function ρ(b, l) = l2 O(l4)

The choice of persistence signature, and the corresponding metric, determines how sensitive PH is to cycles (b, d)

with short persistence, or lifespan, l = d − b. The table lists the limiting behaviour, or growth rate, of the function

δ2(PH, ;) = δ2({(b, d)}, ;) = f(d − b) = f(l), where distance δ represents the Wasserstein W2 distance between

persistence diagrams, or l2 distance between persistence landscapes or persistence images. The growth rate reflects

the importance of a cycle with lifespan l, which influences the noise robustness and discriminative power of PH.

https://doi.org/10.1371/journal.pone.0257215.t001
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e.g.,
P

bp
i ðdi � biÞ

q
; so that p and q determine the importance of some of the qualities about

cycles (e.g., size of holes) [57]. To avoid the difficult task of choosing among the “zoo of persis-

tence signatures” [52], one can learn the best vector summary of persistence diagram (with

e.g., PersLay, a simple neural network layer [58], or ATOL, an unsupervised vectorization

method [59]). We do not adopt this approach, as our goal is to illustrate the differences in the

noise robustness of PH across signatures. For this purpose, we investigate their behaviour sep-

arately, and limit our study to common persistence signatures.

Stability theorems

Stability theorems are among the most important results in applied and computational topol-

ogy [42], as they may be viewed as a precise statement about robustness to noise [45]: stable

representations of PH are not sensitive to noise in the input.

More precisely, for persistence diagrams calculated with respect to filtration functions ϕ
and ψ, a stability theorem ensures that there exists a constant c 2 R such that:

WpðPDð�Þ; PDðcÞÞ � ck� � ckp:

The stability of PDs was first proved for p =1 (the easiest case, since W1 is the least sensitive

to details in the diagrams [5]), under some mild conditions on the underlying space S and the

filtration functions ϕ and ψ [45, 60, 61]. A few years later, the stability was shown to hold for

large enough p and under additional assumptions [49], and recently, for any p [42].

A stability theorem for other persistence signatures PH states the following:

kPHð�Þ � PHðcÞkp � cWpðPDð�Þ; PDðcÞÞ:

Persistence landscapes are shown to be stable for large enough p [47, Theorem 13, Theorem

16], but this fails to be true for p = 2 [42, Theorem 7.7]. Stability of persistence images holds

for p = 1 (under some assumptions on the weight function ρ) [35], but not for p = 2 [62, Theo-

rem 3], [35, Remark 6].

In the remainder of this section, we discuss the importance of the choice of filtration, signa-

ture, and dataset in the interpretation of stability theorems, that is often overlooked in the liter-

ature. This discussion then motivates our computational experiments in the next section.

Stability theorems and the choice of filtration. The choice of filtration plays a crucial

role in the existence and practical value of stability theorems. First of all, in order for the stabil-

ity theorem to hold for a particular filtration, the filtration function must satisfy the underlying

assumptions.

Second, note that the stability theorems ensure that PH is robust under minor perturbations

of its input—filtration, and not under minor perturbations in the data space itself. Small

changes in the space do not always imply small changes in the filtration function, so that stabil-

ity theorems provide no guarantee of robustness in such a scenario. For instance, if Z0 is
obtained by changing the image Z only slightly, kdXðZ;z0Þ

� dXðZ0 ;z0
0
Þkp can be large (and it corre-

sponds to the Gromov-Hausdorff distance between point clouds X(Z, z0) and XðZ0; z0
0
Þ; for

p =1 [63]). Although PDs are theoretically stable with respect to the Rips filtration (with

the distance function dXðZ;z0
: Rn
! R as its filtration function), the upper bound for

WpðPDðdXðZ;z0Þ
Þ; PDðdXðZ0 ;z0

0
ÞÞÞ is so large that it makes little sense in practice: these PDs are sen-

sitive to outliers.

Finally, stability theorems are worst-case results, as they do not necessarily ensure tightness

of the upper bound provided for the distance between PH information. This is true even if

small perturbations in the data result only in small perturbations of the filtration. Let us
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consider an image Z, and another image Z0 obtained with some transformation π: Z! Z0. If

we apply the stability theorem to the space Z and filtration functions �grsc : KðZÞ ! R and

cgrsc ¼ �grsc � p : KðZÞ ! R; the right-hand side in the stability theorem kϕgrsc − ψgrsckp (and

this change in the greyscale values precisely corresponds to the change in the image) is an

upper bound for the change in PDs.

