Check for updates

applied optics

Determination of optical constants of thin films in the EUV

RICHARD CIESIELSKI,^{1,*} ^(D) QAIS SAADEH,¹ VICKY PHILIPSEN,² ^(D) KARL OPSOMER,² JEAN-PHILIPPE SOULIÉ,² MEIYI WU,² PHILIPP NAUJOK,³ ROBBERT W. E. VAN DE KRUIJS,⁴ CHRISTOPHE DETAVERNIER,⁵ MICHAEL KOLBE,¹ FRANK SCHOLZE,¹ AND VICTOR SOLTWISCH¹

¹Physikalisch-Technische Bundesanstalt, Abbestraße 2-12, 10587 Berlin, Germany

²imec, Kapeldreef 75, 3001 Leuven, Belgium

³optiX fab GmbH, Hans-Knöll-Str. 6, 07745 Jena, Germany

⁴MESA+, Institute for Nanotechnology, University of Twente, The Netherlands

⁵Ghent University, Department of Solid State Sciences, Krijgslaan 281/S1, 9000 Ghent, Belgium

*Corresponding author: richard.ciesielski@ptb.de

Received 29 October 2021; revised 13 January 2022; accepted 14 January 2022; posted 18 January 2022; published 8 March 2022

The determination of fundamental optical parameters is essential for the development of new optical elements such as mirrors, gratings, or photomasks. Especially in the extreme ultraviolet (EUV) and soft x-ray spectral range, the existing databases for the refractive indices of many materials and compositions are insufficient or are a mixture of experimentally measured and calculated values from atomic scattering factors. Since the physical properties of bulk materials and thin films with thicknesses in the nanometer range are not identical, measurements need to be performed on thin layers. In this study we demonstrate how optical constants of various thin film samples on a bulk substrate can be determined from reflection measurements in the EUV photon energy range from 62 eV to 124 eV. Thin films with thickness of 20 nm to 50 nm of pure Mo, Ni, Pt, Ru, Ta, and Te and different compositions of Ni_xAl_x, PtTe, Pt_xMo, Ru_xTa_x, Ru₃Re, Ru₂W, and TaTeN were prepared by DC magnetron sputtering and measured using EUV reflectometry. The determination optical constants of the different materials are discussed and compared to existing tabulated values. © 2022 Optica Publishing Group

https://doi.org/10.1364/AO.447152

1. INTRODUCTION

The complexity of functional nanostructures is constantly increasing in the semiconductor industry, and a key enabler for upcoming technologies beyond the 10 nm semiconductor node is new materials. Specifically, metals such as Pt, Te, Mo, and Ru start to play a central role as absorber materials in photolithography, for capping layers or as a means of thermal or electric contacts [1–4]. Their alloys are used to tune the material's properties to the desired values and therefore must be studied beforehand, which highlights the need for a precise and reliable determination of the physical constants of those thin film materials.

The precise measurement of optical properties in the extreme ultraviolet (EUV) regime around 91.85 eV/13.5 nm is still a challenge for the development of optical components such as photomasks or mirrors for EUV lithography [5–7]. Due to the short wavelength in this spectral regime, contamination, oxidation, or surface roughness in the nanometer range will affect the optical response of a sample much stronger than, for instance, at optical wavelengths. Such effects can be the result of chemical processes or contamination by process gases during the manufacturing or just a consequence of the grain structure of thin film samples. The most important material property for optical applications is the complex refractive index $\tilde{n} = n + ik = 1 - \delta - i\beta$, which, in the EUV and x-ray regime above 10 eV, is typically given in terms of δ , describing the dispersion, or refractive power, and β , describing the extinction of the incident radiation. Since the real part $n = 1 - \delta$ of refractive index \tilde{n} is generally close to 1 and the imaginary part $k = -\beta$ is relatively large, the design of optical components for EUV applications is nontrivial [8,9]. An estimation of the optical properties of compound materials can be retrieved from the well-established representation in the form of atomic scattering factors [10], but it is not to be confused with actual spectral measurements of the optical constants. Here, a typical challenge is that the mass density of the compound materials is not known for the deposited thin films, which impacts the refractive index strongly. Thin film samples typically have a lower density than bulk samples, which is due to their more poly- and nanocrystalline structure, and due to more prominent surface effects. These effects are hard to predict, especially for compound materials. The most common way to determine optical constants in the x-ray range is through transmission experiments, which measure the absorption of the radiation

directly [11]. Using the Kramers-Kronig relation, the complex refractive index can be determined from a measurement of the absorption. Since the penetration depth in the EUV regime is very low, ultra-thin and freestanding films are required for this type of measurement, which has an impact on the accuracy. Another major problem for transmission mode measurements is that the optical properties extracted from freestanding thin films are not always identical to thin layers within stratified systems as they are used in optical components. Measurements on samples that represent the structure of a real optical component, such as thin films on a substrate, are therefore much more promising. Such can be studied by EUV reflectometry where the reflectance is measured as a function of wavelength and angle of incidence [12-14]. In the x-ray spectral range, reflectometry (XRR) is an established method to determine the thickness of thin films [15–17] and can also be used to determine the optical constants. EUV reflectometry itself is as easy to realize as a transmission mode experiment, but the interpretation of the results is more complicated.

We present here our results of reflection measurements on thin films of the pure elements Mo, Ni, Pt, Ru, Ta, and Te and different compositions of Ni_xAl_x, Pt_xMo, PtTe, Ru_xTa_x, Ru₃Re, Ru₂W, TaBN, and TaTeN in the range of 62 eV to 124 eV around the energy of 91.85 eV/13.5 nm, which is important for EUV lithography [5]. Dispersion and extinction of these materials are determined through model fits that consider the effects of interdiffusion, surface contamination, and roughness, using a transfer matrix approach [18–20]. The procedure itself is similar to spectroscopic ellipsometry in the optical regime using the Müller-matrix approach for data analysis [21–23].

