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ABSTRACT In this paper, we propose a Multi-View Convolutional Neural Network and Long Short-Term
Memory (CNN-LSTM) network which fuses multiple ‘‘views’’ of the time-range-Doppler radar data-cube
for human activity recognition. It adopts the structure of convolutional neural networks to extract optimal
frame based features from the time-range, time-Doppler and range-Doppler projections of the radar data-
cube. The CNN models are trained using an unsupervised Convolutional Auto-Encoder (CAE) topology.
Afterwards, the pre-trained parameters of the encoder are fine-tuned to extract intermediate frame based
representations, which are subsequently aggregated via LSTM networks for sequence classification. The
temporal correlation among the views is explicitly learned by sharing the LSTM network weights across
different views. Moreover, we propose range and Doppler energy dispersion and temporal difference based
features as an input to the CNN-LSTMmodels. Furthermore, we investigate the use of target tracking features
as an auxiliary side information. The proposed model is trained on datasets collected in both cluttered and
uncluttered environments. For validation, an independent test dataset, with unseen participants, in a cluttered
environment was collected. Fusion with auxiliary features improves the generalization by 5%, yielding an
overall Macro F1-score of 74.7%.

INDEX TERMS Smart-Homes, feature fusion, data fusion, deep learning, FMCW radar, time-range, Time-
Doppler, Range-Doppler, indoor human activity recognition (HAR), convolutional neural networks (CNN),
long short-term memory (LSTM), generalization.

I. INTRODUCTION
Human Activity Recognition (HAR) is an active area of
research since decades and has been a key enabler of var-
ious emerging technologies, such as, smart-homes, smart-
health, smart-security and smart-offices. Activity recognition
is essential to these application domains as it allows computer
systems to monitor and analyze human behavior and assist us
in our daily lives. A reliable HAR is still a challenging prob-
lem and is faced with many technical issues. On one hand,
the privacy issue can be solved by employing methods that
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involve ambient-sensors instead of camera based methods,
but on the other, a reliable and a robust feature extraction
in the presence of heterogeneous sensory data, is still quite
challenging and requires significant research efforts.

Most of the work in radar-HAR assumes human-centric
uncluttered background scenes, where participants are free
to perform actions. For an automated indoor HAR system
to work reliably and be able to classify actions with low
error-rate, it is vital for the system to take into account
heterogeneity in the sensor data, which may arise due to
various external factors, such as, the users, the sensors and
the environment. Firstly, each user or participant is differ-
ent, hence their actions may also differ depending on their

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 24509

https://orcid.org/0000-0002-2241-4947
https://orcid.org/0000-0002-5407-1344
https://orcid.org/0000-0002-9264-7850
https://orcid.org/0000-0002-1470-2076
https://orcid.org/0000-0002-1774-2970
https://orcid.org/0000-0002-8316-4996


H.-U.-R. Khalid et al.: Multi-View CNN-LSTM Architecture for Radar-Based Human Activity Recognition

habits and morphology. Secondly, these habits may change
over time, making this phenomenon time-variant. Moreover,
variations in the sensor placement may result in variations in
the aspect angle, relative to the radar sensor, which can greatly
affect the feature extraction. Finally, the environment layout
might vary from room to room, hence resulting in a different
background clutter, and partial occlusion of the human body
from the nearby objects, thus giving rise to a shadowing
effect leading to a wide range of intra-class variations in the
observed features. A reliable radar-HAR system should work
regardless of these external factors. For example, when we
move from an ideal uncluttered scenario to a more realistic
cluttered scenario, a robust radar-HAR system should be able
to generalize over the heterogenous sensory data, without
much loss of performance.

A complex human-activity can be decomposed into
motion sequences of walking, stand-to-sit or sit-to-stand
actions [1], [6]. Hence, it is vital for radar-HAR systems,
to be able to map an observed humanmotion to either of these
actions. Therefore, in this work, we focus on classifying the
following four action classes, 1) Walking-Towards (WT) and
2) Walking-Away (WA) from the radar-sensor, 3) Stand-to-
Sit or Sitting-Down (SD) and 4) Sit-to-Stand or Standing-Up
(SU). We pose the radar-HAR problem as a 4-class sequence
classification problem.

In this paper we investigate a radar-sensor based approach
to HAR. Our main goal is to investigate the generalization
capability of the proposed learningmethods and themodels in
the presence of different persons, different aspect angles, clut-
tered environment and multi-path. The major contributions of
this paper include:
• AMulti-View Convolutional Neural Network and Long
Short-Term Memory (CNN-LSTM) network which
fuses multiple ‘‘views’’ of the time-range-Doppler radar
data-cube for human activity recognition. The views are
obtained by projecting the 3D data-cube in the range,
Doppler and slow slow-time dimensions;

• A kind of soft-attention in the radar data-cube via range
and Doppler energy dispersion based pre-processing;

• The use of target tracking features as auxiliary side
information for the CNN-LSTM architecture;

• A multi-view fusion approach, achieved by sharing the
weights across the views in each LSTM layer to learn
the correlation between the views and auxiliary tracking
features;

• A model training, combining an unsupervised feature
extraction step, followed by a fine-tuning step to make
feature extraction class agnostic and more robust to
initializations.

