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Leveraging the Deep Learning Paradigm for
Continuous Affect Estimation from Facial

Expressions
Meshia Cédric Oveneke, Yong Zhao, Ercheng Pei, Dongmei Jiang, and Hichem Sahli

Abstract—Continuous affect estimation from facial expressions has attracted increased attention in the affective computing research
community. This paper presents a principled framework for estimating continuous affect from video sequences. Based on recent
developments, we address the problem of continuous affect estimation by leveraging the Bayesian filtering paradigm, i.e. considering
affect as a latent dynamical system corresponding to a general feeling of pleasure with a degree of arousal, and recursively estimating
its state using a sequence of visual observations. To this end, we advance the state-of-the-art as follows: (i) Canonical face
representation (CFR): a novel algorithm for two-dimensional face frontalization, (ii) Convex unsupervised representation learning
(CURL): a novel frequency-domain convex optimization algorithm for unsupervised training of deep convolutional neural networks
(CNN)s, and (iii) Deep extended Kalman filtering (DEKF): an extended Kalman filtering-based algorithm for affect estimation from a
sequence of deep CNN observations. The performance of the resulting CFR-CURL-DEKF algorithmic framework is empirically
evaluated on publicly available benchmark datasets for facial expression recognition (CK+) and continuous affect estimation (AVEC
2012 and AVEC 2014).

Index Terms—Affect Estimation, Facial Expressions, Face Frontalization, Partial Least-Squares Regression, Convolutional
Auto-Encoders, Extended Kalman Filtering
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1 INTRODUCTION

AUtomated analysis of human affective behavior has
attracted increased attention from researchers in af-

fective computing. Among the different types of affective
behaviors, particular attention has been paid to facial ex-
pressions and its automated analysis from video [1]. At the
heart of facial expression analysis are a set of complex infor-
mation processing challenges due to the complex deforma-
tion of the face, the loss of 3D information during the image
formation process [2] and the presence of nuisance factors
such as person-specific morphology, view-point variations,
unknown lighting conditions [3] and lack of reliable ground-
truth data [4], [5]. In addition to these technical challenges,
the lack of agreement on affect-related terminology has
spilled over into more fundamental research areas such as
computer vision and machine learning. We therefore argue
that there is a growing need for a principled framework for
designing affective computing systems capable of coping
with the above-mentioned issues.

In this work, we propose a principled framework for
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continuous estimation of human affect given an incoming
stream of image sequences containing facial displays (ex-
pressions) thereof. Our proposed framework is inspired by
our recent work [6], where we proposed to leverage the
Bayesian filtering paradigm [7] for continuous affect estima-
tion, by considering affect as a continuous state correspond-
ing to a general feeling of pleasure-displeasure with some
degree of arousal [8]. We further assumed that the affective
state and its temporal evolution is governed by “laws”
and, consequently, posed the problem of affect estimation
as a problem of estimating the latent state of a dynamical
system based on a sequence of noisy measurements related
to the state of the system. This way of posing the problem
opened new horizons and has been successfully applied to
the problem of speech-based emotion prediction [9]. Fol-
lowing the much celebrated three levels of understanding
for complex information systems introduced by David Marr
[10], we can consider that our previous work [6] addressed
the first level: computational theory, i.e. what is the goal of the
computation, why is it appropriate, and what is the logic of
the strategy by which it can be carried out? In that sense,
the present paper complements our previous work and
addresses the second level of understanding: representation
and algorithm, i.e. how can the computational theory be
implemented? In particular, what is the representation for
the input and output, and what is the algorithm for the
transformation? As answer to these questions, we propose
to leverage the deep learning (DL) paradigm, motivated by
its capacity to represent information and implement various
computational tasks [11].

In the context of continuous affect estimation from fa-
cial expressions, our proposed approach is three-fold: In a
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first stage, we propose a simple method for canonical face
representation for discarding nuisance factors such as head
size, pose and, up to a certain extent, identity. The proposed
method consists of a partial least squares (PLS) regression
based face frontalization algorithm, where PLS is used for
estimating the neutral (non-expressive) 2D face geometry,
followed by piece-wise affine texture warping. In a second
stage, we build upon our recent work on spectral convolu-
tional auto-encoders [12] and propose an efficient algorith-
mic framework for greedy layer-wise unsupervised learning
of deep convolutional neural networks (CNN)s on top of the
PLS based canonical face representations. The choice of
auto-encoder based greedy layer-wise training is motivated
by the observation that certain types of auto-encoders such
as reconstruction contractive auto-encoders (RCAE)s are able
to capture the factors of variations of the data-generating
distribution [13]. From an auto-encoder point of view, our
technical contribution consists of randomly fixing the (non-
linear) encoding parameters and only training the (linear)
decoding parameters, yielding an easy-to-solve convex op-
timization problem, hence convex unsupervised representation
learning (CURL). In a third and final stage, we use the rep-
resentation outputted from the top-layer of deep CNNs as
observation for Kalman filtering (KF) based continuous affect
estimation. We augment the linear KF solution presented in
[6] by modeling the state transition and observation models
using neural networks (NN)s, hence deep extended Kalman filter
(DEKF).

The outline of the paper is as follows. Section 2 gives a
description of the background related to facial expressions
and affect, and provides an overview of related work using
deep learning techniques. In section 3, we give a formal def-
inition of the continuous affect estimation problem and fur-
ther give a detailed description of our deep learning based
solution to the problem. Section 4 assesses the performance
of our proposed model in terms of experimental results
on benchmark datasets for facial expression recognition on
the extended Cohn-Kanade (CK+) dataset [14] and continuous
affect estimation on the audio-visual emotion challenge (AVEC)
2012 and 2014 datasets [15], [16]. Section 5 discusses our
main findings and concludes our work.

2 BACKGROUND AND RELATED WORK

2.1 Facial Expressions and Continuous Affect
The scientific study of facial expressions has been pursued
now for about two centuries. Although it is widely accepted
that facial expressions are vital for communicating social
signals, it is still unclear what affective information they
convey. In fact, some have been arguing there is no evidence
to support a link between what appears on someone’s face
and how they feel inside [17], [18]. In the following, we
briefly summarize the notions of facial expressions, contin-
uous affect and their relation.

2.1.1 Facial Expressions
From an information-processing perspective, facial expres-
sions consist of a physical component and an affective com-
ponent [19]. On one hand, the physical component of facial
expressions is well understood and is known to consist of
observable morphological changes caused by facial muscle

movements. On the other hand, the affective component is
not well understood but has for a long time been assumed
to reflect a person’s internal feelings and basic emotions
such as “happiness”, “anger”, “sadness”, “fear”, “disgust”
or “surprise”, which are assumed to be culturally universal
and rooted in biological adaptive functions [20], [21]. It is
now a consensus that facial expressions are not mapped to
emotions in a one-to-one manner, but are (partially) caused
by affect. The following paragraph clarifies this notion.

