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A Review of Evaluation Practices of Gesture
Generation in Embodied Conversational Agents

Pieter Wolfert , Nicole Robinson and Tony Belpaeme

Abstract—Embodied conversational agents (ECA) are often
designed to produce nonverbal behavior to complement or
enhance their verbal communication. One such form of nonverbal
behavior is co-speech gesturing, which involves movements that
the agent makes with its arms and hands that are paired with
verbal communication. Co-speech gestures for ECAs can be
created using different generation methods, divided into rule-
based and data-driven processes, with the latter gaining traction
because of the increasing interest from the applied machine
learning community. However, reports on gesture generation
methods use a variety of evaluation measures, which hinders
comparison. To address this, we present a systematic review
on co-speech gesture generation methods for iconic, metaphoric,
deictic, and beat gestures, including reported evaluation methods.
We review 22 studies that have an ECA with a human-like
upper body that uses co-speech gesturing in social human-agent
interaction. This includes studies that use human participants
to evaluate performance. We found most studies use a within-
subject design and rely on a form of subjective evaluation, but
without a systematic approach. We argue that the field requires
more rigorous and uniform tools for co-speech gesture evalua-
tion, and formulate recommendations for empirical evaluation,
including standardized phrases and example scenarios to help
systematically test generative models across studies. Furthermore,
we also propose a checklist that can be used to report relevant
information for the evaluation of generative models, as well as
to evaluate co-speech gesture use.

Index Terms—human-robot interaction, virtual interaction,
human-computer interface, social robotics

I. INTRODUCTION

HUMAN communication involves a large nonverbal com-
ponent, with some suggesting that a large portion of

communicative semantics is drawn from non-linguistic el-
ements of face-to-face interaction [1]. Nonverbal behavior
can be broken down into several elements, such as posture,
gestures, facial expressions, gaze, proxemics, and haptics (i.e.,
touch during communicative interactions). All these elements
convey different types of meaning, which can complement
or alter the semantic component of communication. Even
minimal elements can provide a marked contribution to the
interaction. For example, eye blinking with head nodding has
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Fig. 1: A Pepper robot (left) [11] and a virtual avatar (right)
[12] using their arms, hands, and torso to complement their
speech with co-speech gestures.

been found to influence the duration of a response in a Q&A
session between human subjects and a robot [2].

A significant component involved in nonverbal communi-
cation is the use of gestures –movements of the hands, arms,
or body– to emphasize a message, communicate an idea, or
express a sentiment [1]. Humans often use gestures in daily
life, such as to point at objects in our visual space, or to
signal the size of an object. Co-speech gestures are gestures
that accompany speech. McNeill [3] categorized four kinds
of co-speech gestures: iconic gestures, metaphorical gestures,
beat gestures, and deictic gestures. Iconic and metaphorical
gestures both carry meaning and are used to visually enrich
our communication [4]. An iconic gesture can be an up and
down movement to indicate, for example, the action of slicing
a tomato. Instead, a metaphoric gesture can involve an empty
palm hand that is used to symbolize ‘presenting a problem’. In
other words, metaphoric gestures have an arbitrary relation to
the concept they communicate, and iconic gestures have a form
that is visually related to the concept being communicated.
Iconic and metaphoric gestures not only differ in terms of
content and presentation, but are also processed differently in
the brain [5]. Beat gestures do not carry semantic meaning,
and they are often used to emphasize the rhythm of speech.
Beat gestures have been shown to both facilitate speech and
word recall [6], [7] and are the most frequent type of gesture
[3], [8], [9]. Finally, deictic gestures are used to point out
elements of interest or to communicate directions. Not only
do they enhance spoken communication, they also facilitate
learning [10]. The remainder of this introduction covers ges-
ture research in ECAs, evaluation methods, review aim, and
objectives.
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A. Gesture Use in Human-Machine Interaction

As nonverbal behavior plays an important role in human-
human interaction, researchers put substantial efforts into the
generation of nonverbal behavior for ECAs. ECAs, such as
social robots today, can display a range of nonverbal behaviors,
including the ability to make gesture-like movements [13]–
[15]. The use of co-speech gestures in communication with hu-
mans by ECAs can influence the perception and understanding
of the conveyed message [16], [17]. For example, participants
recalled more facts from a narrative told by an ECA, when
the ECA made use of deictic and beat gestures compared to
when the ECA did not make use of gesticulation [18], [19]. As
another example, humans are more willing to cooperate when
an ECA showed appropriate gesturing (consisting of deictic,
iconic, and metaphoric gestures) in comparison to when an
ECA did not use gestures or when the gestures did not match
the verbal utterances [20]. Gestures are particularly salient in
humanoid robotics, i.e., when the ECA is physically embodied.
Robots can be perceived to be more persuasive when they
combine gestures with other interactive social behaviors, such
as eye gaze, in comparison with when they do not use either
of these techniques [21]–[24]. This demonstrates the impact
nonverbal behavior from ECAs can have on people and its
importance for consideration in human-agent interactions.