The rest of the paper is organized as follows. In Section II we
give a brief overview of the current state-of-art. Section III
briefly describes the sensor-setup and the input from the
radar-sensor. In Sections IV and V we describe the pro-
posed methods and the models used in this research,
which is followed by the discussion about the evalu-
ation setup and the results of the proposed methods.

Finally, Section VI concludes the paper with the future
work.

II. RELATED WORK
A large and growing body of literature has investigated radar-
based HAR classification. An exhaustive revision of the
previous methods lies beyond the scope of this paper. We,
therefore, briefly give an overview of the related works. For
an in-depth review of the research area, the interested reader
is referred to [11], [16].

Different representations of the radar signal, that include
time-frequency domain based time-Doppler images, and inte-
grated slow-time based range-Doppler images, have been
considered. The time-frequency based features contain infor-
mation about the rate of change of motion, of human body
parts over time, while range-Doppler images provide both
velocity and range information.

Over the years, several studies have adopted hand-crafted
feature based representations extracted from time-range,
range-Doppler, cadence velocity maps [3], [25], along with
machine learning models such as support vector machines
and random forests. In [2], the authors estimated the phase,
velocity, rate of change, mean, standard deviation and range
of the I and Q signals, and applied a random forest classi-
fier for HAR classification. The authors of [7] proposed a
dynamic range-Doppler trajectory (DRDT) method to rec-
ognize various human motion. First, range-Doppler frames
consisting of a series of range-Doppler images are obtained
from the backscattered signals. Next, the DRDT is extracted
from these frames to monitor human motion in time, range,
and Doppler domains in real time. Then, a peak search
method is applied to locate and separate each human motion
from the DRDT map. Finally, range, Doppler, radar cross
section, and dispersion features are extracted and combined
in a multidomain fusion approach as inputs to a machine
learning classifier. In [10], the authors trained a random forest
classifier with time-Doppler and range-Doppler based region-
of-interest features such as velocity centroid, dispersion, and
instantaneous energy based features, as proposed in [17],
together with tracking based (such as target location, velocity,
acceleration, range and azimuth) and point cloud features.

Recent radar-HAR efforts have applied deep neural net-
works. In [27], a CNNwith three convolution layers, has been
applied on range-Doppler images for multiclass HAR classi-
fication. To take into consideration the temporal characteris-
tics of radar signals, the authors of [32] applied a 1D-CNN
to extract spatial features from the spectrograms, followed
by an LSTM network to learn time-dependent information.
The authors of [20], applied a similar CNN architecture
containing three convolutional layers, twomax pooling layers
and two fully connected layers, for classifying kitchen activ-
ities. The CNN model, as an input, takes an image with two
spectrograms from two radar sensors. A multiscale residual
attention network, for joint activity recognition and person
identification, has been proposed in [12]. The architecture
consists of a CNN, with a residual attention mechanism,
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which extracts features from the time-Doppler images. The
embeddings are fed to a fully connected layer performing
the classification task. In contrast with the above works
using time-Doppler or range-Doppler images as an input,
the authors of [19] applied a LeNet-5 based CNN on the
features extracted from an auto correlation function. The
authors of [31] proposed an end-to-end deep learning based
framework called the Fourier Convolutional neural Network
(F-ConvNet). The input of an F-ConvNet consists of raw
frames of radar data. Next, multi-scale features are extracted
using three convolutional layers. The results are sent to a so
called Fourier layer, learning the real and imaginary parts
separately. Compared to the above CNN based approaches,
the authors of [28] proposed a stacked Bidirectional LSTM
(Bi-LSTM) network on spectrograms to perform radar-HAR.
Bi-LSTMs can capture both temporal forward and backward
correlated information within the radar data-cube.

Considering that the deep learning based models require
a large amount of training data, some researchers propose
transfer learning based methods. In [8], a ResNet based
pre-trained CNN on ImageNet database, is fine-tuned on
time-Doppler spectrograms. The authors of [29] proposed
a generative adversarial based image-to-image translation
approach to transform time-Doppler signatures into a pseudo-
audio representation, and fine-tuned a pre-trained VGGish
CNN to classify the obtained representations.

Unsupervised feature learning based methods were also
investigated. The authors of [26] used a three-layer CAE that
used an unsupervised pretraining to alleviate the demand for
training data, followed by a supervised fine-tuning of the
CNN to extract spatially localized features for classification.
The authors of [4] extended the CAE based unsupervised fea-
ture extraction, and proposed an attention-augmented CAE,
wherein the convolutional maps are concatenated with a
multi-headed attention output [30]. The CAE model is first
pre-trained in an unsupervised fashion, and then both the
convolution and attention parts of the encoder are fine-tuned
separately through supervised training. Next, the convolution
and attention parts are trained jointly to learn the final con-
figuration for classification.