2. EXPERIMENTAL DETAILS

A. EUV Reflectometry

The experiments were conducted in the Physikalisch-Technische Bundesanstalt (PTB) laboratory at the electron storage ring Berliner Elektronenspeicherring-Gesellschaft für Synchrotronstrahlung (BESSY II) at PTB's soft x-ray beamline [24,25], which covers the photon energy range from 50 eV to 1800 eV. The beamline is designed for a beam with small divergence (regularly below 1 mrad) and minimal halo. The monochromator of the beamline provides a spectral resolution below 0.25 eV. To suppress higher orders, different foil filters (C, B, Be, Si, and Al) have been used, depending on the spectral range [25]. The experimental geometry inside the reflectometer is illustrated in Fig. 1(a). A monochromatic beam with the photon energy hv impinges on the sample surface at a variable angle of incidence (aoi) θ_i . The elastically scattered wave propagates along the exit angle θ_f , where the specular reflectance ($\theta_f = \theta_i$) from the sample is measured in *s*-polarization with a GaAsP photodiode. A lubricant-free goniometer inside the vacuum chamber allows for precise rotation and positioning of the samples, aligning the angle of incidence θ_i with an uncertainty of $\pm 0.01^{\circ}$ with respect to the incoming beam. An example of an EUV reflectance map, obtained on a Ta sample, is given in Fig. 1(b). The excellent signal-to-noise ratio allows us to resolve the data within more than four orders of magnitude.

B. Sample Preparation

Mo, PtMo, Pt₂Mo, Pt, PtTe, Te, Ni, Ni₃Al, NiAl, Ni₂Al₃, Ru, Ru₃Re, Ru₃Ta, Ru₂W, RuTa, RuTa₃, and Ta samples were produced on a silicon wafer substrate using DC magnetron sputtering, which resulted in polycrystalline thin films with nominal thicknesses of 20 nm to 50 nm. The base pressure of the sputter systems was about 10^{-7} mbar, with sputtering performed using argon as process gas at working pressures between 10^{-4} mbar and 5×10^{-3} mbar. Alloys were produced through co-depositing the constituents from separate targets, placed on a rotating wafer drum, resulting in sequential deposition of monolayers and instantaneous intermixing. The TaTeN sample was deposited by reactive co-sputtering of Ta and Te targets in a nitrogen/argon mixture atmosphere. Many different powers, flow rates, gas mixtures, and gas pressures were

Fig. 1. (a) Sketch of the experimental setup for EUV reflectometry at the soft x-ray beamline of the PTB at the synchrotron radiation facility BESSY II. During a measurement, the angle of incidence θ_i is scanned from grazing to near normal whilst adjusting the position of the photodiode θ_f to detect the specular reflection. The energy is scanned from 62 eV to 124 eV to cover the relevant EUV parts. The setup is operated under vacuum conditions in a lubricant-free environment. (b) Example of an EUV reflectance map, obtained from a Ta thin film on a silicon wafer substrate. The information on optical constants and the sample parameters such as layer thickness and roughness are encoded in the characteristic intensity modulations of the reflectance map.

tried in the process chamber to optimize the compound. The hysteresis effect between the metallic and the poisoned mode was carefully followed by monitoring the cathode voltage. The final composition contained 1:1.45 tantalum and tellurium with below 5% nitrogen content, serving as dopant to reduce oxidation and crystallinity of the sample [3]. The TaBN sample is an industry-representative EUV mask blank, which is commercially available [26]. The composition of the samples was checked by x-ray photoelectron spectroscopy (XPS) or Rutherford backscattering spectrometry (RBS). The typical resulting surface roughness for the samples was classified to be smaller than 0.1 nm (rms) by atomic force microscopy. Diffusion of atoms from the thin film into the substrate leads to an interdiffusion layer of few angstroms thickness at the interface between the deposited material and the substrate. On the surface of the samples, an oxide layer is formed, on top of which an additional contamination layer consisting mainly of water and carbon is found [27]. Depending on the material and the sample's history, an interdiffusion layer and oxide layer built up in varying degrees and therefore had different impacts on the reflectivity of the samples. We find that the thickness of the oxide and the contamination layer varies between almost 0 and 2 nm.

3. THEORETICAL BACKGROUND

EUV reflectometry yields the reflection coefficient R of a sample as a function of the angle of incidence and the photon energy. In the case of a thin film on a substrate, the free parameters are the layer thicknesses h_j , the optical constants of the materials (δ_j, β_j) , and the roughness parameters of the interfaces σ_j . Fresnel's equations allow us to calculate reflectivity and transmission at each interface depending on the optical constants, the angle of incidence, and the polarization. Multiple reflections and subsequent passes through the sample lead to interference that determines the total reflectivity of the sample.

A. Matrix Method

The optical properties of thin film samples under monochromatic illumination can be calculated using a transfer matrix approach [12,18,20]. An electromagnetic, monochromatic plane wave can be described by its amplitude A and the k vector. Following Vignaud and Gibaud [20], we use a notation of upwards (+) and downwards (-) traveling waves in the zdirection:

$$u^{\pm}(z) = A_{j}^{\pm} \exp(\pm i k_{z,j} z),$$
 (1)

which fully describe the state of the system in every layer j (cf. Fig. 1) at the vertical position z. The wave in vacuum, outside the full stack of layers, is given by the following equation:

$$\begin{bmatrix} u^+(z_{vac.})\\ u^-(z_{vac.}) \end{bmatrix} = \mathbf{M} \cdot \begin{bmatrix} u^+(z_{substrate})\\ u^-(z_{substrate}) \end{bmatrix},$$
 (2)

which contains the 2 × 2 transfer matrix **M**, defined as a product of reflection ($\mathbf{R}_{j/k}$) and transmission (\mathbf{T}_j) matrices [20]. For a thin film of a specific material (*mat.*) on a substrate, including a contamination layer (*cont.*), an oxide layer (*ox.*), and an interdiffusion layer (*diff.*), this transfer matrix reads

$$\mathbf{M} = \mathbf{R}_{vac./cont.} \cdot \mathbf{T}_{cont.} \cdot \mathbf{R}_{cont./ox.} \cdot \mathbf{T}_{ox.} \cdot \mathbf{R}_{ox./mat.} \cdot \mathbf{T}_{mat.}$$

$$\mathbf{R}_{mat./diff.} \cdot \mathbf{T}_{diff.} \cdot \mathbf{R}_{diff./subs.}$$
(3)

Further layers can be incorporated by additional transmission and reflection terms. A transmission matrix \mathbf{T} has diagonal form, accounting for absorption and accumulated spectral phase inside the material:

$$\mathbf{T}_{j} = \begin{bmatrix} \exp(ik_{z,j}h_{j}) & 0\\ 0 & \exp(-ik_{z,j}h_{j}) \end{bmatrix},$$
 (4)

with h_j being the thickness of the respective layer. The reflection matrix is calculated from the Fresnel coefficients of the individual interfaces:

$$\mathbf{R}_{j/k} = \begin{bmatrix} p_{j/j-1} & m_{j/j-1} \\ m_{j/j-1} & p_{j/j-1} \end{bmatrix},$$
(5)

with the following coefficients:

$$p_{j/j-1} = \frac{k_{z,j} + k_{z,j-1}}{2k_{z,j}} \cdot \exp\left(-\frac{1}{2}(k_{z,j} + k_{z,j-1})^2 \cdot s_{j/j-1}^2\right),$$
$$m_{j/j-1} = \frac{k_{z,j} - k_{z,j-1}}{2k_{z,j}} \cdot \exp\left(-\frac{1}{2}(k_{z,j} - k_{z,j-1})^2 \cdot s_{j/j-1}^2\right).$$

Imperfections at the interfaces reduce the specular signal. This effect is included here by the exponential term, introducing the interfacial roughness parameter $s_{j/j-1}$ between material j and (j-1) [19]. The optical constants of the materials themselves are encoded in the z component of the wave vectors inside the materials via the refractive index \tilde{n}_j of layer j: $k_{z,j} = \tilde{n}_j \cdot k_{z,vac}$.

