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Abstract—Network Functions Virtualization (NFV) is a key
networking concept whose benefits include scalability, flexibility,
and cost-effective service provisioning. In NFV, Virtualized Net-
work Functions (VNFs) are chained in Service Function Chains
(SFCs) adaptable to customers’ needs. VNFs and SFCs are
sensitive elements that, if compromised, would affect network
security. The detection of compromised VNFs and SFCs is
imperative, and although anomaly detection can be used in
such a context, there is a lack of research work on the use
of anomaly detection in NFV. In this article, we exploit the
use of anomaly detection mechanisms to identify suspicious
VNFs and SFCs. We introduce, into a widely accepted NFV
architecture, an NFV Security Module (NSM) that, by analyzing
VNFs and SFCs’ operations, detects anomalies possibly resulting
from security attacks. To prove the concept, three mechanisms
have been implemented and deployed in NSM to observe how
anomaly detection performs, given quantitative and qualitative
information. We found out that anomaly detection is effective
for VNF and SFC security and, in the case of using entropy as
anomaly detection technique, it presents accuracy of up to 98%
without harming NFV environment operations.

Index Terms—NFV, security, anomaly detection

I. INTRODUCTION

Academia and industry have been exploiting Network Func-

tions Virtualization (NFV), boosting innovation for network

provisioning and management, and reducing Operational and

Capital Expenditures (OPEX and CAPEX). As defined by

the European Telecommunications Standards Institute (ETSI),

NFV comprises the virtualization of functions originally per-

formed by dedicated devices into software [1]. Such “soft-

warized” functions – called Virtualized Network Functions

(VNFs) – are central to the NFV architecture. Virtualizing

network functions through NFV brings flexibility to service

delivery, given that customers’ demands can be individually

considered and dynamically adjusted through a chain of VNFs,

composing Service Function Chains (SFC) (or VNF Forward-

ing Graphs - VNFFG, following ETSI nomenclature).
With the increasing deployment of NFV-enabled net-

works and NFV ecosystems consolidation, security-related

issues started to gain attention [2]. Both virtualization and

networking-related vulnerabilities are present in NFV envi-

ronments, resulting in different types of threats (Figure 1).

Also, undisclosed vulnerabilities (i.e., zero-day threats) –

constantly sought by security companies – enlarges the number

of potential threats. Naturally, the consequences of an attacker

exploiting NFV vulnerabilities can be devastating.
In NFV, observing anomalies considering both network

and virtualized information helps identify threats and detect

ongoing attacks. Therefore, compromised VNFs and SFCs

need to be quickly detected, allowing network operators to

apply suitable countermeasures, avoiding major harms to ser-

vice delivery and customers’ privacy. Considering the wide

variety of NFV environments and the fact that anomaly

detection mechanisms are appropriate tools to identify threats

in different network contexts [3], the investigation of anomaly

detection to increase NFV security would be expected. To the

best of our knowledge, however, no other study has addressed

the use of anomaly detection in VNFs and SFCs.
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Figure 1. Threads affecting NFV environments [4].

In this article, we investigate the effectiveness of using

anomaly detection mechanisms for NFV security, focusing

on VNFs and SFCs. First, we provide an overeview of NFV

adoption and evolution, highlighting aspects related to NFV

security. We then revisit anomaly detection when employed in

diverse network environments, which provides the foundation

to use it in NFV. As a means to exploit anomaly detec-

tion in VNFs and SFCs, we then introduce an architectural

framework called NFV Security Module (NSM). Then, taking

into account realistic scenarios defined b y E TSI, w e present

and discuss the characteristics of NFV threads, introduce

the implementation of three anomaly detection mechanisms

using NSM, and evaluate such mechanisms in the realistic

scenarios. Finally, we close this article presenting conclusions

and directions for future work.

II. RELATED WORK

After the publication of the first NFV white paper, by ETSI,

followed by its NFV architectural framework [5], different

NFV initiatives from industry, academia, and standardiza-

tion groups emerged. From industry, we highlight Telefónica

OpenMANO, Cisco NFVI and AT&T ECOMP. At the time,

companies were focused on realizing NFV as soon as possible,

with security aspects addressed timidly.

Proposals like UNIFY, addressing service orchestration and

automated service chaining; and T-NOVA, focusing on au-

tomated NFV Management and Orchestration (MANO), also
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emerged from academia. Later, FENDE was published [6], the

first NFV marketplace and ecosystem with support to VNF

distribution, execution, and SFC composition. Security only

appeared in more recent works, such as the NFV security

survey focused on 5G networks [7], defining a threat taxonomy

specific for NFV-based 5G scenarios.