If Z is the MNIST image of digit 6, and Z0 the same image but with one pixel changed from

black to white (Fig 4), then kϕgrsc − ψgrsckp = 255 is sufficiently large to allow to change

PD(ϕgrsc) with one hole to PD(ψgrsc) with no holes. However, if Z is the MNIST image of a

digit 0, and Z0 the same image but with one pixel changed from white to black (Fig 4), we again

have kϕgrsc − ψgrsckp = 255 but PD remains unchanged. As another example, we can consider

Z0 to be the translated image Z, when kϕ − ψkp is large for both the greyscale or radial filtration

function. However, Wp(PD(ϕ), PD(ψ)) is zero when ϕ is greyscale (as PDs then only register

the number and brightness of cycles), but it is large for the radial filtration function (which

also captures the position of cycles).

Stability theorems and the choice of persistence signature. It is clear from the introduc-

tion of this section that stability theorems only hold for some signatures, and some metrics.

We already mentioned that PLs and PIs are shown not to be stable with respect to the l2 metric

in [42], although this is the standard choice in applications, when it is commonly assumed that

these are stable representations. This is one of the reasons why [42] recently emphasized that

“the stability theorems are one of the most misunderstood and miscited results within the field

of topological data analysis”. It is, however, interesting to see if the stability holds in practice,

and to which degree.

Stability theorems and the choice of dataset. If the stability theorem holds for a chosen

filtration and persistence signature, it does not imply the noise robustness of PH features in a

classification task—this depends on the application domain, i.e., the choice of dataset.

Let us go back to the example of Z being the MNIST image of digit 6, and Z0 being the same

image but with one pixel changed from black to white (Fig 4). As already indicated, the upper

bound for the greyscale filtration is large enough to allow to change PD(ϕgrsc) with one hole to

PD(ψgrsc) with no holes. This is problematic for the classification of the MNIST dataset using

PDs, since any image contains none, one or two holes, but it would pose less of an issue if there

is a greater variety in the number of holes across data classes.

Results and discussion

We start this section by describing the dataset of greyscale images, and the different types of

noise considered in our experiments. In the next subsection, we investigate how sensitive the

persistent homology information is to these types of noise, by evaluating the distance between

PH for noisy and non-noisy images. This information, however, only paints a part of the pic-

ture, since in practical use cases, the PH information must also vary sufficiently among data

points in order to form discriminative features in e.g., classification tasks. In the final subsec-

tion, we thus investigate the noise robustness of persistent homology together with its discrim-

inative power, by evaluating the drop in classification accuracy when the test data consists of

noisy, compared to non-noisy images.

(Noisy) datasets

We consider the MNIST dataset [64], as it is a well-defined benchmark of greyscale images,

and the shape of each of the digits is well understood. To reduce the computation time, we

restrict the study to the first 1000 images in the dataset. We investigate three types of affine

transformations, changes in image brightness and contrast, and three types of pure noisy
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transformations, each at two different levels, and in different directions, if applicable (Table 2).

The greyscale pixel values are clipped to the interval [0, 255].

For every (non-noisy and noisy) dataset, i.e., for each image in each of the datasets, we cal-

culate the values of filtration functions on each pixel, and the 0- and 1-dimensional persistent

homology information with respect to all considered filtrations and persistence signatures

(with the specified values of the parameters) using the python GUDHI library [65]. For

0-dimensional homology, we truncate the death value of infinite intervals to the maximum

finite death value for the given filtration function, across all transformations.

Noise robustness

The goal of this section is to understand in what way, and to which degree, is the persistent

homology information sensitive to noise, across different filtrations and persistence signatures.

In order to address this question, we start by visualizing the different filtration functions and

persistent homology information for an example MNIST image, under different data transfor-

mations (Figs 5 and 6). We can conclude the following.

• affine transformations (rotation, translation, stretch-shear-reflect): PH on binary and grey-

scale filtration remains unchanged under any affine transformations, since it only registers

the number and brightness of cycles (it is a topological invariant). Note, however, that the

affine transformations sometimes slightly disturb the greyscale values in the computational

experiments, so that, e.g., some cycles can appear or disappear in an image (see, for

instance, the additional one-pixel hole for the binary filtration under rotation 45 in Fig 6).

Under stretch-shear-reflect, the density along and within a hole changes, which results in a

change of birth and death values for 1-dimensional cycles with respect to the density filtra-

tion. Radial filtration function captures the position of the cycles, so that the birth and

death values of cycles can also change significantly under any affine transformation. PH on

Table 2. Image noise.