Different from the above image-based models, the authors
of [15] employed a generalized point cloud model to simulta-
neously represent the time-range-Doppler signature. First, the
radar echoes are transformed via range-Doppler processing
along the time axis. Then, the target information is gathered
by a constant false alarm rate detection algorithm. The point
cloud features are aggregated by motion sculpture construc-
tion and iterative farthest point sampling. Finally, the result-
ing point cloud is fed to a hierarchical Point-Net module [5]
to recognize human activities.

Recently, researchers considered information fusion by
merging complementary radar information at different
abstraction levels: signal, feature and/or decision. In [13]
a combination of time-range, spectrogram and integrated
range-Doppler information are processed with sparse autoen-
coder to extract features that are then classified by a softmax

layer for each of the three inputs. A voting principle is then
used as decision fusion. In [9], the radar data-cube is pre-
processed with an extended CLEAN algorithm to eliminate
unwanted noise/distortions. Then, a multi-dimensional Prin-
cipal Component Analysis (PCA) approach is applied for
feature extraction, followed by a linear discriminant analysis
implemented as a shallow neural networks for classification.

III. FMCW RADAR SENSOR SETUP
In this study we use a single 3 × 4 multiple-input multiple-
output Frequency Modulated Continuous Wave (FMCW)
radar sensor setup. The sensor operates, in an indoor environ-
ment, at a center-frequency (f0) of 60 GHz with a bandwidth
(B) of 2.3 GHz. The radar sensor setup and the waveform
parameters are described in more detail in [10].

In the following, we give an overview of the used 3D radar
data-cube (xraw) and describe its related 2D feature ‘‘views’’
and the auxiliary features used in this study. The reader is
referred to [10] for the details of the detection and tracking
steps together with the radar signal processing and 3D radar
data-cube creation.

A. 3D RADAR DATA-CUBE STRUCTURE AND
CHARACTERISTICS
We follow a conventional FMCW signal processing pipeline
(as described in [10]). The targets are detected and tracked
in the radar’s Field of View (FoV), and an estimate of the
target’s centroid in the radial-range and the azimuth-angle
dimensions is used to create a 3D radar data-cube.

We extract 32 range bins and 2 angle bins around the
target’s centroid. The STFT based micro-Doppler processing
yields a (T × D) 32 × 32 time-Doppler or micro-Doppler
spectrum, which is observed in (R×A) 32×2 range and angle
bins, thus resulting in a uniform-sized 3D radar data-cube of
cardinality (T×R×D×A), where (R×D×A) are the three spa-
tial dimensions evolving in slow slow-time (T ). Furthermore,
we keep 1 secworth of activity bymaintaining a buffer of size
N = 12 previous frames of radar data-cubes. This results in
an ordered sequence of 3D radar data-cubes (x(1...N )

raw ).

B. 3D FEATURE STREAMS AND AUXILIARY FEATURES FOR
RADAR HAR
After extracting the 3D radar data-cube (also known as the
3D time-range-Doppler data-cube [16]), the range, Doppler
and the slow slow-time features are pre-processed before
being used for activity classification. The pre-processing step
involves, projecting the 3D data-cube in the range, Doppler
and slow slow-time dimensions, scaling the features with
the range and Doppler energy dispersion based profiles, and
calculating the difference features based on the temporal
differences of features. We consider four categories of fea-
tures: 1) raw features, 2) energy dispersion based features,
3) temporal difference based features, and 4) auxiliary
features.
• Raw features: The 3D time-range-Doppler data-cube,
xnraw, contains the reflected energy by the participant’s
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FIGURE 1. The 2D projections of the raw, energy dispersion, difference, and dispersion-difference based 3D data-cubes for all four, WA, WT, SD,
and SU actions are shown, where rows (b) and (g) represent projections from the raw data-cube, rows (c) and (h) are projections from the energy
dispersion based data-cube, rows (d) and (i) from the difference, and rows (e) and (j) from the dispersion-difference based data-cubes.
Columns (k) and (n) represent range-Doppler projections, columns (l) and (o) represent time-range, and columns (m) and (p) time-Doppler
projections. We show 0.25 sec (i.e. N = 3 frames) of 4 actions: action WA is shown in columns (k)-(m) and rows (a)-(e), columns (n)-(p) and
rows (a)-(e) show WT action, columns (k)-(m) and rows (f)-(j) show SD action, while SU action is shown in columns (n)-(p) and rows (f)-(j).

limbs and torso as they move in the radar’s FoV, and
therefore is a function of range (r), Doppler (d), angle
(a) and slow slow-time (t) dimensions.
A 2D range-Doppler map (or view) is obtained by
projecting the 3D time-range-Doppler data-cube in the
range-Doppler space (xnrd,raw), in the same way we
obtain 2D time-range view (xntr,raw) and 2D time-
Doppler view (xntd,raw), by projecting the 3D time-range-
Doppler data-cube in the time-range and time-Doppler
space, respectively as illustrated in Figure 1.