To this end, the reflection coefficient R is the ratio of the incoming and outgoing intensity in vacuum $R = \frac{I_{out}}{I_{in}}$, calculated from the upwards and downwards traveling plane wave solutions of Eq. (2). After a sufficient distance, the absorption of a bulk substrate would always cancel out all downwards traveling waves $u^{-}(z_{\text{substrate}})$, so upwards traveling waves within the substrate $u^{+}(z_{\text{substrate}})$ do not exist either. Therefore, the reflectivity calculates from only two entries of M_{ij} :

$$R = \frac{I_{\text{out}}}{I_{\text{in}}} = \left| \frac{u^+(z_{vac.})}{u^-(z_{vac.})} \right|^2 = \left| \frac{M_{12}}{M_{22}} \right|^2.$$
 (6)

This relationship can be used to calculate the reflectivity of a layered system as a function of photon energy hv and angle of incidence θ with the material properties and layer thicknesses as parameters.

B. Optimization Problem

A typical EUV reflectance data set consists of around 45 angles of incidence between near normal and close to 90° at every given photon energy. In a stack of four layers (interdiffusion layer, material of interest, oxide layer, contamination layer) on a substrate (cf. Fig. 1), and assuming that the substrate's optical constants are known, there are 4×2 optical constants, five roughness parameters, and four thickness parameters. In the chosen model, the roughness parameters are independent of the wavelength; therefore there are eight unique parameters $(4 \times \delta \text{ and } 4 \times \beta)$ at each photon energy, and further nine parameters $(5 \times s, 4 \times h)$ for the global data set across the entire spectrum. Note that the optical constants of all layers are subject to a free-floating fit without further assumptions on them. At 80 measured photon energies, this means that 649 parameters must be determined on a basis of 3600 data points. The optimization problem is defined as follows:

$$\min_{p(-)}\left[\sum_{\nu,\theta}\frac{|R_{calc.}(\nu,\theta)-R_{meas.}(\nu,\theta)|^2}{\sigma_{\nu,\theta}^2}\right],$$
 (7)

where the calculated values $R_{calc.}$ follow Eq. (6) and the parameters are $p = \{\delta_{j,\nu}; \beta_{j,\nu}; s_j; h_j\}$. The values for the measurement uncertainties $\sigma_{\nu,\theta}$ for all angles and energies were determined from the experimental circumstances [24]. Although the optimization problem in formula (7) could be solved directly, it is more efficient to break it down into two smaller optimization problems. For a fixed set of layer thicknesses and interfacial roughnesses $\{h_j; s_j\}$ as "outer" parameters, the optical constants $\{\delta_{j,\nu}, \beta_{j,\nu}\}$ as "inner" parameters of the optimization problem can be determined individually

Fig. 2. (a) Simulated EUV reflectance map of the measurement in Fig. 1(b) of a Ta film on silicon. The dashed cross sections beside and below the main panel provide direct comparison with the measured data (circles). (b) Fitted optical constants of the Ta film over the measured spectral range.

for all photon energies using a Levenberg–Marquandt algorithm [28]. Thus, we run a global optimization algorithm [29] to determine the nine 'outer' parameters and minimize the optical constants independently for every measured energy. In this method, the layer's thicknesses are not determined by external methods, but subject to the model fit. Starting values for the optimizer are chosen from prior knowledge of the sample fabrication for *s* and *h*, while tabulated data are used for the optical constants [10]. The fitted values for the layer's thicknesses were in general agreement to the design values from the sample preparation process. On a modern desktop computer, this can be solved within reasonable calculation time, using state-of-the-art optimization toolboxes [28–30]. An example of reconstructed reflectance data is given in Fig. 2, underlining that this model is accurately able to describe the experimental data.

4. RESULTS AND DISCUSSION

Table 1 summarizes the optical constants of all measured thin film samples at 91.85 eV/13.5 nm, Fig. 3 presents plots of the data over the full measured spectral range, and the full, spectrally resolved data of all materials measured are reported in Appendix A. Figure 4 compares our results to the existing literature. Next to the optical constants δ and β , Table 1 includes the fitted film thicknesses and material's densities for reference, as well as the chromatic dispersion. In the x-ray region, the refractive index of materials scales linearly with its density, and for high energies far from resonances, the refractive index can be calculated through tabulated atomic scattering factors. We used this to fit the density of our samples by comparing the retrieved optical constants at the highest available photon energy of 124 eV (10 nm) to the Center for X-Ray Optics (CXRO) database [10]. This works well for ruthenium, tantalum, platinum, molybdenum, and tellurium, but in the case of nickel and its alloys, we still find discrepancies to the theoretical data at 124 eV. Since the overall shape of CXRO data agrees well with our data sets, which is shown in Fig. 3, it was used for the approximate determination of the density. We find moderate differences in the density to tabulated data, 15% at maximum. The retrieved density is smaller than the tabulated one, which is not surprising, since the morphology of nanometer scaled thin films is more porous than bulk material. The only exception to this rule is nickel, where we determine a higher density than for bulk, which can be explained through the differences between the reference data and our own measurements [cf. Fig. 3(b) and the resulting poor density fit].