Open initiatives such as the Open Platform for NFV (OP-

NFV) and The Linux Foundation Open-O project started with

the goal of developing open source NFV solutions. Later,

ECOMP and Open-O merged to create ONAP, a platform

for real-time VNF orchestration with a dedicated security

coordination committee responsible for managing identified

vulnerabilities and coordinating security-related activities. De-

spite the security concern, anomaly detection for NFV was not

considered as a potential solution for NFV security.

From the standardization side, IETF established the SFC

Working Group (SFCWG) and the NFV Research Group

(NFVRG), both aiming at NFV-related challenges. ETSI an-

nounced NFV Security, identifying potential security vul-

nerabilities in NFV, making clear the importance of NFV

security. Recently, ETSI released security enhancements for its

NFV MANO architecture, considering communication-related

security aspects. SFCWG released the latest version of its SFC

protocol security draft, but once again without considering

anomaly detection as an enabler for NFV security.

NFV solutions supported the development of security-

related VNFs and SFCs, i.e., NFV was a security enabler.

However, no efforts towards securing NFV environments

themselves – i.e., NFV as the target of security – were

observed. As such, despite the advantages of using anomaly

detection for network security [8], anomaly detection was

not considered for NFV environments security. We argue that

anomaly detection is suitable for NFV environments security

due to several reasons: (i) NFV offers a central control point

of the network environment (i.e., NFV orchestrator); (ii) NFV

supports the easy collection of VNFs and SFC information;

and (iii) NFV includes a dedicated MANO plane to enable

automated actions. As such, the remainder of this article

addresses this opportunity.

III. ANOMALY DETECTION FOR NETWORK SECURITY

Anomalies are “patterns in data that do not conform to
expected behavior” [3]. Such nonconforming patterns may

result from problems in a system operation, e.g., denial of

service, and information leakage. The employment of anomaly

detection in networking environments is based on the com-

putation of a score that identifies the expected behavior of

a monitored information or set of information. When such

a score is not the one expected, it represents an anomaly.

Anomalies detected in NFV environments can be results of

events related to VNFs and SFCs, such as missing elements

and misconfiguration. Such events can result from threats that,

if exploited, may lead to services interruption and compromise

the NFV environment. There exist four main anomaly detec-

tion technique groups [3]: (i) supervised training, (ii) statistical

modeling, (iii) spectral theory, and (iv) information theory.

Each group is more suitable for different information patterns

and network environments.

Supervised training techniques require training datasets with

regular behavior of the monitored system to enforce the

proper training of the anomaly detection solution; they are

often used to detect bulk anomalies in traffic fl ows. For

example, reinforcement learning algorithms applied to identify

malicious flows must know the regular behavior of the network

to receive a reward or penalty after concluding an analysis,

which will then be used to improve its knowledge about

potential malicious activities [9]. However, given that VNFs

and SFCs are deployed, migrated, and removed frequently,

significant training datasets are unlikely to exist, thus prevent-

ing supervised training techniques as a viable option for NFV

anomaly detection. Differently, statistical modeling techniques

require precise characterization of both anomalous and regular

behaviors. These techniques are often applied in intrusion

detection systems where both regular and malicious behavior

can be well characterized through mathematical models, which

are hard to achieve in NFV [10]. Ultimately, both supervised

training and statistical modeling miss the ability to detect

potential unknown threats in NFV environments.

Despite their high accuracy, spectral theory techniques have

high computational complexity and also need anomalous and

regular instances to be separable in the lower dimensional

embedding of the data, i.e., the variation between normal

and anomalous data must be high enough to separate them.

Spectral theory techniques have been applied to network

intrusion detection systems with high computational capacity,

such as cloud computing systems where dedicated servers can

be employed to execute the spectral theory-based algorithms.

Information theory techniques, however, do not require train-

ing datasets or statistical models and present less complexity

than spectral theory techniques, demanding fewer resources to

run in acceptable time. For instance, entropy-based techniques

can be employed in different environments, requiring only

the set of monitored information to characterize the network

environment, using it as baseline for further anomaly detection

analyses [8]. Such characteristics turns information theory

a strong candidate to be employed in NFV environments,

with two main requirements: (i) wide view of the NFV
environment, since anomaly detection mechanisms require

information regarding all NFV elements being monitored;

and (ii) non-blocking information access, since anomaly

detection runs in parallel with the NFV environment operation.