Transformation Definition of transformation

rotation Rotation by 45 degrees clockwise (rotation 45), or 90 degrees counter-clockwise (rotation

-90).

translation Translation by 1 pixel right and down (translation 1 1), or 2 pixels left and up (translation

-2 -2).

stretch, shear and

reflect

Stretch, shear and flip respectively by a factor of 1.5 (i.e., an image is scaled down by factor

of 1.5 in the x direction, whereas it remains unchanged in the y direction, so that the image

is stretched), 10 degrees and horizontal (stretch-shear-flip 1.5 10 h), or by a factor 0.75, -20

degrees and vertical (stretch-shear-flip 0.75 -20 v).

brightness -50 or 100 is added to the greyscale value of each pixel (brightness -50 and brightness 100,

respectively).

contrast Greyscale value of each pixel is multiplied with 2 or 0.5 (contrast 2 and contrast 0.5,

respectively).

gaussian noise Random noise drawn from normal distribution N ð0; 10Þ or N ð0; 20Þ is added to the

greyscale value of each pixel (gaussian noise 10 and gaussian noise 20, respectively).

salt and pepper noise 5% or 10% of random pixels in an image are changed, with equal probability, to either

white (i.e., salt) or black (i.e., pepper) (salt and pepper noise 5 and salt and pepper noise 10

respectively).

shot noise Greyscale value of each pixel is replaced with a random number drawn from the Poisson

distribution, with the distribution mean corresponding to the original greyscale pixel value,

scaled down with a factor 50 (shot noise 50) or 100 (shot noise 100), as Poisson distribution

is spread out more for lower means. Since the Poisson distribution with mean zero is equal

to zero, the shot noise only changes non-white pixels.

https://doi.org/10.1371/journal.pone.0257215.t002
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Rips and DTM filtration is robust under rotation and translation. However, PH with Rips

and DTM filtration captures the size of cycles, and is thus sensitive to affine transforma-

tions that rescale the image. For instance, under stretch-shear-reflect that enlarges a digit,

the number of point cloud points increases, resulting in many additional short persisting

0-dimensional cycles for these filtrations. The death value of 1-dimensional cycles for Rips

and DTM filtration also changes under stretch-shear-flip, as the PH in this case reflects the

size of the hole.

• brightness: PH on binary and radial filtration does not see important changes if the bright-

ness of an image is adjusted. However, a change in image brightness does result in changes

of the birth or death values in 1-dimensional PH on greyscale or density filtration, and addi-

tional cycles can be captured with density filtration. A change of thickness of a digit also

results in additional 0-dimensional cycles for Rips and DTM filtration, that are of short per-

sistence, but there are many. For these filtrations, there is also a minor change in the death

value for 1-dimensional cycles, as it captures the size of the hole that can change under a

change in brightness.

• contrast: PH with respect to most of the considered filtrations is invariant under changes in

the contrast of an image. The only exception is 1-dimensional PH with greyscale filtration,

where the birth or death value of cycles can change.

• salt and pepper noise: Gaussian, salt and pepper, and shot noise change the greyscale value

of some random pixels. For each black pixel on a white background in the salt and pepper

noise, a new one-pixel connected component (a long persisting 0-dimensional cycle) appears

for PH on binary, greyscale, and radial filtration. If a pixel in a neighbourhood of black pixels

is changed to white, an additional long persisting 1-dimensional cycle (one-pixel hole) can

appear for PH on these filtrations. Also, an existing hole in the non-noisy image may become

disconnected in the noisy image, and thus not registered. The additional 0-dimensional

cycles are all born at birth value 0 for PH on Rips filtration, but they die earlier (as soon as

they are connected to another point cloud point), so that Rips is more robust under this

transformation, but still severely impacted by the outliers. One-pixel or disconnected holes

are not an issue for PH on Rips filtration, but the death value of 1-dimensional cycles can

decrease due to the additional pixels within a hole (see also the image of digit 0, and the

same image with a single outlier in Fig 4). PH on DTM filtration is significantly more robust

to salt and pepper noise, as the outliers are “washed out”.

• gaussian noise: The gaussian noise produces similar type of perturbations as the salt and pep-

per noise, but the change in the greyscale value is much less prominent, so that no additional

cycles are typically seen with the binary or radial filtration (which take the binary image as

input), and have a very low persistence for the greyscale filtration.