2.1.2 Continuous Affect
Common sense tells us that emotions are expressed on
the face and easily decoded by a perceiver without the
use of language. This would imply that certain combi-
nations of facial muscle movements encode emotions in
a predictable manner. Meanwhile, increasing research re-
sults have demonstrated that people do not consistently
produce the specific configurations of facial muscle move-
ments predicted by basic emotions [17]. In other words,
basic emotions are not evidenced as consistent and specific
patterns in facial muscle movements. Moreover, there is no
convincing evidence of a unique pattern for each emotion
in the autonomic nervous system [22]. In contrast, studies
find evidence that facial muscle movements consistently
correspond to a general feeling of pleasure–displeasure with
some degree of arousal [23].

The general feeling of pleasure–displeasure with some
degree of arousal is called “core” affect or simply affect,
which has been defined as [8]: “A neuro–physiological state
that is consciously accessible as a simple, non-reflective feeling
that is an integral blend of hedonic (pleasure-displeasure) and
arousal (sleepy-activated) values.”. In that sense, we can loosely
associate the neuro-physiological component to an uncon-
scious experience and the psychological component to a
conscious experience. Affect, when changing rapidly and
directed at an object and accompanied by certain cognitions,
physiological and behavioral changes, is what we know as
“basic” emotions. In that sense, the core affect model sug-
gests that “basic” emotions are not biologically hard-wired,
but instead, are phenomena that emerge in consciousness
“in the moment”.

2.2 Leveraging the Deep Learning Paradigm

It is widely accepted that most of the quantitative im-
provements to computer vision tasks obtained in the past
dozen years can be ascribed to the introduction of improved
representations [24]. Among the most successful approaches
is the much-celebrated deep learning. While substantial
progress has been achieved with deep learning for tasks
such as face recognition and verification, the adoption of
this technique has been relatively slow in the field of
facial affective computing. The main advantage of deep
learning approaches is the general-purpose capability of
modeling image representation (local-to-global) as well as
the recognition or estimation process in a parametric and
data-driven manner. This potential end-to-end and data-
driven strategy is what makes deep learning appealing
for tackling complex computer vision tasks, without the
need for axiomatic knowledge. In the following, we give
an overview of how deep learning approaches have been
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applied to the problems of facial expression recognition and
facial affect estimation.

2.2.1 Deep Learning for Facial Expression Recognition
One of the first exploitation of deep learning in the context
of facial expression analysis was presented in [25]. In this
work, the authors introduced a semi-supervised deep learn-
ing approach for facial expression recognition by separating
emotion related features from the unrelated ones. As a deep
learning approach, a convolutional contractive auto-encoder
(CCAE) layer and max-pooling layer were used for the
feature extraction stage. In [26], a convolutional layer and
max-pooling layer were first used to extract over-complete
features for the global appearance variation. Then the so-
called AU-aware receptive field layer was connected as a
supervised feature selection scheme to extract mid-level
features. Finally, a multi-layer restricted Boltzmann machine
(RBM) [27], [28], [29] was added to learn higher level hi-
erarchical features. In [30], a multi-layer boosted deep belief
network (BDBN) was proposed by integrating feature learn-
ing, feature selection and classification uniformly in one
framework for the first time.

More recent work have exploited fully supervised deep
learning approaches. In [31], a zero-bias deep CNN was
trained from scratch with three convolutional layers, one
fully connected layer and a softmax layer, achieving state-
of-the-art results on the CK+ dataset. To alleviate overfit-
ting issues, some recent works resort to transferring the
prior face knowledge from a pre-trained face recognition
deep network to the facial expression network. In [32],
the peak-piloted deep network (PPDN) was proposed to per-
form intensity invariant facial expression recognition by
transforming the non-peak expression features to peak ex-
pression features. They used the GoogLeNet [33] as pre-
trained network architecture before fine-tuning. In [34], the
authors introduced a novel learning algorithm that uti-
lizes the pre-trained face recognition vision geometry group
(VGG) network [33] to regularize the training of the ex-
pression recognition network. In summary, although these
deep learning methods have improved the state-of-the-art
performance, they often proposed a complicated or very
deep model structure, thus heavily rely on well-annotated
large datasets and high computational resources, which is
a serious bottleneck for applying deep learning to facial
expression analysis.

2.2.2 Deep Learning for Facial Affect Estimation
Although deep learning has been successfully applied to
facial expression recognition, the task of continuous affect
estimation is more challenging, mainly due to the inher-
ently temporal nature of the problem and the often un-
reliable (i.e. uncertain and misaligned) continuous-valued
annotations. Inspired by deep learning approaches used for
facial expression recognition, the majority of deep learning
techniques applied for affect estimation revolve around
learning static discriminative templates via deep CNNs. The
work in [35] introduced a technique for the discriminative
training of deep recurrent neural networks (RNN)s [36] using
the concordance correlation coefficient (CCC) as cost function,
which unites both correlation and mean squared error in
a single differentiable function. In [37] and [38], a CNN

was trained frame-by-frame based on the classical mean
squared error (MSE) objective. In order to incorporate tem-
poral information, they used the extracted CNN features
for each video frame and concatenated the resulting recent
several frames feature representation from the last hidden
layer as a frame input to a long short-term memory (LSTM)-
RNN [39]. In other works such as [40] and [38], a deep
residual network (ResNet) [41] was used as deep learning
architecture. In [40], the last pooling layer was used as
feature extractor and as input to a support vector regressor
(SVR) for frame-based affect estimation. In [42], the authors
compared the performance of two state-of-the-art machine
learning techniques, namely the bi-directional long short-term
memory recurrent neural networks (BLSTM-RNN) and SVR for
the task of valence-arousal prediction. This work showed
that, on average, BLSTM-RNNs outperform SVR due to
their ability to model temporal information.

The above overview shows that most of the deep learn-
ing approaches adopted so far do not take the dynamics of
affect into account. Most of them even rely on (pre)training
on a facial expression recognition task before applying to
affect estimation. We therefore argue that a more appro-
priate application of deep learning models/algorithms is
needed for addressing the specific challenges of the affect
estimation task. This motivates us to take a closer look and
apply deep learning in a different and more appropriate
way, i.e. through the Bayesian filtering paradigm. To the best
of our knowledge, the present paper is one of the first that
exploits the synergy between deep learning and Bayesian
filtering for addressing the affect estimation problem. In
the following, we formally pose our problem in terms of
computational task, representation and algorithms.

