
Noname manuscript No.
(will be inserted by the editor)

Explora-VR: Content Prefetching for Tile-based
Immersive Video Streaming Applications

Leandro Ordonez-Ante* · Jeroen van der Hooft ·
Tim Wauters · Gregory Van Seghbroeck ·
Bruno Volckaert · Filip De Turck

Received: date / Accepted: date

Abstract Despite the growing popularity of immersive video applications
during the last few years, the stringent low latency requirements of this kind
of services remain a major challenge for the existing network infrastructure.
Edge-assisted solutions compensate for network latency by relying on cache-
enabled edge servers to bring frequently accessed video content closer to the
client. However, these approaches often require historical request traces from
previous watching sessions or adopt passive caching strategies subject to the
cold-start problem and prone to playout freezes. This paper introduces Ex-
plora-VR, a novel edge-assisted content prefetching method for tile-based
360° video streaming. This method leverages the client’s rate adaptation heuris-
tic to preemptively retrieve the content that the viewer will most likely watch
in the upcoming segments, and loads it into a nearby edge server. At the
same time, Explora-VR incrementally builds a dynamic collective buffer for
serving the requests from active streaming sessions based on the estimated
popularity of video tiles per segment. An evaluation of the proposed method
was conducted on head movement traces collected from 48 unique users while
watching three different 360° videos. Results show that Explora-VR is able to
serve over 98% of the client requests from the cache-enabled edge server, lead-
ing to an average increase of 2.5× and 1.4× in the client’s perceived through-
put, compared to a conventional client-server setup and a least recently used
caching policy, respectively. This enables Explora-VR to serve higher quality

L. Ordonez-Ante (�) · J. van der Hooft · T. Wauters · G. Van Seghbroeck · B. Volckaert ·
F. De Turck
Department of Information Technology, Ghent University - imec, IDLab
Technologiepark Zwijnaarde 126
B-9052 Gent, Belgium
Tel.: +32 9 33 14940
Corresponding Author E-mail: Leandro.OrdonezAnte@UGent.be
E-mail: {Jeroen.vanderHooft, Tim.Wauters, Gregory.VanSeghbroeck, Bruno.Volckaert,
Filip.DeTurck}@UGent.be



2 L. Ordonez-Ante et al.

video content while providing a freeze-free playback experience and effectively
reducing network traffic to the content server.

Keywords Virtual reality · Video streaming · Content prefetching · Collective
buffering · Edge-assisted streaming

1 Introduction

The recent outbreak of the COVID-19 pandemic has forced a radical shift in re-
ality for a vast majority of the human population. Given the strict restrictions
on mobility and social contact, people were compelled to move several aspects
of their daily life into the digital world. These circumstances have boosted the
interest in 360° immersive video applications (augmented and virtual reality—
AR/VR) as a means to provide realistic and engaging user experiences, that
make up for the lack of presence and physical interaction [1,2,3]. However,
the stringent demands in terms of bandwidth and very low latency of AR/VR
applications still represent a major challenge for the existing network infras-
tructure [4].

For services relying on VR headsets for content delivery, the delay per-
ceived by the user is a critical factor for determining the overall experience.
Research on this topic signals that the motion-to-photon (MTP) latency for
VR displays should be less than 20 ms to prevent the perception of scene insta-
bility and cybersickness [5,6]. For on-demand tile-based 360° video streaming
in particular, many of the existing studies have focused on mitigating the ef-
fect of latency by increasing viewport prediction accuracy and applying HTTP
adaptive streaming (HAS) methods to adapt the quality of the requested con-
tent to the network conditions [7,8]. While these approaches achieve a rational
use of the bandwidth as perceived at the client’s side, the network latency due
to distant content servers can still substantially degrade the viewer experience.

As an answer to this problem, network-supported solutions leveraging cache-
enabled edge servers have been proposed [9,8]. The idea behind these ap-
proaches consists of bringing frequently accessed video tiles closer to the client;
this offsets the network delay, which in turn leads to a significant improve-
ment in the quality of the delivered content. This is, however, easier said than
done: the high variety of possible viewport configurations—due to the free-
dom of device orientation, added to different network conditions—makes it
hard to determine a priori the set of tiles that should be cached. In this sense,
network-supported solutions often rely on log traces obtained from previous
streaming sessions to estimate the popularity of the content, and/or adopt pas-
sive caching strategies in which only those tiles that are requested get cached
at the edge server. These approaches entail two fundamental problems: (i) his-
torical request traces are not always available for every piece of content, and
(ii) the cold-start problem: early users would barely experience any improve-
ment from having a cache nearby, due to the fact that most of their requests
for content end up being forwarded to the origin server.



Explora-VR: Content Prefetching for Immersive Video Streaming 3

To address these issues, in this paper we introduce Explora-VR, a content
prefetching mechanism for tile-based immersive video streaming. Our solution
introduces two fundamental changes in the traditional workflow of content
consumption for this kind of services: (1 ) the early advertising of the outcome
of the viewport prediction and rate adaptation algorithm, running on the
head-mounted display (HMD), and (2 ) the incremental building of a collective
buffer that incorporates fixation patterns shared by the viewers. The rationale
behind this is two-fold:

1. The information on the predicted user’s viewport is forwarded to the cache-
enabled edge server before the client’s device starts buffering content. The
edge server uses this information to preemptively retrieve—at a given qual-
ity level—the video tiles that the user is likely to watch in the upcoming
segments, and it loads them into memory. Then the client starts consuming
the video content from a closer server. In these circumstances, a HAS client
would perceive that the content is downloaded with low latency, leading to
a high network throughput estimation, and consequently to an increase in
quality of the requested video tiles.

2. Since having multiple clients consume the same VR content within a small
time window is a common use case (e.g., the on-demand, near-live sce-
nario when a content provider premieres a new release), we have devised
a stream-processing pipeline which enables combining the different user
predicted viewports into a dynamic collective buffer (henceforth referred
to as DCoB) which is built and refined incrementally as new users join the
streaming session. The purpose of this DCoB is to serve as a cache holding
frequently accessed content, preventing the edge server from flooding the
content server with duplicate requests.

This paper presents the following three main contributions of the solution
we propose: (1 ) an edge-assisted, content-agnostic mechanism that proactively
downloads the video tiles that an individual viewer is likely to watch in the
near future (2 ) the formal definition of the data structure and stream pro-
cessing pipeline behind the DCoB, which enables low-latency delivery of 360°
video content to multiple users taking part of an on-demand, near-live stream-
ing scenario, and (3 ) the experimental evaluation of the proposed approach on
a public dataset which comprises the viewport traces from 48 users, collected
throughout immersive video sessions. We have benchmarked the Explora-
VR prefetching mechanism against a conventional client-server configuration
(without caching/prefetching), and a setup implementing a traditional least-
recently used (LRU) caching replacement policy. Results show that the de-
vised prefetching mechanism substantially improves the quality of experience
(QoE) perceived by the viewer, in terms of video quality, startup latency, and
occurrence of playout freezes, while reducing the backhaul traffic and content
server’s load.

It should be pointed out that it is not in the scope of this paper to reach an
optimal trade-off between network resource consumption and video delivered
quality, as is the case for approaches in the literature such as [10] and [11].



4 L. Ordonez-Ante et al.

Our work is focused on investigating data processing methods for enabling
preemptive retrieval of immersive video content which are able to adapt to the
fixation patterns of multiple concurrent viewers. To achieve this we leverage
the computing resources of cache-enabled edge nodes, and we rely on existing
methods for client-side viewport prediction and tile-based rate adaptation such
as those introduced in [12] and [13].

The remainder of this paper is structured as follows. Section 2 discusses
the related work. Section 3 describes the detailed description of the techniques
behind the content prefetching mechanism for tile-based 360° video streaming.
Section 4 elaborates on the architecture of a proof-of-concept implementation
of the proposed approach. Section 5 presents the experimental setup and the
results derived from the evaluation. Finally, conclusions and perspectives for
further research are provided in Section 6. Table 1 below provides the list of
acronyms used throughout the paper.

Table 1: List of acronyms used in this paper

Acronym Description

CDN Content Delivery Network
CRF Constant Rate Factor
CTF Center Tile First
DCoB Dynamic Collective Buffer
DNN Deep Neural Networks
DRL Deep Reinforcement Learning
FoV Field of View
FPS Frames per second
GOP Group of Pictures
HAS HTTP Adaptive Streaming
HEVC High Efficiency Video Coding
HMD Head-Mounted Device
LRU Least-Recently Used
QoE Quality of Experience
RTT Round Trip Time
VR Virtual Reality

2 Related Work

Immersive video applications are typically bandwidth-hungry and highly sen-
sitive to latency. A large body of research in this field has been devoted to
develop efficient mechanisms of content delivery. Existing approaches can be
grouped into three categories according to the main focus of their respective
contribution, namely client-driven, server optimization, and edge-assisted so-
lutions.