Over the years, Artificial Intelligence (AI) powered systems
have been used for the generation of communicative ges-
tures. Gesture generation engines typically rely on matching
language and gesture, given that the rhythm and semantic
content signaled through gestures are highly correlated with
the verbal utterance [3]. Early examples of ECA gesture
generation relied on rule-based systems to generate gestures
and nonverbal behavior, e.g., [25]. For example, the BEAT
system for generating nonverbal behavior can autonomously
analyze input text on a linguistic and contextual level, and the
system assigns nonverbal behaviors, such as beat and iconic
gestures, based on predefined rules [26]. A notable initiative
was the Behavior Markup Language (BML), which provided a
unified multimodal behavior generation framework [27]. BML
was used to describe physical behavior in an XML format and
could be coupled with rule-based generation systems. To catch
all aspects of nonverbal behavior generation, BML was aimed
to not only integrate gesturing but also other forms such as
body pose, head nodding, and gaze.

Instead of relying on hand-coding, gesture generation sys-
tems can also be created from human conversational data,
known as the data-driven approach [28], [29]. These data-
driven methods have predominantly relied on neural networks
for synthesizing gestures. Paired with the rise of deep learning
techniques, data-driven methods are capable of unprecedented
generalization, an invaluable property when generating high
dimensional temporal output. Data-driven approaches using
neural networks are capable of generating more dynamic and
unique gestures, but this does heavily depend on the available
training data and the type of neural networks that are used.
Some approaches learn a mapping from acoustic features of
speech signals to gesture [30], [31]. Audio signal-based meth-
ods are now much better at creating dynamic and fluent beat

gestures, whereas text-based methods show an improved gen-
eration of iconic and metaphoric gestures. However, relying on
only acoustic features of the speech audio means that semantic
details are lost, hence these approaches often only generate
beat gestures. Recent work by Kucherenko et al. [32] combines
neural networks for beat gesture generation with sequential
neural networks for generating iconic gestures, dispensing with
the need for a rule-based hybrid approach. Yoon et al. [33],
trained an encoder-decoder neural network on combinations
of subtitles and human poses extracted from public TED(x)
videos. This allowed the network to learn a relationship
between written language, extracted from the video’s subtitles,
and gesture and was used to generate beat and iconic gestures
for a humanoid robot. However, an in-depth evaluation of the
different categories of gestures generated by the system was
not part of the study. This method was a notable advance
in gesture generation, given that videos contain a wealth of
human conversational data and are abundantly available. The
data used to build data-driven gesture generation can vary,
where some use data collected from many individuals [33],
others make use of data sets containing a single actor [34].

B. Objective and Subjective Methods for Gesture Evaluation

A central component for any method that can generate
human-like behavior is the ability to evaluate the quality of the
generated signals. To date, researchers make use of a variety
of different methods to evaluate gesture generation systems.
One way is to use objective evaluations, often consisting of
metrics for the joint speed, joint trajectories, jerk, or the
Frechet Gesture Distance [35]. The objective metrics that
are often reported are not necessarily the same metrics that
are used to train neural networks. Loss functions only tell
how close the generated stimuli are to the ground truth, and
they do not provide information on whether the generated
motion is dynamic or natural enough. Others include subjec-
tive evaluations, which consist of a user study, where human
participants evaluate the performance of the gestures used by
the ECA. Examples of dimensions on which the performance
is evaluated, are, for example, the perceived naturalness of
the generated motion, the perceived appropriateness of the
gestures’ timing, ‘speech-gesture correlation’ or ’naturalness’
[28], [36]. These are often evaluated using several items in
one Likert Scale. In human-robot interaction [33], researchers
have used questionnaires for general robot evaluation, such
as the Godspeed questionnaire, or a selected subselection of
items from such instruments. The Godspeed questionnaire can
evaluate the perception of ECAs in a non-domain-specific
measurement, and quantifies the human likeness, animacy,
likability, and perceived intelligence of ECAs [37]. Other
methods measure the effect that the gesticulation of an ECA
has on the user, such as listener’s comprehension and recall of
spoken material [18], [19]. In recent work by Ferstl et al. [38],
study designs and strategies for mitigating the impact of hand
tracking loss in virtual reality are compared. In their experi-
ments, they show the importance of asking the ‘right’ question
through comparing several evaluation strategies. However, for
the evaluation of generated co-speech gestures in ECAs, a
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standardized and validated evaluation methodology does not
exist.

As objective and subjective measures are central to assessing
the quality of the generated communicative behavior, stan-
dardized evaluation methods and a uniform way of reporting
measures will help to improve the quality of the field.

C. Review Aim and Objectives

Given the importance that gestures can have on human-
machine interaction, the ability to effectively identify and
evaluate the appropriateness of gestures is vital. However,
there is no standardized generation and evaluation protocol
available for the field of co-speech gesture generation for
ECAs. A standardized questionnaire, measure, or protocol
would make comparing work drawn from different sources
more effective and would allow for more reliable reporting of
results to demonstrate improvement over time. The completion
of a comprehensive review and analysis of previous work
in the field will support in understanding what has been
accomplished so far and help establish a proposed protocol
with systematic reporting methods that can be used for more
robust evaluation of gesture generation methods, and their
resulting gestures.

In this paper, we present a systematic review that followed
the Preferred Reporting Items for Systematic Reviews and
Meta-Analyses (PRISMA) protocol [39] to identify and assess
evaluation methods used in co-speech gestures. We consider
this review timely given that work in co-speech gesture gener-
ation is expanding, new techniques are emerging for creating
novel gesture sets, and no systematic evaluation method has
been provided to date. Central to this review, we have three
research questions.

1) What methods are used to evaluate co-speech gesture
generation?

2) Which methods can be considered the most effective for
assessing co-speech gestures?