• Energy Dispersion based features: are derived from
the 3D time-range-Doppler data-cube xnraw. The idea is
inspired by [17], however unlike [17] we use range and
Doppler profile energy dispersion for creating a kind of
soft-attention in the slow slow-time dimension of the 3D
data-cube.
We first, estimate the instantaneous range (rncent ) and
Doppler (dncent ) profile energies, by using the 2D

time-range and the 2D time-Doppler views, respectively
as follows:

rncent (t, a) =
D∑
d=1

R∑
r=1

xntr,raw(t, r, a)x
n
raw(t, r, d, a)

(1)

dncent (t, a) =
R∑
r=1

D∑
d=1

xntd,raw(t, d, a)x
n
raw(t, r, d, a)

(2)
The energy profiles are then used for creating a soft-
attention in the slow slow-time dimension of the 3D
time-range-Doppler data-cube:

xndisp(t, r, d, a)

=
||xntd,raw(t, d, a)− d

n
cent (t, a)||

2
2

||xntr,raw(t, r, a)− r
n
cent (t, a)||

2
2

xnraw(t, r, d, a)

(3)
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FIGURE 2. The proposed radar-HAR framework is shown, where a) illustrates the CAE based unsupervised feature learning, with Es and Ds as the
respective encoder and decoder CNN models for each view s = {rd, td, tr} and stream l = {raw, disp, diff, disp-diff}, while b) illustrates the MV
RADAR-Net that performs frame-based space-time feature extraction via a pretrained (or finetuned) encoder CNNs Es for each view first. These
features are further converted to sequence-based features, where the multi-view data-fusion including auxiliary features is performed in LSTM
layers (defined in hs and hax , in H(.)). Finally, the sequential features are concatenated in hcnt ∈ H(.) and adapted using the auxiliary feature
based context wax . The final classification is performed by hC ∈ H(.) on the adapted sequential features.

• Temporal Difference based features: are derived from
the raw 3D time-range-Doppler data-cubes, with the
idea of putting more emphasis on the most recent events
(compared to the previous data-cube) occurring in the
raw radar data-cube:

xndiff (t, r, d, a) = xnraw(t, r, d, a)− x
n−1
raw (t, r, d, a) (4)

Moreover, these recent events can be further highlighted
by estimating a dispersion-difference based data-cube:

xndisp-diff (t, r, d, a) = ||x
n
diff (t, r, d, a)||1x

n
disp(t, r, d, a)

(5)

From the above 3D energy based data-cubes we extract
2D time-Doppler views xntd,l , time-range views xntr,l and
range-Doppler views xnrd,l for l ∈ {disp, diff, disp-diff}
(Figure 1).

• Auxiliary features: are estimated using the target track-
ing results, encoded as target location (x, y), range (r),
azimuth (θ) and Doppler (dn=argmax

d

∑T
t=1

∑A
a=1 x

n
td (t,d,a))

as follows (Equation 6):

xnaux = [xn-xn-1 yn-yn-1 rn-rn-1 dn-dn-1

θn-θn-1 ẋn ẏn ẍn ÿn ḋn θ̇n]T (6)

IV. PROPOSED MODEL
We propose a multi-view fusion approach, where we fuse
multiple 2D views and auxiliary features from a single
radar sensor. For data-fusion and sequential feature learning,
an LSTM layer with shared parameters is proposed. As a
result, the proposed model, denoted as Multi-View RAnge
Doppler Activity Recognition Network (MV RADAR-Net),
is composed of space-time frame based model, Es(.) with
s ∈ {rd, td, tr}, and a sequential model H (.).

FIGURE 3. Single view CNN-LSTM model for optimal view-stream pair
selection using an E2E learning approach is shown, where Es, hs and hC
are the respective CNN based encoder, LSTM network based sequential
model and a fully connected layer based classification head, defined with
same configration as in Section IV-A, and Section IV-B, while
s = {rd, td, tr} and l = {raw, disp, diff, disp-diff}.

The space-time frame based Es(.) are pre-trained using
CAE models as illustrated in Figure 2a and discussed in
Section IV-A. The pre-trained encoders (Es(.)) are then used
with the sequential model (H (.)), illustrated in Figure 2b
and discussed in Section IV-B, where we optionally fuse the
auxiliary features.

A. SPACE-TIME CAE MODEL
The CAE models for each view with an encoder and decoder
can be formally defined as follows:

• For each 2D view s in {rd, td, tr}, we define a space-
time feature stream from l in {raw, disp, diff, disp-diff}.
For a given view-stream pair, a space-time frame based
encoder model Es(.) and a decoder model Ds(.) is
defined (Figure 2a).