2.1 Client-driven HAS streaming for tile-based 360° video

To improve transmission efficiency, approaches in this category divide an equirect-
angular projection of the spherical video into several rectangular areas of the



Explora-VR: Content Prefetching for Immersive Video Streaming 5

same size, referred to as tiles. By implementing said tiling scheme, the client
can opt to prioritize the tiles that overlap the viewer’s viewport and request
them in a higher quality representation than the tiles that are not visible to
the user. Representative of these tile-based viewport-dependent adaptive video
streaming solutions include the approaches by Hosseini, M. [14], Xie et al. [15],
Graf et al. [16], Nguyen et al. [17], and van der Hooft et al. [13]. These works
are fundamentally focused on addressing two main challenges: (i) viewport
prediction: anticipate user movements to ensure content is timely displayed
following the field of view (FoV) of the user; and (ii) quality of experience
(QoE): providing a smooth, responsive watching experience at the highest
possible video quality that the best-effort network can deliver [8]. In essence,
these approaches adopt traditional HTTP adaptive streaming techniques, and
augment them to support tile-based content delivery, while meeting the strin-
gent demands in terms of latency and interactivity of omnidirectional video
streaming. Although these solutions allow for an efficient use of the link ca-
pacity, they are still highly sensitive to network latency due to content servers
situated in distant locations which severely degrades the user experience.

2.2 Server optimization solutions

This category comprises works mainly focused on maximizing viewer’s quality
of experience while optimally allocating server and network resources. Long
et al. [10] propose a solution to the problem of optimal transmission resource
allocation on the server-side given a specific requirement of video quality from
the viewer, as well as the optimal encoding rate for each video tile given a
certain transmission energy budget. The solution contemplates exploiting sev-
eral multicast opportunities that involve balancing trade-offs between video
quality, computation, and consumption of communication resources. One of
the implications of the proposed multicasting mechanisms is that the server
might transmit video tiles at a higher quality representation than that re-
quested by a certain client. In such a case, the client application would incur
a processing cost in order to scale down the received video tile to the appro-
priate quality representation. Building upon [10], the work by Zhao et al. [11]
investigates the impact of viewport prediction on adaptive streaming of tiled
360° video in a multi-carrier wireless system. The authors consider a setup
with a multi-antenna base station from which video content is transmitted to
one or multiple single-antenna clients. Within the scope of said setup, authors
propose a framework that optimizes the downlink subcarrier allocations as
well as the encoding rates for tiles and FoVs at the server-side. The solution
proposed in [11] aims at maximizing the video quality delivered to the clients
while controlling the rebuffering time for different levels of certainty about the
outcome of the viewport prediction. It is noteworthy that the optimization
investigated in [11] rely on methods that operate the radio link layer, which
are out of the scope of the work we present in this paper.



6 L. Ordonez-Ante et al.

Another approach that fits within this category is introduced by Shi et al. in
[5]. The authors of this approach propose a remote rendering solution in which
the server is able to stream only the scenes within the user’s FoV plus a margin
area around it whose width depends on the perceived system latency. Instead
of a tiling scheme, the server uses an adaptive cropping filter that adjusts
the delivered content to the fraction of the VR video overlapping with the
current user viewport. A design decision made by the authors of this approach
consist in minimizing the use of video buffering to reduce the system’s response
latency. In consequence, the proposed remote rendering solution is sensitive to
network jitters and prone to frame dropping. Furthermore, the authors do not
provide a clear indication concerning the performance of the proposed solution
under high server load (i.e., serving multiple concurrent viewers).

2.3 Edge-assisted solutions

Thanks to the recent availability of public datasets on Virtual Reality (VR)
video streaming —such as those by Lo et al. [18], David et al. [19], Fremerey
et al. [20], and Wu et al. [21], among others— there has been an increasing
interest in investigating methods for mining behavioral patterns from user
movement traces. According to the study by Rossy et al. [22], navigation tra-
jectories followed by viewers with high affinity exhibit patterns that can be
used for optimizing the content delivery in streaming systems. Approaches
aligned with this idea are often labelled as edge-assisted or network-supported
solutions. Papaioannou et al. [23] addressed the problem of optimal caching
for tile-based VR video streaming in the wireless edge network. Specifically,
the solution introduced in [23] formulates a tile and tile resolution caching
policy that aims at minimizing the error between the cached and requested
content. The authors studied a static caching scenario in which the caching
decision is made upfront, based on statistical data of the tile resolution de-
mands from past watching sessions. Similarly, Mahzari et al. [24] explored the
application of edge caching as a measure to compensate for network latency,
and offload the content servers and backhaul network. The authors of this
work conceived a FoV-aware caching policy based on a bayesian model which
takes in the sequence of requests made by previous viewers. The proposed
model gauges the popularity of individual tiles, and makes decisions on which
content to cache/evict based on said metric. Similarly, Maniotis and Thomos
[25] devised a cache replacement strategy for tile-based omnidirectional video,
supported by a deep reinforcement learning (DRL) framework. This strategy
takes into account the popularity of both videos and individual tiles. The
authors introduced the concept of virtual viewports defined as the most pop-
ular video tiles resulting from the overlapping FoV of multiple users. To learn
the optimal policy for tile placement in the cache, the DRL framework first
requires to train a deep neural network (DNN) on past user requests.

These approaches (and related proposals such as [26,27,28,29]) have proven
the pertinence and substantial benefit of edge caching to improve QoE in



Explora-VR: Content Prefetching for Immersive Video Streaming 7

360° video services, while reducing the load on the core network. However,
these solutions often require an offline stage in which they fit a certain data
model to traces of user requests. Afterward, in a subsequent online stage, this
model is used to make decisions on which content to cache/evict, according
to the demands from new users consuming the streaming service. In addition,
the studies discussed above adopt a passive approach to caching, i.e. tiles are
stored into the edge-server memory only after they have been requested. Under
these circumstances, early viewers would experience little benefit from the
caching strategy in place, an issue that is commonly referred to in the literature
as the cold-start problem [30]. Using a cold cache translates into cache miss
events, which in turn increases the likelihood of playback freezes, since user
requests have to be relayed back to the content server, thus incurring additional
latency. To counter this issue, we propose a new FoV-aware content prefetching
approach for tile-based adaptive 360° video streaming. This approach takes
advantage of existing viewport prediction techniques to preemptively retrieve
and cache the video content that the viewer is most likely to consume in the
upcoming segments. Additionally, this mechanism does not rely on training
data from historical traces as it is able to learn a collective viewport on the
fly, out of the requests made by viewers with active streaming sessions. The
content inside the collective viewport dynamically adapts in response to the
content that is most demanded by the audience at a given point in time,
which makes this approach specially appealing for near-live immersive video
streaming applications.

3 Explora-VR: Approach Overview

Fig. 1: High-level component view of the VR content prefetching scenario.
The link between Content and Prefetch servers features a larger capacity and
higher latency than the one between Prefetch server and Client.

Figure 1 illustrates the components that make up the content prefetching
mechanism we propose. This mechanism is deployed on a cache-enabled edge
server acting as a transparent proxy between the client and the content server.
In this section we elaborate on the techniques that lay the foundation of our
solution, namely (1 ) the early advertising of the outcome of the viewport



8 L. Ordonez-Ante et al.

prediction and rate adaptation algorithm, and (2 ) the dynamic collective buffer
(DCoB).

3.1 Viewport Prediction Advertising and Prefetching

In immersive video applications based on 360° video, it is common for con-
tent to be segmented not only in time but also in the spatial dimension. The
HEVC/H.265 standard, for instance, allows to split an equirectangular pro-
jection of the content into m× n tiles of the same resolution. By adding this
spatial dimension, clients can prioritize the content within the user’s field of
view, assigning a higher quality to specific regions of the video, hence making
more optimal use of the bandwidth resources [31,32].

To prevent buffer starvation and ensure a smooth playback in these highly
interactive applications, traditional HAS methods need to be augmented. HAS
clients for VR applications rely on techniques for predicting the users’ target
field of view or viewport, and rate adaptation heuristics to fine-tune the quality
level of the requested content in response to the users’ movements and network
conditions [7,32,16].

Several methods have been introduced for viewport prediction in tile-based
VR video streaming over the last years. On the one hand, content-agnostic
approaches estimate the trajectory the viewer is likely to follow based on the
viewport center locations of the last few milliseconds. To do so, some of these
approaches use linear projection on the previous viewport positions [31,33,
34,13], while others rely on machine learning models trained on user move-
ment traces [35,36]. Content-aware techniques on the other hand, attempt to
anticipate user movements based not only on an estimation of the viewer’s
trajectory, but also on specific features derived from the video content itself
such as image saliency, fixation density and object motion maps [37,38,39,40].

