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Abstract: Remaining useful life is of great value in the industry and is a key component of Prognostics
and Health Management (PHM) in the context of the Predictive Maintenance (PdM) strategy. Accurate
estimation of the remaining useful life (RUL) is helpful for optimizing maintenance schedules,
obtaining insights into the component degradation, and avoiding unexpected breakdowns. This paper
presents a methodology for creating health index models with monotonicity in a semi-supervised
approach. The health indexes are then used for enhancing remaining useful life estimation models.
The methodology is evaluated on two bearing datasets. Results demonstrate the advantage of using
the monotonic health index for obtaining insights into the bearing degradation and for remaining
useful life estimation.

Keywords: predictive maintenance; health index; remaining useful life estimation; bearing degrada-
tion; applied machine learning

1. Introduction

Health assessment (HA) and remaining useful life (RUL) estimation of mechanical
components is a key task in Prognostics and Health Management (PHM). Accurate PHM
models allow improvements in terms of quality, safety, maintenance scheduling, and cost re-
duction.

PHM techniques are grouped into three categories: model-based or data-driven and
hybrid [1–3]. Model-based methods use analytical or physical models to approximate the
component’s behavior and its degradation. Their main advantage is high accuracy and
capability of simulating diverse scenarios, such as operating conditions or different compo-
nent specifications, without actually having to run a physical experiment. However, real
degradation processes are stochastic and can occur within multiple parts of the component,
which makes them hard to model. In addition, the increased use of sensors in industries has
led to an increased interest in data-driven techniques. Data-driven models use monitoring
information to create models that approximate the component behavior and degradation.
These models can be either statistical or machine-learning-based. Data-driven models
overcome some of the model-based limitations as they require no expert knowledge and
can infer degradation and failure from the data without having to specify the failure type.
However, their main limitation is the considerable amount of data required; in addition,
these models have limitations when exposed to conditions that are not captured in the
historical data. Finally, the hybrid techniques consist of a combination of model-based and
data-driven approaches with the aim of achieving a better trade-off between accuracy and
data requirements.

This paper presents a methodology for constructing PHM models for HA and RUL
prediction that handles the two main limitations of data-driven models; more specifically,
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they are functional in datasets with a small number of samples and features, and able to
account for unexpected conditions. In addition, the presented HA model follows a semi-
supervised paradigm that requires no labels or expert knowledge. Furthermore, the model
training induces monotonic behavior on the outputs.

This paper uses the bearing benchmarks from two test setups, namely the Pronostia
setup by the FEMTO-ST institute [4] and the Smart Maintenance Living Lab by Flan-
ders Make and imec [5]. Both test setups emerge from the necessity of having platforms
to conduct bearing experiments, generate degradation data under different conditions,
and validate prognostic models.

The paper is divided as follows. Section 1.1 presents an overview of related work.
Section 2 introduces the setups and datasets. Section 3 outlines the methodology, consisting
of the pre-processing, the health index construction, and the model training. Section 4
presents the results and discussion. Finally, Section 6 presents the conclusions.

1.1. Related Work

One of the goals of Industry 4.0 is the continuous monitoring of manufacturing
components. The trend of the Industrial Internet of Things (IIoT) has increased the number
of available sensors in the industry and facilitated the capture of large amounts of data,
which in turn has helped the development and deployment of data-driven models.

RUL modeling and prediction usually consists of a feature engineering step followed
by a statistical or machine learning model. Feature engineering steps include, among others,
generating time-based and frequency-based features, feature selection, and dimensionality
reduction. Feature selection is often done by evaluating monotonicity and trendability,
which are intuitive choices as they can be strongly correlated to degradation over time
in systems that do not experience recovery [3,4,6]. Alternatively, some methods focus
on modeling an auxiliary target that serves as a health index (HI) [3]. Usually, the HI
is a dimensionless value that represents the condition of the component. The HI can be
constructed based on expert knowledge or statistical models and designed to satisfy specific
requirements such as being bounded or monotonic. In some cases, the HI serves as an
intermediate step before RUL estimation [3].

Concerning a HI construction, previous work has focused on obtaining smooth indi-
cators by processing the input signals and selecting a feature or combination of features
that match the expected degradation behavior. Zhang et al. use single value decomposition
(SVD) to reduce multivariate sensor data, and then preserve only a limited number of com-
ponents [7]. The components are projections of the data that capture the main changes over
time and are used as HI. Mosallam et al. present a method that uses multiple time-based
features and Empirical Mode Decomposition (EMD) residuals as HI [8]. The proposed
HI is noise-free and able to detect early degradation. However, the results only include
selected bearings from the Pronostia dataset. Moreover, transformations in the data can
be used to induce monotonicity in the features. The cumulative sum of features is used in
combination with a particle filter for RUL estimation [9]. Although HIs are interpretable
and inherently correlated with time, they are unbounded, which usually leads to sharp
changes towards the end of life of the component. Previous work has also proposed models
with bounded HI curves. Wu et al. evaluated four possible degradation curves for the
Pronostia dataset [10]. The intermediate HI is modeled with different candidate functions,
such as linear, inverse hyperbolic tangent, quadratic, and parabolic. Their results point to
the inverse hyperbolic tangent being the best HI model. Although the results are good, it is
expected that a free form function could bring better results.