• Each space-time encoder (Es(.)) model consists of
two CNN layers, where each layer has two convolu-
tion operations. Prior to applying convolutions the fea-
tures are symmetrically padded. Activations, after both
convolution operations, are normalized and rectified
using batch-normalization and RELU-activation func-
tions, respectively. The first CNN layer implements a
2D convolution operator with a stride length of 2 and a
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spatial-filter of size (3× 3× 8). The second CNN layer
uses the same configuration (i.e. the same stride length
and spatial-filter size is used), however extracts 16 fea-
tures instead of 8. This results in a compressed space-
time feature sequence (q(1...N )

s,l ) of cardinality (N × 8 ×
8×16). Similarly, the space-time decoder (Ds(.)) models
also consists of two CNN layers, where in each layer, the
deconvolution operation is realized by an upsampling
and a convolution operation. Prior to applying convo-
lutions the features are upsampled and symmetrically
padded, in both CNN layers. The activations are nor-
malized and rectified, resulting in a reconstructed input
sequence of cardinality (N × 32× 32× 2).

B. SEQUENTIAL MODEL
After training the CAE for each view, the encoders are used
for training the sequential model (H (.)), and is formally
defined as follows:

• For each 2D view s ∈ {rd, td, tr}, we define a sequen-
tial model (hs), consisting of a spatial-pyramid pooling
layer, a fully connected layer and an LSTM network
sharing it’s parameters with the LSTM networks of the
other views. hs starts by transforming the compressed
space-time codes (q(1...N )

s,l ) to a sequential feature vector.
This is accomplished by using a spatial-pyramid pool-
ing operator, where each (8 × 8) 16-dimensional code
map in N , is max-pooled by using three spatial grids
of sizes (2 × 2), (4 × 4) and (6 × 6). A sequence of
16-dimensional 56-element feature vector sequence is
generated. The pooled feature vector sequence, is trans-
formed via a fully connected layer into a 64-dimensional
vector sequence. The activations are normalized and
rectified, before being fed to an LSTM network.

• For each view s, we define an LSTM network
with 64-dimensional hidden and cell -states, which is
unrolled for N = 12 frames, to learn from 1 sec
worth of activity. The LSTM network performs two
tasks, 1) vector sequence to sequential feature conver-
sion, and 2) space-time feature fusion. The first task
is accomplished by the input weight matrix (Wp,s =

[W g
p,s,W

f
p,s,W

i
p,s,W

o
p,s]), which is uniquely defined for

each space-time sequence by its respective sequential
model. The second task requires the definition of a
hidden-state weight matrix (Wz = [W g

z ,W
f
z ,W

i
z ,W

o
z ]),

which is shared between the different views. For a
given normalized and rectified 64-dimensional vector
sequence p(1...N )

s , the LSTM network is formally defined
in Equations 7, 8, 9, 10, 11 and 12 [21]:

c̃ns = tanh
(
W g
z z

n−1
s +W g

p,sp
n
s

)
(7)

f ns = σ
(
W f
z z

n−1
s +W f

p,sp
n
s

)
(8)

ins = σ
(
W i
zz
n−1
s +W i

p,sp
n
s

)
(9)

ons = σ
(
W o
z z

n−1
s +W o

p,sp
n
s

)
(10)

cns = f ns � c
n−1
s + ins � c̃

n
s (11)

zns = ons � tanh
(
cns
)

(12)

where, zn−1s is the hidden-state vector in, cns is the cell-
state, ins is the input control gate, f ns is the forget con-
trol gate, c̃ns is the intermediate cell-state vector and �
represents the element-wise product. Once the N th cell-
state (cNs ) vector is available, the N

th hidden-state (zNs ,
Equation 12) vector from each view, is made available
for feature concatenation to the subsequent model.

• For the auxiliary features view, we define a sequential
model hax (Figure 2b), consisting of a fully connected
layer and an LSTM network where the parameters are
shared across views (s). The auxiliary feature sequence
(x(1...N )
ax ) is transformed via the fully-connected layer

into a 64-dimensional vector sequence, which is fol-
lowed by a normalization and RELU-activation oper-
ations, before being fed to the LSTM network. The
hidden-state weight matrix of the auxiliary LSTM net-
work is shared with the LSTM networks of the other
views s ∈ {rd, td, tr}, thus facilitating mid-level data-
fusion of the auxiliary features with the radar data views.
The output of the LSTM is mapped to a 64-dimensional
context vector wax via a fully connected layer.

• The sequential feature vectors (zNs ) from each view (s)
are concatenated in a concatenation layer, and mapped
to a 64-dimensional feature vector (zcnt ) via a fully
connected layer. This feature concatenation and transfor-
mation is realized in hcnt of Figure 2b. The concatenated
and transformed sequential feature vector zcnt is further
adapted as follows:

zw = zcnt � wax (13)

= zcnt � hax(x(1...N )
ax )

where, � is an element-wise product [24]. Finally, zw is
passed to a fully connected layer (hC in Figure 2b) and a
softmax activation function for a multi-class classifica-
tion task.