3) What methods and related metrics should be adapted to
create a standardized evaluation or reporting protocol?

These research questions will be used to formulate advice
on how to make use of objective and subjective metrics to
evaluate co-speech gesture performance of ECAs, including
creating a standardized testing and reporting method.

II. METHODS

A. Search Strategy

This review focuses on evaluation studies of co-speech ges-
ture generation methods for embodied conversational agents.
Three databases were consulted for data extraction: IEEE
Explore, Web of Science, and Google Scholar. IEEE Explore
was selected given that it captures a substantial number of
publications in computer science and engineering. Web of
Science and Google Scholar were used because they provide
access to multiple databases with a wide coverage extending
beyond computer science and engineering. Data and record
extraction occurred on April 8, 2020, and on June 25, 2020, to
collect new records. Two authors conducted independent data

extraction steps to reduce the chance of relevant papers being
missed from the review, which included inter-rater checks
on the included records. The databases were queried using
four different keyword combinations, where the search engine
would add ‘AND’ between keywords: 1) “gesture generation
for social robots”, 2) “co speech gesture generation”, 3)
“non verbal gesture generation”, and 4) “nonverbal behavior
generation”.

B. Eligibility – Inclusion and Exclusion

The following inclusion criteria were used:
1) The ECA paper must report on gesture generation on

either a robot or an embodied agent.
2) The ECA system must be humanoid in nature, with one

or two human-like arms and/or hands that can be used
to gesture information or messages to the human.

3) The ECA system must display multiple gestures (i.e., a
minimum of 2 different gestures, one of which must be
a beat, iconic, metaphoric or deictic gesture).

4) Gestures created by the ECA system must be those that
would be seen during a multi-modal social interaction.

5) The ECA paper must report on a user study (i.e., not
evaluated using technical collaborators or authors) in a
laboratory, in the wild, or performed remotely through
online platforms.

6) The ECA system must be evaluated by a human rater
on its performance (either directly or indirectly).

To narrow down our search results, we used the following
exclusion criteria:

1) The paper contains a non-humanoid agent that lacks a
typical human-like hand for making a gesture.

2) The paper does not have a clear focus on evaluation of
co-speech gestures, i.e., secondary measures that is less
than 50% of the paper.

3) The paper only covers beat gesture generation.
4) The paper is either unpublished, a doctoral dissertation,

a review, a technical paper or pre-print.
5) The paper is not written in English.
Extracted records that only included beat gesture generation

were recorded but excluded from the main analysis, as these
records rely on audio inputs for the generation of beat gestures.
Hence, these beat gesture generation systems do not take
semantic information into account. Instead, a separate analysis
outside the PRISMA protocol is provided to consider work on
beat gestures only, as we do consider the work on beat gesture
generation important.

III. RESULTS

In this section, we discuss the results of our literature
search. First, we discuss the found articles, followed by a
discussion on the usage of different ECAs. Then, we discuss
the characteristics of participant samples in experiments, the
design of the experiments, and the use of objective and
subjective evaluations. At the end, we present the results of
our analysis of papers that only incorporated beat gesture
generation.
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Fig. 2: PRISMA Flow Chart

A. Selected Articles

The initial search conducted across three separate databases
resulted in 295 papers, which contained 92 duplicate records.
A total of 203 papers were screened for their titles and
abstracts for an initial exclusion step, resulting in 113 papers
being omitted for not meeting all the inclusion criteria. The
90 remaining papers were assessed in detail by reviewing the
main text for eligibility. The 68 non-eligible papers met one
or more exclusion criteria, and were therefore discarded. This
resulted in 22 papers that met all inclusion criteria and none of
the exclusion criteria. Figure 2 shows the PRISMA flow chart
with the results of this process. Extracted information from
the manuscripts included publication year, venue, design and
conditions, method of generation, objective metrics, subjective
metrics, type of ECA, evaluation type (online, in the wild, or
in a laboratory), participants, characteristics of participants,
and other important notes related to the experiment.

B. Embodied Conversational Agents

In the 22 included studies, 16 studies (73%) used different
human-like robots, such as NAO (n = 3, 14%), ASIMO (n =
3, 14%) or Wakamaru (n = 2, 9%). Only 6 (27%) reported the
use of a virtual agent (viz. [40]–[45]). All the virtual agents
were modelled in 3D as a virtual human, and there were no
consistent features across the agents between studies. Of the 6
studies, 4 used female avatars [40], [42], [43], [45], 1 used a
male avatar [41] and 1 study used both [44]. Half of the studies
that used avatars, showed only the upper body [41], [43], [45],
whereas the other half showed full-body avatars [36], [42],
[44]. Specific descriptions of the hands were not provided in
all the studies that used avatars. In 19 (87%) studies, the ECA

performed iconic gestures, combined with other gestures [18]–
[20], [33], [36], [40], [43], [45]–[55].

Metaphoric gestures, with other gestures, are used in 17
(77%) studies [18]–[20], [33], [36], [40]–[43], [45]–[48], [51]–
[54]. Deictic gestures, with other gesture types, play a key role
in 13 (59%) of the reviewed studies [18]–[20], [33], [36], [40],
[43], [45]–[47], [51]–[56]. Lastly, 17 (77%) studies included
iconic, metaphoric and beat gestures [18], [19], [33], [36],
[40]–[42], [44], [45], [48]–[53], [55], [56]. Half of the studies
had the ECA perform ‘random gestures’ that were included in
the evaluation (i.e., gestures that had no alignment between
gestures and speech). Other studies (n = 4) had the ECA
present the user with a variety of different nonverbal behavior
schemes, such as gestures that were based on text, speech, or
a combination of the two [20], [40], [49], [50].