Although HIs are indicative by nature, their evaluation is hard to assess as there is
no reference value to compare with. Therefore, it is important to assess how informative
the HI is in PdM tasks, such as by evaluating on failure prediction or end of life estimation
tasks. In this work, the proposed HI is evaluated on its own as a tool for visual information
and condition monitoring and also used to derive additional features for RUL estimation.
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The RUL estimation is closely related to the HI. However, in this case, the target is
the actual time before the component breaks. The winners of the IEEE 2012 PHM Data
Challenge proposed three models: a moving average of the spectral kurtosis in combination
with Bayesian Monte Carlo estimation, which offers RUL estimations as histograms; a
second model that uses a set of extracted features that then are reduced using PCA and
modeled using least squares support vector regressor (LS-SVR); and, finally, a method
where anomaly detection (AD) is used in combination with curve fitting to approximate
degradation curves [11]. The AD approach is of particular interest as they use anomaly
counting to identify degradation stages. In some cases, the HI is used as an additional
feature for the RUL model. For example, an intermediate HI target is used to identify
similar behaviors and then perform RUL estimation [12]. However, no specifications of the
RUL model are available, and it only presents results for a single bearing of the Pronostia
dataset. Finally, Fractional Lévy Stable Motions have been used in combination with
clustering methods to create multi-mode models in which the different degradation stages
can be incorporated [13]. This is of particular interest as previous work has pointed out
how component degradation can be subject to changes in trends over time, and it can be
especially affected by maintenance or stop events.

More recently, deep learning techniques that make use of spatial information, such as
Convolutional Neural Networks (CNN), or time dependencies, such as Recursive Neural
Networks (RNN) and Long Short-Term Memory (LSTM), have been used. Pretrained CNN
are adapted using a genetic algorithms approach for the RUL estimation of punch tools [14].
The LSTM architecture is used to predict a HI and RUL [15]. The HI target corresponds
to the percentage of time before failure. However, a HI based on time may be prone to
information leakage and overfit, as it is inherently correlated to the target value. LSTMs
can also predict directly the RUL without the need of HIs [16]. The approach relies on
detecting the degradation onset and only then estimating the RUL. Using LSTMs gives the
advantage of capturing temporal dynamics. In addition, restricting the prediction of RUL
to the time after onset reduces the bias in long runs. However, only the results for a single
bearing are presented. Finally, an LSTM model with interpretable parameters is proposed
by Kraus et al. [17]. This method is evaluated on a different dataset than the one presented
here, but points towards the importance of interpretable models. Finally, more advanced
techniques such as graphical convolutional networks have been used as feature extractors
and combined with a temporal CNN for RUL prediction [18]. This last approach is highly
relevant as it shows how intermediate feature mapping proves beneficial for RUL models.
The authors select a subset of temporal features and obtain comparable results to the state
of the art in the PHM challenge. However, this work only considers temporal features.

Furthermore, imposing monotonicity has been investigated for problems where the
target variable needs to be monotonic with respect to one or multiple inputs [19]. This is
achieved in multiple ways, such as constraining a more flexible function to be monotonic,
post-processing the output to remove violations, modifying the penalty function of the
algorithms, or by pre-processing the variables and targets to impose monotonicity before
training. Most of the works concerning RUL estimation in bearings focus on creating and
selecting features based on a monotonicity criterion [6,8,9,15,16,20–22] or post-processing
the predictions to fulfill monotonicity [23]. Similar to this approach, structural learning has
been used to leverage temporal relations in time series data to induce consistency between
continuous predictions [24] and impose monotonicity [25].

To summarize, most of the published works use feature engineering to generate a set
of variables that are close to monotonic and have a trend correlated with time. However,
the obtained features may not necessarily be monotonic, can contain great fluctuations,
and tend to have abrupt changes towards the end of life. In addition, the use of bounded
targets has not been investigated in detail, which can help for generalization purposes and
offers the possibility for adequate thresholding and calibration. The proposed methodology
overcomes most of the previously found limitations.



Sensors 2022, 22, 1590 4 of 22

The presented HI-RUL method consists of three stages. First, the HI targets are
generated offline using structural learning. These targets are, by design, bounded and
monotonic. Second, a HI model is trained across all bearings for better generalization.
The HI predictions are used to detect degradation onset and reduce the datasets to the
degradation phase for the RUL modeling. In addition, a set of features derived from the HI
are created to keep track of anomalous events. Finally, the RUL model is trained on the
reduced datasets using a set of statistical and model-based features. The RUL models are
further improved by adding the HI-derived features.

More importantly, the methodology specifically (1) removes the need of assuming the
degradation curve mode and instead infers one based on the time behavior of the features,
such as trendability and smoothness; (2) provides HI values that are easy to interpret
and able to detect events of interest, such as sudden changes and the degradation onset;
(3) generalizes the offline HI curves using a machine learning model to allow predictions
on unseen data, and (4) leads to HI values that are proven to improve the RUL predictions.

2. Setups and Datasets
2.1. Pronostia Dataset

The IEEE PHM 2012 Prognostic Challenge dataset comes from the Pronostia plat-
form [4]. The dataset contains recordings of vibration data and other operational parame-
ters, such as load and shaft rotational speed. The bearings are tested under different loads
and speeds. Table 1 summarizes the conditions and the number of datasets available. Each
dataset starts with a bearing, which is run until failure. The total running time ranges
from 1 up to 7 h. The dataset contains no information concerning the failure mode of
each bearing. It is only reported that each degraded bearing contains defects in all the
components: balls, rings, and cage. Vibrations are measured with two accelerometers
placed at 90◦ orientation to measure both vertical and horizontal vibrations. The sampling
frequency is 25.6 kHz. Temperature is also recorded for some bearings. Although the
temperature is a good metric for condition monitoring, it is not included in this analysis as
not all datasets include it. There is no information available concerning the failure or stop
condition but previous work has pointed out that, from visual inspection, it seems to be
reaching a vertical acceleration of either 20 g [26] or 30 g [21].