In this work, we adopt the content-agnostic method proposed by van der
Hooft et al. in [12] for predicting the user’s viewport. In contrast to other
content-agnostic solutions that assume the user moving on a path in the two-
dimensional space defined by the equirectangular projection of the video, the
method proposed in [12] models the viewer’s movement as a trajectory on the
unit sphere’s surface. In this way, the future location of the viewport center
is estimated by unidirectionally extending the path covered by the viewer
thus far across the surface of the unit sphere (spherical walk). This approach
to viewport prediction provide a more natural approximation of the viewer’s
motion within the 360° video scene. This allows for a more accurate prediction
compared to alternative content-agnostic solutions using linear extrapolation
of the user’s trajectory over the equirectangular projection of the video.

It is worth noting that the content prefetching mechanism we propose
does not involve any substantial modification to the adopted viewport pre-
diction scheme. Besides, while we favor the use of spherical-walk based view-
port prediction—mainly due to its enhanced accuracy—the devised prefetch-
ing mechanism is easily compatible with other alternative content-agnostic



Explora-VR: Content Prefetching for Immersive Video Streaming 9

viewport prediction methods such as those proposed by Petrangeli et al. [31]
and Xu et al. [34].

Along with the viewport prediction scheme based on spherical walks, we
also adopt the Center Tile First (CTF) rate adaptation heuristic proposed
in [13]. The intent behind this heuristic is to maximize the quality level for
the video tiles located closer to the viewport center. In doing so, tiles from an
equirectangular VR video are ranked according to the great-circle distance be-
tween their center and the viewport predicted location. The closer a certain tile
is to the viewport center, the higher its priority and the quality representation
that gets assigned to it.

As illustration, consider the example in Figure 2 for a 4× 4 tiling scheme
and two quality levels. The diagram outlines both the viewport (circular area
on the sphere in Figure 2a) and viewport center (indicated as a cross mark).
In this example, the CTF heuristic has prioritized the six tiles that lie closer
to the viewport center, assigning them a high quality representation.

(a) Viewport projection in the unit sphere.
Based on [32]

(b) Equivalent equirectangular projection of
the viewport. Based on [32]

Fig. 2: Example of the application of the CTF rate adaptation heuristic for a
setup with a 4 × 4 tiling scheme and two quality levels: The highest quality
representation gets assigned to the blue-shaded tiles, while the remaining ones
are requested in the lowest quality. The number of high/low quality tiles in
this example is arbitrary as it depends on the network conditions between
client and server.

The output of the rate adaptation heuristic is represented as an array
that encodes the tile ranking, along with the quality level assigned to each
of the tiles. Traditionally, a VR client would take said array and download
each of the tiles, at the specified quality level, into the playout buffer. The
prefetching mechanism we propose contemplates an extra step: forwarding
the rate adaptation result to the cache-enabled edge server as soon as it is
generated, before the client starts buffering video content for a given segment.

Returning to the example introduced earlier, the output of the CTF rate
adaptation heuristic in that case comprises six high-quality plus ten low-
quality tiles, following the order indicated below in Figure 3. As the diagram



10 L. Ordonez-Ante et al.

illustrates, the client relays this output array to the Prefetch server. With
this information, the specified tiles are requested concurrently from the Con-
tent server, taking advantage of a high-capacity link between them. Then, the
corresponding video files are loaded into the cache memory, which serves the
forthcoming requests from the client with low latency. This in turn should lead
to an increase in the bandwidth perceived by the client, and as consequence,
also in the quality of the content requested for subsequent video segments.

Fig. 3: VR content prefetching: The output of the rate adaptation algorithm
is fed to the prefetch server before the client’s buffer starts filling up.

Clearly, conducting such a prefetching procedure for each individual user
would entail a misuse of the cache memory resources and a substantial increase
in the backhaul traffic and the content server’s load. To address this issue,
we propose a stream processing method for estimating the most salient tiles
according to the viewers fixation patterns, on a per-video segment basis. Said
set of per-segment salient tiles is then stored into the data structure we refer
to as DCoB.

3.2 Dynamic Collective Buffer (DCoB)

The DCoB can be understood as a common playout buffer shared by active
viewers consuming the same VR content at a certain point in time. Think
about the scenario in which a content provider premieres a new episode of a
popular show. Many viewers are likely to start a streaming session soon after
the episode has been released. In such scenario, clients can benefit greatly from
a nearby cache serving content that has been previously requested by other
users. Of course, to make the most of the limited memory resources, only a
subset of the tiles per segment should be stored into this cache, i.e. those that
are most likely to be consumed in ongoing streaming sessions. Arranged in
this way, the data in the cache configures a per-segment collective viewport or
collective buffer keeping content from the last N video segments consumed
thus far.

This collective buffer has been modeled as a FIFO queue of limited size,
backed by a hash table to allow for instantaneous retrieval (see Figure 4 below).



Explora-VR: Content Prefetching for Immersive Video Streaming 11

Once the configured capacity is exceeded, the tiles corresponding to the least
recently requested segment are evicted, freeing up space in memory for new
segments.

Fig. 4: Collective buffer as a FIFO queue. Each item in the queue corresponds
to one segment of a given video and contains the most relevant tiles prefetched
from the content server.

The set of video tiles contained within each of the segments of the col-
lective buffer should be dynamically adjusted in response to viewers’ fixation
patterns. In Section 3.1, a tile ranking was obtained as output of the CTF
rate adaptation heuristic. This ordered list of tiles encodes the estimated fix-
ation map of an individual user when watching a particular video segment.
In this sense, we have devised an incremental procedure that enables merging
the ordered preferences of all the users with an active streaming session, into
a single list of video tiles per segment, composing a collective fixation map.

Let us represent a viewer’s fixation map for video v and segment s as:

φv,s = {〈t, ρ(t)〉 : t ∈ {1, ...,m · n}} (1)

where t represents each of the m · n tiles per segment in the tiling scheme
(m × n), while ρ is a function that returns the position in the viewer’s tile
ranking of the tile passed as argument. Considering the running example from
the previous section (see Figure 3), the corresponding fixation map can be
expressed in the following terms:

φv,s = {〈1, 14〉, 〈2, 8〉, 〈3, 4〉, 〈4, 8〉, 〈5, 13〉, 〈6, 7〉, 〈7, 1〉, 〈8, 3〉, 〈9, 15〉,
〈10, 9〉, 〈11, 2〉, 〈12, 6〉, 〈13, 16〉, 〈14, 12〉, 〈15, 11〉, 〈16, 10〉}

(2)

Now, to combine the fixation maps of K viewers watching segment s of
video v, we start by computing the average position, ρ, for each video tile over
all K-fixation maps. The collective fixation map (φ̄v,s) is defined as follows:

φ̄v,s =

{〈
t,

1

K

K∑
i=1

ρ〈i〉(t)

〉
: t ∈ {1, ...,m · n}

}
(3)



12 L. Ordonez-Ante et al.

The order of the tiles in φ̄v,s is determined by their average position, i.e.
the smaller this value is for a certain tile, the higher the precedence the tile
has for the given video segment.

As stated earlier, only a subset of these tiles should make it to the corre-
sponding segment of the collective buffer. We refer to this subset as collective
viewport, defined as the top-k tiles of the collective fixation map. To determine
the value of k we first estimate the correlation between the viewers’ fixation
maps. High correlation between these maps would imply that users are looking
at the same sections of the display, i.e. a few specific tiles. We estimate said
correlation by using the Kendall’s tau coefficient (Kτ ) [41], which measures
the correspondence between two ordered sequences in the range [−1, 1]: the
closer to 1 (resp. −1) the higher (resp. lower) the correspondence. Finally, the
value of k is set to be proportional to the complement of this correlation coeffi-
cient, which we refer to as Kendall’s tau distance (Kτdist). Let us take φ̄

currv,s

as the current collective fixation map for segment s of video v, and φ
uv,s as a

new fixation map corresponding to user u, for the same video segment. The
collective viewport size, k, is computed as follows:

k =
⌈
m · n · Kτdist(φ̄currv,s, φuv,s)

⌉
;

Kτdist(φ̄currv,s, φuv,s) = 1− Kτ (φ̄currv,s, φuv,s) + 1

2

(4)

From the equations in 4, note that in case of perfect correlation (Kτ = 1),
the distance between the fixation maps is zero (Kτdist = 0), and therefore
the viewport size, k, is equal to zero as well. In these circumstances, since
both the collective and new fixation maps contain the same collection of tiles,
the collective viewport stored into the DCoB for the given segment and video
should remain unmodified.