Even in the case in which the main interest lies on the values at a specific photon energy, such as 91.85 eV/13.5 nm, the spectrally resolved measurement and fit are beneficial for the determination of the global sample parameters, such as the layer thicknesses and roughness values. For a single photon energy, the approach used here to model roughness through an interfacial roughness parameter $s_{j/j-1}$ within the Fresnel coefficients [19] does not allow us to discriminate the effect of roughness from interdiffusion between layers. This becomes possible only by including a specific interdiffusion layer in the model (cf. Fig. 1) and measuring what is spectrally resolved. A measurement at the target energy only would result in a less

able 1.	Central Results of the	Global Reflectance Fits for	Yarious Thin La	yers at 13.5 nm/91.85 eV
---------	------------------------	-----------------------------	-----------------	--------------------------

	Film	Properties	Refracti	ive Index	Chromatic	Chromatic Dispersion	
Material	Thickness (nm)	Density $(\mathbf{g} \cdot \mathbf{cm}^{-3})^a$	δ	β	$\frac{\mathrm{d}\delta}{\mathrm{d}\lambda} \left(\mathbf{nm}^{-1}\right)$	$\frac{\mathrm{d}\beta}{\mathrm{d}\lambda}$ (nm ⁻¹)	
Мо	27.3	9.5	0.0728	0.0066	-0.015	0.002	
PtMo	30.0	15.7	0.0922	0.0344	-0.015	0.012	
Pt_2Mo	29.4	17.5	0.0976	0.0416	-0.014	0.015	
Pt	34.3	21.1	0.1082	0.0587	-0.012	0.024	
PtTe	23.4	11.5	0.0612	0.0751	0.007	0.016	
Te	30.7	6.0	0.0352	0.0741	0.012	0.011	
Ni	22.3	(10.0)	0.0500	0.0778	-0.002	0.012	
Ni ₃ Al	21.8	(7.1)	0.0225	0.0656	0.002	0.003	
NiAl	20.9	(5.8)	0.0110	0.0603	0.005	-0.002	
Ni ₂ Al ₃	23.1	(4.5)	0.0058	0.0492	0.006	-0.001	
Ru	47.2	11.7	0.1118	0.0154	-0.026	0.010	
Ru ₃ Re	36.3	13.7	0.1035	0.0196	-0.025	0.009	
Ru ₃ Ta	49.1	13.0	0.0940	0.0203	-0.022	0.008	
Ru_2W	20.6	14.2	0.0941	0.0201	-0.022	0.008	
RuTa	45.5	13.4	0.0747	0.0249	-0.017	0.005	
RuTa ₃	46.9	13.4	0.0593	0.0295	-0.012	0.004	
Ta	46.2	14.6	0.0463	0.0335	-0.009	0.002	
TaBN	58.7	-	0.0495	0.0318	-0.009	0.003	
TaTeN	37.7	6.6	0.0364	0.0438	0.003	0.006	

"The density is a best-fit value in comparison with the CXRO database [10] at the shortest available wavelength of 10 nm.

Fig. 3. Spectrally resolved optical constants for different groups of materials (solid lines) and comparison to predictions [10] (dashed lines) with fitted density values (cf. Table 1). Dashed vertical lines indicate 91.85 eV/13.5 nm. (a) Optical constants of ruthenium, tantalum, and their alloys. (b) Optical constants of nickel and nickel aluminum alloys. (c) Optical constants of platinum, molybdenum, and its alloys. Clearly visible are the absorption lines of platinum N6 at 74.5 eV and N7 at 71.2 eV. (d) Optical constants of tantalum, tellurium, and various compound materials.

accurate determination of the optical constants because the problem could be over-determined.

Of the pure metals studied here, ruthenium has the largest refractive power, while nickel shows the highest extinction.

Platinum comes close to ruthenium, but at a much higher extinction coefficient. The pure metal films mark the extrema in the two-dimensional space of (δ, β) , and all the alloys fall in between, as presented in Fig. 5. The numbers for alloyed

Fig. 4. Comparison of the here presented optical constants at 91.85 eV photon energy/13.5 nm wavelength (red dots) to data from previous studies. From atomic scattering factors: black triangles [10], green triangles [39,40]; from reflectance measurements: blue rectangles [32]. From various other studies: magenta diamonds, Mo [33], Ni [34], Pt [35], Ru [36], Ta [37], and Te [38].

metal films suggest that the optical constants of these films can be understood mostly as a weighted sum of their constituents. We find that this is true for alloys of ruthenium and tantalum, molybdenum, and platinum, and chiefly for nickel and aluminum. Although not surprising, these are the first measurements to demonstrate this correlation on the grounds of actual experiments. An interesting exception from this trend is platinum telluride (PtTe), an alloy of the metal platinum and the metalloid tellurium, whose extinction coefficient is larger than that of pure platinum or pure tellurium. The reason lies in the crystal structure of the materials: platinum telluride's orthorhombic crystal structure results in a lower partial specific volume of tellurium than in the trigonal crystal structure of tellurium's pure form [31]. The resulting, higher specific partial mass density of tellurium in platinum telluride is the reason for the large extinction coefficient of the material. We also note that the optical constants of Ru₂W and Ru₃Ta are almost identical, which is because the neighboring elements tungsten and tantalum have very similar densities and therefore a very similar effect on the optical constants of the alloy with ruthenium.

When comparing our data at 91.85 eV to the existing literature of direct measurements of the optical constants [32–38], we find the differences in values, which are summarized in Fig. 4 alongside those calculated from atomic scattering factors [10,39,40]. Of those references, the data of Windt *et al.* on Mo, Pt, Ru, and Ta [32], as well as the data of Rodríguez-de Marcos et al. on Te [38] and Hosoya et al. on Ta [37], were obtained from reflection-type measurements and are therefore very comparable to ours with respect to methodology and outcome. An exception is the value of Diel et al. on Ni [34], which is far from our value and the one from CXRO [10]. Pauly et al. used reflection electron energy loss spectroscopy on Mo to determine the dielectric constants [33] and determined a value that is also very close to our value. The data set of Soufli et al. on Pt [35], using transmission-type measurements on thin, freestanding films, agrees remarkably well with our data. Differences are smaller

Fig. 5. Optical constants for thin metal films and their alloys at 91.85 eV/13.5 nm, all obtained within this study. Binary alloys are grouped as a guide to the eye. Shaded areas depict regions of interest for different mask-type applications.

than 0.5% over the entire spectral range, including the visible absorption edges N6 and N7 (not shown).

CXRO data [10] and the data of Chantler [39,40] are based on atomic scattering factors, so the density of the materials is needed as an input to retrieve the optical constants from these databases. For the comparison at 91.85 eV in Fig. 4, we used the tabulated bulk densities instead of the fitted density values of Table 1. The dashed lines in Fig. 3 show that we find good agreement of the CXRO data with our values for many materials over the studied spectral range, if the density is adjusted to the fitted values of Table 1. However, Fig. 4 shows that the values, based on the non-adjusted, tabulated bulk densities, differ at 91.85 eV. Values of the alloys can only be retrieved from the current databases if their density is known. In some spectral regions, such as 70 eV ... 75 eV for platinum, the spectral shape of the optical constants contains additional information about the absorption edges of the materials; see Fig. 3(c). When working near absorption edges, special care needs to be taken, because spectral shifts and polarization effects can occur [41].