Table 1. Summary of the Pronostia dataset.

Condition Load (N) rpm Number of
Train Bearings

Number of
Test Bearings

1 4000 1800 2 5
2 4200 1650 2 5
3 5000 1300 2 1

Predicting RUL for the Pronostia dataset is considered challenging due to the small
learning set and the high variation in running times. In addition, the creators of the
challenge report that theoretical models based on frequency signatures, such as inner and
outer race frequencies, do not provide good results. Frequency-based models focus on
analyzing only a limited amount of frequency bands, but, in practice, degradation occurs
on multiple components and therefore has a complex signal across multiple frequencies [4].

2.2. Smart Maintenance Living Lab Dataset

The Smart Maintenance Living Lab (SMLL) is an open test research platform that aims
to support the adoption of condition monitoring technologies [5]. The platform consists
of a fleet of seven identical drivetrain setups that perform accelerated lifetime tests on
bearings. The fleet offers two advantages: first, it allows faster data collection; second,
identical drivetrain systems can have variability. Therefore, it offers the opportunity for
training and evaluating robust models [5,27].
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The dataset consists of tests under seven different setups with the same testing con-
ditions. There are in total 43 tested bearings, of which 38 are indented and 5 are healthy.
Indented bearings are meant to accelerate degradation. The indentation diameters are
within 400 ± 25 µm. The indent is small enough to allow the bearing to be considered
healthy at the beginning of the test but there is sufficient damage to guarantee that the
degradation onset occurs within some hours. The accelerometer data are sampled at 50 kHz.
The dataset contains multiple stop conditions, and multiple speed and load conditions;
in order to simplify the analysis, only a subset of the data is considered. The subset is
composed of bearings that were tested under the same speed and load, namely 2000 rpm
and 9 kN, and the same stopping conditions. In the case of healthy bearings, this is defined
as the moment when the temperature stabilizes and at least a period of two hours has
passed. For the indented bearings, the stop condition is 30 min after the peak to peak
vibrations exceed a magnitude of 5 g. Figures 1 and 2 show examples of the final bearing
condition after the accelerated life tests. Table 2 summarizes the dataset.

Figure 1. Bearing A43.

Figure 2. Bearing A47.
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Table 2. Smart Maintenance Living Lab dataset.

Setup Load (N) rpm Healthy Bearings Indented Bearings

1

9000 2000

3 6
2 1 7
3 1 2
4 0 5
5 0 6
6 0 6
7 0 6

The vibrations are measured using accelerometers with a sensitivity of 100 mV/g with
±5% response deviation in the frequency range of 0.5 Hz to 5 kHz. The sampling rate is
50 KHz and each sample point corresponds to one second of captured data. Further details
of the setup can be found in the work of Ooijevaar et al. [5].

The dataset features are derived from the raw vibration signal and based on physical
properties or statistics. The raw signal is first filtered and demodulated as described in
Ooijevaar et al. [5,28]. Then, the features of interest are calculated on windows of one second.
Statistical features include the root mean square (RMS) and kurtosis. Physical features
include the ball pass frequency of the inner race (BPFI), the outer ring (BPFO), and the ball
defect frequency (BDF). These features correspond to the magnitude at specific frequencies
from the spectrogram representation obtained by using the Fast Fourier Transform (FFT)
method. Table 3 summarizes the features and presents the corresponding equations. These
features are selected based on previous results in which a larger set of 83 features were
generated and filtered using forward feature selection.

Table 3. Selected features, abbreviations, and equations.

Name Abbreviation Equation

Ball pass frequency of inner ring BPFI n fr
2

{
1 + d

D cosφ
}

Ball pass frequency of outer ring BPFO n fr
2

{
1 − d

D cosφ
}

Bearing defect frequency BDF D
2d

{
1 −

(
d
D cosφ

)2
}

Root mean square RMS
√

1
N ∑[x(n)]2

Kurtosis - ∑i x4
i

(∑k x2
k )

2

Peak to peak - max[x]− min[x]
Where: n Number of rolling elements, fr shaft speed, φ angle of the load from the radial plane, d diameter of the
rolling element, D the pitch diameter. For BPFI, BPFO, and BDF, the equation provides the frequency of interest
from the spectrogram obtained after the FFT of the windowed signal. For RMS, kurtosis, and peak to peak, x
corresponds to a window of 1 s of the vibration signal.

3. Methodology

This section presents the methodology to generate and validate the HI and the RUL
estimation models. Figure 3 presents the pipeline of the proposed methodology, which
is divided into a training and testing phase. For training purposes, the pipeline consists
of (a) the feature extraction, which is described in Section 3.1, followed by (b) generating
the offline HI targets using semi-supervised learning, which is described in Section 3.2, (c)
the HI modeling, which is described in Section 3.3, and (d) the RUL modeling, which is
described in Section 3.4. The pipeline evaluation is the same, with the only difference being
that the offline HI targets are not generated. Finally, this section ends with the specifications
for the parameter tuning and validation in Section 3.5.
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Figure 3. Overview of the pipeline.