• shot noise: Shot noise only changes the non-white pixels (to lighter or darker), so that a digit

might become disconnected into a few components, a hole might become disconnected, and

many one-pixel holes may appear. The additional 0-dimensional cycles have a long lifespan

for binary and radial filtration, but they are short for PH on greyscale filtration (or more pre-

cisely, they are directly related to the strength of the change of the greyscale pixel values) and

density filtration. 1-dimensional PH with these filtrations exhibits similar behaviour. As

already mentioned, PH with Rips and DTM filtration is more robust under this type of

noise, since disconnected components or holes can still be captured, as the Rips and DTM

filtration connect non-neighbouring pixels with a sufficiently large edge (resolution r in the

filtration).
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PDs, PLs and PIs reflect the same information about the cycles, and Figs 5 and 6 show that

they change accordingly. However, without considering the metric on these spaces of persis-

tence signatures, we cannot derive any insights regarding the difference in the noise robustness

from these figures.

Furthermore, the major part of the discussion above is based only on a single example data

point. We therefore calculate the (l2 or W2) distance between each image in the dataset, and its

noisy variant, when images are represented with their filtration functions or persistent homol-

ogy information (Table 3). The results on the complete dataset align well with the findings

discussed above for an example image. In addition, Table 3 clearly shows that, for any given fil-

tration and homological dimension, there is a relative difference between PDs, PLs and PIs in

robustness under various transformations. For instance, 0-dimensional PH on Rips filtration

is more sensitive to salt and pepper than shot noise for any persistence signature, but this dif-

ference is much more pronounced for PLs, and in particular for PIs, compared to PDs.

Finally, Table 3 implies that stability theorems do not necessarily provide useful informa-

tion about the stability in practice. For example, under rotation and gaussian noise, the average

value of kϕgrsc − ψgrsck2 is respectively equal to 2707.85 and 412.55. However, we see that the

distance between PH on noisy and non-noisy images is close to zero for rotation, but it is

much larger under gaussian noise.

Noise robustness and discriminative power

In the previous section, we assess the distances between images and their noisy version. In

practical applications, however, these distances ought to be compared to the distances between

the images in (other classes of) the dataset, which reflect the discriminative power in a classifi-

cation task. Therefore, in this section, we discuss the noise robustness together with the

discriminative power of persistent homology, across different filtrations and persistence signa-

tures, for non-noisy and noisy datasets.

In order to do so, we investigate how much the performance of a classifier (more specifi-

cally, a Support Vector Machine (SVM)) drops when noise is added to the dataset. Since PDs

are multi-sets, we use an SVM with a gaussian kernel:

kðZ;Z0Þ ¼ e�
d2ðZ;Z0 Þ

2s2 :

For two images Z and Z0, δ(Z, Z0) corresponds to the Wasserstein W2 distance between their

PDs, or the l2 distance between their filtration function values, PLs or PIs. Note that the space

of PDs with Wasserstein metric is not of negative type [52, Theorem 3.2], so that this kernel is

not an inner product [66].

For each representation of the images, the SVM regularization parameter (typically noted

as C, which trades off correct classification of training examples against maximization of the

decision function’s margin) and the kernel parameter σ2 are first tuned using 5-fold cross vali-

dation on the training set of 70% non-noisy images. We consider C 2 {10−1, 100, 101, 102}, and

g ¼ 1

2s2 2 f10� 7; 10� 6; 10� 5; 10� 4; 10� 3; 10� 2g. As we are focused on noise robustness, we cal-

culate the relative decrease in accuracy for noisy compared to non-noisy test data (the remain-

ing 30% of images in the dataset). The results are summarized in Fig 7.

We observe that there is at least 35% drop in SVM accuracy, when images are represented

with PH, in the following scenarios:

• affine transformations: PH on radial filtration under any affine transformation, and PH on

Rips and DTM for stretch-shear-flip.

• brightness: PH on greyscale, Rips and DTM filtration.
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Fig 7. Noise robustness and discriminative power of persistent homology on 1000 MNIST greyscale images. The figure

shows the drop in SVM classification accuracy when the test dataset is noisy, compared to the non-noisy test set, averaged

across 1000 images in the MNIST dataset. Each image is represented either with its filtration function values (1st row of each

filtration), or with its 0- or 1-dimensional persistence diagram (2nd and 5th row), persistent landscape (3rd and 6th row) or

persistent image (4th and 7th row). The size of the node reflects the absolute accuracy on the non-noisy test data. The colour of

the node reflects the accuracy drop, indicated in the colour bar. In particular, the presence of red nodes for PH information

(2nd to 7th row) implies that PH is not robust under any type of noise, for any filtration and persistence signature.

https://doi.org/10.1371/journal.pone.0257215.g007
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• contrast: PH on greyscale filtration.