The collective fixation map is incrementally refined as new viewers show
up. For this the prefetch server keeps track of the number of viewers (nV iews)
that have watched a given video segment, along with the per-segment cumula-
tive Kendall’s tau distance (aggKτdist) computed across all the fixation maps
received thus far. This data is kept in a key-value store with the tuple 〈v, s〉
being designated as key:

F : (〈v, s〉) 7→
[
φ̄v,s, nV iews, aggKτdist

]
(5)

The formal procedure for processing the stream of fixation maps coming
from connected VR clients is specified below in Algorithm 1. The process
starts by first initializing F as an empty key-value store (line 7). Then the
fixation maps φv,s are taken in, one after the other (line 8). Each fixation
map updates its corresponding entry on the collective buffer. The mergeFix-
ationMaps function in line 16 represents the incremental application of the
operation referred earlier in equation 3. The output of this function is the col-
lective fixation map modified by the fixation map being currently processed.
The size of the collective viewport, k, is determined as the closest integer to
the product of the average Kendall’s tau distance (aggKτdistnV iews ) times the total



Explora-VR: Content Prefetching for Immersive Video Streaming 13

number of tiles (m · n). This way the input from previous viewers is weighted
and taken into account (line 19). Finally, the tiles belonging to the collective
viewport are obtained (i.e. the first k tiles from the collective fixation map),
the corresponding video files are retrieved from the content server, and the
up-to-date data is stored into the collective buffer (DCoB) and the key-value
store (F) (lines 25-29), after ensuring that the maximum configured capacity
(N) is not exceeded (lines 21-24).

Algorithm 1 Dynamic collective buffer

1: Let V be a catalog of 360° videos
2: Let Φ be a stream of fixation maps forwarded from the VR clients
3: Φ = [φv,s : v ∈ V ∧ s ∈ {1, 2, 3, . . . }] . Unbounded set of fixation maps
4: Let m · n be the number of tiles according to the tiling scheme (m× n)
5: Let N the capacity of the collective buffer (number of video segments)
6: Let DCoB(N) be the collective buffer (a FIFO queue backed by a hash table)
7: F ← empty dictionary
8: for each fixation map φv,s in Φ do
9: if 〈v, s〉 /∈ F.keys() then . There is no fixation map for tuple 〈v, s〉 yet

10: φ̄v,s ← φv,s . Initialize collective fixation map
11: nV iews← 1
12: aggKτdist ← 0
13: k ← m · n . Initialize size k of the collective viewport to m · n
14: else
15: φ̄v,s, nV iews, aggKτdist ← F.get(〈v, s〉)
16: φ̄v,s ← mergeFixationMaps(φ̄v,s, φv,s) . Merge φv,s into collective fixation map
17: nV iews← nV iews+ 1
18: aggKτdist ← aggKτdist +Kτdist(φ̄v,s, φv,s)
19: k ←

⌈
aggKτdist
nV iews (m · n)

⌉
. Set k to be proportional to average Kτdist

20: end if
21: if DCoB.size() ≥ N then . If the buffer capacity has been exceeded then remove the

segment at the head of the queue
22: 〈vH , sH〉 ← DCoB.pop()
23: F.remove(〈vH , sH〉)
24: end if
25: F.set(〈v, s〉,

[
φ̄v,s, nV iews, aggKτdist

]
) . Update key-value store with new values

26: if k 6= 0 then
27: collectiveV Pv,s ← topK(φ̄v,s, k) . Collective viewport set to the top k tiles of φ̄v,s
28: V PV ideoT ilesv,s ← HTTPGetFromContentServer(collectiveV Pv,s)
29: DCoB.set(〈v, s〉, V PV ideoT ilesv,s) . Update data at the collective buffer
30: end if
31: end for

Along with the collective buffer, we also defined a short-lived buffer into
which the prefetch server stores the set of outstanding tiles, namely those tiles
in the viewer’s fixation map that remain outside the collective viewport. This
in order to avoid the client having to wait for the content server to deliver
these tiles during querying time, preventing playout freezes from happening.
The entries in this ephemeral buffer are volatile and expire over a period of
time equivalent to one video segment to minimize their memory footprint.
Having both the collective and ephemeral buffers in place ensures that the
client can always find relevant content loaded into the prefetch server memory.
This way we manage to bypass the cold-start problem typical of traditional
caching solutions. Figure 5 illustrates a typical sequence of interactions that
take place between client, servers and data stores for a single viewer.



14 L. Ordonez-Ante et al.

Fig. 5: Timeline of a typical interaction between the entities composing the
VR content prefetching approach. At prefetching time the collective viewport
and outstanding tiles are downloaded into the prefetch server memory. These
tiles are served to the client with low latency at querying time.

3.3 Analysis of computational cost

The procedure in charge of conducting content prefetching has been conceived
as an stateful streaming algorithm (see Algorithm 1). The input of said pro-
cedure consists of regular array structures representing the viewer’s fixation
maps (consider the example in Equation 2). The length of these arrays is fixed
and determined by the number of tiles of the tiling scheme in use, i.e., m · n.
The proposed algorithm processes each array on an individual basis, and the
output of such a processing alters the state of a collective fixation map, and
the collective and ephemeral buffers, for a given video v and segment s. These
data structures represent the state being managed by the algorithm. Let us
consider the cost incurred in this procedure both in terms of space and time.

3.3.1 Space cost

As described earlier in section 3.2, the data structures that maintain the state
in the proposed algorithm are all arranged into hash tables persisted in mem-
ory to allow for fast read and write operations. The hash tables of both the
key-value store holding the per-segment collective fixation maps (F), and the
collective buffer (DCoB) have a fixed capacity in terms of the number of
segments they can contain. Said capacity is set upfront via a configuration
parameter N . In this sense, the space cost due to these two data structures is
proportional to O(N).

The hash table backing the ephemeral buffer stores individual tiles which
are not part of the collective viewport for a given video and segment. In these
circumstances, the space cost is proportional to the number of tiles the viewer
is likely to watch in the upcoming segment that fall outside the collective



Explora-VR: Content Prefetching for Immersive Video Streaming 15

viewport. Said number is never greater than m · n (worst-case scenario). Ad-
ditionally, the video content persisted in this ephemeral buffer is short-lived
by design, which further reduces its memory footprint.

3.3.2 Time cost

At the core of the procedure for maintaining the collective buffer lie two op-
erations:

i. the function that updates the collective fixation map (φ̄v,s) for a certain
video v and segment s, taking in a new unseen fixation map (φv,s) (see line
16 in Algorithm 1), and

ii. the function that incrementally computes the Kendall’s tau distance (Kτdist)
between the current φ̄v,s and the incoming φv,s (see line 18 in Algorithm
1).

The first operation consists in computing the element-wise average of two
indexed arrays of size m · n, and subsequently sorting the resulting array on
the obtained values. By using an algorithm such as mergesort, the time it takes
for this operation to run is proportional to O(mn logmn).

The Kendall’s tau distance in the second operation is computed using the
method by Knight W. R. [42], implemented in the SciPy Python library. This
method is known to have linearithmic time complexity, which in this particular
case translates to O(mn logmn), just as with the above-mentioned operation.

Fig. 6: Experimental estimate of the time required to compute the collective
viewport. An in-depth description of the setup is provided in Section 5.1.

Since m and n values are fixed and typically small (consider for instance a
4× 4 tiling scheme), the proposed algorithm is expected to feature a low and
fairly consistent execution time. Figure 6 shows an example of the computa-
tion times measured on an experimental setting with 48 viewers watching the



16 L. Ordonez-Ante et al.

first 30 segments of three different 360° videos, using a 4× 4 tiling scheme. In
said setting (described in detail later in Section 5.1), the devised operations
for computing the collective viewport run under 20 milliseconds 80% of the
time. This is only 1

50 to 1
200 the video segment length used in tile-based om-

nidirectional video streaming applications which typically ranges between one
to four seconds [16].

Note that the computational cost of the proposed mechanism largely de-
pends on configuration parameters such as the collective buffer capacity (N)
and the tiling schema (m × n). This suggests that, as the number of users
increases, memory use will not surge out of control, and processing time will
remain consistent, which accounts for the scalability of our content approach.

4 Architecture and Proof-of-Concept Implementation

The system that implements the content prefetching mechanisms we intro-
duced in the previous section adopts an architecture featuring highly config-
urable containerized components. This system supports the emulation of mul-
tiple VR video streaming scenarios—with and without prefetching enabled—
under different network and load conditions. A diagram of the components
and submodules that make up the system is presented in Figure 7. Next, we
address the description of the components of this architecture.

Fig. 7: VR content prefetching architecture: inspired by the Explora frame-
work by Ordonez et al. [43]

4.1 Prefetch Server

This is the core component of the system. In devising the functional sub-
modules of this server, we have drawn inspiration from the data processing



Explora-VR: Content Prefetching for Immersive Video Streaming 17

pipeline presented by Ordonez et al. in [43], which decouples stream data in-
gestion/preprocessing from data storage and content retrieval. The prefetch
server features three main modules: (1 ) the prefetching component, (2 ) the
content buffers, and (3 ) the retrieval component.

The prefetching component provides an event bus which collects the view-
ers’ fixation maps fed by the VR client. A stream processor in this component
consumes said fixation maps and runs the procedure specified earlier in Algo-
rithm 1 to incrementally build the collective viewports. The stream processor
is also in charge of fetching video content from the Content server, and does
this by issuing multiple concurrent HTTP requests. We relied on the Pub-
lish/Subscribe pattern readily available in the Redis in-memory data store [44]
to implement the event bus. As for the stream processor, we implemented it
as a Python application running continuously in background, along with the
HTTP API in charge of handling the interaction with the client.