3 PROPOSED FRAMEWORK

Assuming affect and its change in time is governed by
“laws”, we build upon our previous work presented in [6]
and formally define affect as a continuous time-dependent
state vector a(t), valued in a state-space A: a(t) ,(
v, a,

dv

dt
,
da

dt
, . . . ,

dnv

dtn
,
dna

dtn

)T
∈ A ⊂ R2(n+1), consisting

of a level of valence v ∈ [−1, 1], arousal a ∈ [−1, 1] and
their higher-order time derivatives of order n ∈ N0. Assum-
ing the incoming visual observations are only available at
discrete time steps tk, we denote affect using a discrete-time
state vector ak in stead of the continuous-time state vector
a(t). As such, the mathematical problem of affect estimation
can be formulated as:

p(ak|y1, . . . ,yk) (1)

denoting the inference of the posterior belief of the current
affective state ak given a stream of visual observations
{y1, . . . ,yk} acquired from time-step t1 up to and including
time-step tk. Key to solving inference problem (1) is the ex-
traction of informative visual observations yk from images
Ik ∈ I ⊂ RH×W . To this end, we propose to use deep
convolutional neural networks (CNN)s for inducing an obser-
vation space Y ⊂ Rq in which the frame-based observations
yk are valued. Deep CNNs are typically structured as a
set of alternating convolutional and pooling layers followed
by spatial pyramid layers (SPP) and eventually fully-connected
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layers. We can therefore formally define deep CNNs as a
composition of mappings:

yk = hCNN(xk)

, (h(L) ◦ h(L−1) ◦ . . . ◦ h(2) ◦ h(1))(xk)
(2)

where each mapping h(l) : X (l) → X (l+1),∀l ∈ [1, L]
represents a (trainable) layer and the inputs xk are canonical
face representations extracted from the raw images Ik.

In the specific context of continuous affect estimation
from facial expression, training a deep CNN (2) using the
widely-used supervised learning algorithms is practically
useless due to the lack of reliable one-to-one correspon-
dences between the image frames Ik and states ak [5]. We
therefore advocate for a greedy layer-wise unsupervised
training strategy of deep CNNs. The remainder of this sec-
tion gives a detailed description of our three main technical
contributions: (i) canonical face representation from raw
images, (ii) convex unsupervised representation learning
for training deep CNNs and (iii) continuous affect esti-
mation using Bayesian filtering, implemented using neural
networks.

3.1 Canonical Face Representation
A fundamental bottleneck in facial expression analysis is the
presence of nuisance factors such as head pose, scale and
the expressive person’s identity. To alleviate this issue, we
seek to automatically transform unconstrained images into
canonical face representations consisting of frontalized faces
with standardized scale, 2D shape and uniform background.
Face frontalization has recently been shown to substantially
boost the performance of various tasks such as face recog-
nition and face verification [43], [44]. We therefore adopt a
similar strategy for the task of facial expression analysis and
propose a face frontalization algorithm consisting of three
processing steps: (i) facial feature point tracking, (ii) neutral
(non-expressive) face shape estimation and (iii) piecewise
affine texture warping. As facial feature point tracking is
not part of our contributions, we only provide a detailed
description of neutral face shape estimation and texture
warping.

3.1.1 Neutral Face Shape Estimation
A challenging problem in facial expression analysis is how
to suppress the information pertaining to the expressive
person’s identity. Using a shape model that decouples shape
deformations due to expressions from shape deformations
due to identity is one way to do this [45]. Another way is
to subtract the neutral face shape of the person from the
expressive shape and use the resulting face for analysis. In
some cases the neutral face shape is available as the first
frame of a video sequence. However, it often occurs that
a video sequence starts with an expressive face or we are
given only one expressive face image to analyze. In these
cases, one has to estimate the neutral (i.e. expressionless)
face shape given the expressive face.

We propose a novel algorithm for directly estimating
the neutral shape corresponding to an expressive shape
using partial least squares (PLS) regression [46]. The intuition
behind the algorithm is that, since face shapes are highly
structured data objects, they lie on a lower-dimensional

PARTIAL LEAST 
SQUARES REGRESSION

EXPRESSIVE
SHAPE

NEUTRAL
SHAPE

LATENT
COMPONENTS

FACE
TRACKING

TEXTURE
WARPING

Fig. 1: Partial least squares (PLS) regression based face frontal-
ization for two-dimensional canonical face representation.

manifold. As such, our method uses PLS regression for
“learning” to map expressive shapes and the corresponding
neutral shapes to a shared linear subspace in which they
are highly correlated. More formally, let {se,i, sn,i}Ni=1 be a
set of available data samples acquired using a facial feature
point tracker, where se,i ∈ Rp represent the expressive
shapes and where the point coordinates are collapsed in a p-
dimensional vector (predictive variables) and sn,i ∈ Rp de-
notes the p-dimensional neutral shapes (response variables).
Let s̄e and s̄n denote the sample means for the predictive
and response variables respectively:

s̄e =
1

N

N∑
i=1

se,i and s̄n =
1

N

N∑
i=1

sn,i. (3)

Also, let a prime notation denote centered variables, i.e. the
subtraction of the sample average: s′e,i = se,i− s̄e and s′n,i =
sn,i−s̄n. The centered data is collected in twoN×pmatrices,
Se and Sn, as follows:

Se =

 s′Te,1
...

s′Te,N

 and Sn =

 s′Tn,1
...

s′Tn,N

 . (4)

PLS seeks for a set of M components (latent vectors) that
carry out a simultaneous decomposition of Se and Sn, with
the restriction that these components explain the maximum
covariance between both sets. SIMPLS [47], a fast iterative
PLS variant, decomposes the data matrices as (for this
description, we draw partially on [48])

Se = TAT
e + Re, (5)

Sn = TAT
n + Rn, (6)

where T is an orthogonal (N ×M) matrix of latent vectors,
TTT = IN , the (p × M) matrices Ae and An represent
matrices of loadings, and Re and Rn are N × p matrices
of residuals. For computing T, SIMPLS constructs a linear
transformation of Se, T = SeWe, where We is a p × M
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Fig. 2: Visualization of our proposed expressive face frontal-
ization method on testing faces from the RAVDESS dataset.

weight matrix. To this end, SIMPLS finds at each iteration
two sets of weights we and wn (columns of We and Wn

respectively) in order to create a linear combination of
the columns of Se and Sn such that their covariance is
maximized [49]. The latent components T are then used
for prediction in place of the original variables, that is AT

n ,
which can be obtained from T as the least squares solution
of (6):

AT
n = (TTT)−1TTSn (7)

Then, substituting T in (6) yields Sn = SeWeA
T
n + Rn,

hence, the matrix W of regression coefficients for the model
Sn = SeW + Rn is given by

W = WeA
T
n (8)

For a non-centered test sample se (expressive shape), the
predicted response sn (neutral shape) is computed as fol-
lows:

sn = WT se + (s̄n −WT s̄e). (9)

Figure 1 depicts our proposed PLS-based face frontal-
ization algorithm. In the following paragraph we briefly
explain how the resulting neutral face shape estimation is
combined with the input image for synthesizing a frontal
view of the face.