Motivated by (i) the lack of solutions to cover the security

attributes presented, (ii) NFV environments potential vulner-

abilities, and (iii) the valuable results of anomaly detection

mechanisms, we first introduced an architectural framework

that allows designing and implementing anomaly detection

mechanisms for NFV environments [11]. Now, we advance

our previous investigation by (i) improving the proposed NFV

Security Module (NSM) architecture to better fit in different

scenarios, (ii) using realistic evaluation scenarios based on

ETSI definitions, (iii) adding new anomaly detection mech-

anisms to improve detection accuracy considering different

types of data, and (iv) extending the evaluation performed.
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IV. PROVIDING ANOMALY DETECTION CAPABILITIES TO

NFV ENVIRONMENTS

NFV Security Module (NSM) extends ETSI’s NFV ar-

chitecture to support anomaly detection. The lower portion

of Figure 2 depicts ETSI’s NFV original elements, with an

NFV Infrastructure (NFVI) composed of physical and virtual

resources (e.g., memory, CPU, network). Such resources are

consumed by VNFs and each running VNF is managed by an

Element Management System (EMS).
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Figure 2. Detailed NSM architectural framework integrated with ETSI NFV.

MANO (Figure 2, bottom-right) interacts with physical and

virtual resources via Virtual Infrastructure Manager (VIM),

and with EMSes via VNF Managers (VNFMs). While VIM

is responsible for resources management, VNFMs are re-

sponsible for VNF and SFC life-cycle management. NFV

Orchestrator (NFVO) orchestrates the NFV environment in-

teracting with VNFMs and VIM. Catalogs stores important

information about Network Services, VNF images, NVFI,

and NFV instances. The network operator manages VNFs

and SFCs through Operations and Business Support Systems

(OSS/BSS) that interact with NFVO.

NSM (Figure 2, top) communicates with NFVO to: (i)
retrieve VNFs and SFCs information needed in anomaly

detection analysis, and (ii) notify NFVO once anomalies are

detected. An anomaly detection analysis is triggered either

when an NSM internal interval expires or whenever NFVO

requests an analysis, e.g., when NFVO touches VNFs or SFCs.

NSM was designed considering: (i) running VNFs and SFCs

information acquired by the NFVO (monitored information),

and (ii) information stored in the catalogs defined by ETSI

and managed by the NFVO (cataloged information).

Orchestrator Abstraction Driver (OAD) creates an ab-

straction layer hiding from other NSM components the speci-

ficities of different NFVOs. OAD retrieves VNF and SFC

information and forwards it to the Adapter. The Adapter then

converts it into a format suitable to the anomaly detection 
mechanism in the Analyzer considering its implementation.

Anomaly detection is performed in the Analyzer using 
information received from the Adapter and information avail-

able in the Values and Alerts databases. If no anomaly is 
detected, the Analyzer ends the analysis and updates the 
Values database. However, if an anomaly is detected, the 
Analyzer forwards the detection information to the Filter.

The Filter identifies whether anomalies reported by the 
Analyzer are threats. If an anomaly results from a legitimate 
behavior, the Values database is updated and the analysis ends. 
Otherwise, if a threat is identified, Filter forwards the 
associated information to the Advisor. If Filter is unable to 
determine whether an anomaly is a threat, then the anomaly is 
classified as resulting from a potential threat and that 
information is forwarded to Advisor.

For each detected (potential) threat, the Advisor, by using 
recommendation algorithms, computes mitigation actions to be 
suggested to NFVO. The suggested actions seek to mitigate 
potential threats or known attacks that may be related to the 
threat occurrence. Then, the Advisor issues alerts composed of: 
(i) identified (potential) threats, (ii) affected VNFs and SFCs, 
and (iii) suggested actions. Such alerts are recorded at the 
Alerts database and forwarded to NFVO, who will decide upon 
executing or not the suggested actions.

Values and Alerts offers stored information back to the other 
components to further improve anomaly and threat detection. 
For example, the Analyzer can use the informa-tion stored in 
Values to learn and enhance future analysis. These 
communications close the interactions between the NSM 
internal components. Still, NSM and NFVOs oper-ate together 
to seek VNFs integrity, availability, and confi-dentiality. For 
further details regarding NSM, please access lume.ufrgs.br/
bitstream/handle/10183/197460/001097713.pdf .