5. APPLICATION IN EUV LITHOGRAPHY

The currently most relevant application of the here investigated materials at 13.5 nm wavelength is EUV lithography, namely for reflective photomasks and mirrors. Their development drives the miniaturization of semiconductor technology by enhancing the resolution of the lithography process and thereby reducing the feature sizes on future computer chips. Since the performance of current EUV lithography masks is the result of a rigorous understanding of the image formation process, a key element is the precise knowledge of the refractive index of the materials in use [8,9]. These photomasks are being used today under a chief-ray-angle-at-object (CRAO) of 6°, which corresponds to an angle of incidence range of $\approx 2^{\circ} \dots 10^{\circ}$ [42]. They consist of a highly reflective multilayer substrate of alternating layers of silicon and molybdenum and an absorber layer on top [43-45]. Compound materials such as TaBN, Ni₃Al [1], RuTa [4], PtMo, or TaTeN [2,3] are currently at the focus of interest for novel absorber materials. Photomasks create a pattern at the wafer based on different physical principles: if most parts of the incoming radiation are absorbed, it is called a 'binary mask'. When phase shifting and successive destructive interference of the reflected radiation play a major role, it is called a 'phase shifting mask' [8]. Figure 5 presents the data of Table 1 as an aerial map to visualize the location of the different materials. In current designs, both effects are being balanced to achieve the best resolution, leading to combinations such as 'binary masks with phase shift' and 'attenuated phase shifting masks'. The areas of interest for such mask materials are marked in the presentation of the optical constants in Fig. 5 through shaded regions. For a binary mask, a high value of the extinction coefficient β is required, while for a hard phase shifting mask, a high value of the dispersion coefficient δ is required, which roughly divides the range of available materials along the line of $\delta = \beta$. Currently, materials with a high dispersion coefficient δ yield the best performance, which means that their real part n of the refractive index is substantially smaller than 1; hence these materials are called low-n [9]. Depending on the precise requirements, different materials or material combinations can be chosen. We find that it is possible to tune the material's properties of a thin film by variation of the alloy's constituents to some extent and position it in between the extreme points, marked by the pure metals. A good example is the system of ruthenium and tantalum, who provide great adjustability of predominantly the dispersion. Platinum and molybdenum, on the other hand, have very similar dispersion values but greatly different extinction coefficients, which allows alloys of the two to be used as an attenuation-adjustable phase shifting material. Nickel-aluminum alloys lie purely within the region of binary masks, but they do not form a completely straight line. This can be understood from the complex shape of the dispersion and extinction curves in Fig. 3(b), which show that both materials contribute greatly to the spectral distribution of their alloys. For platinum, tellurium, and platinum telluride, the case is slightly different, because their crystal structures are all different [31], which means that the density does not follow a straight line on the (δ, β) plane. Apart from their optical properties at 13.5 nm, for non-monochromatic applications the spectral shape is also relevant. The full, spectrally resolved data of all materials measured are reported in Appendix A and in Fig. 3, whereas the chromatic dispersion $\frac{d\tilde{n}}{d\lambda}$ at 13.5 nm wavelength is given in Table 1 as a first order approximation for moderately broadband applications. For the application in EUV lithography masks, other aspects than the optical properties of the materials are equally important for success. Central properties are the ability to deposit and etch the materials, and their stability and resistance against oxidation [8].

6. SUMMARY

We presented optical constants of various pure materials, alloys, and compound materials, measured on thin films in the EUV spectral region. Our results help to give a deeper understanding of the optical properties of materials that are relevant for EUV lithography applications, especially alloys such as $Ru_x Ta_x$ and compound materials such as TaTeN. The determination of optical constants was accomplished through a model fit of reflection data over a systematically varying angle of incidence and the photon energy. Using the matrix transfer method to model the reflectance data and modern global optimization schemes, this approach proved to work stably and reliably for a broad set of sample materials. Our results extend the existing literature around the photon energy of 91.85 eV for a variety of materials.

APPENDIX A: DATA TABLES

Complete list of the retrieved optical constants (δ , β) from thin film samples. Wavelengths λ represent the order of measurements; photon energies $h\nu$ are given for reference.

A. Mo

λ/nm	hv/eV	δ	β
10.00	124.00	0.0326	0.0042
10.20	121.57	0.0342	0.0043
10.40	119.23	0.0360	0.0044
10.60	116.98	0.0377	0.0044
10.80	114.81	0.0395	0.0044
11.00	112.73	0.0415	0.0045
11.20	110.71	0.0435	0.0046
11.40	108.77	0.0455	0.0047
11.60	106.90	0.0476	0.0048
11.80	105.08	0.0499	0.0048
12.00	103.33	0.0522	0.0048
12.20	101.64	0.0546	0.0050
12.40	100.00	0.0571	0.0052
12.60	98.41	0.0597	0.0053
12.80	96.88	0.0625	0.0055
13.00	95.38	0.0653	0.0057
13.20	93.94	0.0682	0.0060
13.40	92.54	0.0713	0.0064
13.60	91.18	0.0744	0.0067
13.80	89.86	0.0776	0.0072
14.00	88.57	0.0809	0.0078
14.20	87.32	0.0844	0.0082
14.40	86.11	0.0879	0.0089
14.60	84.93	0.0917	0.0095
14.80	83.78	0.0957	0.0103
15.00	82.67	0.0998	0.0113
15.20	81.58	0.1041	0.0124
15.40	80.52	0.1085	0.0138
15.60	79.49	0.1130	0.0154
15.80	78.48	0.1175	0.0172
16.00	77.50	0.1221	0.0193
16.20	76.54	0.1267	0.0216
16.40	75.61	0.1313	0.0240