3.1. Feature Extraction

In order to obtain comparable results between both datasets, the features present
in the SMLL dataset are calculated for the raw signals of the PHM dataset. Common
statistical features, including RMS, kurtosis, peak-to-peak value, etc., are calculated from
the raw vibration signals. The physics-based features are calculated from the enhanced
envelope spectra after removing disturbances from other machine components such as
shafts and gears [29]. Since the PHM Pronostia dataset consists of signals of short du-
ration, the strength of the model-based features cannot be fully exploited. Despite this,
the statistical features (i.e. kurtosis, RMS) are still valid, and the model-based features
are informative.

3.2. Semi-Supervised Health Index

To obtain better RUL predictions, an intermediate health index is introduced. This
index is related to the bearing condition and inferred from the data. The index should be
monotonic with respect to time, without using the time itself as a feature to avoid overfitting.
In addition, it should be shape-free so as to not impose assumptions on the degradation
rate. The modeling is based on the assumption that, during operation, a bearing condition
cannot recover: once damage has initiated, the bearing will continue to degrade until
failure. In addition, the index is bounded to allow interpretability and calibration. There
exist many functions that can fulfill these requirements. Figure 4 shows some examples.
The important elements of the desired function are as follows: an initial flat stage where
no degradation has been detected, followed by the degradation onset, and ending with a
trend that describes the degradation according to flexible shapes.

Figure 4. Possible degradation curves with different degradation onset times, degradation rates,
changes in the degradation rate over time, and lifetime ends.

The proposed health index is based on structural learning [24,25] and pseudo-labels [30].
Under the pseudo-label paradigm of Lee et al., only a small amount of samples have labels
and a large amount of samples have unknown labels. The samples with unknown labels are
assigned an initial pseudo-label based on their similarity with labeled samples. The training
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then iterates between (1) updating the classifier using the pseudo-labels and the known
labels, and (2) updating the pseudo-labels using a given classifier. This approach has
commonly been used with large image datasets where a number of images are manually
labeled and the rest are unlabeled [30,31]. The structural learning approach is a variation of
the pseudo-labels by Lee, in which the pseudo-labels are applied on a whole group instead
of individual instances, which facilitates the application of constraints. For example, if a
set of samples is ordered in time, one can impose a loss function that penalizes the models
for having consecutive samples with different labels [24]. In the case of time series with
continuous spaces, the constraint can instead be monotonicity [25]. Finally, although the
original pseudo-label publication and related ones focus on deep neural networks [24,30],
the procedure is applicable for any machine learning algorithm.

Algorithm 1 presents the pseudo-code for generating the pseudo-labels. It consists of
the following:

• Lines 1–2. A small fraction of samples at the beginning and end of the dataset are
labeled with ones and zeros, respectively, where one represents a healthy status and
zero a completely degraded bearing.

• Line 3. The model is trained using only the labeled samples.
• Line 4. The first pseudo-labels are predicted for all the samples.
• Line 5. The time of degradation onset t is found by solving Equation (1).
• Line 6. The new targets ŷ are assigned following Equation (2).
• Lines 7–11. The iteration loop begins, which is similar to the previous lines (3–6),

with the difference that the model is trained using the pseudo-labels ŷ instead of only
the original labeled samples.

• Line 12. The output of the algorithm is the last pseudo-labels after convergence or
reaching the number of iterations.

Algorithm 1: Pseudo-label assignment
Input : Model M, dataset D with instances ordered in time, a number k of

samples to initially label, and i the number of iterations.
Output : The target pseudo-labels.
. Initialization

1 Assign pseudo-label 1 to first k samples
2 Assign pseudo-label 0 to last k samples
. First iteration

3 Train M with labeled samples
4 Generate first pseudo-labels ŷ by predicting over all samples of D
5 Find threshold t solving Equation (1)
6 Generate new target vector ŷ using t as degradation onset in Equation (2)
. Iteration loop

7 repeat i times
8 Train M with ŷ as target
9 Generate ŷ by predicting over all samples of D

10 Find threshold t by solving Equation (1)
11 Generate new target vector ŷ using t as degradation onset in Equation (2)

12 return Pseudo-labels ŷ

Finding the threshold t is similar to solving a logistic regression. Equation (1) contains
the optimization problem, where ŷ is the pseudo-label vector with N instances.

t = argmax
t

∑
n=1

log(ŷn) +
N

∑
n=t+1

log(1 − ŷn) (1)
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f (i) =

{
1 if i ≤ t
φ(xi, θ) if i > t

ŷ = ϕ( f )

(2)

The new pseudo-labels are generated according to Equation (2). Instances before t
are considered healthy and given a value of one. Instances after t are considered to be in
degradation. In this case, t is the threshold index, φ is the prediction of the machine learning
model with parameters θ, and xi is the instance i of the training dataset. The pseudo-labels
ŷ are generated according to the best fit of the isotonic regression ϕ over f . Equation (3)
shows the isotonic regression as an optimization problem, which corresponds to finding
the monotonic curve ŷ, which summarizes f with the smallest quadratic error. The solution
can be found using the adjacent violators algorithm [32]. Figures 5 and 6 show examples of
the iteration process; in Figure 5, the first fit iteration shows the data used to train the model
(green), the predictions obtained after the first fit (blue), and the best fit of the isotonic
regression algorithm (red). Figure 6 shows the fit after 20 iterations.