The video content fetched from the content server by the stream processor
is loaded into the data buffers. The collective buffer hosts the arrangement
of video tiles lying inside the incrementally computed viewports, while the
ephemeral buffer stores the outstanding tiles as defined at the end of Section
3.2. Both buffers are backed by key-value databases implemented in Redis.

The retrieval component implements the querying handler submodule in
charge of processing clients’ requests for video content. Upon receiving a query,
this handler looks up the corresponding video tile file into both the collective
and ephemeral buffers. In case the video file is not available yet in none of the
prefetch buffers (e.g., due for instance to quality mismatch or network delay),
the handler would relay the request to the content server.

The implementation of the prefetch server is available online at https:

//github.com/LeandroOrdonez/explora-vr-cache.

4.2 Content Server

This component plays the role of one of the nodes from a content delivery
network (CDN). The content server consists of a containerized Web server
publishing the tiled video content through a HTTP API. Video files are served
from the local file system of this component in response to regular HTTP/1.1

GET requests matching the following the URL pattern:

http://<:host>:<:port>/<:video_id>/<:t_hor>x<:t_vert>/

<:quality_id>/seg_dash_track<:tile_id>_<:segment_id>.m4s

where t hor and t vert stand for the number of tiles in the horizontal and
vertical axes respectively, according to the applied tilling scheme.

This content server component was implemented as a Python Web appli-
cation using the Flask framework and NGINX+uWSGI as application server.
The code of this implementation is available online as well at https://github.
com/LeandroOrdonez/explora-vr-server.

https://github.com/LeandroOrdonez/explora-vr-cache
https://github.com/LeandroOrdonez/explora-vr-cache
https://github.com/LeandroOrdonez/explora-vr-server
https://github.com/LeandroOrdonez/explora-vr-server


18 L. Ordonez-Ante et al.

4.3 Client

This component is a containerized adaptation of the headless Virtual Reality
client developed by van der Hooft et al. [32]. The headless VR client is an adap-
tive streaming application written in Python which is able to recreate video
streaming sessions from prerecorded head movement traces. By deploying this
component as an independent containerized application, we were able to spawn
multiple concurrent video streaming sessions, allowing us to assess the response
of the proposed VR video content prefetching mechanism under different net-
work and load conditions. The code of the original implementation of the
headless VR client is available at https://github.com/jvdrhoof/VRClient,
while our adaptation can be found at https://github.com/LeandroOrdonez/
explora-vr-dash-client.

5 Experimental Evaluation

To determine the strengths, costs and limitations of the content prefetching
mechanism, we have conducted a benchmark evaluation on various VR video
streaming setups, with and without the prefetch mechanism in place. The
prefetching approach presented in this article was also compared to a caching
strategy with a traditional least-recently used (LRU) replacement policy which
is a common baseline used for evaluating the performance of existing edge-
assisted solutions. A description of the environment configuration and the
covered test scenarios is presented next, along with the results obtained from
this evaluation.

5.1 Experimental Setup

The experimental testbed we used in this evaluation is depicted in Figure 8.
Each of the components in this diagram were deployed as an isolated Docker
container, running on a single host machine with 20GB RAM, Intel E5645s @
2.4GHz processor, and 54GB Hard Disk, using the infrastructure provided by
the imec/IDLab Virtual Wall environment [45]. As is typically the case, we
assume the link between the content server and the cache-enabled edge server
to have higher capacity/higher latency than the one between the prefetch
server and the VR clients. To emulate these conditions, we have run traffic
control (tc) [46] on each of the containers. This way, we have provisioned
a connection between content and prefetch server with 1 Gbps bandwidth
capacity and 25 milliseconds latency. On the client’s end, we set the latency to
5 milliseconds for the setup with prefetching enabled, and 30 milliseconds in
the setup without prefetching—i.e. we kept the same round trip time (RTT)
between client and content server in both setups. We gradually increased the
bandwidth in the clients link from 10 Mbps to 50 Mbps, and estimated the
impact the devised prefetching mechanism has on the quality of experience

https://github.com/jvdrhoof/VRClient
https://github.com/LeandroOrdonez/explora-vr-dash-client
https://github.com/LeandroOrdonez/explora-vr-dash-client


Explora-VR: Content Prefetching for Immersive Video Streaming 19

Fig. 8: Experimental testbed for evaluating the VR content prefetching mech-
anism

(QoE) perceived by the user, measured in terms of delivered video quality,
startup delay, and occurrence of playout freezes, as reported by the VR client
on a per-segment basis. Finally, these results are contrasted to those obtained
from a setup implementing a traditional LRU replacement policy in the cache-
enabled edge server.

As for the video content we used the dataset created by Wu et al. [21],
which provides head movement traces recorded from 360° video streaming ses-
sions. This dataset comprises the traces collected from 48 unique users while
watching nine different VR videos. The tests run in this evaluation consider
three representative videos out of the original nine: Sandwich features a frag-
ment of a talk show in which most of the motion concentrated in the center
of the display; Spotlight presents a more dynamic sequence typical for an ac-
tion movie; Surf displays a compilation of video clips recorded with a GoPro
camera in an open environment. A tiling scheme of 4× 4 was applied to each
of these videos at 4K resolution and 30 FPS, using the same encoder and pa-
rameters discussed in [32] and listed in Table 2. We used two quality levels to
encode each of the three videos, corresponding to constant rate factors (CRF)
of 15 (High quality) and 35 (Low quality). Table 3 summarizes the resulting
bitrates for both quality representations.

Table 2: Overview of encoding parameters

Parameter Value

Encoder HEVC Test Model (HM)
Tiling scheme 4×4 at 4K resolution and 32 FPS
GOP 32
Segment duration ≈1.067s
CRF [15, 35]



20 L. Ordonez-Ante et al.

Table 3: Quality levels and corresponding bitrates for the three videos.

Video
Bitrate [Mbps]

High Quality Low Quality

Sandwich 21.9±6.6 1.2±0.3
Spotlight 20.8±13.9 1.4±1.3
Surf 26.4±12.7 2.4±1.4

With this setup in place, we proceeded to emulate a scenario with multiple
users connecting to a video streaming event. In this scenario, each of the 48
viewers in the dataset by Wu et al. would start a streaming session to watch the
first 30 segments—this is 32 seconds for a segment duration of 1.067 seconds—
of each of the three considered videos. In order to approximate the dynamics
of such near-live on demand streaming scenario serving multiple users, we set
up the experiment so that viewers arrive to their watching session in quick
succession with a 5 second separation between each other. This means there
were no more than six users watching the same video at a given time.

We have run this simulation for three different configurations: (i) NO PRE-

FETCH: no prefetching/cache enabled, (ii) PREFETCH: prefetching enabled with
a collective buffer of 30 segments in size, and (iii) LRU: caching with LRU re-
placement strategy and cache size limited to 70MB, which is slightly above the
maximum value of memory used by the prefetching mechanism throughout the
experiment, as shown below in Table 4. For each configuration, we measured
the performance of the system in terms of segment download time, user’s QoE
(i.e., video quality, startup time, and occurrence of playback freezes), network
traffic between content and edge server, and accuracy of the prefetch buffer/-
cache.

Table 4: Memory consumed by the prefetching and caching strategies

Bandwidth client’s link
(Mbps)

Edge Server memory use (MB)

LRU PREFETCH

10 70 57.91
15 70 59.25
20 70 61.11
25 70 62.69
30 70 67.04
35 70 64.01
40 70 67.30
45 70 67.46
50 70 66.29

Finally, the versions of the software tools used in this evaluation are listed
in Table 5.



Explora-VR: Content Prefetching for Immersive Video Streaming 21

Table 5: Versions of the software used in the experimental setup.

Software Version

Docker 20.10.6, build 370c289
Docker Compose 1.17.1
Operating System Ubuntu 18.04.4 LTS
Redis server 5.0.3
NGINX (content and prefetch servers) 1.14.2
uWSGI (content and prefetch servers) 2.0.17.1
Flask (content and prefetch servers) 1.0.2

5.2 Results

The playout buffer size in VR video streaming is limited to a few segments
to allow for fast adaptation to viewport changes. In this sense, these kind
of streaming applications are particularly susceptible to buffer starvation and
playout freezes. In a setup with a cache-enabled edge server placed between
clients and the content server, the rate adaptation heuristic might be tricked
into believing that content is closer than it actually is, which leads it to request
video tiles in high-quality representations. In case of cache misses (i.e. the
requested content is not found in the cache’s memory) the request has to be
relayed back to the server, which entails additional processing and network
latency. In said cases, the segment download time might take longer than the
segment playback duration. When such conditions persist for several segments
during a watching session, buffer draining-out and playout freezes are bound
to happen.

