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Fully Blind Electromagnetic Characterization of
Deep Sub-Wavelength (4/100) Dielectric Slabs
With Low Bandwidth Differential Transient
Radar Technique at 10 GHz

Ali Pourkazemi™, Salar Tayebi~, and Johan H. Stiens

Abstract— Transient radar method (TRM) is introduced as a
novel non-destructive testing (NDT) technique that is capable
of analyzing fully blindly and simultaneously the electromag-
netic (EM) properties as well as geometric parameters of deep
sub-wavelength thin single layer slabs. This study focuses on
the minimum detectable layer thickness by means of TRM,
which mainly depends on the experimental setup configuration.
In this article, the complex permittivity and thickness of three
polyvinyl chloride (PVC) sheets are extracted by means of a
differential TRM set-up. The thickness of these PVC sheets was
1 mm, 500 gm, and 300 xm that corresponded to A/30, A/60,
and A/100, respectively (A is the wavelength in free space). The
carrier frequency was 10 GHz and the experiments were done
in a bistatic radar setup. A differential TRM structure was used
in this experiment. Some error sources, such as switch leakage
and non-perpendicular illumination as well as systematic errors
are considered as well. The experimentally obtained results are
as follows: the thickness of these samples were 1033 + 12,
535 £ 11, and 302 £ 9 um with 1.18%, 0.94%, and 2.89%
relative error, respectively. Additionally, the complex permittivity
of these samples was found as (2.73 + 0.02)—(0.23 £ 0.01)j,
(2.70 £ 0.02)-(0.20 %+ 0.02)j, and (2.65 £ 0.02)-(0.37 £ 0.01)j,
respectively. This novel technique has the potential for deploy-
ment in a wide range of applications ranging from the piping,
wind energy industry, and automotive to biotechnology, food
industry, clinical monitoring, and pharmacy.

Index Terms—Blind characterization, complex permittivity
extraction, contact-free thickness measurement, microwave and
millimeter wave (MMW), non-destructive testing (NDT), time-
domain reflectometry (TDR), transient radar method (TRM),
ultra-sub-wavelength depth resolution.
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I. INTRODUCTION
ON-DESTRUCTIVE testing (NDT) in the largest cat-
egorization can be divided into three parts which are

techniques, materials, and conditions. Among various tech-
niques, there is one group which is named wave-based tech-
niques. For instance, X-ray imaging, ultrasonic investigation,
laser pulse scanning, electromagnetic (EM) radiation, etc.
are the main NDT methods that are categorized as wave-
based techniques [1], [2]. In this group, using EM wave
testing, in general, is implemented for monitoring physical and
chemical changes of different industrial and pharmaceutical
materials. Choosing the best frequency range in EM wave-
based testing highly depends on the ultimate application,
needed lateral resolution, and penetration depth. Consequently,
microwave, millimeter wave (MMW), and THz technology
have been used in different techniques and methodologies,
such as spectroscopy, time-of-flight with respect to the pulse,
time-domain reflectometry (TDR), frequency modulation con-
tinuous wave (FMCW), etc. Reviewing the recent scientific
literature reveals that some typical MMW/THz devices and
systems, as well as some engineering applications in com-
posite material characterization, thermal barrier coatings, car
paint films, marine protective coatings, noninvasive clinical
monitoring, and pharmaceutical tablet coatings are growing
rapidly [3]-[9]. Moreover, reviewing wave-based techniques
shows sub-THz or THz imaging methods have higher res-
olution in comparison with ultrasound imaging technique,
however, the penetration depth is lower [10]. Additionally,
the necessity of couplant, priori knowledge, and generating
ionizing radiation are the main disadvantages of ultrasonic
wave, MMW/THz, and X-ray in traditional ways, respec-
tively, [11]-[14]. A few years ago, Pourkazemi and Stiens [15]
have patented a new EM radar-type wave-based technique,
that is able to keep the advantages of traditional EM wave
methods while it is completely blind. In other words, this
method is fully independent of priori knowledge. This method
was coined transient radar method (TRM). Radar techniques
are one of the oldest techniques in NDT, but the TRM can
be considered as a novel category aiming at NDT applications
and operating in the time domain (i.e., a time of flight method).
The significant difference between TRM and other time-based
methods is the usage of narrowband illumination. Moreover,
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Fig. 1.
and bandwidth were 10 GHz, 1 ns, and less than 1 GHz, respectively.