V. CASE STUDY

Our case study is based on an environment where an NFVI 
provider manages sets of VNFs and SFCs owned both by 
that provider itself as well as by 3rd party virtual network 
service providers. These 3rd party providers rent the NFVI 
provider’s infrastructure to host some (or all) of their VNFs 
and SFCs. This scenario is referred to as “hosted virtual 
network operators” by ETSI NFV-SEC [4]. In this scenario, 
VNFs can belong to both the NFVI operator or customers, 
but regardless of the VNF owner, all SFC are handled by the 
NFVI operator through NFV MANO, as depicted in Figure 3.

Figure 3 depicts three different SFCs, along with their paths 
through the servers of the operator’s NFVI. VNFs can belong 
to both the NFVI operator or customers, but regardless of 
the VNF owner, all SFC are handled by the NFVI operator 
through the NFV MANO plane. SFC 1 has its endpoint inside 
the NFVI, which indicated the service is consumed by the 
NFVI provider itself, e.g., performing predictive caching for 
content delivery networks. In this case, another SFC can be 
instantiated to deliver the service to a given customer when 
requested. To carry out our evaluation, we also assume that:

• VNFs and SFCs are free of bugs;
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Figure 3. Example of the hosted virtual network operators scenario.

• Network connections are stable;

• No human intervention during the anomaly detection

process; and

• NVFI is able to accommodate all VNF and SFC demands.

The following aspects are outside the scope of this study:

• Threats related to human error in network operation;

• VNFs and SFCs verification and validation;

• Infrastructure errors (network and resources);

• Dependability attributes: reliability and

maintainability.

A. Anomaly Detection Mechanisms

The anomaly detection mechanisms designed and imple-

mented use both monitored and cataloged information during

the analysis, calculating both monitored information entropy

and cataloged information entropy. Different Shannon’s In-

formation Entropy-based anomaly detection mechanisms were

designed and implemented, considering two types of data: (i)
qualitative, values interpreted as properties and attributes (i.e.,
qualities), such as VNF identifiers; and (ii) quantitative, values

numerically analyzed and processed, such as the customers’

bandwidth. Both information types are analyzed separately.

While small variations in quantitative information may occur

and not indicate an anomaly, tiny variations in qualitative

information may indicate an inconsistency and a potential

threat. This way, one quantitative detector (Numerical Entropy-
based Detector - NED) and two qualitative detectors (Single
Entropy-based Detector - SED and Merged Entropy-based
Detector - MED) were implemented. The main reasons to use

Shannon’s Information Entropy are its low complexity (O(n)),
resulting in low impact in the NFV environment; and its wide

dissemination and adoption across different research areas [3].

A previous investigation showed that SED has fast execution

time and proven effectiveness [11] . However, SED may

present false-negatives when, e.g., the amount of missing

elements matches the amount of unregistered elements in the

monitored information. Such a situation may cause SED’s

monitored information entropy to remain unchanged in com-

parison with SED’s cataloged information entropy, even when

anomalies are occurring. MED was designed to avoid such

false-negative detection, refining the qualitative information

entropy calculation by merging cataloged and monitored in-

formation into a merged list. As such, if an unregistered or

missing element occurs in the monitored information, merged

information entropy will differ from cataloged information en-

tropy, indicating an anomaly. An example of a missing element

is a VNF identifier not present in the monitored information of

an SFC, but present in the cataloged information. Similarly,

an unregistered element could be an additional port in the

VNF monitored information that is not present in the cataloged

information of that VNF.

For quantitative information, merging monitored and cata-

loged information is not mandatory, due to their discrete nature

which makes it virtually impossible same entropy variations to

appear in two different analyses. However, distinct entropy

results may appear from every evaluation, turning entropy-to-

entropy comparison ineffective. NED was designed to surpass

this issue, analyzing the monitored information entropy con-

sidering historical cataloged information entropies. Anomalies

for quantitative information are detected by analyzing whether

the monitored information entropy fits into the interval com-

posed of the mean of historical entropy values plus/minus its

standard deviation. In addition, a parameter (β) is defined to

adjust the interval size. The higher the value of β, the more

permissive the detector is, with β = 1 representing no changes.