• gaussian, salt and pepper, shot noise: There is a drop in SVM accuracy for all filtrations

under salt and pepper or shot noise. For gaussian noise, the drop in accuracy is negligible for

PH on all but the greyscale filtration.

The drop in accuracy also varies for different persistence signatures. For example, 1-dimen-

sional PLs on Rips filtration are more sensitive to salt and pepper noise than PDs.

We note, however, that if the classification accuracy on the non-noisy data is low, the loss

in performance is limited. For instance, 0-dimensional PH with respect to the binary filtration

yields an accuracy of only 10% (not better than a random guess), as it only counts the number

of components (Fig 4), and every digit 0–9 commonly consists of a single component. This is

why there is no drop in accuracy when SVM is tested on images under salt and pepper noise

(Fig 7), although this transformation results in an image with many additional connected com-

ponents (Fig 5) and thus significantly changes PH on binary filtration. In these cases, however,

the drop in accuracy gives us no reliable information about noise robustness.

When images are represented with their filtration function values on each pixel (including

thus the original representation of an image as a vector of greyscale pixel values), the SVM per-

formance is significantly worse for test data consisting of images with affine transformations.

However, the performance is relatively stable under changes in image brightness or contrast,

or under noisy transformations (with some exceptions). This is an opposite trend compared to

PH, which is often robust under affine, but sensitive under noisy transformations (with a sig-

nificant difference across filtrations and persistence signatures). Even though PH is often

reputed for its robustness to noise [36], if data is expected to contain gaussian, salt and pepper

or shot noise, the raw representation of images with their greyscale pixel values is robust to

noise (there is no drop in SVM accuracy compared to non-noisy data), while this is often not

the case for PH features.

Moreover, the absolute SVM accuracy on non-noisy data, when images are summarized

with any persistence signature with respect to any filtration cannot compare with the represen-

tation of an image with its filtration function values, which contains more detailed geometric

information about the image. Indeed, persistent homology only captures information about

cycles in an image, and for most of the filtrations, it can only differentiate between two and

three classes among the ten MNIST digits 0–9. The classification accuracy can be significantly

improved by concatenating PH across different signatures, homological dimensions and/or fil-

trations (e.g., a combination of PH on radial and Rips filtration captures both information

about the position and size of cycles, and can thus discriminate better across classes). For

instance, a set of only 28 features obtained from concatenated persistent homology informa-

tion is shown in [36] as sufficient to attain better classification accuracy than the set of grey-

scale pixel values. An alternative approach to simultaneously exploit PH from multiple

filtrations is multi-dimensional persistence [67]. Since our goal is to gain insight into the noise

robustness of individual PH representations, rather than maximizing the performance of clas-

sifiers, such an analysis is out of the scope of this work. However, under some types of transfor-

mations, the SVM accuracy is better for some PH features (even without concatenation across

filtrations or signatures) compared to the raw representation with greyscale pixel values.

Conclusions, limitations and future research

Persistent homology, information about connected components, holes, and cycles in higher

dimensions, is commonly characterized in the literature as a topological summary robust to
noise. The main motivation behind this paper is to illustrate how misleading this description
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can be, particularly for practical applications. We show that the validity of such a characteriza-

tion, in theory, depends strongly on the choice of filtration and persistence signature (input

and output of PH), and in practice, also on the particular application domain.

First of all, we emphasize that the type of information PH captures about cycles, is deter-

mined by the choice of filtration. For some filtrations, this information is only of topological
nature, but for others, some geometric information can be captured as well. Topological invari-

ants are robust under affine transformations, but the same does not necessarily hold for geo-

metric invariants, so that the choice of filtration directly influences the noise robustness of PH.