Figure 9 shows the empirical cumulative distribution function (ECDF) of
the per-segment download time for the three configurations under evaluation
(NO PREFETCH, PREFETCH, and LRU), measured for multiple values of bandwidth
on the client’s end. Note that both the setup with the proposed prefetching
mechanism, as well as the one with the LRU cache replacement policy manage
to keep download times under the segment duration limit (SEG DUR line in
Figure 9) for most of the segments across all bitrates and videos. However, for
the LRU setup, there is in general a larger proportion of segments taking longer
to download than the segment duration: on average 14% of the segments in
the LRU configuration, compared to only 7.6% of the segments in the PREFETCH
setup. As the capacity on the client’s link increases, those segments can take
as much as 3.9 seconds to download, which is far higher than the comparable
download times from the PREFETCH setup which do not surpass 1.8 seconds in
any of the cases. This signals a higher likelihood of cache misses for the LRU

configuration, and a more frequent occurrence of playout freezes in this setup,
specially for large values of bandwidth on the client’s connection.

The foregoing is confirmed by measuring the number and duration of the
playout freezes by streaming session. Figure 10 reports on these measurements
as a function of the client’s bandwidth, for each of the considered videos.
Note that the setup with the proposed prefetch mechanism offers a freeze-free
playback experience to the user, in contrast to the LRU counterpart. According



22 L. Ordonez-Ante et al.

Fig. 9: ECDF of the per-segment download time for the three tested config-
urations. The larger the number of segments taking longer than SEG DUR to
download, the more likely playout freezes are to occur.

(a) Average number of freezes per watching
session.

(b) Average freeze duration to playback time
ratio per streaming session.

Fig. 10: Occurrence and duration of playout freezes: The PREFETCH and
NO PREFETCH configurations manage to deliver a freeze-free watching experi-
ence to the viewer. For the LRU setup, both frequency and duration of playout
freezes increase as the bandwidth on the client’s link grows larger.

to Figure 10a, the average number of freezes per streaming session on the
LRU configuration is always greater than zero, and the number increases for
the three videos as the bandwidth grows larger. We can observe a similar
behavior for the total freeze duration. Figure 10b presents this measurement as
a proportion of the length of a streaming session, i.e. 32 seconds. These results
are clearly inconvenient and counterintuitive from the client’s perspective, and



Explora-VR: Content Prefetching for Immersive Video Streaming 23

can be attributed to the occurrence of cache misses. Table 6 below shows the
cache hit ratio measured across the streaming sessions of all 48 users in the
dataset, for both LRU and PREFETCH configurations. For the setup with content
prefetching enabled, the hit ratio stays above 98% through the entire range
of bandwidths, while for the configuration with LRU cache replacement it
consistently decreases from 94.6% to 87% as the bandwidth increases. As the
bandwidth in the client’s link grows larger, the quality of the requested content
tends to increase, as does the size of the video tiles stored in the cache. In these
circumstances, the LRU cache is only able to accommodate a few items, which
in consequence increases the frequency of eviction cycles and cache misses.

Table 6: Hit ratio for different values of bandwidth in the client’s link.

Bandwidth client’s link
(Mbps)

Hit ratio

LRU PREFETCH

10 94.62% 98.44%
15 93.84% 98.43%
20 92.56% 98.36%
25 91.65% 98.51%
30 89.40% 98.52%
35 88.17% 98.60%
40 87.37% 98.69%
45 87.27% 98.97%
50 87.02% 99.13%

Cache misses also occur as a consequence of the cold-start problem that
affects passive caching strategies such as LRU. Requests issued against a cold
cache are likely to be cache misses and therefore result in retrieval from the ori-
gin server. This leads to longer startup delays which degrade the QoE mainly
for early viewers. Figure 11 presents the startup delay observed across all
the streaming sessions as a function of the client’s link capacity. Delay values
remain relatively invariable as the bandwidth on the client’s connection in-
creases for all the considered configurations. Note that for both PREFETCH and
LRU setups, the majority of the values are clustered around 200 milliseconds
approximately. That represents a reduction of nearly 3× the startup delay
viewers experience in the setup without prefetching/caching enabled. How-
ever, a large number of outliers is observed for the LRU configuration lying
beyond the segment duration limit. This indicates that many viewers would
experience more than one second latency from the moment they initiate the
streaming session to the moment the video playback starts. These outliers
represent the startup delay perceived by the first users. In Figure 12 only the
startup latency measured for the group of early viewers is plotted. On average
early users in the LRU configuration would observe around 2× and 6× longer
delay times compared to viewers in the NO PREFETCH and PREFETCH setups,
respectively. These results show that the proposed content prefetching mecha-
nism is able to bypass the cold-start problem and offer not only shorter startup



24 L. Ordonez-Ante et al.

delay times but also a more consistent experience across all viewers compared
to the alternative configurations.

Fig. 11: Startup delay distribution as a function of the client’s link capac-
ity. Observations for PREFETCH and LRU configuration are largely concentrated
around comparable values. However, outliers for the LRU setup lie farther apart
from the bulk of the data, beyond the segment length in many cases. In com-
parison, the PREFETCH configuration offers a more consistent experience for all
viewers.

Fig. 12: Startup delay times observed by early users: On average viewers in the
PREFETCH configuration would experience 6.5× and 3.4× lower latency than
those in the LRU and NO PREFETCH setups, respectively.

So far, the proposed prefetching mechanism has proven able to deliver a
user experience that outperforms that of the alternative setups in terms of



Explora-VR: Content Prefetching for Immersive Video Streaming 25

segment download time, frequency/duration of playout freezes and startup la-
tency. Let us now look into the perceived video quality. In the HAS client, qual-
ity level for each tile in a video segment is determined based on the perceived
bandwidth, estimated as the quotient between the amount of bits downloaded
per segment and the per-segment download time:

perceived bandwidth(si) =
size(si)

download time(si)
(6)

In the expression above, the size of the segment (si) is proportional to
the quality level of the tiles it comprises. This way, the perceived bandwidth
provides a reliable indication of the video quality as observed by the user.
Figure 13 shows the average perceived bandwidth over all watching sessions
per video, as a function of the actual bandwidth on the client’s link. The
configuration with content prefetching enabled outperforms the LRU setup,
most remarkably along the largest values of bandwidth. With the proposed
mechanism running on a cache-enabled edge server, clients perceive on average
up to 2.5× more link capacity in comparison to the configuration without
prefetching, and up to 1.4× compared to the LRU configuration. This results
in a higher number of tiles being downloaded in high quality.

Fig. 13: Client perceived bandwidth as a function of the actual link capacity.
User experience greatly benefits from prefetching VR video content into a
nearby server.

Figure 14 presents the distribution of the amount of high-quality tiles per
segment across the three videos. The mass of the distributions corresponding
to each of the setups shifts towards the right (higher number of HQ tiles) as the
bandwidth increases. Note that for the configuration with prefetching enabled,
the distribution tends to gravitate around 16 tiles/segment at a faster pace
than the other two configurations. This proves that across all tested scenarios,
the mechanism we propose consistently delivers higher quality of experience



26 L. Ordonez-Ante et al.

for the viewer, compared to the LRU cache alternative, and the plain vanilla
client-server configuration.

Fig. 14: Distribution of the number of HQ tiles per segment: In comparison to
the LRU and NO PREFETCH configurations, the number of tiles retrieved in HQ
from the prefetch setup increases more rapidly as the bandwidth grows larger.
Bitrate values in the charts are in Mbps.

Another appealing effect of prefetching and caching video content into an
edge server is the reduction of network traffic to and from the content site. Ta-
ble 7 presents the network traffic (in gigabytes) measured in the content server
interface for the configuration without prefetching/caching enabled, along with
the relative change of this metric for the LRU and PREFETCH setups, and how
these measurements vary as the bandwidth on the client’s link increases (see
Figure 15 for the absolute values). Note that, thanks to the reuse enabled
by the LRU and prefetching configurations, there is an important reduction
in traffic to the content server: from 75% to 84% for LRU caching, and from
36% to 83% for the prefetching server. Also, it is worth noting that the setup
with the proposed prefetching mechanism enables these network traffic sav-
ings while serving the highest video quality among the tested configurations.
That is to say, serving a comparable video quality directly from the content
server—without any prefetch/cache capabilitites—would require several times
the network traffic reported in Table 7.

To understand why the LRU configuration results in a higher reduction of
network traffic with respect to the implementation of the proposed prefetching
mechanism, consider the fact that the latter setup is able to consistently deliver
higher video quality levels than the former one throughout the entire range of
bandwidth values. An increase in the capacity of the client’s connection leads



Explora-VR: Content Prefetching for Immersive Video Streaming 27

to a corresponding increase in the network throughput. This in turn prompts
the client to request video tiles in higher quality representations, which con-
sequently drives up the network traffic consumption. Figure 16 portrays the
relation between bandwidth at the client side, network traffic in the content
server’s link, and video quality in terms of the number of high-quality tiles
per segment delivered to the client. Note that while the setup with the LRU
cache replacement strategy gets the upper hand with regard to network traffic
reduction, the enhanced video quality added to the smooth playback offered
by the proposed prefetching mechanism, makes for a far superior QoE for the
viewer. In this sense, the increase in network traffic to the content server for
this configuration can be regarded as a reasonable price to pay.