3.1.2 Piecewise Affine Texture Warping
Following the notation introduced above, let s∗e ∈ Rp and
s∗n ∈ Rp denote the normalized (i.e. horizontally straight-
ened) expressive face shape and the normalized neutral face
shape estimation, respectively. In order to only retain the
expression information, we subtract the neutral shape from
the expressive shape:

∆e∗ = s∗e − s∗n, (10)

Given this normalized expressive face shape increment (de-
formation) ∆e∗ and the associated appearance image I,

we are interested to build an appearance image for which
the identity information is “removed” from the associated
shape and only the expression information remains. To this
end, we construct the average normalized neutral shape
s̄∗n =

∑N
i=1 s

∗
n,i. We then transfer the deformation informa-

tion ∆e∗ to s̄∗n and obtain a canonical face shape s̃e:

s̃e = s̄∗n + ∆e∗. (11)

We finally deform, through a piecewise affine texture warping
operation, the appearance image I with the original face
shape se so that it matches the canonical face shape s̃e (11).
This transformation entails that the shapes are triangulated
in the same manner and each triangle patch appearance in
the source image is affinely warped so that it aligns with
the target triangle [50]. As a result of the transformation,
we obtain a canonical face representation x ∈ Rd×d in the
form of a gray-scale image consisting of a centered and
normalized face shape and texture, with an uniform (black)
background. We believe that such a representation yields a
better starting point for the subsequent deep learning based
facial expression representation and analysis tasks.

In the remainder of this paper, we assume the PLS-based
neutral face shape estimator is trained using the extended
Cohn-Kanade (CK+) dataset [14]. The choice of CK+ is justi-
fied by its reliable neutral face shapes {sn,i}Ni=1 present in
the first frame of each sequence. Although trained on the
relatively simple CK+ dataset, figure 2 shows the general-
ization capability of our PLS method on more challenging
and unseen images from the Ryerson audio-visual database of
emotional speech and song (RAVDESS) dataset [51].

3.2 Deep Unsupervised Representation Learning
Generally, representation learning aims at learning to iden-
tify and disentangle the underlying explanatory factors hid-
den in the observed data, while taking into account general
priors such as: invariance, smoothness, a hierarchical orga-
nization of explanatory factors, shared factors across tasks,
temporal and spatial coherence, manifolds, sparsity [52].
In the particular case of facial expression analysis, image
variabilities such as camera viewpoint, lighting condition
and pose complicate image representation. The recent em-
pirical success of deep convolutional neural networks (CNN)s
suggests that their compositional and hierarchical structure
induces increasingly invariant data representations by pro-
gressively flattening and separating the manifold-shape of
the data [53]. Based on our previous work presented in [12],
[54], we present a novel algorithmic framework for learning
to extract data representations from large-scale image data,
based on deep CNNs as computational models.

3.2.1 Reconstruction Contractive Auto-Encoders
The unsupervised representation learning problem can
be posed as the optimization of the parameters θ =
(w(1), . . . ,w(K)) of a CNN given an unlabeled dataset
D = {xn}Nn=1, subject to discovering the local properties
of the data-generating distribution p(x). There exist two
general frameworks for learning the parameters of a CNN
while characterizing the data-generating distribution, one is
a probabilistic framework and the other is a deterministic
framework. The probabilistic framework aims at learning
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the data-generating distribution directly from the unlabeled
data-set by proposing a parametrized joint distribution
p(x,h;θ) over the observed data x ∈ X and hidden
representations h = h(x) ∈ H. Then, by maximizing the
data likelihood, one can obtain the optimal parameters θ
of the CNN mapping h : X → H. The most popular
model for the parametrized joint distribution p(x,h;θ) is
the convolutional restricted Boltzmann machine (cRBM) [55].
Despite its success, training a CNN using such a model
is known to be computationally intractable. In contrast to
RBMs, deterministic algorithms have been developed, the
most successful being the auto-encoder (AE) [52].

AEs directly learn the mapping h : X → H by opti-
mizing its parameters such that the input data x can be
reconstructed as accurate as possible while satisfying some
constraints. Some recent results have shown that when AEs
are trained using a reconstruction contraction criterion, they
learn local properties of the data-generating distribution
[13], which is what we aim for. Carefully regularized AEs
manage to learn the shape of the high-density regions of the
data-generating distribution. There exist many variants for
regularizing AEs, e.g. sparse auto-encoders (SAE)s, denoising
auto-encoders (DAE)s, contractive auto-encoders (CAE)s, higher-
order contractive auto-encoders (HCAE)s and reconstruction
contractive auto-encoders (RCAE)s [56]. Among them, the
RCAE scheme has been proven to yield representations that
capture the high-density regions of the data-generating dis-
tribution [13]. Given a general non-parametric reconstruction
function r : X → X such that r(x) = x, an RCAE aims at
minimizing the following expected loss:

Lλ(r) =

∫
X
p(x)

[
‖r(x)− x‖22 + λ

∥∥∥∥∂r(x)

∂x

∥∥∥∥2
F

]
dx (12)

where ‖ • ‖F is the Frobenius norm. The central result
is that any minimizer r∗λ(x) of the expected loss function
defined by (12) allows us to obtain an estimator of the
score (first derivative of the log-density) ∂ log p(x)

∂x , i.e., the
direction in which density is increasing the most, which also
corresponds to the local mean. It also estimates the Hessian
(second derivative of the log-density) ∂2 log p(x)

∂x2 . The exact
expression of this claim is formulated in [13].

The theoretical motivation for RCAEs has been shown
for a large class of reconstruction (encoding-decoding) func-
tions minimizing the empirical loss Lλ(r) and regulariza-
tion parameter λ approaching 0 asymptotically [13]. The
practical problem of representation learning therefore re-
duces to the design of efficient algorithms that find the
optimal parameters minimizing the empirical loss (12). In
the remaining of this section we present our proposed algo-
rithmic framework for solving this minimization problem in
the case of convolutional and fully-connected layers.

3.2.2 Training Convolutional Layers
Solving the RCAE objective (12) is often difficult due to
the underlying non-convexity. The predominant methodol-
ogy for solving such problem is the widely used stochastic
gradient descent (SGD) algorithm [57]. Despite its ease of
implementation, SGD is known to be very difficult to tune,
parallelize or distribute. For this reason, our primary goal is
to transform the RCAE objective into a convex optimization

problem, hence convex unsupervised representation learning
(CURL). We present a novel algorithm for efficiently solving
the RCAE problem. The rationale behind our algorithm is
two-fold: (i) random convexification, i.e. fixing the non-linear
encoding filters randomly and only learning the (untied)
linear decoding filters, (ii) spectral minimization, i.e. learning
the decoding filters in the frequency domain. As a direct
consequence, the main computational advantages are: (i)
very few hyper-parameters to tune, and (ii) fast and guar-
anteed convergence. More formally, we consider a convolu-
tional reconstruction function withK filters and input space
X ⊂ RH×W×C , i.e. the space of C-channel H ×W images
x =

(
x(1), . . . ,x(C)

)
. We then define the following per-

channel zero-bias convolutional reconstruction function:

r(c)(x;θ) ,
K∑
k=1

w(k,c)