V. EXPERIMENTAL RESULTS
A reliable radar-HAR requires an efficient use of the range,
Doppler and slow sow-time features in the radar data-cube.
The generalizability and robustness of an indoor radar-HAR
system for an unseen room and a cluttered environment is
largely based on the training methodology, feature selection
and the use of externally available auxiliary information from
the tracker. Furthermore, environment clutter can greatly
affect the feature extraction step, which directly affects the
model’s performance. In this study we focus on the general-
izability and reliability of the DL based models and methods,
proposed for an indoor radar-HAR system. As described in
detail in [10], the goal is to be able to generalize for an unseen
room and participants, with an unseen environment and clut-
tered background, i.e. the model’s ability to perform in the
context of layout-generalization and person-generalization.
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We collect data in three rooms, in both cluttered and
uncluttered environments. Section V-A details the data col-
lection campaign carried out during this study, while we
explain the feature selection approach in Section V-B. Fur-
thermore, we study the ablation of auxiliary feature fusion in
Section V-D, which is followed by a detailed discussion about
the results in Section V-E.

A. DATASET
This study uses 4 datasets from [10] containing radar
data related to three activities of daily living in three
different rooms, with two different layouts (as shown in
Figure 4).

We briefly describe the characteristics of the four
databases, for more details refer to [10]:

• Action Primitive Oriented (DB1): is layout free and
focused entirely on the primitive actions. Participants
were asked to perform the SD, SU, WA and WT actions
with a single chair placed in the center of the room
(as shown in Figure 4a). The actions were performed
without varying the aspect angle of the participants with
the radar sensor. Fifteen subjects were asked to partic-
ipate, which resulted in over 2000 3D radar data-cube
sequences (of 1 sec,N = 12) for SD and SU classes and
over 5000 samples for WA and WT classes (as shown in
Table 1).

• Aspect Angle Oriented (DB2): Unlike DB1, here we
asked the subjects to perform the actions with four
variations in the aspect angle, i.e. the participants were
asked to follow paths A-D (as shown in Figure 4a).
This resulted in another 5000 samples for WA and
WT classes (as shown in Table 1) and approximately
2000 3D radar data-cube sequences for SD and SU
classes.

• Multi-path, Aspect-angle, and Shadowing Aspect Ori-
ented (DB3) for validation: This database was recorded
in the same room as DB1 and DB2, however now
included background clutter, from the furniture (as
shown in Figure 4b). We asked five new participants,
which were not included in the DB1 and DB2, to per-
form the actions. This resulted in 5000 samples for WA
and WT classes (as shown in Table 1) and approx-
imately 2000 3D radar data-cube sequences for all
classes.

• Multi-path, Aspect-angle, and Shadowing Aspect Ori-
ented (DB5): Unlike DB3, this database was recorded
in a new room with a cluttered background (as shown
in Figure 4c) and with twenty one new participants (not
included in either DB1, DB2 or DB3). This resulted in
approximately over 9000 samples for all the classes (as
shown in Table 1).

B. 2D SPACE-TIME FEATURE STREAM SELECTION
Single view/stream CNN-LSTM models are trained in an
End-to-End (E2E) learning fashion, to select the best feature

TABLE 1. Number of samples per class in each database

TABLE 2. Recognition results on the validation set DB3 for the single
view CNN-LSTM based 2D space-time feature stream selection.

FIGURE 4. The room layouts used for collecting data are shown, room in
a) is an uncluttered room where we collected DB1 and DB2, room in b) a
cluttered room where we collected DB3, and DB5 was collected in a
cluttered room shown in c), which is with a different layout than DB3
(adapted from [10]).

stream from l = {raw, disp, diff, disp-diff}, for each 2D
view s = {rd, td, tr}. Figure 3 illustrates the architecture in
which the CNN has the same configuration as the space-time
encoder Es(.) defined in Section IV-A, and the LSTM part is
equivalent to the sequential model hs of Section IV-B, and
the classification head hC . DB1, DB2 and DB5 are used for
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training, while DB3 is used for validation. The results are
ranked and the best view-stream pair is chosen for the next
steps.

As can be seen from Table 2, the energy disper-
sion based stream resulted in the best performance, for
the 2D range-Doppler (x(1...N )

rd,disp) and time-Doppler (x(1...N )
td,disp)

views, yielding an average Macro-F1 score of 0.70 and
0.67 respectively. For the 2D time-range view, the original
raw feature based stream (x(1...N )

tr,raw ) provided the best Macro-
F1 score compared to the other space-time feature based
streams ({disp, diff, disp-diff}).