The mechanisms receive as parameters the input data resulting

from an adapted algorithm (described in detail in Subsection V-

C) and, in the case of NED, a β value. As such, it is imperative

for datasets to be consistent, since the accuracy of the anomaly

detection relies on the integrity of the data used as input. The

detectors’ Python implementation is available at

Table I
ANOMALIES AND THREAT CHARACTERISTICS

Threat Potential Attack Risk Security Attribute

Missing SFC element DoS
Service stops working or not working

properly
Availability

Unauthorized bandwidth
allocation

Privilege escalation
Users receive privileges above

stipulated, network traffic congestion
Integrity

Uncataloged/modified

VNF
Man-in-the-middle

Unauthorized users access VNFs and
SFCs, information leakage

Confidentiality

Privilege escalation
Users receive privileges above
stipulated, network congestion

Integrity

Uncataloged/modified

connection point and virtual link
Man-in-the-middle

Information leakage to unauthorized
users or attackers

Confidentiality

Privilege escalation Users receive privileges above stipulated Integrity
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github.com/ComputerNetworks-UFRGS/nsm.

B. Threats, Potential Attacks, and Risks

An anomaly results from the occurrence or change of a

particular set of circumstances, i.e., from an event. When

a new or newly discovered event has the potential to harm

a system, it represents a threat [12]. A threat may be the

result of different attacks, representing a risk to the NFV

environment. Table I presents the threats, potential attacks,

risks, and related security attributes considered in the case

study. We have selected those threats because they can affect

VNFs and SFCs in different scenarios. Threats are detected at

both VNF and SFC levels. Depending on the type of threat

detected, it is possible to generate a cascade effect on other

VNFs part of the same SFC. This cascade effect can also be

detected since it will generate even greater anomalies.

The threat “Missing SFC element” may indicate a DoS

attack, compromising the availability of NFV service provi-

sioning. “Unauthorized bandwidth allocation” may indicate

a potential attack of privilege escalation, associated with the

risk of users receiving privileges above stipulated and compro-

mising the integrity security attribute. “Unauthorized/modified

VNF” may indicate both Man-in-the-middle and privilege es-

calation attacks. While Man-in-the-middle represents risks of

unauthorized users accessing VNFs and SFCs and information

leakage – compromising the confidentiality security attribute

–, the privilege escalation attack may indicate risks of users

receiving privileges above stipulated and network congestion

– an integrity break. “Uncatalogued/modified connection point

and virtual link” may be related to multiple attacks too,

i.e., Man-in-the-middle and privilege escalation. While the

first attack may represent a risk of information leakage to

unauthorized users or attackers – compromising confidentiality

–, the second has a potential risk of users receiving privileges

above stipulated, compromising the integrity security attribute.

Considering that every non-conforming pattern detected on

VNF and SFC cataloged/monitored information results in an

anomaly that may be related to a threat, every operation related

to VNF and SFC is considered by the proposed solutions. In

summary, our solutions are agnostic regarding the operation

that generates the anomaly.

C. Evaluation

An algorithm was designed to create the datasets that were

analyzed by NSM in our experiments, adapting the algorithm

of Rankothge et al. [13] to operate as follows. The algorithm

receives as input: (i) the average number of SFCs (defined

as 100, reflecting large scale enterprise networks, where each

SFC is composed of 2 to 7 VNFs [14]); (ii) the average

number of VNFs (the number of VNFs for a given customer

considered follows a truncated power-low distribution with

exponent 2, minimum 2, and maximum 7 [13]); (iii) the threat

event likelihood (defined as 60% based on enterprise reports

[15]); and (iv) the legitimate event likelihood (also 60%). Both

events likelihood follow a normal distribution.

The algorithm generates snapshots composed of two

datasets: (i) monitored data and (ii) cataloged data. Each

snapshot contains a timestamp, and each line of the datasets

contains: SFC identifier, V NFs c omposing t he S FC, con-

nection points, virtual links, and user’s allocated bandwidth.

Whenever a new event (legitimate or threat) occurs, a new

snapshot is generated. Legitimate events can be the registration

of a new SFC or VNF, reallocation of users’ bandwidth, VNFs

re-routing within an SFC (i.e., changes in connection points

of virtual links), among others. In turn, threats are represented

by events related to Table I. When NSM operation starts

(triggered by an event or a time interval), it considers the

most recent datasets.

Our analysis compares NSM detection results with gener-

ated datasets, observing the accuracy of the detection mech-

anisms and the detection time of each trigger. We argue that

accuracy and detection time are the most important outcomes

when it comes to anomaly detection. Other parameters such

as execution time and resource consumption could also be

analyzed, but since these parameters may be affected by

the network and hardware employed, accuracy was chosen

to prove the effectiveness of the proposed mechanisms. For

the analysis of the detection time of each trigger, a single

detection mechanism is used (MED), since the execution time

of the different mechanisms implemented is negligible when

compared to the detection time of the triggers.