C. Participants

The number of participants per study ranged from 13 to 250
in total (mean = 50, SD = 50, median = 35). In these papers,
19 (86%) were conducted in the laboratory, and 3 (14%) were
conducted either online through Amazon Mechanical Turk
(AMT) (n = 2) and 1 during an exhibition (i.e., ‘in the wild’).
For the 12 (54%) studies that did report the mean age of
the participants, the mean reported age across all studies was
30.10 years of age (SD = 6.6). The remaining 11 (46%) did
not provide demographic data for gender and age. Relating
to trial location, 16 (73%) of studies were performed outside
English-speaking countries, with the top 3 countries being
Germany (n = 5), Japan (n = 3), and France (n = 3). For
participant recruitment, 6 (27%) of the studies reported the
use of university students –a so-called convenience sample– to
evaluate gesture generation. Table I provide a more detailed
overview of the different studies, countries of origin, and
characteristics.

D. Research Experiment and Assessment

In research design, 16 (68%) of the studies used a within-
subject design and 7 (32%) used a between-subject design.
Most (n = 18, 82%) studies invited participants to a university
research laboratory to have an interaction with an ECA. Other
methods used AMT (n = 2, 9%). With use in 9 (41%) studies,
‘naturalness’ was the most common metric for evaluation in
generated gestures. This was followed by synchronization (n
= 6, 27%), likability (n = 4, 18%), and human-likeness (n =
2, 9%). 2 studies (9%) [42], [47] asked participants to choose
which audio track matched best with a given generated gesture
sequence. 9 (41%) studies made use of models that learn
to generate co-speech gestures. When assessing generated
gestures, 16 (73%) studies used questionnaires as a tool to
evaluate ECA gesture performance. Only 1 study [47] included
a previous iteration of their gesture model for evaluation.
4 studies (18%) used a ground truth as part of the gesture
generation evaluation. 3 studies (13%) relied on pairwise
comparisons, such as two or more videos put side by side
with the user selecting the video that best matches with the
speech audio, e.g., [44], [50], [52]. Other evaluation methods
involved robot performance, e.g., [18], [19].
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TABLE I: Participants in Studies

Study Country Gender Mean Age (SD) N Characteristics Lab/Remote Evaluation
[33] South Korea 23M/23F 37 (-) 46 45 USA, 1 Australia AMT
[50] Spain - - 50 Non-native English Speakers In Lab
[40] Japan - - 10 Age + Gender not specified In Lab
[36] Japan - - 20 Age + Gender not specified In Lab
[49] Japan - - 13 - In Lab
[45] Slovenia 22M/8F - 30 - In Lab
[42] U.S.A. - - 250 One ‘worker’ per comparison AMT
[19] U.S.A. 16M/13F 22.62 (4.35) 29 Convenience Sample In Lab
[47] Germany 10M/10F 28.5 (4.53) 20 Native German Speakers In Lab
[48] France 14M/7F 21-30 21 Convenience Sample In Lab
[43] Slovenia 23M/7F 26.73 (4.88) 30 Convenience Sample In Lab
[18] U.S.A. 16M/16F 24.34 (8.64) 32 Convenience Sample In Lab
[20] Germany 30M/32F 30.90 (9.82) 62 Convenience Sample In Lab
[46] Germany 30M/30F 31 (10.21) 60 Native German Speakers In Lab
[56] South Korea - - 65 In Lab
[51] France 36M/27F 37 (12.14) 63 Convenience Sample In Lab
[53] France - - 63 French Speakers In Lab
[54] Germany 20M/20F - 20M/20F 31.31 (10.55)/31.54(10.96) 81 Two Studies In Lab
[44] U.S.A. 21M/14F 23 (-) 35 Convenience Sample In Lab
[52] U.S.A. - - 54 - In Lab
[41] U.S.A. 20M/6F 24-26 (-) 26 Non-experts In Lab
[55] Germany - - - - Exhibition

E. Objective and Subjective Evaluation

Table II provides a summary of studies that involved objec-
tive evaluation. It also includes the type of agents that were
used, as well as the number of speakers in a dataset (when
applicable) and the setting of the speakers in the conversation.
Only 5 studies (23%) involved some form of objective evalua-
tion metrics as a key method in their evaluation. Other metrics
included variations on the mean squared error (MSE) (n = 1,
4.5%) between the generated and ground truth gestures, and
qualitative analyses of joint velocities and positions (n = 2,
9%). In total, 10 (45%) studies used a data-driven generation
method, but only 3 studies (14%) reported outcomes of their
objective metrics used for tuning their models. Only 3 (14%)
studies reported the results of their objective metrics relating
to their model performance. 7 studies (32%) relied on data
featuring single speakers. In addition to that, 7 studies (32%)
relied on data showing 2 or more speakers. The remainder did
not report on the setting of the data or the number of speakers
in their dataset.