Experimental transient radar signal. The carrier frequency, rise time,

due to dispersion characteristics (frequency-dependent EM
properties) of materials, samples under test cannot be analyzed
by traditional pulse-based systems without a priori knowledge.
The latter is not always available. There is a solution to
measure EM properties as well as the thickness of single-layer
structures with a metallic surface in the back [17], however,
for two or multilayer structures, it does not work. Ultimately,
measuring the EM properties of thin layers in advance does
not yield correct results due to the aforementioned interfacial
issues. Hence, there is a huge need to develop a measurement
tool to extract EM properties without a priori knowledge.
Based on the research results that have been obtained in recent
years, TRM is a promising method to achieve this goal in the
near future. TRM can be categorized under TDR methods but
without the need for an ultrashort broadband pulse.

In fact, transient radar signal is a time-dependent transient
sinusoidal wave from no-radiation to steady-state condition,
that stimulates narrow bandwidth (see Fig. 1). A transient
sinusoidal wave is radiated toward the sample under test
(SUT), subsequently, a time-dependent reflection trace will be
recorded by single-shot samplers [15], [18], [19]. It is obvious
that the receiver receives the nose of the reflection signal [head
of the first propagation path (PP)] after the round-trip time
(RTT) defined as the time to travel twice the distance between
the emitter antenna and the SUT. The receiver keeps receiving
signals as long as the signal generator is operating (see Fig. 2).
This time-dependent reflection is generated by means of the
accumulation of several time-dependent reflections which are
created based on each PP.

Each PP is the one possibility that a wave can travel
through it; the departure point is the transmitter antenna and
the destination is the receiver. These PPs can be described
by a unique set of equations with respect to the number of
layers and EM properties of each layer. As the simplest case
scenario, imagine there is a single-layer structure as the SUT,
hence, the first PP is from the transmitter antenna toward the
front side of the SUT and then reflection to the receiver.
The second PP is from the transmitter antenna toward the
SUT and passes from the front side toward the backside and
the reflection from the backside and then passes again from
the front side toward the receiver antenna. In transient time,
all PPs from the various layer interfaces of the multilayer
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Fig. 2. Schematic illustration of the time evolution of the EM waves being
reflected on the various interfaces of the multilayer structure. The nose of the
illustrated reflected wave hits the detector after the first RTT.

structure are detectable except the ones with an amplitude
within the noise level. In this article, at first, we consider
that samples are homogeneous single-layer structures that are
exposed in the air. We are going to measure the complex
permittivity as well as thickness while the temperature is
monitored. The main goal of this experiment was to investigate
the possibility of detecting the EM characteristics as well as
thickness of samples with a thickness of 4/100 or beyond.
Because of the very thin layers, PPs are generated with very
short time-delay with respect to each other. Hence, a small
drift (few hundreds of picoseconds either from the oscilloscope
or the single shot sampler) can create a significant error for
calculating EM properties as well as thickness. To cope with
drift, a differential system has been implemented instead of
single-ended structure.

In the TRM method, the calibration is based on the record-
ing of REF and AIR signals, where we refer to the reflected
signal from a perfect smooth metallic reflector (PSMR) and the
crosstalk of transmitter and receiver antennas without the pres-
ence of any object, respectively. During these measurements,
these three signals drift with respect to each other. Ultimately
differential system allows to overcome errors due to systematic
error sources (see Fig. 3).

In the following sections, we describe the investigated sam-
ples, measurement procedure, error mitigation process, and the
obtained results, respectively. Subsequently, a brief discussion
regarding the obtained results, summary, and conclusion are
provided as well in order to have an overview of this study.