︸ ︷︷ ︸
linear decoding

∗g(
C∑
l=1

a(k,l) ∗ x(l) + b(k))︸ ︷︷ ︸
random nonlinear encoding

=
K∑
k=1

w(k,c) ∗ h(k)

(13)

with g(·) denoting the element-wise application of an acti-
vation function g : R→ R. The model parameters θ consist
of encoding filters a(k,l), encoding biases b(k) and decoding
filters w(k,c). We further propose to sample the (non-linear)
encoding parameters a(k,l) and b(k) from pre-determined
density functions p(a) and p(b) respectively, and keep them
fixed while learning the untied (linear) decoding parameters
w(k,c). When substituting the convolutional reconstruction
function (13) into the RCAE objective (12), applied to each
input channel, we obtain an empirical objective of the form
Lλ =

∑C
c=1 L

(c)
λ , where the per-channel empirical objectives

are defined as:

L(c)
λ =

1

N

N∑
n=1

∥∥∥∥∥
K∑
k=1

w(k,c) ∗ h(k)
n − x(c)

n

∥∥∥∥∥
2

F

+ λ

∥∥∥∥∥
K∑
k=1

w(k,c) ∗ ∂h
(k)
n

∂x
(c)
n

∥∥∥∥∥
2

F

(14)

with hn denoting the randomized encoding of the n-th
training sample xn. In this case, minimizing the RCAE
objective reduces to solving a linear least-squares problem,
yielding a good speed-accuracy trade-off. Although such a
random convexification scheme has recently been proposed
in the context of multi-layer perceptrons [58], [59] and more
general models [60], it has, to the best of our knowledge,
never been applied to the convolutional case.

To train the convexified RCAE (14), we adopt a complex-
valued spectral (re)parametrization and define the complex-
valued decoding parameters associated to w(k,c) as W(k,c),
with W(k,c) = F{w(k,c)} ∈ CH×W being the discrete Fourier
transform (DFT). Then, using Parseval’s theorem in conjunc-
tion with the convolution theorem [61], we transform the
convolution operation into an element-wise multiplication,
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Spatial Convolutional
Auto-Encoding

Spectral Convolutional
Auto-Encoding

Fourier 
Transform

Inverse Fourier 
Transform

Fig. 3: Illustration of equivalence between spatial convo-
lutional auto-encoding and spectral convolutional auto-
encoding. A good spectral reconstruction yields a good
spatial reconstruction and vice-versa.

yielding the following per-channel spectral RCAE objective:

L(c)
λ ∝

1

N

N∑
n=1

∥∥∥∥∥
K∑
k=1

W(k,c) �H(k)
n −X(c)

n

∥∥∥∥∥
2

F

+ λ

∥∥∥∥∥
K∑
k=1

W(k,c) �D(k,c)
n

∥∥∥∥∥
2

F

(15)

where � denotes the Hadamard (element-wise) product
[62], H(k)

n = F{h(k)
n }, X(c)

n = F{x(c)
n }, D(k,c)

n = G
(k)
n �

F{a(k,c)} with G
(k)
n = F

{
∂g(v)
∂v

∣∣∣
v=v

(k)
n

}
and v

(k)
n =∑C

l=1 a
(k,l) ∗ x(l)

n + b(k). As a direct consequence, mini-
mizing the spectral RCAE objective (15) reduces to solving
H.W independent K-dimensional complex-valued regular-
ized linear least-squares problems. We propose to solve
each of the independent K-dimensional problems using the
Gauss-Seidel (GS) algorithm [62], [63]. We refer to [12] for
a derivation fo the GS iterations and only provide its final
form:

W
(k,c)
t =

(
B(k)(c) −

k−1∑
l=1

A(k,l)(c) �W
(l,c)
t −

K∑
l=k+1

A(k,l)(c) �W
(l,c)
t−1

)
�A(k,k)(c)

(16)

where � denotes the element-wise division. Thanks to this
nice convergence properties of the GS algorithm, in practice,
the iterations are stopped when the approximate relative
error ε(k,c)t = ‖W(k,c)

t −W
(k,c)
t−1 ‖F /‖W

(k,c)
t ‖F is less than a

pre-determined tolerance τ for each filter or when t reaches
a pre-defined maximum number of iterations T . Figure 3
illustrates the duality between convolutional auto-encoding
in the spatial domain and the spectral domain, i.e. a good
spectral reconstruction yields a good spatial reconstruction

and vice-versa. This clearly highlights the advantages of
random convexification and spectral minimization using the
GS algorithm.

Once the decoding filters are learned in the frequency
domain, they are transformed back to the spatial domain
using the inverse DFT: ŵ(k,c) = F−1{W(k,c)

t }. At inference
stage, the resulting per-channel output of a zero-bias convo-
lutional layer h(l) : X (l) → X (l+1) is defined as:

x(k)(l+1) , g(
C∑
c=1

ŵ(k,c)T ∗ x(c)(l)) (17)

In the following, we apply the same convexification strat-
egy (i.e. CURL) to the RCAE problem for fully-connected
layers. Different from the convolutional layers, in the case
of fully connected layers we do not solve the problem in the
frequency domain but solve it as a conventional (spatial)
matrix-vector linear least-squares problem.

3.2.3 Training Fully-Connected Layers
Similar to the convolutional layers, we propose the follow-
ing zero-bias fully-connected auto-encoder (FAE) as reconstruc-
tion function:

r(x;θ) , W︸︷︷︸
decoding

g(Ax + b)︸ ︷︷ ︸
encoding

= Wh

(18)

with model parameter θ consisting of an h × d encoding
matrix A, h × 1 encoding bias b and d × h decoding
matrix W. In the case of fully-connected layer, the input
space is considered to be X ⊂ Rd, i.e. the space of d-
dimensional vectors. By substituting the FAE reconstruction
function (18) in the RCAE objective (12) and fixing the (non-
linear) encoding parameters {A,b} randomly, we can fit
the (linear) decoding parameter θ = W optimally using a
convex minimization strategy for the following objective:

Lλ(W) =
1

N

N∑
n=1

‖Whn − xn‖2F + λ ‖WDn‖2F (19)

where Dn = GnA with Gn = ∂g
∂v |v=vn and vn = Axn+b.

Minimizing this objective reduces to solving a linear least-
squares minimization problem with Tikhonov regulariza-
tion, which has the following closed-from solution:

ŴT =
(
HTH + λDTD

)−1 (
HTX

)
(20)

In practice, we solve the linear least-squares problem (19)
incrementally in order to handle datasets of arbitrary size
using relatively few resources. At inference stage, the result-
ing output of a zero-bias fully-connected layer h(l) : X (l) →
X (l+1) is defined as:

x(l+1) , g(ŴTx(l)) (21)

In summary, we present CURL, a novel reconstruction
contractive auto-encoder (RCAE) based algorithmic frame-
work for training CNNs in an unsupervised greedy layer-
wise manner. Given a dataset of images, the algorithm trains
one CNN layer at the time, according to its type (convolu-
tional or fully-connected). In the context of facial expression
analysis, CURL provides a means for training CNNs on top
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of the canonical face representations presented in section
3.1. In the following, we present how the resulting CNN
representations are used for continuous affect estimation.