Research Article

Vol. 61, No. 8 / 10 March 2022 / Applied Optics 2067

λ/nm	hv/eV	δ	β	λ/nm	hv/eV	δ	β
16.60	74.70	0.1359	0.0265	17.10	72.51	0.1299	0.0900
16.80	73.81	0.1406	0.0292	17.20	72.09	0.1274	0.0897
17.00	72.94	0.1454	0.0321	17.30	71.68	0.1260	0.0840
17.20	72.09	0.1503	0.0351	17.40	71.26	0.1335	0.0834
17.40	71.26	0.1551	0.0383	17.50	70.86	0.1384	0.0877
17.60	70.45	0.1602	0.0422	17.60	70.45	0.1407	0.0914
17.80	69.66	0.1653	0.0462	17.70	70.06	0.1416	0.0942
18.00	68.89	0.1703	0.0510	17.80	69.66	0.1425	0.0959
18.20	68.13	0.1752	0.0560	17.90	69.27	0.1431	0.0982
18.40	67.39	0.1800	0.0616	18.00	68.89	0.1435	0.0996
18.60	66.67	0.1843	0.0672	18.20	68.13	0.1454	0.1026
18.80	65.96	0.1885	0.0731	18.50	67.03	0.1492	0.1052
19.00	65.26	0.1925	0.0792	18.80	65.96	0.1536	0.1097
19.20	64.58	0.1976	0.0853	19.00	65.26	0.1578	0.1142
19.40	63.92	0.2000	0.0912	19.20	64.58	0.1614	0.1205
19.60	63.27	0.2044	0.0977	19.50	63.59	0.1650	0.1260
19.80	62.63	0.2076	0.1037	19.80	62.63	0.1682	0.1313
B. PtMo				C. Pt ₂ Mo			
λ/nm	b ν/eV	δ	β	λ/nm	<i>bv</i> /eV	δ	β
10.00	124.00	0.0420	0.0100	10.00	124.00	0.0443	0.0115
10.20	121.57	0.0450	0.0106	10.20	121.57	0.0477	0.0122
10.50	118.10	0.0482	0.0113	10.50	118.10	0.0513	0.0131
10.80	114.81	0.0516	0.0122	10.80	114.81	0.0550	0.0142
11.00	112.73	0.0551	0.0134	11.00	112.73	0.0589	0.0156
11.20	110.71	0.0588	0.0148	11.20	110.71	0.0628	0.0173
11.50	107.83	0.0624	0.0164	11.50	107.83	0.0667	0.0192
11.80	105.08	0.0659	0.0181	11.80	105.08	0.0705	0.0214
12.00	103.33	0.0694	0.0199	12.00	103.33	0.0743	0.0237
12.20	101.64	0.0729	0.0220	12.20	101.64	0.0780	0.0261
12.50	99.20	0.0765	0.0238	12.50	99.20	0.0816	0.0285
12.80	96.88	0.0804	0.0259	12.80	96.88	0.0858	0.0310
13.00	95.38	0.0843	0.0283	13.00	95.38	0.0898	0.0340
13.20	93.94	0.0884	0.0312	13.20	93.94	0.0940	0.0375
13.50	91.85	0.0922	0.0344	13.50	91.85	0.0976	0.0416
13.80	89.86	0.0956	0.0378	13.80	89.86	0.1007	0.0457
14.00	88.57	0.0988	0.0410	14.00	88.57	0.1036	0.0496
14.20	87.32	0.1017	0.0442	14.20	87.32	0.1061	0.0532
14.50	85.52	0.1048	0.0470	14.50	85.52	0.1088	0.0567
14.80	83.78	0.1082	0.0504	14.80	83.78	0.1116	0.0605
15.00	82.67	0.1116	0.0536	15.00	82.67	0.1145	0.0644
15.20	81.58	0.1151	0.0570	15.20	81.58	0.1176	0.0682
15.50	80.00	0.1188	0.0610	15.50	80.00	0.1206	0.0727
15.60	79.49	0.1202	0.0625	15.60	79.49	0.1219	0.0746
15.70	78.98	0.1218	0.0644	15.70	78.98	0.1230	0.0765
15.80	78.48	0.1233	0.0665	15.80	78.48	0.1243	0.0786
15.90	77.99	0.1248	0.0689	15.90	77.99	0.1254	0.0810
16.00	77.50	0.1258	0.0715	16.00	77.50	0.1264	0.0838
16.10	77.02	0.1263	0.0741	16.10	77.02	0.1267	0.0867
16.20	76.54	0.1264	0.0762	16.20	76.54	0.1262	0.0894
16.30	76.07	0.1263	0.0778	16.30	76.07	0.1254	0.0918
16.40	75.61	0.1258	0.0788	16.40	75.61	0.1240	0.0933
16.50	75.15	0.1252	0.0776	16.50	75.15	0.1222	0.0926
16.60	74.70	0.1291	0.0775	16.60	74.70	0.1251	0.0904
16.70	74.25	0.1323	0.0817	16.70	74.25	0.1293	0.0940
16.80	73.81	0.1328	0.0856	16.80	73.81	0.1302	0.0982
16.90	73.37	0.1323	0.0879	16.90	73.37	0.1292	0.1022
17.00	72.94	0.1313	0.0892	17.00	72.94	0.1270	0.1045

(Table continued)