II. MATERIAL AND METHODOLOGY

Three semi-flexible polyvinyl chloride (PVC) sheets
(50 x 30 cm) with a thickness of 1000, 500, and 300 pm,
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Fig. 3. Schematic illustration of the calibration procedure for the differential
TRM set-up. (a) Two used receiver channels of the differential TRM set-
up. (b) First step of the calibration procedure: AIR (channel 2) and PSMR
(channel 1) measurements. (c) Second step of the calibration procedure: REF
(PSMR in channel 2) and PSMR (channel 1) measurements. (d) Effective
measurement step; SAM [reflected signal from sample under investigation,
(channel 2)] and PSMR (channel 1) measurement.

Fig. 4. PVC sheets that were used for this experiment.

respectively, were selected. As the SUTs are illuminated in
a vertical position, three rigid frames supported them (see
Fig. 4). To mitigate the environmental interference, strong
absorber sheets were placed behind the SUT (see Fig. 5).
Since the main target of this experiment was the investigation
of depth resolution with respect to the ability of TRM to
measure thickness as well as EM properties of the SUT, the
room temperature and humidity were kept constant during the
measurements.

The differential structure was made by means of two sepa-
rate channels. Each channel consists of a transmitter antenna
and a receiver (see Fig. 5).

As illustrated in Fig. 6, the first module in the TRM
measurement set-up is the single frequency generator. This is a
narrowband voltage-controlled oscillator (VCO) that generates
continuous EM waves. The power divider is the second
module that functions as a power splitter that provides a simi-
lar (power) amplitude and phase to each port. The next module
is the single pole single throw (SPST) switch. This switch has
two functions in this set-up. The first task of the switch is
to create on-off square signals comprising transient modes at
the initial and terminal part; the second task, however, is to
reflect a part of the illumination signal to trigger the single-
shot sampler at the toggling moment from the conductive
to the non-conductive state. It is obvious that the amplifier
improves the signal-to-noise ratio (SNR) by increasing the
magnitude of the radiated signal. The single-shot sampler
or sample and hold module is the module that records the
amplitude of the reflected EM waves during an infinitesimal
time interval. Delay creator helps the operator to record the
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Fig. 5. Experimental 10 GHz differential TRM setup. (a) Differential
structure comprising quasi-identical transmitter antenna and a receiver. (b) As
shown, channel 1 is for the calibration and sample measurement, while channel
2 was used for drift detection and mitigation. (c) Rigid frames and sample
holder to place the samples in smooth and perpendicular position with respect
to the transmitter antenna.
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Fig. 6. Block diagram representing the TRM measurement set-up.

reflected signal at certain time-frames. Last, the trigger module
sends the command to the SPST switch for toggling from non-
conductive to conductive condition and vice versa. Actually,
a sampling oscilloscope is the most suitable signal acquisition
device for TRM not only for its repeatability but also because
of the time resolution. Modern sampling oscilloscopes have a
time resolution of few tens of femtoseconds which is necessary
for TRM measurements since time resolution has a direct
relation with depth resolution. Additionally, higher SNR of
sampling oscilloscopes results in significantly more accurate
results. Generally, the acquisition speed of TRM signal in the
sampling oscilloscope is significantly smaller compared with
the real time oscilloscopes. For instance, in a typical modern
sampling oscilloscope, the sampling rate is around 50 KSa/s,
but for a real time sampler, is 250 GSa/s, approximately. In the
actual experiment, by means of a tuner, the time delay for
both samplers was adjusted in a way to initiate the acquisition
before the reflection of transient radar signals. In the next step,
time resolution was adjusted to its minimum possible value.
In this measurement set-up, channel 1 was allocated to the
recording of the time-dependent reflection signals from a fixed
PSMR in order to mitigate drift. Channel 2 was deployed for
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calibration steps as well as the sample measurements (see
Fig. 3). Consequently, four reflected signals were recorded
for the two-step calibration process; channel 1 received two
reflections from PSMR while channel 2 received one reflection
from the PSMR and one from air (AIR trace). Finally, with
respect to investigations on the SUT, channel 1 was used to
record the PSMR reflection while channel 2 was used for the
sample investigation.

In general, in TRM, the peeling method can be used to
analyze the reflection signal traces, however, since we assumed
that the samples are homogenous, we processed the signals as
follows.

1) At the first stage, histogram technique was used to
convert the raw signals into the smooth ones. In fact,
areas with the highest density of sample points in
amplitude-time plane were determined by means of
density-weighted averaging technique. The averaging
process was restricted to ten measurements to avoid drift
phenomena in the circuit [15].