3.3 Deep Extended Kalman Filtering

Key to solving the Bayesian filtering problem (1) is to
characterize the state transition density p(ak|ak−1) describing
the dynamics of the affective state and the observation density
p(yk|ak) describing the likelihood of an observation given
the affective state. This probabilistic perspective is ideally
suited for a Bayesian treatment, which provides a rigorous
and general framework for probabilistic reasoning over
time [64]. Assuming the affective states follow a first-order
Markov process and that the observations are independent
of the given state, the general affective state estimation
problem can be derived as computing (at each time step
tk) a belief (posterior distribution) of the affective state ak
given all observations up to and including time step tk [6]:

p(ak|y1:k) ∝ p(yk|ak)p(ak|y1:k−1)

= p(yk|ak)

∫
A
p(ak|ak−1)p(ak−1|y1:k−1)dak−1

(22)

where the so-called Chapman-Kolmogorov integral is
known to be computationally intractable in most cases [7].
In the particular case of linear and Gaussian transition and
observation models, this integral becomes tractable and the
filtering problem then has a closed form solution, i.e. the
much celebrated Kalman filter (KF) [65].

Despite being successfully used in our previous work
[6], the use of a Kalman filter is often limited by the ubiq-
uitous non-linearity and non-Gaussianity of the physical
world and numerous efforts have therefore been devoted
to the non-linear filtering problem in the Kalman filtering
framework [7]. In this paper, we follow the same idea and
extend the classical linear Kalman filtering algorithm to
its non-linear case, the so-called extended Kalman filtering
(EKF), using neural network (NN) transition and observation
models, hence deep extended Kalman filtering (DEKF). The
advantage of using a non-linear approach is the additional
capacity of modeling complex processes with a relatively
small computation overhead, compared to the linear KF.
We therefore define the following non-linear transition and
observation densities:

p(ak|ak−1) = N (fNN(ak−1),Q)

= N (Wfφ(Afak−1 + bf ),Q)

p(yk|ak) = N (gNN(ak),R)

= N (Wgφ(Agak + bg),R)

(23)

where the transition model fNN and observation model
gNN are single hidden layer neural networks (SHLNN)s
parametrized by the weights and biases {Wf ,Af ,bf}
and {Wg,Ag,bg} respectively, and a non-linear activation
φ : R → R. The matrices Q and R are the transition noise
covariance and observation noise covariance respectively.

Algorithm 1: Deep Extended Kalman Filtering
input : Transition model fNN; Observation model

gNN; Deep CNN model hCNN; Initial state
prior {â0, P̂0}; Visual stimuli {xk}Kk=1

output: Sequence of estimated mean and
covariance {âk, P̂k}Kk=1

for each time step tk do
âk|k−1 = fNN(âk−1) //state prediction
F̂ = ∂afNN|a=âk−1

P̂k|k−1 = F̂P̂k−1F̂
T + Q̂ //covariance

prediction
Ĝ = ∂agNN|a=âk|k−1

K = P̂k|k−1Ĝ
T [ĜP̂k|k−1Ĝ

T + R̂]−1

//Kalman gain
yk = hCNN(xk) //deep CNN observation
âk = âk|k−1 + K[yk − gNN(âk|k−1)] //state

update
P̂k = P̂k|k−1 −KĜP̂k|k−1 //covariance

update
end

Based on the first-order Taylor series expansion, the
rationale behind EKF is the linearization of the transition
and observation models around the estimated trajectory:

F̂ ,
∂fNN

∂a

∣∣∣∣
a=âk−1

= Wfdiag
(
φ′(Afak−1 + bf )

)
Af

Ĝ ,
∂gNN

∂a

∣∣∣∣
a=âk|k−1

= Wgdiag
(
φ′(Agak + bg)

)
Ag

(24)

where φ′ denotes the element-wise application of the
first-order derivative function of the non-linear activation
φ : R → R. As a result of the linearization (24), the
filtering problem becomes linear and Gaussian and, as a
direct consequence, the conventional (linear and Gaussian)
KF algorithm is further employed for finding the optimal
state estimation. Moreover, the linearity and Gaussianity of
the transition and observation models guaranties that an
initial Gaussian density of the state vector p(a0) at time-
step t0 remains Gaussian for all time-steps tk. The EKF is
therefore entirely characterized by its mean and covariance
estimates {âk, P̂k}. The DEKF neural network weights and
biases {Wf ,Wg,Af ,Ag,bf ,bg} are estimated using the
extreme learning machine (ELM) strategy (i.e. random input-
to-hidden weights and learned hidden-to-output weights
[66]) and by creating a training dataset D = {ai,yi}Ni=1

consisting of latent states ai, i.e. valence, arousal and higher-
order derivatives, and informative observations yi. Similar
to method presented in [6], the transition and observation
covariance matrices Q and R are estimated using a regular-
ized linear least squares approach on the residuals.

Algorithm 1 summarizes the resulting DEKF. The practi-
cal benefit is that the DEKF algorithm can monitor the latent
state and its uncertainty while acquiring visual stimuli and
keeping the memory resources fixed without too much
computational overhead compared to its linear counterpart.
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Fig. 4: Graphical model of a deep extended Kalman filter
(DEKF). A DEKF performs abductive inference, i.e. inferring
the most probable hidden causes a1:k from the observable
effects y1:k, using a recursive Bayesian approach. The ob-
servable effects y1:k are inferred from the visual stimuli x1:k

using a deep CNN.

Figure 4 depicts the general concept of using NNs for
modeling transition and observation functions and inferring
the latent states from deep CNN observations using a DEKF
approach. It is interesting to observe the conceptual similar-
ity between DEKF and other well-known neural network
architectures such as recursive neural networks and, more
specifically, recurrent neural networks (RNN)s. Both models
are directed acyclic graphs (DAG)s with edges modeled as
feed-forward neural networks. Both models have a linear
temporal structure and contain partially observable layers,
i.e. an observable and a non-observable layer, stacked on
top of each-other. A toy experiment for benchmarking our
DEKF algorithm is presented in the supplemental material.

4 EMPIRICAL EVALUATION

In the following, we empirically evaluate the performance of
our full pipeline, consisting of three components: (i) canoni-
cal face representation (CFR), (ii) convex unsupervised represen-
tation learning (CURL), and (iii) deep extended Kalman filtering
(DEKF). The performance of the resulting CFR-CURL-DEKF
algorithmic framework is empirically validated by means
of quantitative experimental results on publicly available
benchmark datasets for facial expression recognition and
continuous affect estimation. To evaluate the added value of
the CFR and CURL components in terms of facial expression
representation, we use an extreme learning machine (ELM) as
facial expression classifier, hence CFR-ELM and CFR-CURL-
ELM. For the CFR-ELM model, we simply vectorize the CFR
images and use them as input to an ELM.