Table 7: Network traffic between content and prefetch servers for different
values of bandwidth in the client’s link.

Bandwidth client’s
link (Mbps)

NO PREFETCH
network traffic (GB)

% network traffic reduction

LRU PREFETCH

10 1.11 -75.68% -36.04%
15 1.64 -78.66% -44.51%
20 2.24 -80.36% -48.21%
25 2.82 -82.27% -53.90%
30 3.43 -80.76% -64.14%
35 3.89 -81.75% -64.78%
40 4.24 -82.31% -67.45%
45 4.57 -83.15% -80.96%
50 5.01 -84.23% -83.03%

Fig. 15: Network traffic to the content server for the three considered con-
figurations, as a function of the bandwidth in the client’s link: Both the LRU

and PREFETCH setups manage to induce a notable decline in network traffic.
The prefetching mechanism enables this while delivering the highest quality
of experience among the considered configurations.



28 L. Ordonez-Ante et al.

Fig. 16: Relation between client’s link bandwidth, network traffic in the back-
haul link, and video quality. Both LRU and PREFETCH setups drive backhaul
traffic down while increasing the number of tiles per segment served in high
quality. The increase in network traffic use for the PREFETCH setup in relation
to the LRU configuration obeys to a corresponding increase in the delivered
video quality.

6 Conclusions

Immersive video applications are known for having an immense potential
in sectors such as entertainment, education, healthcare, and digital services,
among others. However, the existing network infrastructure still struggles to
meet the stringent latency and bandwidth requirements of these kind of ser-
vices, which remains a barrier to enable their broad adoption. In this paper we
presented Explora-VR, an edge-assisted solution that allows for low-latency
video streaming for tile-based immersive content.

Explora-VR thrives on prefetching the tiles that users are likely to watch
in the upcoming segments by advertising the outcome of the viewport predic-
tion and rate adaptation algorithms, before the client starts consuming the
content. Prefetched video tiles are downloaded to a cache-enabled edge server
located in close proximity to the user, allowing for low-latency content re-
trieval. This in turn increases the link capacity perceived at the client’s end,
and in consequence also the quality level of the requested video tiles.

Additionally, the proposed solution supports content prefetching for an
on-demand, near-live scenario, i.e. serving multiple active watching sessions
streaming the same content within a narrow time window. To prevent the sys-
tem from overflowing the content server with duplicate requests while doing
this, Explora-VR features a stream processing mechanism that incremen-
tally builds a collective playout buffer to serve the requests from active users.



Explora-VR: Content Prefetching for Immersive Video Streaming 29

This collective buffer is an in-memory data structure storing a fixed number of
collective viewports, namely the group of tiles viewers tend to fixate the most
on a per-segment basis. The per-segment collective viewports are continuously
updated as new viewers arrive to dynamically accommodate to changes in the
current preferences from the audience.

We evaluated the performance of Explora-VR against a conventional
client-server setup with no support for caching or prefetching, and an edge-
assisted configuration implementing a regular LRU cache replacement strategy.
Our solution proved to be effective in providing a smooth video playback, while
also increasing the quality of the delivered content. Under equivalent network
conditions, the devised prefetching mechanism leads to an average increase of
2.5× and 1.4× in the effective bandwidth perceived at the client’s device com-
pared to the conventional client-server and LRU setups, respectively. This in
turn results in a proportional increase in the number of viewport tiles served in
high quality. Moreover, in contrast to the alternative LRU configuration, our
solution can consistently serve more than 98% of the content requests from the
edge server. This means that only a minor proportion of the client requests
get relayed to the origin content server, making for a freeze-free playback
experience for the user. The foregoing also signals the ability of the proposed
approach to bypass the cold-start problem that typically affect passive caching
strategies. The observed startup delay times show that Explora-VR consis-
tently provides low startup latency for all users including early viewers. These
results also hint at the potential of the proposed solution to aid in the recov-
ery from eventual playback freezes. The proximity of the edge server coupled
with the high prefetch hit ratio ensures that viewers can quickly resume the
playback with a delay we expect to be comparable with the observed startup
latency. Additional evaluations with real network traces are needed to confirm
this assumption. The devised collective buffer also proved efficient in reducing
the load on the content server network. Even though the LRU cache replace-
ment policy outperforms the prefetching mechanism regarding this metric,
the superior quality of experience that our approach can offer to the viewer
reasonably outweighs this drawback.

In developing Explora-VR, we assumed a number of conditions that will
be relaxed in future work to make this solution more suitable for a production-
level VR video streaming service. In this sense, further research is going to
explore the effect of working with a lossy wireless network in the performance
of the content prefetching mechanism. Likewise, the proposed solution will be
extended to support multiple intermediate quality representations, instead of
only low-quality and high-quality levels. We expect the results of this work
will motivate further studies on edge-assisted prefetching techniques for om-
nidirectional video streaming.

References

1. Yépez, J., Guevara, L., Guerrero, G.: AulaVR: Virtual reality, a telepresence technique
applied to distance education. In: 2020 15th Iberian Conference on Information Systems



30 L. Ordonez-Ante et al.

and Technologies (CISTI), pp. 1–5. IEEE (2020)
2. Kwok, A.O., Koh, S.G.: COVID-19 and extended reality (XR). Current Issues in

Tourism pp. 1–6 (2020)
3. Singh, R.P., Javaid, M., Kataria, R., Tyagi, M., Haleem, A., Suman, R.: Significant

applications of virtual reality for covid-19 pandemic. Diabetes & Metabolic Syndrome:
Clinical Research & Reviews 14(4), 661–664 (2020)

4. Khan, W.Z., Ahmed, E., Hakak, S., Yaqoob, I., Ahmed, A.: Edge computing: A survey.
Future Generation Computer Systems 97, 219–235 (2019). DOI https://doi.org/10.
1016/j.future.2019.02.050. URL https://www.sciencedirect.com/science/article/

pii/S0167739X18319903

5. Shi, S., Gupta, V., Hwang, M., Jana, R.: Mobile vr on edge cloud: a latency-driven
design. In: Proceedings of the 10th ACM Multimedia Systems Conference, pp. 222–231
(2019)

6. Stauffert, J.P., Niebling, F., Latoschik, M.E.: Latency and cybersickness: Impact, causes
and measures. a review. Frontiers in Virtual Reality 1, 31 (2020)

7. Vega, M.T., Liaskos, C., Abadal, S., Papapetrou, E., Jain, A., Mouhouche, B., Kalem,
G., Ergüt, S., Mach, M., Sabol, T., et al.: Immersive interconnected virtual and aug-
mented reality: A 5g and iot perspective. Journal of Network and Systems Management
28(4), 796–826 (2020)

8. Yaqoob, A., Bi, T., Muntean, G.M.: A survey on adaptive 360° video streaming: Solu-
tions, challenges and opportunities. IEEE Communications Surveys & Tutorials 22(4),
2801–2838 (2020)

9. He, D., Westphal, C., Garcia-Luna-Aceves, J.: Network support for ar/vr and immersive
video application: A survey. In: ICETE (1), pp. 525–535 (2018)

10. Long, K., Cui, Y., Ye, C., Liu, Z.: Optimal wireless streaming of multi-quality 360
vr video by exploiting natural, relative smoothness-enabled and transcoding-enabled
multicast opportunities. IEEE Transactions on Multimedia (2020)

11. Zhao, L., Cui, Y., Liu, Z., Zhang, Y., Yang, S.: Adaptive streaming of 360 videos with
perfect, imperfect, and unknown fov viewing probabilities in wireless networks. IEEE
Transactions on Image Processing 30, 7744–7759 (2021)

12. van der Hooft, J., Vega, M.T., Petrangeli, S., Wauters, T., De Turck, F.: Optimizing
adaptive tile-based virtual reality video streaming. In: 2019 IFIP/IEEE Symposium on
Integrated Network and Service Management (IM), pp. 381–387. IEEE (2019)

13. van der Hooft, J., Vega, M.T., Petrangeli, S., Wauters, T., De Turck, F.: Tile-based adap-
tive streaming for virtual reality video. ACM Trans. Multimedia Comput. Commun.
Appl. 15(4) (2019). DOI 10.1145/3362101. URL https://doi.org/10.1145/3362101

14. Hosseini, M.: View-aware tile-based adaptations in 360 virtual reality video streaming.
In: 2017 IEEE Virtual Reality (VR), pp. 423–424. IEEE (2017)

15. Xie, L., Xu, Z., Ban, Y., Zhang, X., Guo, Z.: 360probdash: Improving qoe of 360 video
streaming using tile-based http adaptive streaming. In: Proceedings of the 25th ACM
international conference on Multimedia, pp. 315–323 (2017)

16. Graf, M., Timmerer, C., Mueller, C.: Towards bandwidth efficient adaptive streaming
of omnidirectional video over http: Design, implementation, and evaluation. In: Pro-
ceedings of the 8th ACM on Multimedia Systems Conference, pp. 261–271 (2017)