17.10 72.51 0.1243 0.1058 13.80 99.86 0.1116 0.0664 17.20 72.69 0.1204 0.1058 13.90 89.21 0.1125 0.0125 17.40 71.26 0.1246 0.0944 14.10 87.94 0.1136 0.0723 17.50 70.86 0.1313 0.0983 14.20 87.32 0.1142 0.0760 17.70 70.06 0.1347 0.1034 14.40 86.11 0.0179 0.0801 17.80 69.66 0.1348 0.1081 14.40 84.39 0.1179 0.0801 17.80 69.66 0.1348 0.1081 14.40 84.35 0.1180 0.0842 18.00 65.95 0.1428 0.1201 15.00 82.27 0.1390 0.0842 18.20 64.58 0.1590 0.1365 15.30 81.85 0.1217 0.0996 19.00 62.63 0.1574 0.1429 15.50 81.95 0.1217	λ/nm	hv/eV	δ	β	λ/nm	bv/eV	δ	β
17.20 72.00 72.04 0.1030 13.90 89.21 0.1123 0.0679 17.40 71.64 0.1040 0.1001 14.00 88.57 0.1131 0.0793 17.50 70.86 0.1333 0.0244 14.30 86.71 0.1159 0.0781 17.70 70.66 0.1343 0.1058 14.40 86.11 0.1159 0.0781 17.80 69.66 0.1348 0.1064 14.50 85.52 0.1167 0.0892 18.00 68.13 0.1350 0.1143 14.60 84.93 0.1180 0.0842 18.00 65.36 0.1399 0.1162 14.80 83.78 0.1187 0.0862 18.00 65.36 0.1399 0.1162 14.80 83.78 0.1187 0.0862 19.00 65.26 0.1475 0.1205 15.10 82.12 0.120 0.094 19.20 64.58 0.1599 0.1301 15.20 81.55 0.1217 0.0952 19.30 62.26 0.1475 0.1245 15.10	17.10	72.51	0.1243	0.1058	13.80	89.86	0.1116	0.0654
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	17.20	72.09	0.1204	0.1058	13.90	89.21	0.1125	0.0679
17.40 71.26 0.1246 0.0944 14.10 87.94 0.1136 0.0723 17.50 70.86 0.1333 0.0983 14.20 87.32 0.1142 0.0741 17.70 70.66 0.1347 0.1058 14.40 86.11 0.1159 0.0781 17.80 69.66 0.1348 0.1081 14.50 85.52 0.1173 0.0892 18.00 68.89 0.1350 0.1118 14.70 84.35 0.1180 0.0892 18.00 65.96 0.1425 0.1162 14.90 83.22 0.1195 0.0882 19.20 65.26 0.1475 0.1245 15.10 82.12 0.1204 0.0994 19.20 65.26 0.1377 0.1365 15.30 81.05 0.1217 0.0952 19.20 64.58 0.1579 0.1361 15.30 80.00 0.1238 0.096 19.20 64.54 0.1573 0.1565 15.30 81.05 0.1217 0.0995 19.20 12.57 0.0552 0.0161 15.40 <t< td=""><td>17.30</td><td>71.68</td><td>0.1170</td><td>0.1001</td><td>14.00</td><td>88.57</td><td>0.1131</td><td>0.0703</td></t<>	17.30	71.68	0.1170	0.1001	14.00	88.57	0.1131	0.0703
17.50 70.86 0.1313 0.0983 14.20 87.32 0.1142 0.0761 17.60 70.45 0.1334 0.1024 14.30 86.71 0.1150 0.0760 17.70 70.06 0.1347 0.1088 14.40 86.11 0.1159 0.0780 17.90 69.27 0.1344 0.1104 14.60 84.93 0.1173 0.0881 18.00 68.89 0.1359 0.1143 14.80 83.78 0.1187 0.0883 18.50 67.03 0.1399 0.1142 14.80 83.78 0.1197 0.0883 18.80 65.96 0.1475 0.1265 15.10 82.12 0.1200 0.0994 19.20 64.58 0.1571 0.1365 15.30 81.05 0.1217 0.09950 19.20 64.58 0.1574 0.1429 15.50 80.00 0.1248 0.09976 19.20 64.58 0.1574 0.1448 15.90 77.99 0.1266	17.40	71.26	0.1246	0.0944	14.10	87.94	0.1136	0.0723
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	17.50	70.86	0.1313	0.0983	14.20	87.32	0.1142	0.0741
17.70 70.06 0.1347 0.1058 14.40 86.11 0.1159 0.0781 17.80 69.27 0.1344 0.10164 14.60 84.93 0.1173 0.0822 18.00 68.89 0.1350 0.1118 14.70 84.35 0.1180 0.0822 18.20 68.13 0.1359 0.1143 14.80 83.78 0.1180 0.0862 18.50 67.03 0.1399 0.1162 14.90 83.22 0.1190 0.0994 19.00 65.26 0.1475 0.1245 15.10 82.12 0.1200 0.0994 19.20 64.58 0.1509 0.1301 15.20 81.58 0.1210 0.0992 19.20 62.63 0.1574 0.1429 15.40 80.02 0.1238 0.0996 19.20 62.63 0.1574 0.1429 15.40 80.02 0.1226 0.1094 10.00 124.00 0.4900 0.144 15.80 7.848 0.1226 0.1094 10.20 121.57 0.6525 0.0166 16.10	17.60	70.45	0.1339	0.1024	14.30	86.71	0.1150	0.0760
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	17.70	70.06	0.1347	0.1058	14.40	86.11	0.1159	0.0781
17.90 69.27 0.1344 0.1104 14.60 84.93 0.1173 0.08822 18.20 68.13 0.1359 0.11143 14.80 83.78 0.1187 0.08862 18.50 67.03 0.1399 0.1162 14.90 83.22 0.1195 0.08862 19.00 65.26 0.1475 0.1245 15.10 82.12 0.1204 0.0994 19.20 64.58 0.1597 0.1365 15.30 81.05 0.1217 0.0995 19.80 62.65 0.1577 0.1425 15.50 80.00 0.1238 0.0996 19.80 62.65 0.1574 0.1429 15.60 79.49 0.1248 0.1019 10.00 124.00 0.4969 0.0144 15.80 78.98 0.1266 0.1049 10.20 121.57 0.0552 0.0161 16.20 76.54 0.1284 0.1102 10.30 120.39 0.0555 0.0161 16.20 76.54 0.1284 0.1170 10.50 118.10 0.0628 0.0136 16.60	17.80	69.66	0.1348	0.1081	14.50	85.52	0.1167	0.0801
18.00 68.89 0.1350 0.1118 14.70 84.35 0.1180 0.0842 18.20 67.03 0.1399 0.1162 14.90 83.22 0.1195 0.0883 18.80 65.56 0.1427 0.1245 15.10 82.12 0.1204 0.0904 19.00 65.26 0.1537 0.1365 15.30 81.05 0.1217 0.0959 19.20 63.59 0.1537 0.1365 15.30 81.05 0.1217 0.0959 19.80 62.63 0.1574 0.1429 15.60 79.49 0.1228 0.0996 10.10 124.00 0.0490 0.0144 15.80 78.48 0.1012 0.1069 10.20 12.157 0.0552 0.0143 15.80 77.99 0.1226 0.1049 10.50 118.10 0.6753 0.0161 16.20 76.54 0.1284 0.1170 10.50 118.10 0.6753 0.0161 16.20 76.54 0.1284 0.1245 10.50 118.10 0.6667 0.0172 16.40	17.90	69.27	0.1344	0.1104	14.60	84.93	0.1173	0.0822