4.1 Facial Expression Recognition

In this experiment, we assess the performance of our pro-
posed CURL algorithmic framework on the task of facial
expression recognition. Although this task is not the main
focus of this paper, it is essential for benchmarking our
representation learning approach and for getting insight
for the subsequent task of continuous affect estimation
from facial expressions. As benchmark dataset, we use the
extended Cohn-Kanade (CK+) dataset [14]. The CK+ dataset

consists of 529 videos from 123 subjects, all of them an-
notated with six expression labels and 327 of them anno-
tated with eight expression labels. On top of the canonical
face representations, we apply our CURL algorithm for
greedy layer-wise unsupervised training of a deep CNN,
as illustrated in figure 6. To achieve this, we stacked a
convolutional and a fully-connected layer. More precisely,
the resulting CNN architecture consists of five layers: one
convolutional layer with 25 filters of size 5× 5, a 3× 3 max-
pooling layer with stride equal 2, a 21-bin spatial pyramid
pooling layer and a 2000-dimensional fully-connected layer,
followed by a 300-dimensional extreme learning machine.
In this configuration, the input-to-hidden layer of the ELM
is considered as a fully-connected layer, hence the resulting
CNN architecture is referred to as 25c5-2000f-300f. The SPP
layer has a pyramid structure of {4× 4, 2× 2, 1× 1} spatial
bins (21 in total) and transforms the max-pooling layer into
a 525-dimensional vector.

As evaluation protocol, we follow a similar approach as
other works and we extract the last three frames of each
video to compose an image-based CK+ dataset. The total
number of images is then split into 10 folds and the subjects
are divided into 10 groups. All the images have been pre-
processed using a whitening transform. We compare our
different models with traditional approaches such as CSPL
[67], AdaGabor [68], LBP-SVM [69] and STM [70] on the one
hand, and deep-learning based approaches such as 3DCNN-
DAP [71], BDBN [30], DTAGN [72], Inception [73], LOMo
[74], PPDN [32], Zero-bias CNN [31], FN2EN [34], AURF
[26] and AUDN [75] on the other hand. The results are
as reported by their respective references. Tables 1 and 2
summarize the obtained classification results.

Table 1 reports comparative facial expression recogni-
tion results for the following six emotion classes: “Anger”,
“Disgust”, “Fear”, “Happiness”, “Sadness” and “Surprise”.
We observe that our CFR-ELM model reaches an accuracy
of 93.6% and hence outperforms or is in par with the
traditional methods. Our CFR-CURL-ELM algorithm allows
us to gain almost 4% in accuracy w.r.t. CFR-ELM and
outperforms almost all the state-of-the-art deep learning
approaches (97.4%), except the Zero-bias CNN (98.3%) and
FN2EN (98.6%). Note that all the deep learning approaches
extensively use data augmentation and supervised fine-
tuning, while our approach is entirely unsupervised and
uses a very limited amount of data augmentation. When
augmenting the data using an horizontal flipping operation,
we obtain an classification accuracy of 98.2%. A similar
observation can be made for table 2, reporting the classi-
fication results for eight emotion classes, i.e. the basic six
emotions augmented with “Neutral” and “Contempt”. In
this case, our baseline contribution CFR-ELM surprisingly
outperforms VGG (trained from scratch), zero-bias CNN
(without data augmentation) and is in par with VGG (fine-
tuned). The combination of CFR with CURL allows us to
gain almost 4% w.r.t. the baseline CFR-ELM and outperform
AURF. When we further augment the data, our method is
in par with the AUDN approach. Note that our approach
does not use any supervision, when training the CNN
architecture. This is also the reason why, approaches such
as Zero-bias CNN (fine-tuned and augmented) and FN2EN
outperform our approach.
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Fig. 5: Example canonical face representations (top) from the CK+ dataset and their whitened counterparts (bottom). From
left to right, the expressed emotions are anger, disgust, fear, happiness, sadness and surprise.

Fig. 6: Deep learning pipeline for facial expression recognition using a given CNN architecture (25c5-2000f-300f). The
learning pipeline consists of two phases: (i) greedy layer-wise unsupervised training using our proposed CURL algorithmic
framework and (ii) supervised training of an ELM classifier. As input data to the pipeline, we use whitened canonical face
representations.

TABLE 1: Comparative facial expression recognition results
on the CK+ dataset using a 25c5-2000f-300f CNN archi-
tecture. Bold denotes our proposed algorithms, (*) denotes
supervised fine-tuning and (†) denotes data augmentation.

Algorithm Accuracy on 6 classes
CSPL [67] 89.9%
3DCNN-DAP* [71] 92.4%
Inception* [73] 93.2%
AdaGabor [68] 93.3%
CFR-ELM 93.6%
STM-ExpLet [70] 94.2%
LBP-SVM [69] 95.1%
LOMo* [74] 95.1%
BDBN* [30] 96.7%
DTAGN* [72] 97.3%
PPDN* [32] 97.3%
CFR-CURL-ELM 97.4%
CFR-CURL-ELM† 98.2%
Zero-bias CNN*† [31] 98.3%

FN2EN*† [34] 98.6%

4.2 Continuous Affect Estimation

4.2.1 Datasets and Evaluation Metrics
To assess our proposed algorithms for the task of continuous
affect estimation, we use two datasets of the Audio-Visual
Emotion Challenge (AVEC) 2012 and 2014 datasets. In the
following, we briefly present the datasets and the evaluation
metrics we use for assessing our algorithm.

The AVEC 2012 dataset [15] contains video sequences
of people interacting with virtual agents. Based on the SE-
MAINE dataset [76], a benchmarking dataset for naturalistic

TABLE 2: Comparative facial expression recognition results
on the CK+ dataset using a 25c5-2000f-300f CNN archi-
tecture. Bold denotes our proposed algorithms, (*) denotes
supervised fine-tuning and (†) denotes data augmentation.

Algorithm Accuracy on 8 classes
Zero-bias CNN* [31] 85.6%
VGG from Scratch* [34] 88.7%
CFR-ELM 89.0%
VGG Fine-Tune* [34] 89.9%
AURF* [26] 92.1%
CFR-CURL-ELM 92.9%
CFR-CURL-ELM† 93.5%
AUDN* [75] 93.7%

Zero-bias CNN*† [31] 96.4%

FN2EN*† [34] 96.8%

video and audio of human-agent interactions, the AVEC
2012 dataset is annotated with four affect dimensions (va-
lence, arousal, power and expectation). However, based on
the computational framework we propose, we only consider
the valence and arousal dimensions. The dataset is sub-
divided into two sub-challenges. The first sub-challenge
is the fully continuous sub-challenge (FCSC), involving fully
continuous affect estimation, where the level of affect has
to be estimated for every moment of recording. The sec-
ond sub-challenge is the word-level sub-challenge (WLSC),
involving affect estimation at word-level and only when the
recorded user is speaking. In this paper, we use the FCSC
and estimate the affective state (valence and arousal) at each
frame of the recording. It consists of 63 baseline videos, 31
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for training and 32 for development. Each baseline video is
recorded at 49.979 frames per second at a spatial resolution
of 780× 580 pixels.