ŷ = argmin
N

∑
i=1

( fi − ŷi)
2

where ŷ1 ≤ ŷ2 · ·· ≤ ŷN

(3)

Figure 5. First iteration of the offline HI algorithm. The predictions correspond to the outputs of the
model after training for one iteration with only labels for the first and last samples (labeled in green).

Figure 6. Model predictions and best isotonic fit after 20 iterations of the HI algorithm. Highlighted
in red is the last fit of the isotonic, which is used for the generalized model.

This approach induces semi-monotonic offline indicators. However, there are two sce-
narios in which the bearing condition may seem to recover in the base features and which
can cause discrepancies in the HI. The first scenario, namely the pseudo-recovery, occurs
when the initial damage causes a sharp deviation in the features, which then fades away as
the bearing initial damage smooths [3,33]. The second scenario occurs when machines stop
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for some reason, i.e., finishing a production batch or maintenance of other components.
The stop causes changes in the mechanics of the bearing, i.e., temperature decreases, which
in turn can create the effect of a component recovering. This scenario only concerns the
SMLL dataset, where some of the indented bearings were run over a period of some hours
before stopping and continuing over the next day(s). During the offline generation of the
HI, these scenarios do not pose a problem; however, during the online evaluation, they
may cause models to give optimistic predictions. Therefore, two aggregated features are
derived from the HI: the moving average (MA), which reduces the variance, and the cumu-
lative minimum of the moving average (CumMinMa), which keeps track of such changes.
Figures 7 and 8 show examples of pseudo-recovery, in which the online HI recovers over
time after initial damage in bearings from the PHM dataset. Figure 9 shows an example of
pseudo-recovery after a stop and Figure 10 shows an example of pseudo-recovery after an
anomalous event in bearings from the SMLL. In all these cases, the MA reduces the high
variance during inference, and the CumMinMa keeps track of pseudo-recovery events.

Figure 7. HI of bearing 2_2 of Pronostia dataset. The HI seems to recover gradually after time step
5000. In order to account for these types of events, the cumulative minimum is extracted as a feature.

Figure 8. HI of bearing 2_3 recovers from a drastic event around time step 2500. In order to account
for these types of events, the cumulative minimum is extracted as a feature.

3.3. Health Index Model

In the previous section, the HI generation was described as an offline process in which
the information of the entire run is available. In order to generalize this step and make
it applicable to unseen information, a HI model is trained. The model uses the extracted
metrics as features (see Table 3) and the generated offline HI as targets.

The selected machine learning model is the Stochastic Gradient Descent (SGD) re-
gressor, which uses the gradient descent algorithm on random subsets of the samples to
approximate the gradient of the whole dataset [34]. This algorithm is chosen due to its
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interpretability as well as the smoothness in its predictions; however, notice that any other
machine learning or statistical method is applicable.

Figure 9. Temperature and HI of bearing A51 of the SMLL dataset. A drop in the HI is detected
before the machine is stopped. After the machine is restarted, the HI seems to have recovered.

Figure 10. Temperature and HI of bearing A45 of the SMLL dataset. The HI seems to recover over
time without it being related to a stop in the machine.

3.4. Remaining Useful Life Estimation Model

The RUL estimation model follows a similar approach to the one of the HI model,
with the difference that the target is the logarithm of the remaining useful lifetime. The model
uses the extracted metrics (see Table 3) as features, in addition to the HI and the two HI-
based features, namely the MA and the CumMinMa.

In order to reduce the impact of long runs, two measures are taken. First, the RUL
model is trained only on data of the degradation phase, which is determined as the moment
after which a pre-defined HI threshold is surpassed. The HI threshold is 0.95 for the PHM
dataset and 0.90 for the SMLL dataset. These thresholds were empirically defined based
on visual inspection of the offline HI over the training datasets. Second, the target is the
logarithm of the RUL, which helps to reduce the impact that long tails have in modeling
the target value. Figure 11 compares the distribution of the full dataset and the truncated
version. The truncation of the data has a considerable impact on reducing the skewness.
Figure 12 compares the distribution of the log-transformed RUL before and after truncation.
The skewness is further reduced but, in this case, flipped to a negative long tail, which
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induces the distribution mean towards smaller values. The degradation onset detection is
shown in Figures 13 and 14 for the Pronostia dataset and in Figures 15 and 16. During prog-
nosis, RUL predictions are not made unless the HI has passed the defined threshold.

Figure 11. Distribution of RUL values before and after truncation for the SMLL bearings.

Figure 12. Distribution of log-transformed RUL values before and after truncation for the SMLL bearings.

Figure 13. Health index predictions for bearing 1_3. Intervals as the +/−1 running
standard deviation

Figure 14. Health index predictions for bearing 3_3. Intervals as the +/−1 running standard deviation.
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Figure 15. Health index predictions for bearing A43. Intervals as the +/−1 running standard deviation.

Figure 16. Health index predictions for bearing A47. Intervals as the +/−1 running standard deviation.

3.5. Training and Validation

This section explains the procedure to split the data to perform training and validation.
The pipeline consists of three models, namely the offline HI generator, the online HI model,
and the RUL model.

3.5.1. HI (Offline)

The offline HI is a weak learner used for generating the health indices offline and
does not involve any parameter tuning. The goal is to produce a curve that loosely
approximates the progression of the input features without leading to overfitting. A fixed
set of hyperparameters is selected and the last iteration of the generated HI is visually
examined. Table 4 shows the parameters.

Table 4. Parameter range for each stage.