17. Nguyen, D.V., Tran, H.T., Pham, A.T., Thang, T.C.: An optimal tile-based approach
for viewport-adaptive 360-degree video streaming. IEEE Journal on Emerging and
Selected Topics in Circuits and Systems 9(1), 29–42 (2019)

18. Lo, W.C., Fan, C.L., Lee, J., Huang, C.Y., Chen, K.T., Hsu, C.H.: 360 video viewing
dataset in head-mounted virtual reality. In: Proceedings of the 8th ACM on Multimedia
Systems Conference, pp. 211–216 (2017)

19. David, E.J., Gutiérrez, J., Coutrot, A., Da Silva, M.P., Callet, P.L.: A dataset of head
and eye movements for 360 videos. In: Proceedings of the 9th ACM Multimedia Systems
Conference, pp. 432–437 (2018)

20. Fremerey, S., Singla, A., Meseberg, K., Raake, A.: Avtrack360: An open dataset and
software recording people’s head rotations watching 360° videos on an hmd. In: Pro-
ceedings of the 9th ACM Multimedia Systems Conference, pp. 403–408 (2018)

21. Wu, C., Tan, Z., Wang, Z., Yang, S.: A dataset for exploring user behaviors in vr
spherical video streaming. In: Proceedings of the 8th ACM on Multimedia Systems

https://www.sciencedirect.com/science/article/pii/S0167739X18319903
https://www.sciencedirect.com/science/article/pii/S0167739X18319903
https://doi.org/10.1145/3362101


Explora-VR: Content Prefetching for Immersive Video Streaming 31

Conference, MMSys’17, p. 193–198. Association for Computing Machinery, New York,
NY, USA (2017). DOI 10.1145/3083187.3083210. URL https://doi.org/10.1145/

3083187.3083210

22. Rossi, S., Ozcinar, C., Smolic, A., Toni, L.: Do users behave similarly in vr? investigation
of the user influence on the system design. ACM Trans. Multimedia Comput. Commun.
Appl. 16(2) (2020). DOI 10.1145/3381846. URL https://doi.org/10.1145/3381846

23. Papaioannou, G., Koutsopoulos, I.: Tile-based caching optimization for 360° videos.
In: Proceedings of the Twentieth ACM International Symposium on Mobile Ad Hoc
Networking and Computing, Mobihoc ’19, p. 171–180. Association for Computing Ma-
chinery, New York, NY, USA (2019). DOI 10.1145/3323679.3326515. URL https:

//doi.org/10.1145/3323679.3326515

24. Mahzari, A., Taghavi Nasrabadi, A., Samiei, A., Prakash, R.: Fov-aware edge caching for
adaptive 360 video streaming. In: Proceedings of the 26th ACM international conference
on Multimedia, pp. 173–181 (2018)

25. Maniotis, P., Thomos, N.: Viewport-aware deep reinforcement learning approach for 360
video caching. IEEE Transactions on Multimedia (2021)

26. Carlsson, N., Eager, D.: Had you looked where i’m looking? cross-user similarities in
viewing behavior for 360-degree video and caching implications. In: Proceedings of
the ACM/SPEC International Conference on Performance Engineering, ICPE ’20, p.
130–137. Association for Computing Machinery, New York, NY, USA (2020). DOI
10.1145/3358960.3379129. URL https://doi.org/10.1145/3358960.3379129

27. Dai, J., Zhang, Z., Mao, S., Liu, D.: A view synthesis-based 360° vr caching system over
mec-enabled c-ran. IEEE Transactions on Circuits and Systems for Video Technology
30(10), 3843–3855 (2019)

28. Liu, K., Liu, Y., Liu, J., Argyriou, A., Ding, Y.: Joint epc and ran caching of tiled vr
videos for mobile networks. In: International Conference on Multimedia Modeling, pp.
92–105. Springer (2019)

29. Wang, S., Tan, X., Li, S., Xu, X., Yang, J., Zheng, Q.: A qoe-based 360° video adaptive
bitrate delivery and caching scheme for c-ran. In: 2020 16th International Conference
on Mobility, Sensing and Networking (MSN), pp. 49–56. IEEE (2020)

30. Chang, Z., Lei, L., Zhou, Z., Mao, S., Ristaniemi, T.: Learn to cache: Machine learning
for network edge caching in the big data era. IEEE Wireless Communications 25(3),
28–35 (2018)

31. Petrangeli, S., Swaminathan, V., Hosseini, M., De Turck, F.: An http/2-based adaptive
streaming framework for 360° virtual reality videos. In: Proceedings of the 25th ACM
International Conference on Multimedia, MM ’17, p. 306–314. Association for Com-
puting Machinery, New York, NY, USA (2017). DOI 10.1145/3123266.3123453. URL
https://doi.org/10.1145/3123266.3123453

32. van der Hooft, J., Torres Vega, M., Petrangeli, S., Wauters, T., De Turck, F.: Quality
assessment for adaptive virtual reality video streaming: A probabilistic approach on the
user’s gaze. In: 2019 22nd Conference on Innovation in Clouds, Internet and Networks
and Workshops (ICIN), pp. 19–24 (2019). DOI 10.1109/ICIN.2019.8685904

33. Qian, F., Ji, L., Han, B., Gopalakrishnan, V.: Optimizing 360 video delivery over cellular
networks. In: Proceedings of the 5th Workshop on All Things Cellular: Operations,
Applications and Challenges, ATC ’16, p. 1–6. Association for Computing Machinery,
New York, NY, USA (2016). DOI 10.1145/2980055.2980056. URL https://doi.org/

10.1145/2980055.2980056

34. Xu, Z., Zhang, X., Zhang, K., Guo, Z.: Probabilistic viewport adaptive streaming for
360-degree videos. In: 2018 IEEE International Symposium on Circuits and Systems
(ISCAS), pp. 1–5. IEEE (2018)

35. Zhang, Y., Zhao, P., Bian, K., Liu, Y., Song, L., Li, X.: Drl360: 360-degree video stream-
ing with deep reinforcement learning. In: IEEE INFOCOM 2019-IEEE Conference on
Computer Communications, pp. 1252–1260. IEEE (2019)

36. Vielhaben, J., Camalan, H., Samek, W., Wenzel, M.: Viewport forecasting in 360° vir-
tual reality videos with machine learning. In: 2019 IEEE International Conference on
Artificial Intelligence and Virtual Reality (AIVR), pp. 74–747. IEEE (2019)

37. Fan, C.L., Lee, J., Lo, W.C., Huang, C.Y., Chen, K.T., Hsu, C.H.: Fixation prediction
for 360 video streaming in head-mounted virtual reality. In: Proceedings of the 27th

https://doi.org/10.1145/3083187.3083210
https://doi.org/10.1145/3083187.3083210
https://doi.org/10.1145/3381846
https://doi.org/10.1145/3323679.3326515
https://doi.org/10.1145/3323679.3326515
https://doi.org/10.1145/3358960.3379129
https://doi.org/10.1145/3123266.3123453
https://doi.org/10.1145/2980055.2980056
https://doi.org/10.1145/2980055.2980056


32 L. Ordonez-Ante et al.

Workshop on Network and Operating Systems Support for Digital Audio and Video,
pp. 67–72 (2017)

38. Zhu, Y., Zhai, G., Min, X.: The prediction of head and eye movement for 360 degree
images. Signal Processing: Image Communication 69, 15–25 (2018)

39. Sitzmann, V., Serrano, A., Pavel, A., Agrawala, M., Gutierrez, D., Masia, B., Wetzstein,
G.: Saliency in vr: How do people explore virtual environments? IEEE transactions on
visualization and computer graphics 24(4), 1633–1642 (2018)

40. Chen, X., Kasgari, A.T.Z., Saad, W.: Deep learning for content-based personalized
viewport prediction of 360-degree vr videos. IEEE Networking Letters 2(2), 81–84
(2020)

41. Prematunga, R.K.: Correlational analysis. Australian Critical Care 25(3), 195–199
(2012)

42. Knight, W.R.: A computer method for calculating kendall’s tau with ungrouped data.
Journal of the American Statistical Association 61(314), 436–439 (1966)

43. Ordonez-Ante, L., Van Seghbroeck, G., Wauters, T., Volckaert, B., De Turck, F.: Ex-
plora: Interactive querying of multidimensional data in the context of smart cities.
Sensors 20(9), 2737 (2020)

44. Gutierrez, F.: Messaging with redis. In: Spring Boot Messaging, pp. 81–92. Springer
(2017)

45. imec/IDLab: Virtual wall: Perform large networking and cloud experiments. (2021).
URL https://doc.ilabt.imec.be/ilabt/virtualwall/index.html

46. Brown, M.A.: Traffic control howto. Guide to IP Layer Network 49, 36 (2006)

https://doc.ilabt.imec.be/ilabt/virtualwall/index.html

	Introduction
	Related Work
	Explora-VR: Approach Overview
	Architecture and Proof-of-Concept Implementation
	Experimental Evaluation
	Conclusions