2) Drift in channel 1 was calculated for each step of
the experiment. Each step was named according to the
sample in front of channel 2. For instance, AIR indicates
measuring the reflection signal from the fixed PSMR in
channel 1, while nothing is placed in channel 2. Simi-
larly, REF indicates measuring the reflection signal from
PSMR in front of channel 1, while another PSMR is
placed in front of channel 2. Last, SAM (reflected signal
from sample under investigation) indicates measuring
the reflection signal from PSMR in channel 1, when
the PVC sheets are placed in channel 2.

3) The calculated drift (calculated and evaluated all the
time) from channel 1 was applied to the recorded
signals from channel 2. Consequently, from this moment
onward, we only work with three recorded signals from
channel 2.

4) 1In order to remove the crosstalk between antennas and to
have pure reflection signals, AIR signal was subtracted
from REF and SAM signals.

5) Last, we reconciled the REF and AIR signals in order to
find the nose of the signal. Nose of the signal indicates
the transient reflection signal from the shortest RTT
between the transmitter antenna and the front side of
the SUT.

6) To extract the complex permittivity, at first, we should
decompose SAM-AIR couple trace into the PPs. Sub-
sequently, the first PP which is named PP can be
obtained by trial and error to find amplitude and phase
change in the REF-AIR signal and reconcile it as much
as possible to the SAM-AIR signal

PPo) = ATgre /2dbei™ Ut —19), t>15 (1)

where A, Lo, fo, do, wo, t, to, U(t), and PP refer
to the amplitude, reflection coefficient from the front
side, propagation constant in free space, the distance
between antennas and SUT, angular frequency, time,
RTT between the antennas and SUT, Heaviside func-
tion, and first PP, respectively. In other words, PP
is exactly, such as the REF-AIR signal multiplied by
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Fig. 7. Flowchart explaining the extraction of PPs. (a) First PP which is
named PP,y can be obtained by trial and error to find amplitude and phase
change in the REF-AIR signal and reconcile it as much as possible to the
SAM-AIR signal. In other words, PP, is exactly, such as REF-AIR signal
multiplied by an unknown complex coefficient. (b) By subtracting PP, from
SAM-AIR signal and applying the same principle as (a), we can extract
PP(;04+1) as a PP for a double or multilayer structure.

an unknown complex coefficient. Consequently, finding
this unknown complex coefficient results in finding the
reflection coefficient of the first layer (I'g;). Eventually,
the complex permittivity will be obtained according to
I’y and magnetic permeability (o).

7) By subtracting PP;g) from SAM-AIR signal, we can
extract the second PP (PPo4,1)) for a double or mul-
tilayer structure. Extraction of this PP leads to the
reflection coefficient of the second layer (I'j). However,
for a single-layer structure, I';> is known. Since PP
and PP(o4,1) are the PPs from the first and second
surfaces of the SUT, we can calculate the thickness
based on the difference between these two PPs

PP .
PP (i1 = ( F(EIIO))Tmeeza'd‘e2’(ﬂ°d°+ﬂ‘d')

.F]oejwolU(l‘ —th—t), t>th+1 (2)

where Toy, Tho, f1, di, t1, and a refer to the transmission
coefficient through the first interface, transmission coef-
ficient through the second interface, propagation con-
stant in the material, thickness of SUT, RTT in sample,
and attenuation coefficient in sample, respectively.

We can follow this algorithm to calculate other PPs
(PP(104n:1)) for a multilayer structure (see Fig. 7)

1 n—1 1 n—1
PPy iniy = PP .
(to+ ) (PP(ZO)) X (TOITI()) X ( (t()+t1))

Ut —ty —nty), t > ty+ nty. 3)

This is obvious that some of them can be calculated
according to the previous ones while some of them
should be obtained by means of trial and error in the
mentioned algorithm for multilayer structures.

8) For very thin structures, the time delay between PPs is
relatively small. Therefore, extraction of PPs would be
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challenging. Consequently, we extract four or five PPs
and implement a cost function based on the following
algorithm:

=4
Z PP(04ns) — (SAM — AIR). @)
n=0

Since the nose of the signal is already obtained, there are
only three unknown parameters to be calculated: the complex
permittivity and thickness of the single-layer structure.