1) Detection Accuracy: False Positive Rate (FPR) and True

Positive Rate (TPR) are considered for this evaluation. NED

starts its analysis with 100 entropy values available at the

Values database, as mentioned in Subsection V-A, and three

values of β are considered: 1 (no change), 0.5 (half-size),

and 2 (double-size). Results are presented in Figure 4 using a

Receiver Operating Characteristic curve (ROC curve), which

shows TPR on the y-axis and FPR on the x-axis. The closer

to the top-left corner the higher the detector accuracy. As a

baseline for comparison, a random detection line is presented

together with detectors’ results.

Figure 4. Accuracy of SED, MED, and NED with three different β values.

MED presents higher accuracy in all cases (around 98%),

followed by NED with β = 1, SED, and NED with β = 2
and β = 0.5. MED great results can be ascribed to the merged
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list composition, which minimizes false-negative occurrences

by calculating the merged information entropy.

With 95% on average, NED accuracy is slightly smaller

than MED, which can be assigned to scenarios where small

variation in the monitored allocated bandwidth may not be

detected, especially at the start of NED execution, when few

monitored values are available to compute the mean and stan-

dard deviation to characterize the monitored elements entropy.

Thus, NED can present a high number of false positives until

it has a certain number of samples. Afterwards, the tendency

is for the number of false positives to fall.

NED accuracy decreased using a bigger β (2), because of

the higher tolerance when using a higher β. It means that NED

might consider greater changes in the entropy as normal when

they might be anomalies. Still, using a smaller β may restrict

too much the analyzed samples, and regular information might

be considered anomalies too.

2) Detection Time: considers two NSM detection triggers:

NSM internal interval and NFVO analysis requests. The first

trigger is referred to as Interval, while the second one as

Request. A period of 60 minutes was considered, using MED

because of its higher accuracy for qualitative information.

In the Request analysis, NSM is configured to execute

whenever a new legitimate event occurs, e.g., new VNFs

registration or configuration changes in existing VNFs. Such

events occurrences (regular or anomalous) varies from 1 to 10
per hour, following the 60% likelihood defined. In the Interval
analysis, intervals to analyze the monitored information are

configured in NSM from 1 to 60 minutes. Figure 5 depicts

the results obtained.
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Figure 5. Detection time comparison of both triggers.

As the trigger interval increases, the anomaly detection

delay increases linearly considering the Interval trigger. With

the Interval trigger, the detection time takes half of the

polling interval to detect anomalies, on average. In turn, the

Request trigger presents decreasing logarithmic time to detect

anomalies as the number of notifications per hour increases

linearly. There is an intersection point where both Request
and Interval triggers present the same detection time, (12
min), when a polling interval of 24 min and 5 notifications

per hour are used. In highly dynamic scenarios where VNFs

and SFCs information changes often, using the Request trigger

activates NSM more often, so anomalies might be detected

faster without performing unnecessary analysis, which may

occur when using short intervals for the Interval trigger.

The effectiveness of the Interval trigger is directly related to

the interval configured. Short intervals may detect anomalies

faster, but imply in more NSM executions. In turn, higher

intervals imply fewer NSM executions, but anomalies will take

longer to be detected. The Request trigger can be configured

with different strategies, such as executing the anomaly de-

tection whenever the NFVO acquires information from VNFs

and SFCs (monitoring events). However, processing time of

both NSM and NFVO may increase with such a strategy, and

NFVOs should support operations parallelism over monitored

information, i.e., monitored information acquisition, forward

it to NSM, receive back the anomaly detection results, and

evaluate the application or not of the suggested actions.

VI. CONCLUSION AND FUTURE RESEARCH

This article discussed the advancements related to NFV

environments’ security, from its definition to recent propos-

als regarding NFV in emerging network environments. An

NFV Security Module (NSM) was presented to investigate

anomaly detection effectiveness for NFV security. We ana-

lyzed if threats related to security attributes could be properly

detected using anomaly detection, which led to the design,

implementation, and evaluation of three different entropy-

based anomaly detection mechanisms. A case study with a

realistic NFV scenario was considered for our experiments,

allowing us to conclude that anomaly detection effectively

identifies potential threats in NFV environments, presenting

accuracy of up to 98% among the entropy-based mechanisms

designed. Also, two detection triggers were analyzed (Request
and Interval), presenting both linear and logarithmic detection

times depending on the trigger and configuration used. As fu-

ture research, new mechanisms can be designed and evaluated

using NSM, considering real-time resource consumption by

container engines and virtual machines.
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