In summary, the energy dispersion based stream was found
to be more robust for the 2D range-Doppler and time-Doppler
views, while the raw feature stream is preferred for the 2D
time-range view. The energy-dispersion data-cubes create
focusing in the slow slow-time dimension when the energy
dispersion in the Doppler dimension is higher (Equation 3).
This, by definition, creates soft-attention in the radar data-
cube, when participants are inmotion.Whereas, less attention
is created when the energy dispersion in the range dimension
is higher compared to the energy dispersion in the Doppler
dimension (Equation 3). Thus, filtering out events where
multipath from the floor or nearby objects is strong, or when
the resulting energy in the data-cube is not due to partic-
ipant’s limbs, thorax or head. Soft-attention in the context
of a WA action, in time-range, Figure 1 (c,l), and time-
Doppler, Figure 1 (c,m), leads to more signal preservation,
compared to an SD action, in time-range, Figure 1 (h,l), and
time-Doppler, Figure 1 (h,m). The temporal-difference based
data-cube highlights the most recent events compared to the
previous data-cube, thus creating a data-cube encoding high
frequency features (Equation 4), increasing the noise level in
the transformed data-cube, and leading to poor discriminative
features.

C. MV RADAR-NET TRAINING
Having selected the space-time feature streams for each view,
we proceed with the proposed unsupervised training of the
space-timemodels, and the supervised training of the sequen-
tial model. The model training is composed of two phases.

During the first phase the space-time feature encoders
(Es(.)) are trained in an unsupervised manner. For this step
we utilize the encoder-decoder architecture (as shown in
Figure 2a). The data from both cluttered and uncluttered
domains (i.e. DB1, DB2 andDB5), is utilized for training. For
validation the reconstruction on an independent test dataset
from a cluttered domain (i.e. DB3) is used. We use a batch
size of 16 and a learning rate of 1E−6. Themodels are trained
for 70 epochs using an ADAM optimizer [14]. The following
L1-L2 reconstruction loss is minimized as an objective:

Lrec(.) =
2∑

p=1

||x(1...N )
s,l − x̂(1...N )

s,l ||p (14)

In the second phase, the sequential model (H (.)) is trained
with the space-time feature extractors (Es(.)) (as shown in

Figure 2b). The parameters of the feature extractors are
initialized using the pre-trained encoders from the previous
unsupervised training phase and are frozen during the super-
vised training of the sequential model. Next, the full archi-
tecture is fine-tuned with a reduced learning rate of 1E − 7,
while the batch size, epochs and optimizer is kept the same as
in phase-one. We train the models using DB1, DB2 and DB5,
while DB3 is used for validation and minimize the following
cross-entropy based focal-loss [18]:

Len(.) = −
1
|Y |

|Y |∑
i=1

yi
(
1− ŷi

)γ log (ŷi) (15)

where, γ is defined as 2.0 and yi is an element in the class-
label vector (Y ) representing the i-th class.

D. ABLATION STUDY
To evaluate the benefit of the proposed approach, an ablation
study was carried out. We compare the proposed two-step
training (with fine-tuning) of the MV RADAR-Net using the
view-stream pairs defined by {{rd, disp}, {td, disp}, {tr, raw}}
with auxiliary feature fusion, denoted as U2SF-p3/wAux,
to the following models:
• The MV RADAR-Net of Figure 2b without auxiliary
features trained in an End-to-end fashion (with param-
eters trained from scratch), denoted as E2E/woAux.

• The MV RADAR-Net of Figure 2b without auxil-
iary features with frozen Es(.) and initialized from
the pre-trained CAE models of Figure 2a, denoted
as U2SF-p2/woAux. Here Es(.) is used for features
inference.

• The MV RADAR-Net of Figure 2b without auxil-
iary features trained using the two-step training with
fine-tunning approach of Section V-C, denoted as
U2SF-p3/woAux.

• The MV RADAR-Net of Figure 2b with auxiliary fea-
tures trained in an End-to-end fashion (with parameters
trained from scratch), denoted as E2E/wAux.

• The MV RADAR-Net of Figure 2b with auxiliary
features with frozen Es(.) and initialized using the
pre-trained CAE models of Figure 2a, denoted as
U2SF-p2/wAux.

The above models were trained on DB1, DB2 and DB5 and
evaluated on DB3. Table 3 lists the recognition accuracy on
the validation set DB3.

1) WITHOUT AUXILIARY FEATURE FUSION
In the context of an E2E/woAux, the precision, recall and
F1-scores of WA and WT classes remain above 0.80, while
the model struggles around 0.50 for the SD and SU classes.
This results in a baseline average accuracy score, average
macro-F1 and weighted average F1 score, of 0.71, 0.7 and
0.71 respectively. Furthermore, the U2SF-p2/woAux and
U2SF-p3/woAux did not improve the performance compared
to E2E/woAux, except for adding 1% to the overall average
accuracy score, during the fine-tuning stage. As a result, the
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TABLE 3. Ablation study results of the MV RADAR-Net model on the validation set DB3.

average accuracy, average macro-F1 and weighted average
F1 scores, without auxiliary feature fusion were 0.72, 0.7 and
0.71 respectively (as shown in Table 3).