Although there is a big gap between the actual model and
the above formulas, they still show the physical process that
takes place between transient incidence as well as the single-
layer structure. For instance, in these formulas, it is assumed
that the rise time is generated as a pure and zero harmonic,
however, this is not the case in reality. In general, the PPs
are completely dependent on each other. In other words, if we
obtain the first one correctly, others will be derived correctly
as well. Due to complex transient dynamics of the switch
toggling from off-to-on, the whole mathematical operations,
such as phase shift, attenuation coefficient, as well as time
delay should be applied to each point of the traces.

III. ERROR MITIGATION

To calculate the complex permittivity as well as thickness
with high accuracy, error mitigation is needed to be consid-
ered. There are several kinds of error sources that can affect
more or less the accuracy of the final results. The amount
of impact of each error source depends on the electronic
specifications as well as geometric and EM properties of
the SUT. For instance, when the thickness of the sample
under investigation is relatively lower than the wavelength, the
divergence error [20] can be neglected. However, for such kind
of SUT which is of homogeneous thin single-layer structures,
only one considers the following important error sources.

Switch-leakage error: since the switch used in this study
does not create infinite insulation there is even radiation
leaking to the SUT when the switch is in its non-conductive
mode. Therefore, switch leakage error should be taken into
account. Furthermore, the angle between the transmitter and
receiver antenna can potentially lead to an increasing RTT
in the body of sample. Additionally, the EM properties must
be calculated based on the polarization of the incident wave
in Fresnel equations [20]. Finally, the finite conductivity of
PSMR at 24 °C should be considered as well [20]. Ultimately,
drift as a stochastic error source should be resolved too.

As illustrated in Fig. 8, at first, we assume that the real
thickness and complex permittivity of the SUT are 1 mm and
2.73-0.02j, respectively. Afterward, by considering different
values for thickness and complex permittivity, the PPs have
been re-calculated to investigate the amount of error due to
the thickness and complex permittivity changes as a function
of PPs. As shown in Fig. 8, transient radar signal is more
sensitive to thickness compared with sensitivity to the absolute
value of permittivity. In other words, uncertainty in thickness
calculation is smaller than uncertainty in the absolute value of
permittivity.
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Fig. 9. Recorded signals from the two-step calibration procedure and one-
step measurement. (al) and (a2) Recorded traces of AIR and PSMR from
channel 2 and 1, respectively. (bl) and (b2) Recorded traces of REF (PSMR)
and PSMR from both channels. (c1) and (c2) Recorded traces of SAM and
PSMR from channel 2 and 1.

IV. RESULT AND DISCUSSION

In this experiment, each PVC sheet was investigated three
times. Subsequently, by means of the histogram technique,
smooth traces of air (AIR), PSMR (REF), and the SUT (SAM)
were generated for further signal processing. In the next step,
we calculated the drift based on the results achieved from
channel 1 and applied it to channel 2. Therefore, the nose
region was determined by means of reconciling the AIR and
REF traces from channel 2. Afterward, the peeling method
with an appropriate algorithm was performed in order to find
PPs. Finally, the thickness and dielectric permittivity were
extracted according to the PPs.

In Fig. 9, results of the two-step calibration procedure,
as well as the measurements, are presented. As illus-
trated, at each stage, we recorded the reflection from
channels 2 and 1 in order to cope with the drift issue.
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In Fig. 10, there is a visual comparison between three traces
that are generated by TRM signals from three PVC sheets
with different thicknesses. As can be seen, the nose of the
signal represents the first PP received from the front side of
the sample under investigation.