Table III provides a detailed overview of study design,
conditions, and subjective evaluation methods. Fewer studies
used between-group design (n = 6, 27%) compared to within-
group design (n = 16, 73%). Most were evaluated using ques-
tionnaires (n = 16, 73%) followed by pairwise comparisons (n
= 3, 14%) and other methods (n = 4, 18%) such as preference
matching (matching audio with video) and recalling facts from
a story told by the agent.

F. Additional Results – Beat Gestures

Research work that focused on only beat gesture generation
was excluded from the main analysis. Methods used to eval-
uate the performance of beat gesture generation systems in
ECAs were similar to those used in work on semantic gesture

generation. 10 papers were selected that met the criteria [28],
[30], [57]–[64]. A total of 7 (70%) studies mentioned the
number of participants, with a total of 236 participants. Only
4 (40%) mentioned statistics on age and gender. Of the 10
studies, 4 (40%) were performed in a lab, and 5 (50%) online
or via AMT. 1 study was evaluated in an exhibition. As beat
gesture generation mostly relied on prosody information, 8
(80%) studies used a data-driven approach. Only 4 of the
8 studies that relied on data-driven methods reported their
metrics used for an objective evaluation, with either the
average position error (APE) or the MSE. 7 (70%) of papers
ran their evaluation on a virtual avatar or stick figure with
no discernible face. The subjective evaluations performed in
these studies were similar to studies that included more gesture
categories. 6 (60%) used a post-experiment questionnaire to
assess the quality of the generated gestures by the ECA. 30%
relied on pairwise comparisons and 1 (10%) relied on the time
spent with focused attention on an ECA [59]. All studies (n
= 10) relied on a within-subject evaluation. The questionnaire
items that were used the most: ‘naturalness’ (n = 4, 40%) and
‘time consistency’ (n = 4, 40%).

IV. PRINCIPAL FINDINGS AND IMPLICATIONS

In this section, we examine the above observations in more
detail and discuss implications for gesture generation methods.
Due to the high variation and diversity in the experiments
presented in the main analysis, a meta-analysis of the experi-
ments’ results will not be provided.

A. Participant Sample

More than half of the studies involved in the main analysis
did not report details on the raters, such as the average
age, gender, or cultural background. This is a challenge for
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TABLE II: Objective Evaluation Methods

Study Generation Method Objective Metrics Agent #N Speakers Setting
[33] Data Driven Variation on Mean Squared Error NAO 1295 Single
[50] Rule Based - REEM-C 2 Single
[40] Data Driven - Virtual Agent (3D) 24 Conversation (two)
[36] Data Driven - Android Erica 8 Conversation (three)
[49] Data Driven Log-likelihood of generated motion Pepper 119 Single
[45] Hybrid - Virtual Agent (3D) 5 Multiple
[42] Rule Based - Virtual Agent (3D) 5 Single
[19] Data Driven - Wakamaru 16 Conversation (two)
[47] Rule Based Qualitative Analysis of Joint Positions ASIMO - -
[48] Rule Based - NAO - -
[43] Data Driven - Virtual Agent (3D) 4 Multiple
[18] Rule Based - Wakamaru 8 Conversation (two)
[20] Rule Based - ASIMO - -
[46] Rule Based Qualitative Analysis of Joint Positions ASIMO - -
[56] Rule Based - Industrial Service Robot 1 Single
[51] Rule Based - NAO - -
[53] Rule Based - NAO - -
[54] Rule Based - ASIMO - -
[44] Data Driven Cost Function on Kinematic Parameters Virtual Agent (3D) 1 Conversation (two)
[52] Rule Based - ASIMO 4 Single
[41] Data Driven - Virtual Agent (3D) 2 Single
[55] Rule Based - Fritz - -

knowing the generalizability of the findings to larger sam-
ples, or its appropriateness for a particular cultural and geo-
graphical context. Many studies (30%) used participants that
were readily available, for example from a higher education
campus. However, such a convenience sample of students is
not representative of the general population and may result in
a sample of a predominant young adult cohort from higher
socioeconomic backgrounds, which might bias the results
[65]. Subsequently, the evaluation of gestures generated from
models represents a more narrow cultural and social viewpoint,
and some gestures that are acceptable and natural in other
cultures may have been misrepresented or rated poorly in the
evaluation process from the use of a more restricted sample.

B. Recruitment and Trial Location

The use of online workers, through services such as AMT
or Prolific, does have its merits. Large amounts of data can
be collected for a modest budget and in a very short period
of time, and it can reach participants from different global
regions with very diverse backgrounds. In addition, studies
have shown that crowd-sourced data can be of comparable
quality to lab-based studies [66]. Given that the majority
of users on AMT are US-based, it is important that studies
report the cultural background and country of residence for
their participants [67]. Although a recent study showed there
might be no difference between studies for the evaluation
of gesture generation in ECAs in the lab and on AMT, it
is important to include attention checks and response quality
control mechanisms, and to report on these [68].

C. Experimental Set-up and Assessment

In the main analysis, 14 (65%) studies relied on a within-
subject design, which helps to evaluate iterations of gestures
over multiple exposures, introduces less variation in the par-
ticipant scores, and requires fewer participants to achieve suf-
ficient statistical power. It is, however, somewhat problematic

that not all studies relied on ground truth comparisons. A
ground truth condition typically is a recording of gestures by a
human with corresponding speech audio, which are then com-
pared to computer-generated gestures. Human ground truth can
serve as a concrete baseline, and this should score the highest
on scales for appropriateness and naturalness, providing a clear
comparison with other evaluation scores. Several studies also
involved random movement generation as a control condition.
Random movement is interpreted in different ways, some take
random samples from their data set, which are then put on
top of original speech [33], or insert random parameters for
generating gestures [19]. Random gestures are an important
control condition for this type of work, ensuring that people
are not simply attributing meaning to every gesture seen in
the experiment, whether it was a relevant co-speech gesture
or not. Overall, we note that the quality of the experimental
set-up for gesture generation and evaluation was moderate.