2) WITH AUXILIARY FEATURE FUSION
Auxiliary feature fusion, in E2E/wAux, significantly
improved the performance scores for WA and WT classes.
The overall recall, precision and F1-score for WA and WT
classes, with auxiliary feature fusion, was more than 0.85,
however the performance for the SD and SU classes still
struggled around 0.50. In contrast, using the U2SF-p2/wAux
approach, the performance score of the SD and SU classes
improved, resulting in an average recall, precision and
F1-score of more than 0.55. Overall, with auxiliary feature
fusion, in the context of U2SF-p3/wAux, the baseline average
accuracy, average macro-F1 and weighted average F1 scores
improved by 5% as shown in Table 3.

E. DISCUSSION
The proposed 3D raw radar data-cube and it’s derived rep-
resentations encode local state of the targets, while with the
auxiliary tracking features we are able to encode the global
context of the target. This allows the model to infer with
high accuracy, the state of the target, i.e. if the targets are in
the state of motion or if they are static. This is evident from
the ablation study conducted in Section V-D. As shown in
Table 3 using the auxiliary feature fusion, we get an overall
improvement of 3% in the average Macro-F1 score, in the
context of E2E/wAux compared to E2E/woAux. This is fur-
ther improved by another 2% when the proposed two-step
learning approach is used, in the context of U2SF-p3/wAux.
These results are also aligned with the projections of the
auxiliary features in the UMAP manifold [23], as depicted
in Figure 5.
As shown in the Table 3, most degradation in the per-

formance is resulting from the SD and SU classes. This is
precisely because the participants were asked to perform SD
and SU actions on two chairs with different orientations as
shown in Figure 4b. For a chair facing towards the radar,
in case of an SD action, while sitting down, the participant
first moves away from the radar, upon completion of the
action, they would move towards the radar. For an SU action,
on the same chair, the order of these events would reverse.

FIGURE 5. UMAP manifold [23] of the auxiliary features (a) and the raw
2D range-Doppler features from DB3 (b), for the four action classes.
As shown in (a) the intra-class compactness of the feature space is much
better compared to (b), leading to better inter-class separability in (a).

FIGURE 6. UMAP [23] (a) and t-SNE [22] (b) manifolds of the raw
range-Doppler maps for SD and SU classes from DB3. As shown in (a) and
(b), both SD and SU classes create considerable confusion and thus
degrade the overall performance.

However, the problem becomes complicatedwhen the SD and
SU are performed on a second chair with different orientation,
i.e. facing away from the radar, thus resulting in a confu-
sion between SD and SU classes. This confusion is shown
in the UMAP [23] and t-SNE [22] manifolds in Figure 6.
Furthermore, apart from the variation in the orientation of the
actions, most actions of the participants are occluded behind
the tables, especially the SD and SU actions, hence suffering
from the shadowing effect due to partial occlusion.

The generalization capability of the learningmethods, with
a single radar-sensor is still a challenging problem. In this
paper we propose to solve this problem by learning from both
uncluttered and cluttered domains, and tend to generalize for
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TABLE 4. Classification report for WA, WT and SDU classes, with and
without auxiliary feature fusion, where MV RADAR-Net was trained using
an E2E learning approach. DB1, DB2 and DB5 was used for training while
DB3 for validation.

an unseen cluttered environment with unseen participants.
However, based on the experimental results, on one hand we
could improve the results by fusing the auxiliary features as
side information. But on the other hand, it is evident from
the results that for some actions, such as SD and SU, with a
single radar-sensor, we are fundamentally limited in terms of
discriminative features.

One potential solution for this problem could be, to com-
bine the SD and the SU classes, i.e. solving for a multi-class
classification problem with Walking Away (WA), Walking
Towards (WT), and Sitting Down and standing Up (SDU)
classes. The result of this solution with MV RADRA-Net,
with and without auxiliary feature fusion, using an E2E learn-
ing approach, is shown in Table 4. This approach results in
a average accuracy score of 0.84 and 0.92 without and with
auxiliary feature fusion, respectively.

VI. CONCLUSION
We study the generalization capability of the learning meth-
ods for an unseen cluttered environment, and unseen partici-
pants. Our contribution of this research is as follows:
• We propose energy-dispersion based features for a reli-
able radar-HAR problem. These features were shown to
be robust compared to the raw features.

• Apart from the range-Doppler based features, we inves-
tigate the utility of the dynamic auxiliary features from
the tracker, which allows us to encode the global context
of the targets.

• We propose MV RADAR-Net, which utilizes the full
radar data-cube, and performs the mid-level multi-view
data-fusion using a novel LSTM layer based approach
employing a shared hidden-state matrix across multiple
views.

• Wepropose a two-step learning framework, which learns
class-label agnostic features, in an unsupervised manner
and allows us to reuse pre-trained feature extractors, thus
making the overall learning procedure less dependable
on the initialization process.

The generalization capability of the learningmethods, with
a single radar-sensor is still a challenging problem. A poten-
tial solution could be, to utilize the absolute context of the tar-
gets, however this requires a robust online continual learning
framework, to be able to generalize to an unseen environment
and will be considered in a future work.
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