The aim of the AVEC 2014 dataset is two-fold: (i) es-
timate the continuous values of the affective dimensions
at each moment in time, and (ii) predict the value of a
single self-reported severity of depression indicator for each
recording in the dataset. The challenge is therefore orga-
nized as two sub-challenges, i.e. the affect recognition sub-
challenge (ASC) and the depression recognition sub-challenge
(DSC). As the present paper focuses on the problem of
continuous affect estimation, we only consider the ASC.
The ASC consists of two sub-tasks: Northwind, where the
participants read aloud an excerpt of a fable spoken in
German language and the Freeform, where the participants
respond to one of a number of questions, again in the
German language. For our evaluation, we mix both tasks,
resulting in a total of 300 videos equally split in a 100
training, 100 development and 100 test videos.

For rigorously evaluating different algorithms for con-
tinuous affect estimation, the AVEC series use Pearson’s
correlation coefficient (CC) as metric. This metric was used for
benchmarking algorithms on AVEC 2012 and 2014 datasets.
It measures the linear correlation between the two sequences
and has a value between +1 and −1. A CC value of +1 in-
dicates total positive linear correlation, 0 indicates no linear
correlation and −1 indicates total negative correlation. Al-
though the affective state vector a contains valence, arousal
and their high-order derivatives, we will only consider the
first two dimensions of the state vector (valence and arousal)
for comparison, and calculate the CC metric for each of the
two dimensions.

4.2.2 Evaluating the Deep Extended Kalman FIlter
In this experiment we quantitatively evaluate our proposed
filtering algorithm and compare it to state-of-the-art meth-
ods. The main aspects we seek to assess are the contribution
of CFR-CURL as model for facial expression representation
on the one hand, and the contribution of non-linear neural
network models as transition and observation models for
the DEKF algorithm. Following the results reported in our
previous work [6], we also compare to the MI-SGP-KF
pipeline with 2-nd order and 0-th order derivatives for the
AVEC 2012 and AVEC 2014 datasets respectively. Tables 3
and 4 summarize the quantitative results on the AVEC 2012
and AVEC 2014 datasets respectively. To be consistent with
baseline and state-of-the-art results reported in other works,
all the processing pipelines are evaluated using the average
CC metric over all the testing videos.

For AVEC 2012, we recall that our baseline MI-SGP-
KF method yields very competitive results. It outperforms
the state-of-the-art results [77], [78], [79], [80] by more than
10% on average. Similar to our Bayesian filtering strategy,
the method presented in [78] uses particle filtering, but
surprisingly obtains a much lower score than our solution
based on Kalman filtering. To assess the added value of
the CFR-CURL processing pipeline for facial expression
representation, we combine it with a linear KF and observe a
little increase (1%) in CC w.r.t. MI-SGP-KF. Note that, here,
we do not use a bag of frames but only compensate for
the reaction lag, by re-aligning the frames according to the

TABLE 3: Quantitative comparison on AVEC 2012: Pearson’s
correlation coefficient (CC) on development data set for the
FCSC challenge. Second and third column denote the av-
erage CC scores on arousal and valence respectively. Last
column denotes the average CC score over arousal and
valence.

Method Arousal Valence Mean
Baseline [15] 0.15 0.21 0.18
MI-SGP [6] 0.28 0.31 0.30
CCRF [77] 0.34 0.34 0.34
Video PF [78] 0.31 0.37 0.34
CFER [79] 0.30 0.41 0.36
Multiscale Dynamic Cues [80] 0.51 0.31 0.41
3D Model-Based [81] 0.56 0.45 0.51
MI-SGP-KF [6] 0.53 0.51 0.52
CFR-CURL-KF 0.55 0.50 0.53
CFR-CURL-DEKF 0.54 0.53 0.54

TABLE 4: Quantitative comparison on AVEC 2014: Pearson’s
correlation coefficient (CC) on development data set for the
ASC challenge. Second and third column denote the average
CC scores on arousal and valence respectively. Last column
denotes the average CC score over arousal and valence.

Method Arousal Valence Mean
MI-SGP [6] 0.34 0.27 0.31
Baseline [82] 0.41 0.36 0.39
MI-SGP-KF [6] 0.56 0.51 0.54
CFR-CURL-KF 0.56 0.53 0.55
CFR-CURL-DEKF 0.61 0.55 0.58

findings reported in [5]. As input representations xk, we
use whitened canonical face representations followed by the
same 25c5-2000f-300f CNN pipeline as presented in figure
6. This CNN model was first trained on the entire CK+
dataset to capture the relevant information related to facial
expressions. We then removed the ELM hidden-to-output
linear layer and only used the 300-dimensional hidden layer
as final representation, hence yk = hCNN(xk) ∈ R300.
This CNN mapping is then used in algorithm 1 for testing
our proposed CFR-CURL-DEKF pipeline. For the DEKF, we
used transitions and observations models with 20 neurons
each. From table 3 we can see that the CFR-CURL-DEKF
pipeline performs the best, i.e. an average CC of 54%.

For the AVEC 2014 dataset, a similar experiment has
been conducted and summarized in table 4. We observe
an added value of CFR-CURL for facial expression repre-
sentation and DEKF for continuous affect estimation. The
CFR-CURL representations combined with KF result in an
increase in CC (2%) compared to MI-SGP combined with KF.
When combined with DEKF (using 20 neurons), we achieve
the best average CC of 58%. The conclusion for the AVEC
2012 and AVEC 2014 datasets are therefore consistent: (i)
the CFR-CURL pipeline is effective in terms of facial expres-
sion representation and (ii) non-linear filtering (DEKF) is
effective in terms of continuous affect estimation from facial
expressions.

5 CONCLUSION

Based on the computational framework presented in
our previous work [6], we’ve identified an important
gap in terms of computational framework for designing
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information-processing systems capable estimating contin-
uous affect from facial expressions, which is the main
motivation of this paper. To this end, we’ve leveraged the
synergistic combination between the Bayesian filtering and
the deep learning paradigms. We’ve advanced the state-
of-the-art by proposing a novel canonical face representation
(CFR) algorithm, a novel convex unsupervised representation
learning (CURL) algorithm, and a novel deep extended Kalman
filtering (DEKF) algorithm. The performance of the resulting
CFR-CURL-DEKF algorithmic framework was empirically
evaluated on publicly available benchmark datasets for fa-
cial expression recognition (CK+) and continuous affect es-
timation (AVEC 2012 and AVEC 2014), for which we obtain
state-of-the-art results. We can summarize our findings as
follows: (i) CFR is necessary for the task of facial expression
analysis:, (ii) CURL is sufficient for the task of facial expres-
sion representation, and (iii) DEKF is necessary for the task
of continuous affect estimation from facial expressions.
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