D. Evaluation Methods

The reviewed literature did not show a consistent use of
evaluation metrics for gestures, with different research groups
focusing on features of interest to them specifically. In most
cases, evaluation methods such as questionnaires were used for
assessing the quality of co-speech gestures in ECAs [33], [40],
[49], [53]. Different questionnaires did extract information
around similar outcomes, but there was no gold standard for
questionnaires, or agreement on a single questionnaire to eval-
uate the perception of generated gestures. Many items were
conflated in a single dimension, which causes an evaluation
to miss detail. Questionnaires often involved the use of Likert
scales, which sometimes are incorrectly used [69], such as
failing to report internal consistency, except for [18], [19].
Objective evaluations were also highly varied, from using MSE
to reporting on histograms with joint velocities and positions.
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TABLE III: Subjective Evaluation Methods

Study Design Conditions Gesture Types Evaluation Questionnaire items
[33] Within-subject Ground truth, proposed

method, nearest neighbors,
random or manual

Iconic, Beat, Deictic,
Metaphoric

Questionnaire Anthropomorphism, Likabil-
ity, Speech-gesture correla-
tion

[50] Within-subject Part-of-Speech-Based,
Prosody-Based, Combined

Iconic, Beat Pairwise + Questionnaire Timing, Appropriateness,
Naturalness

[40] Within-subject None, Random, Proposed
Method

Iconic, Beat, Deictic,
Metaphoric

Questionnaire Naturalness of Movement,
Consistency in utterance and
movement, likability, human-
ness

[36] Within-subject No hand motion, Direct
Human mapping, Text-based
gestures, Text-based +
prosody-based gestures

Iconic, Beat, Deictic,
Metaphoric

Questionnaire Human-likeness, Gesture-
speech suitability, Gesture-
Naturalness, Gesture-
Frequency, Gesture-timing

[49] Within-subject Ground truth, seq2seq,
seq2seq(model) + semantic,
seq2seq tts + semantic

Iconic, Beat Questionnaire Naturalness, Skill of presen-
tation, Utilization of gesture,
Vividness, Enthusiasm

[45] Within-subject Text+Speech (no avatar),
Gestures

Iconic, Beat, Deictic,
Metaphoric

Questionnaire Content Match,
Synchronization, Fluidity,
Dynamics, Density,
Understanding, Vividness

[42] Within-subject Hands never go into relax po-
sition, hands always go into
rest position

Beat, Metaphoric Match preference N.A.

[19] Between-subject Learning-based, unimodal,
random, conventional

Iconic, Beat, Deictic,
Metaphoric

Questionnaire + Retelling
Performance

Immediacy, Naturalness, Ef-
fectiveness, Likability, Cred-
ibility

[47] Within-subject Old version, new version of
model

Iconic, Deictic, Metaphoric Match preference N.A.

[48] Within-subject Introverted versus
Extraverted Robot, Adapted
Speech and Behavior versus
Adapted Speech

Iconic, Beat, Metaphoric Questionnaire 24 questions on personality,
interaction with the robot,
speech, and gesture synchro-
nization and matching

[43] Between-subject Virtual avatar versus iCub
robot

Iconic, Deictic, Metaphoric Questionnaire Content Matching, Synchro-
nization, Fluidness, Speech-
Gesture Matching, Execution
Speed, Amount of Gesticula-
tion

[18] Between-subject Number of gestures, ran-
domly selected

Iconic, Beat, Deictic,
Metaphoric

Questionnaire + Retelling
Performance

Naturalness, Competence, Ef-
fective use of Gestures

[20] Between-subject Unimodal (speech only), con-
gruent multimodal, incongru-
ent multimodal

Iconic, Deictic, Metaphoric Questionnaire Human likeness, Likability,
Shared Reality, Future Con-
tact Intentions

[46] Between-subject Unimodal versus multimodal
(speech + gestures) in a
kitchen task

Iconic, Deictic, Metaphoric Questionnaire Gesture Quantity, Gesture
Speed, Gesture Fluidity,
Speech-Gesture Content,
Speech-Gesture Timing,
Naturalness

[56] Within-subject - Deictic, Beat Questionnaire Suitability of Gestures, Syn-
chronization, Scheduling

[51] Within-subject Synchronized Gestures, not
Synchronized Gestures, Ges-
tures with Expressivity, Ges-
tures without Expressivity

Iconic, Beat, Deictic,
Metaphoric

Questionnaire Synchronization,
Naturalness, Expressiveness,
Contradictiveness, Gestures
are complementary, Gesture-
speech Redundancy

[53] Within-subject One Condition Iconic, Beat, Deictic,
Metaphoric

Questionnaire Speech-Gesture Synchroniza-
tion, Expressiveness, Natural-
ness

[54] Between-subject Study 1: Unimodal versus
Multimodal; Study 2: Same

Iconic, Deictic, Metaphoric Questionnaire Appearance, Naturalness,
Liveliness, Friendliness