Stage HI (Offline) HI (Online) RUL

Model SGD Regressor

Loss Squared Huber Huber
Regularization L2 ElasticNet L2
Alpha 10−4 (fixed) 10−4–0.1 10−4–0.1
Epsilon - 0.01–0.1 0.01–0.1

3.5.2. HI (Online) and RUL

For the prognostic HI model and RUL model, the parameters are tuned using Bayesian
optimization on the cross-validation error and a limit of 20 iterations. Table 4 shows the
parameter search space.

Parameter tuning and evaluation are done in different ways for each dataset.

1. The Smart Maintenance Living Lab dataset is approached with leave-one-group-out
cross-validation (LOGO-CV). To avoid problems with serial correlation, each bearing
is assigned a unique group. This approach guarantees that the complete data of a
bearing are either in the train or validation but not in both stages for a fold.

2. The Pronostia dataset is approached as in the original competition, where only the
learning set is used for training and parameter tuning, and evaluated on the re-
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maining bearings (see Table 2). LOGO-CV within the 6 training bearings is used for
parameter tuning.

The RUL results are compared against two baselines. The first baseline model, referred
to as the full baseline, is trained with only the extracted features from Table 3 and uses
the complete training data. The second baseline, referred to as the truncated baseline,
uses the same features but is trained only on the left truncated datasets according to the
HI threshold. To create a comparable error, the evaluation in all cases is done over the
remaining samples of the truncated test set. Notice that, in practice, the truncated baseline
requires the HI model but does not use the HI-derived features. The full baseline is used to
evaluate the benefits of reducing the datasets to the degradation. The truncated baseline is
used to evaluate the benefits of the HI-derived features.

4. Results

This section presents the results of the PdM indicators, namely the HI and RUL.
Section 4.1 discusses the general observations of the HI as a PdM indicator and Section 4.2
considers the RUL results for each of the two datasets.

4.1. PdM Indicators

The obtained HIs can capture the healthy status, degradation onset, and damage
progression of most bearings. Figures 13 and 14 show examples of the online HI obtained
for Pronostia bearings, and Figures 15 and 16 for SMLL bearings. Although the HIs are
informative in most cases, there are instances in which the offline HI may not be reliable.
For example, when failure onset occurs close to the end of the test, there are few left
samples that include a change in the data. This in turn causes the offline HI generator to
produce incorrect points for degradation onset and will ultimately propose flat curves with
only ones or zeros. This is the case for several of the bearings of condition 2 in the PHM
dataset. The sudden failure has previously been reported in the literature and in many
cases confirmed as hard to detect and model [4,10,35]. This may be partially alleviated with
the use of richer features.

Concerning the desirable properties of HIs, the following was found:

1. Monotonicity. Although the offline target for the HI is strictly monotonic, during eval-
uation, the predictions contain high variance and pseudo-recovery. This is likely
caused by inherent variance from the input variables and the damage smoothing
effect. To reduce their impact, the moving average and the cumulative minimum
of the moving average of HI are passed as additional features to the RUL model.
Figures 13–20 show examples of how the moving average reduces the variance and
the cumulative minimum keeps track of the initial shocks.

2. Stable regions. The HI shows stable regions within the degradation process. This is
similar to what other works have found, where stable regions are used to establish
failure stages and estimate expected RUL [13,35]. However, this comes with a trade-
off as long stable regions can produce high variance in the RUL estimates. This
scenario is partially compensated by the presence of the original features, which are
not strictly monotonic.

3. Performance on healthy bearings. The healthy bearings from the SMLL dataset were
evaluated with the final HI model and none of them reported a significant drop in
the moving average of the HI (window length of 30 samples). The smallest HI values
recorded across the healthy bearings were >0.94.

4. Interpretability. The online HI predictions correctly report the healthy stage, detect
the degradation onset, and describe degradation over time without the risk of time
correlation bias. These features can be used as a tool for condition monitoring.

5. Enhanced features. The HI-derived features are relevant for the RUL estimation,
which will be discussed in more detail in the following section. Their effect seems to
be more significant in the PHM models.
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Figure 17. RUL estimation for bearing 1_3. Comparing the benchmark (green) and the proposed
method. Intervals as the +/−1 running standard deviation.

Figure 18. RUL estimation for bearing 3_3. Comparing the benchmark (green) and the proposed
method. Intervals as the +/−1 running standard deviation.

Figure 19. RUL estimation for bearing A43. Comparing the benchmark (green) and the proposed
method. Intervals as the +/−1 running standard deviation.

Figure 20. RUL estimation for bearing A47. Comparing the benchmark (green) and the proposed
method. Intervals as the +/−1 running standard deviation.
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4.2. Remaining Useful Life

The RUL evaluation is done in the original time scale for interpretability. Two metrics
are evaluated: the mean absolute percentage error (MAPE) defined in Equation (4) and the
root mean squared error (RMSE) defined in Equation (5). The MAPE calculation includes a
constant term c to avoid divisions by zero. MAPE is a metric that gives more importance
towards the smaller target values, which fits the task as more accuracy is desired towards
the end of the components’ lifetime. Moreover, MAPE penalizes overestimations more
strongly than underestimations.

MAPE =
1
n

n

∑
t=1

∣∣∣∣ (yt + c)− (ŷt + c)
(yt + c)

∣∣∣∣ (4)

RMSE =

√
n

∑
i=1

(ŷi − yi)2

n
(5)

The following two sections explain in detail the obtained results.