After a certain time (for instance, 268.3 ns for the sample
with the thickness of 1 mm) a sharp increase in the signal
can be seen which refers to the second PP received from the
backside of the SUT. Five consecutive PPs which are related
to the SUT with 1 mm thickness are shown in Fig. 11(a).
Additionally, the SAM signal of the sample with 1 mm
thickness, the summation of its PPs [Fig. 11(a)], and the
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TABLE I

EXPERIMENTAL RESULTS OF THREE PVC SHEETS WITH DIFFERENT
THICKNESSES, DETERMINED VIA CALIPER AS WELL AS TRM AT A
LABORATORY TEMPERATURE OF 24 °C

Thickness
Via caliper

PVC-sample  Temperature Thickness Relative

(°Celcius) Via TRM
range (jum) (um) (um)

Complex
thickness permittivity error for
thickness
(%)
(2.73%0.02)-(0.230.01)j 1.18
(2.70%0.02)-(0.200.02)j 0.94

(2.65+0.02)-(0.37+0.01); 2.89

+/-1000 24
+/-500 24
+/-300 24

1021+139
530+78
311+39

103312
535411
302409

subtraction of these PPs from SAM-AIR signal is shown in
Fig. 11(b). The important thing to be pointed out is that the
first and second PPs are significantly larger than the noise
level and are clearly distinguishable in Fig. 11(a). However,
the rest of the PPs is below the noise level and cannot be
analyzed further.

The final results achieved from this experiment are pre-
sented in Table I.

As can be seen in Table I, the temperature during the
investigation was kept constant as much as possible to prevent
any additional error source. The thickness of the PVC sheets
was measured five times by means of a caliper. Subsequently,
the mean and standard deviation of each PVC layer thickness
were calculated. The thickness of the PVC sheets measured
by a caliper was 1021 £ 139, 530 & 78, and 311 £ 39 um.
On the other side, the thickness measured by TRM was
1033 + 12, 535 £ 11, and 302 £ 9 um, respectively.
Comparing the premeasured thickness values with the obtained
ones, resulted in finding the relative error for each sam-
ple, which was 1.18%, 0.94%, and 2.89%, respectively.
With respect to the complex permittivity, the results were
(2.73 £ 0.02)—(0.23 £ 0.01)j, (2.70 £ 0.02)—(0.20 £+ 0.02)j,
and (2.65 £ 0.02)—(0.37 £ 0.01);j for the samples with a thick-
ness of approximately 1000, 500, and 300 xm, respectively.

V. SUMMARY AND CONCLUSION

For the first time ever, we were able to design, assemble, and
test a differential TRM system, operating at 10 GHz allowing
to evaluate the full potential of TRM to characterize sub-
wavelength structures in a totally blind way. The advanced
proprietary algorithms have been implemented to mitigate drift
error that leads to larger errors, specifically for single thin
layer structures. This technique allowed us to characterize fully
blindly a dielectric layer structure with a thickness of 1/100
with a relative error smaller than 3%. As explained in this
study, thicknesses of the PVC sheets measured by a caliper
were 1021 £+ 139, 530 £ 78, and 311 + 39 um, on the
other hand, the measured thicknesses via TRM were 1033 +
12, 535 £ 11, and 302 &£ 9 um with 1.18%, 0.94%, and
2.89% relative error, respectively. In general, the minimum
detectable layer thickness depends on several factors including
the vertical resolution of oscilloscope, SNR, noise level, carrier
frequency, EM properties of SUT, etc. The obtained complex
permittivity values by means of TRM were (2.73 £ 0.02)—
(0.23 £ 0.01)j, (2.70 &£ 0.02)—(0.20 = 0.02)j, and (2.65 £
0.02)-(0.37 = 0.01)j for the PVC sheets, independently. The
complex permittivity is highly dependent on the composition
of the sample under investigation. Therefore, different values
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of permittivity can be found in different studies depending
on the molecular composition of PVC samples. For instance,
the dielectric properties of various polymers including PVC
have been investigated by means of dynamic-electric analy-
sis (DEA) in 2013 [21]. Since the samples investigated in this
study have been reinforced with ground tire rubber (GTR),
the obtained permittivity values are not exactly the same as
the results of this study, however, the obtained permittivity
values by means of TRM are relatively in agreement with
the previously reported ones. In the future, TRM will be
implemented at higher frequencies up to 100 GHz, in a
differential set-up that leads to higher precision and depth
resolution in addition to lateral resolution. Moreover, the new
algorithm which is able to extract complex permittivity and
geometric information for thin multilayer structures by means
of transient radar signal will be presented as well.
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