[44] Within-subject Generated versus Ground
Truth

Iconic, Beat Pairwise -

[52] Within-subject 4 studies: Audio vs Wrong
Audio; Excited vs Calm
Gestures; Low Expressivity,
Medium Expressivity,
High Expressivity; Slow
Gesticulation, Medium
Gesticulation, Fast
Gesticulation

Iconic, Beat, Deictic,
Metaphoric

Pairwise -

[41] Within-subject Speaker 1, speaker 2 Beat, Metaphoric Match style to speaker -
[55] - - Iconic, Beat, Deictic Public Exhibition -
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V. RECOMMENDATIONS FOR GESTURE EVALUATION

In the previous section, we discussed the principal findings
of our literature review on evaluation used in co-speech gesture
generation. Following our findings and our experience, we
provide recommendations for researchers working in this field.
First, we give more general recommendations, coupled with
examples from other, relevant fields. Secondly, we propose
an additional method of evaluation, for which we provide
sentences and scenarios. Lastly, we introduce a checklist that
researchers can incorporate in their future work, to improve
the level of reporting on datasets, methodology, and results.

A. Participant Sample

As mentioned in the previous section, many studies fail to
report on the details of the participant samples. Additionally,
not all participant samples reflect the data on which models
or systems are trained. We recommend subjective evaluations
with participants from diverse populations and backgrounds,
reflecting the data on which models or systems are trained.

Some work is more focussed on equipping virtual agents
with gesticulation, whereas others take it a step further and
use their methodology to drive nonverbal behavior in social
robots. Often, intermediate evaluation is overlooked, which
can potentially lead to unwanted results when these engines are
used in an interactive scenario. We recommend that participant
evaluation is conducted -when feasible- before putting the
model in production or when using the model on a new data-
set, ensuring better validity and relevance when deployed for
human social interaction.

B. Experimental setup

In this section, we cover recommendations relating to the
conditions, design of studies, and measurements.

The cornerstone of each subjective evaluation is to compare
the output of a system to the ground truth. This ground
truth condition must contain both motion and audio. Another
condition that can shed light on a system’s performance, is a
random or mismatched condition, in which real motion is put
on top of a different audio track. An interesting example of this
is the subjective evaluation that was part of the GENEA 2020
Challenge, part of the International Conference on Intelligent
Virtual Agents (IVA), and to our knowledge, the first of
its kind in this field [70]. In this challenge, multiple data-
driven co-speech generators were compared to two baseline
systems. A crowd-sourced subjective evaluation was part of
this challenge, for which the results on ‘appropriateness’ and
‘human-likeness’ are displayed in Figure 3. Here, we see that
ground truth is scored higher than the submitted systems on
both dimensions and can function as a proper baseline. As for
human-likeness, the mismatched condition offers an intriguing
result: it does still look as human-like as the ground truth, yet
it is scored much lower on appropriateness. Both a ground
truth condition and a mismatched condition can function as a
sanity check when being compared to the output of a system.

Most studies analyzed for this review ask participants to
rate individual stimuli. This can be substantiated with more
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Fig. 3: Human-likeness and appropriateness subjective mea-
surements comparisons between data-driven models and the
ground truth from the GENEA 2020 Challenge. Adapted from
[70].

rigor using the contrastive approach, also known as A/B testing
or side-by-side testing [71]. With such an approach, two or
more stimuli are presented at the same moment, and a user
is asked to either rate both stimuli or to select the preferred
stimulus. In a recent study by the authors, these two types
of a contrastive approach were tested, as we wanted to find
out whether one of the two contrastive approaches should be
preferred [72]. In one condition, participants were asked to
make a choice between two videos (pairwise comparison) or to
rate both videos. The authors found that when evaluating many
conditions, an approach that makes use of rating scales is to be
preferred over using pairwise comparisons. However, pairwise
comparisons are a lot faster and less cognitively demanding
on participants [73].

Many studies evaluate the performance of their approach
in a one-way fashion: videos are put online and participants
are asked to evaluate individual videos. However, the need
for proper gesticulation in ECAs is often tied to how humans
communicate with each other. We recommend (when feasible)
evaluating these systems in an interactive scenario, given that
it is often the aim of researchers to eventually use ECAs in
interactive scenarios. This might require additional engineer-
ing, such as creating systems that can also deal with synthetic
speech (and thus with entirely new input), and creating di-
alogues to be used in an interactive scenario. However, by
using an interactive scenario to evaluate an ECAs performance,
it becomes possible to record and annotate interactions for
indirect measurements, which we will discuss in the next
paragraph.