Moreover, we underline how stability theorems, which provide a theoretical guarantee of

the noise robustness of PH, depend on the choice of filtration and persistence signature, as well

as the distance metric between them. Firstly, stability theorems make some assumptions about

the filtration function, e.g., the function must be tame (the corresponding persistence diagram

has finitely many off-diagonal points [60]), monotonic, continuous, Lipschitz or piecewise con-

stant. Secondly, the robustness of PH is only guaranteed under small changes of the input—the

filtration, rather than small changes in the space itself. For instance, if one background white

pixel in an image is changed to black, the distance between the filtration functions for the com-

mon Vietoris-Rips filtration between these two images is large, and indeed, PH with respect to

the Rips filtration is sensitive to such outliers. Furthermore, the statement of stability theorems

is restricted to the particular choice of persistence signature and metric. This is often over-

looked in the literature: e.g., it is common to employ persistence landscapes or persistence

images and the euclidean metric, whereas the stability theorems do not hold in such scenarios.

Finally, even if a stability theorem holds for the particular choice of filtration and persis-

tence signature, it does not imply that PH yields noise-robust features in a classification task—

this is domain and application-specific. For instance, changing a single pixel in an image from

black to white can result in an additional one-pixel hole, which can be persistent for some fil-

trations. This change in PH is substantial if the number of holes does not vary greatly across

classes of data, when the presence of such noise can be expected to deteriorate the classification

accuracy. Reversely, even if there is no theoretical guarantee of the stability of PH for the given

filtration and signature, it is interesting to evaluate the noise robustness in practice. To gain a

better understanding of the noise robustness of PH, we carry out some computational experi-

ments on the well-known MNIST dataset of greyscale images, under some common types of

noise to be expected on such data. We conclude that there is a considerable drop in accuracy

of SVM trained on PH information of non-noisy and tested on noisy data, for at least 0- or

1-dimensional PH, for at least one of the considered signatures:

• rotation and translation: radial

• stretch-shear-flip: radial, Rips, DTM

• brightness: greyscale, Rips, DTM

• contrast: greyscale

• gaussian noise: greyscale

• salt and pepper, and shot noise: binary, greyscale, density, radial, Rips, DTM.

There is often also an important difference in the drop in accuracy across PDs, PLs and PIs.

Taking all the above into consideration, it is clear that one needs to be more careful when

referring to persistent homology as a noise-robust topological invariant: this is only true for

some filtrations and signatures, and even in such cases, the stability of PH does not necessarily

imply that the presence of noise will not weaken the discriminative power of PH features.
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The main findings of this paper provide some guidelines on the choice of suitable filtration

(s) and persistence signature(s), and the corresponding metric, for the given dataset and

expected types of noise. Some important questions that should be addressed when using per-

sistent homology are the following:

• choice of filtration: What information about cycles (number, brightness, position, size) is dif-

ferent across classes of data, but does not change much for the expected type of noise? Does

the filtration function satisfy the assumptions in the stability theorem? Do small changes in

the data result in small changes in the filtration function?

• choice of persistence signature: Is the signature stable? Are the cycles with the longest persis-

tence or lifespan the most important (i.e., should cycles with short lifespan be considered as

noise)? If this is not the case, it is a good idea to use a flexible signature which allows cycles

of e.g., medium persistence to be the most crucial (such as PIs with an appropriate weight

function, what is not immediately possible with PDs or PLs). How critical are the important

compared to unimportant cycles? Which statistical or machine learning methods do we

want to apply to PH? If PH does not need to be summarized as a function or vector, it might

be sufficient to use PDs. How important is computational efficiency? If the computation

time is limited, it might be useful to avoid PDs and the expensive calculation of Wasserstein

distances.

• choice of metrics: Is the signature stable? How critical are the important compared to unim-

portant cycles? The greater the p, the bigger is the difference across cycles, for both Wasser-

stein Wp or lp metric, i.e., PH is less sensitive to unimportant cycles.

In summary, the choice of filtration defines the persistence of different types of cycles (e.g.,

for PH with Rips filtration, small cycles have short persistence), the choice of signature defines

which cycles are least important or noisy (e.g., these are typically the cycles with short persis-

tence), and together with the choice of metric determines the level of sensitivity to noisy

cycles.

Our findings are limited to the particular setting in our computational experiments: the

choice of filtrations and persistence signatures, and their parameters, the choice of metric,

dataset, noise, and classifier. For future research, it would be interesting to revisit similar

research questions, but in a different context, e.g., for a different dataset. The MNIST images

of digits 0–9 all typically have one connected component, and none, one or two holes. Both

noise robustness and classification accuracy are expected to be better for datasets where the

number (but also other properties such as size) of cycles differ greatly across classes, such as

images with complex structure which come from materials science, astronomy, neuroscience,

plant morphology (e.g., images of cosmic web, protein networks, brain arteries, plant roots).
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