4.2.1. PHM Data Challenge

Table 5 presents the coefficients for PHM data challenger models. Table 6 reports the
performance of the RUL model over the run after the HI threshold is surpassed or at least
the last 200 samples in cases where the HI did not reach the threshold (0.90). This occurs on
bearings that failed in the last few samples, such that the MA HI did not reach the threshold.
Notice that, during the PHM data challenge, submissions were evaluated on a single point,
whereas, here, the evaluation concerns the whole period until the bearing fails.

The proposed model gives better results on average for both metrics and most bearings
compared to the baselines (MAPE 714.57 ± 654.10 RMSE 3347.18 ± 2931.54). When
comparing the baseline of the full dataset against the truncated one, it is clear that one
of the benefits in improving results is the truncation of datasets before training, as this
removes data corresponding to long runs in which degradation has not started. The MAPE
scores confirm that the HI-derived features have a positive impact on modeling the RUL,
especially when the last part of the remaining life is of higher importance. However, it is
important to remark that, for some instances, the RMSE of the full model performed better
than the proposed model.

Table 5. Coefficients for PHM models.

HI RUL Models

- Proposed Baseline Truncated Baseline Full

BDF_horiz 0.01 −0.11 −0.10 −0.04
BDF_vert 0.01 0.00 0.06 0.03

BPFI_horiz −0.02 −0.17 −0.21 −0.07
BPFI_vert −0.01 0.00 0.00 0.05

BPFO_horiz −0.00 0.00 −0.01 −0.09
BPFO_vert −0.00 0.00 0.00 −0.03

Kurtosis_horiz 0.00 0.00 0.00 0.00
Kurtosis_vert 0.01 0.00 0.00 0.07

Peak_horiz −0.03 0.00 −0.09 −0.26
Peak_vert −0.01 −0.15 −0.21 −0.12

RMS_horiz −0.02 0.00 0.00 −0.24
RMS_vert −0.02 −0.03 −0.21 −0.35
condition - −0.41 −0.41 −0.44

HI - 0.02 0.00 0.00
Moving std (HI) - −0.34 0.00 0.00



Sensors 2022, 22, 1590 17 of 22

Table 6. Results obtained on the PHM dataset. Highlighted in bold the best result per bearing.

MAPE RMSE

Bearing Samples Baseline
(Full)

Baseline
(Truncated)

Proposed
Model

Baseline
(Full)

Baseline
(Truncated)

Proposed
Model

Bearing_1_3 649 90.05 53.87 48.28 3345.78 2075.15 2131.89
Bearing_1_4 337 98.93 94.34 96.79 1888.12 1711.12 1824.11
Bearing_1_5 200 1411.10 1144.45 862.94 12,957.93 3498.21 3223.30
Bearing_1_6 803 531.81 371.94 316.18 9319.96 2402.58 2668.28
Bearing_1_7 200 735.81 846.77 400.79 8576.47 2754.55 2627.02
Bearing_2_3 1683 269.09 278.16 251.62 6428.16 7736.51 7949.57
Bearing_2_4 200 1921.50 2183.98 1888.65 9965.08 2242.99 1863.27
Bearing_2_5 2196 227.05 200.02 195.93 7487.13 10,329.89 10,599.39
Bearing_2_6 200 1539.52 1796.24 1552.94 10,046.48 2206.10 1856.99
Bearing_2_7 200 1595.64 1955.84 1716.00 8433.22 2010.73 1698.62
Bearing_3_3 200 377.14 667.66 530.16 3242.77 582.48 376.51

Mean - 799.78 872.12 714.57 7426.46 3413.67 3347.18
SD - 651.69 750.47 654.10 3242.56 2787.76 2931.54

4.2.2. Smart Maintenance Living Lab

Table 7 presents the coefficients for SMLL models. Table 8 reports the performance
of th RUL model over the run after the HI threshold is surpassed. The performance of
the proposed model is better than the baseline trained over the full data (MAPE 215.40
vs. 556.75 and RMSE 659.91 vs. 1796.65). On the other hand, the performance between
the truncated baseline and the proposed model is similar (MAPE 209.69 ± 258.13 vs.
214.40 ± 273.62).

These results show that the largest improvement is caused by truncating the datasets
to the degradation segment. In this case, the HI-based features likely have no added value
when sufficient data are available. Consider that the PHM dataset has only six training
bearings, whereas the Smart Maintenance Living Lab consists of 43 bearings. The HI is still
beneficial as it allows us to truncate the datasets in an unsupervised approach.

Furthermore, while inspecting the model coefficients in Figure 21 and Tables 5 and 7,
it is notable how the truncated baseline and the proposed model assign similar coefficients
to the relevant features, but the proposed model still uses the HI-derived features.

Table 7. Coefficients for SMLL models.

HI RUL Models

- Proposed Baseline Truncated Baseline Full

RMS 0.00 −0.20 −0.25 −0.10
Kurtosis −0.07 −0.03 −0.05 −0.16

Peak −0.10 −0.24 −0.28 −0.15
BPFI −0.02 −0.02 −0.03 −0.26

BPFO 0.01 0.00 0.00 0.09
BDF 0.01 0.00 0.00 −0.04

HI 0.00 0.02 0.00 0.00
MA (HI) 0.00 0.03 0.00 0.00

Cum. min. MA (HI) 0.00 0.08 0.00 0.00
Moving std (HI) 0.00 −0.06 0.00 0.00
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Table 8. Results obtained on the Smart Maintenance Living Lab dataset. Highlighted in bold the best
result per bearing.