A common way of evaluating stimuli is to ask for ratings
on certain dimensions on a 5 or 7 point scale. Table III
shows us the richness in terms of questionnaire items used
for subjective evaluations. These items can also be seen as
‘direct’ items since they are used for direct measurement



IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS, VOL. X, NO. Y, Z 9

on a certain dimension. Frequently used items for this are
‘naturalness’, ‘human-likeness’, ‘appropriateness’, or ‘likabil-
ity’. Our recommendation here, when one wants to rely on
direct measurements only, is that subjective evaluations cover
specific dimensions: naturalness, human-likeness, fluency, ap-
propriateness, or intelligibility. Ideally, these dimensions are
scored on a 5 or 7 point scale (as these tend to provide
more reliable results than larger scales [74]). In addition to
direct measurements, we would like to make the case for
using a more indirect way of measuring. Examples of indirect
measurements are the time it takes to complete a task (task
completion), recall rate (recall of facts when letting an ECA
tell a story), eye contact and gaze, or response duration (in
a question-answering session). For example, task completion
is an often-used proxy to estimate effectiveness in human-
computer interaction [75], and might serve a similar role in
our domain. The recall rate has already been used to evaluate
gestures [18], [19], but could play a more important role in
future interactive evaluations. Eye contact, gaze, or response
duration are good proxies to estimate a user’s engagement,
and taking engagement into account has worked well for other
domains [76], [77]. The level of engagement could in turn be
a good predictor of how effective an ECA’s gesticulation is.
However, the drawback of using indirect ways of measuring,
is that some of these approaches require annotating video
recordings of experimental sessions with multiple raters.

C. Qualitative Analysis of Model Output
Data-driven models are often trained on a combination of

speech-audio and text. Whereas some systems rely on one
speaker (as is the case with systems submitted for the GENEA
2020 Challenge), others rely on multiple speakers. When data-
driven systems are capable of generating gestures independent
of a specific input voice, it becomes possible to use synthetic
text-to-speech as input. This in turn makes it possible to
present new data and to qualitatively analyze the performance
of models on this new data. We propose a new task that
takes entirely new sentences (and text-to-speech output when
necessary) as input for gesture generation models. The output
then needs to be analyzed for the occurrence of gesture
categories. For example, for the sentence “I was throwing a
ball”, a model might generate an iconic gesture for the word
‘ball’. We have crowdsourced a set of sentences and scenarios
that can be used for this task 1. We propose that researchers
take a subset of these as input and that they annotate the
model’s output for the occurrence of gesture categories. This
approach can provide an insight into the richness and diversity
of the output of these models. However, this task only works
for systems that can work with either only input text or a
combination of input text and synthetic speech audio.

D. Preferred reporting items for Gesture Generation Re-
searchers

To supplement the recommendations made in the previous
sections, we offer a non-exhaustive list with preferred report-
ing items. These draw upon our observations of reporting and

1https://github.com/pieterwolfert/gesturegeneration-checklist

our research experiences ( [62], [70], [72]). Considering the
items in the proposed list, researchers could further enhance
the quality of their reporting. Our proposed list with items
that would be worth including in future work is summarized
in Table IV. It contains items we deem important to report in
a scientific publication when working on gesture generation
for both physical and non-physical agents. We hope that the
use of this list will make it easier in the future to allow for
more systematic evaluation and benchmarking.

TABLE IV: Preferred reporting items for co-speech gesture
evaluation

Embodied Conversational Agent:
□ ECA: Avatar/robot
□ DOF (shoulder, elbow, wrist, hand, neck)
□ Level of articulation of hands
Demographics:
□ Recruitment method
□ Sample size
□ Age
□ Gender distribution
□ Geographical distribution
□ Prior exposure with ECAs
□ Language(s) spoken
Gesture Generation Model:
□ Included generated gestures: [iconic, metaphorical, beat, deictic]
□ Gesture generation model: [rule based, data driven, both, other]
□ Gesture generation model link/repository
□ (If not included – why not?)
Gesture Generation Evaluation:
□ Context / application
□ Evaluation method/questionnaire set
□ Gestures annotated by human raters? [Yes/No]
□ How many human raters were used?
□ Inter-rater agreement
Metrics:
□ Objective metrics [average jerk, distance between velocity histograms]
□ Subjective metrics [human likeness, gesture appropriateness, quality,
other]
Training dataset:
□ Domain of dataset
□ Length/size of dataset
□ Gesture types annotated in the dataset
□ Details on the actors in the dataset (N , language, conversation topic)
Statistical analysis scripts:
□ Link to scripts

VI. CONCLUSION

We reviewed 22 studies on the generation and evaluation
of co-speech gestures for ECAs, with a specific focus on
evaluation methods. Three questions guided our review, with
the first asking what methods are used to evaluate co-speech
gesture generation. We found a large diversity of different
methods, both objective and subjective, that were applied to
the evaluation of generated co-speech gestures. Our main anal-
ysis found that many studies did not mention basic statistics
on participant characteristics, few studies reported detailed
evaluation methods, and there were no systematic reporting
methods used for gesture generation and evaluation steps. Our
second question asked which methodology is most effective

https://github.com/pieterwolfert/gesturegeneration-checklist
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for assessing co-speech gestures. From our review, we cannot
conclude that one way of evaluating is to be preferred over
another, and recommend making use of both objective and
subjective methods. Our third and final question asked what
methods and metrics should be adapted to create a standard-
ized evaluation or reporting protocol. Our findings indicate that
the field of gesture generation and evaluation would benefit
from more experimental rigor and a shared methodology for
conducting systematic evaluations, see e.g., [78], [79]. We
offer questionnaire dimensions, a list with preferred items for
designing and reporting studies, and new evaluation tasks, and
call on the community to work towards a standardized protocol
and questionnaire for the evaluation of systems that produce
co-speech gestures. We hope that this work can contribute to
further development of the field and that it will contribute to
further advancements in terms of co-speech gesture generation
in ECAs.
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[44] S. Levine, P. Krähenbühl, S. Thrun, and V. Koltun, “Gesture controllers,”
in ACM SIGGRAPH 2010 papers, 2010, pp. 1–11.
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