MAPE RMSE

Bearing Samples Baseline
(Full)

Baseline
(Truncated) Proposed Baseline

(Full)
Baseline

(Truncated) Proposed

A8 1136 373.04 116.48 114.15 1196.66 246.75 237.93
A9 2767 101.46 61.63 63.03 1089.83 925.09 876.15

A22 1438 234.12 113.81 129.88 1779.06 393.11 393.11
A27 708 1941.62 693.97 616.20 3513.95 988.28 873.19
A35 1136 314.90 124.19 127.57 1601.52 364.93 405.23
A37 1337 508.77 126.07 125.31 1136.69 314.76 311.60
A38 1357 507.39 194.45 199.28 1641.67 450.08 455.09
A40 512 1971.42 864.20 922.92 3274.53 1150.67 1316.35
A43 1181 391.77 138.54 175.05 2631.96 569.95 808.11
A45 1011 259.81 86.92 91.11 686.89 229.83 206.35
A46 1052 81.89 95.44 107.03 382.07 304.34 347.29
A47 1949 208.74 53.04 59.85 2144.09 255.93 338.94
A48 2143 425.51 87.68 91.28 1152.33 549.04 595.28
A49 1144 200.31 120.53 138.76 1729.27 536.56 589.85
A50 1137 207.29 130.05 137.03 752.06 279.20 320.27
A51 4996 112.22 74.51 74.98 2041.47 2084.91 1999.09
A52 891 284.28 190.39 201.09 1546.09 562.80 645.03
A53 1691 466.16 92.56 84.38 1626.83 346.05 352.12
A54 2311 171.72 87.92 83.84 819.91 691.35 684.83
A55 1689 275.13 103.88 102.49 1569.20 340.72 316.97
A56 305 1313.47 741.81 717.04 1618.53 865.66 924.95
A58 2500 178.21 79.62 80.30 944.90 919.43 921.52
A59 3183 181.70 67.90 69.76 1528.33 883.27 855.61
A60 1159 587.65 258.17 235.71 2456.66 576.50 585.48
A62 1100 391.93 143.67 142.43 906.63 279.13 271.51
A63 4996 258.54 74.98 71.39 4874.16 1816.48 1733.14
A64 1395 77.69 65.34 77.71 413.44 305.93 317.50
A66 667 670.99 301.99 351.75 2088.31 655.43 819.23
A67 322 4510.11 1302.92 1450.64 4863.47 1218.35 1428.25
A68 2128 151.63 53.08 55.30 1287.08 409.15 376.44
A69 1066 335.93 137.94 149.71 1964.82 375.91 417.65
A70 1901 344.84 88.12 93.46 1478.86 339.62 401.16
A76 2682 255.86 104.67 97.60 1021.40 632.21 595.15
A77 1325 788.00 253.54 232.47 2788.34 567.59 505.39
A78 1629 302.29 182.75 160.46 1447.02 377.02 354.76
A79 1017 1167.27 348.26 315.29 3430.86 646.70 639.33
A80 1832 392.60 101.31 95.94 1782.08 319.09 288.66
A81 3891 210.27 105.98 105.00 1061.76 1597.59 1568.04

Mean - 556.75 209.69 214.40 1796.65 641.30 659.91
SD - 784.64 258.13 273.62 1044.39 435.64 431.29
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Figure 21. Regressor coefficients for each model on the SMLL dataset.

4.3. Applicability

The presented method for the PHM and the SMLL cases was based on bearing-
specific fault features. Therefore, its applicability is limited to bearing problems. However,
as previously discussed in the Introduction, the methodology concerns a more general
problem in which structural learning is applied to temporal features to induce monotonicity.
Therefore, the method can be extended to other types of problems as long as temporal
features can be derived and these contain some trendability over time, e.g., electrical
components or mechanical components of other nature. The technique on its own is suitable
for a wide range of PHM problems; for example, the HI model can detect anomalous events
as well as degradation onset, and the RUL predictions can assist in scheduling maintenance
and preventing failures.

5. Future Work

We identify three promising areas for future work:

1. Extending HI properties. This work focused on generating HI by inferring a target
with monotonic properties. However, the literature points towards other desirable
properties of HI, such as robustness towards noise and sudden changes; trendability,
in which the HI is correlated with time; and identifiability, in which the HI is correlated
to a sequence of categories [3]. These properties have mathematical definitions and
can be easily incorporated into the objective function of the HI model.

2. Transfer learning. As previously commented, the Smart Maintenance Living Lab
dataset comprises seven identical setups. In the current approach, all tests were done
under the same conditions; therefore, the models are expected to generalize across
machines using cross-validation. Although a large dataset can allow generalization
across the different setups, a more promising approach is model adaptation, where a
new test condition can be learned swiftly using a restricted amount of information.
Ideally, a base model could be adapted to a new setup by running as little as a
single test.

3. Richer features. The current work presents a limited set of features that can be
computed easily. Nevertheless, there is great potential in investigating the presented
technique on raw accelerometer data and possibly other sources of information, such
as temperature.

6. Conclusions

This paper presents a purely data-driven technique for generating HIs. Although its
performance cannot be quantified, the index was demonstrated empirically to be a good
tool for obtaining insights into the degradation process of the bearing. Additionally, the HI
is proven to be beneficial for truncating datasets and restricting the RUL estimation to the
degradation phase, as well as serving as a feature for its prediction. The performance of the
method is comparable to previous works.
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