18.20 68.13 0.1359 0.1143 14.80 83.78 0.1187 0.0862 18.50 67.03 0.1359 0.1142 15.00 82.67 0.1200 0.0904 19.00 65.26 0.1477 0.1245 15.10 82.12 0.1200 0.0904 19.20 64.58 0.1507 0.1301 15.20 81.68 0.1217 0.0959 19.30 62.63 0.1577 0.1423 15.40 80.52 0.1228 0.09976 D.P.	18.00	68.89	0.1350	0.1118	14.70	84.35	0.1180	0.0842
18.50 67.03 0.1399 0.1162 14.90 88.22 0.1195 0.0883 19.00 65.26 0.1475 0.1245 15.10 82.12 0.1204 0.0994 19.20 65.38 0.1597 0.1365 15.30 81.58 0.1210 0.09942 19.20 63.59 0.1537 0.1365 15.30 81.05 0.1217 0.0959 19.80 62.63 0.1574 0.1429 15.40 80.02 0.1228 0.0996 19.80 62.64 0.1574 0.1429 15.60 77.49 0.1266 0.1043 10.10 122.77 0.0506 0.0144 15.80 78.48 0.1262 0.1064 10.20 121.57 0.0522 0.0152 16.00 77.59 0.1266 0.1142 10.40 119.23 0.0555 0.0161 16.20 76.54 0.1284 0.0170 10.50 118.10 0.0573 0.0166 16.30 76.07 0.1286 0.1245 10.70 115.89 0.0699 0.0172 16.40	18.20	68.13	0.1359	0.1143	14.80	83.78	0.1187	0.0862
18.80 65.96 0.1428 0.1201 15.00 82.67 0.1200 0.0904 19.20 64.58 0.1597 0.1365 15.30 81.58 0.1210 0.0924 19.50 63.59 0.1537 0.1365 15.30 81.05 0.1216 0.0994 19.80 62.63 0.1574 0.1422 15.40 80.52 0.1226 0.0996 D.P.t	18.50	67.03	0.1399	0.1162	14.90	83.22	0.1195	0.0883
19.00 65.26 0.1475 0.1245 15.10 82.12 0.1204 0.0994 19.50 63.59 0.1537 0.1365 15.30 81.05 0.1217 0.0995 0.50 62.63 0.1574 0.1429 15.40 80.52 0.1226 0.0976 D.P 15.50 80.00 0.1238 0.0996 10.00 124.40 0.0490 0.0144 15.80 77.898 0.1262 0.1084 10.10 122.77 0.0502 0.0152 16.00 77.99 0.1269 0.1094 10.20 121.57 0.0522 0.0152 16.00 77.02 0.1276 0.1142 10.40 119.23 0.0555 0.0161 16.20 76.54 0.1286 0.1265 10.60 116.80 0.0573 0.0166 16.30 76.67 0.1286 0.1245 10.70 115.89 0.0609 0.0178 16.50 75.15 0.1286 0.1245 1	18.80	65.96	0.1428	0.1201	15.00	82.67	0.1200	0.0904
19.20 64.58 0.1509 0.1301 15.20 81.58 0.1217 0.0959 19.80 62.63 0.1574 0.1429 15.40 80.52 0.1226 0.0976 D, P. 15.60 79.49 0.1248 0.0996 Mam bv/eV 3 β 15.70 78.98 0.1262 0.0164 10.00 124.00 0.0490 0.0144 15.80 77.99 0.1270 0.1069 10.10 122.77 0.0562 0.0156 16.10 77.02 0.1276 0.1120 10.30 120.39 0.0338 0.0156 16.10 77.62 0.1284 0.1172 10.40 119.23 0.0555 0.0161 16.20 76.54 0.1286 0.1206 10.60 116.98 0.0591 0.0172 16.40 75.15 0.1267 0.1286 10.70 115.89 0.0669 0.0172 16.50 75.15 0.1267 0.1288 10.70 115.73 0.0666 0.0204 16.80 73.81 0.1262 0.1236	19.00	65.26	0.1475	0.1245	15.10	82.12	0.1204	0.0924
19:50 63.59 0.1537 0.1365 15.30 81.05 0.1226 0.0976 D.P. 15:60 80.52 0.1226 0.0976 Mm bv/eV δ β 15.60 80.52 0.1238 0.0996 10.00 124.00 0.0490 0.0144 15.80 78.48 0.1256 0.1043 10.10 122.77 0.0506 0.0144 15.80 77.99 0.1262 0.1094 10.20 121.57 0.0522 0.0152 16.00 77.59 0.1266 0.1142 10.40 112.23 0.0555 0.0161 16.20 76.54 0.1284 0.1170 10.50 118.10 0.0573 0.0166 16.30 76.51 0.1283 0.1245 10.90 113.76 0.0669 0.0178 16.50 74.15 0.1281 0.1226 0.1245 10.90 113.76 0.0664 0.0224 17.00 74.25 0.1162 0.1236 $11.$	19.20	64.58	0.1509	0.1301	15.20	81.58	0.1210	0.0942
19.80 62.63 0.1574 0.1429 15.40 80.22 0.1236 0.0996 D. P. 15.50 80.00 0.1238 0.0996 Mm bv/cV 8 β 15.50 80.00 0.1238 0.0996 10.10 122.77 0.0506 0.0144 15.80 78.48 0.1262 0.1069 10.20 121.57 0.0522 0.0156 16.10 77.59 0.1270 0.1120 10.30 120.39 0.0538 0.0161 16.20 76.54 0.1286 0.1142 10.40 119.23 0.0573 0.0166 16.30 76.07 0.1286 0.1266 10.60 116.88 0.0591 0.0172 16.40 75.15 0.1267 0.1288 10.90 11.376 0.0667 0.0186 16.60 74.70 0.1262 0.1349 11.00 11.71 0.0668 0.0214 15.70 73.43 0.1255 0.1306 11.10 111.71<	19.50	63.59	0.1537	0.1365	15.30	81.05	0.1217	0.0959
D. Pt 15.50 80.00 0.1238 0.0995 λm $b/v V$ δ β 15.50 79.49 0.1248 0.0101 10.00 124.00 0.0490 0.0144 15.80 78.48 0.1262 0.1069 10.20 121.57 0.0506 0.0144 15.80 78.98 0.1269 0.1084 10.30 120.39 0.0538 0.0152 16.10 77.59 0.1276 0.1142 10.40 119.23 0.0555 0.0161 16.20 76.54 0.1286 0.1281 10.50 11.810 0.0573 0.0172 16.40 75.61 0.1283 0.1245 10.70 11.589 0.0609 0.0178 16.50 75.15 0.1267 0.1281 10.80 11.41 0.0628 0.0186 16.60 74.70 0.1209 0.1328 11.90 11.77 0.0664 0.0214 16.59 73.37 0.1265 0.1302 11.10 <t< td=""><td>19.80</td><td>62.63</td><td>0.1574</td><td>0.1429</td><td>15.40</td><td>80.52</td><td>0.1226</td><td>0.0976</td></t<>	19.80	62.63	0.1574	0.1429	15.40	80.52	0.1226	0.0976
Aram bv/eV δ β 15.607.90.12480.101910.00124.000.04900.014415.8078.980.12560.104310.10122.770.05060.014815.9077.990.12690.109410.20121.570.05220.015216.0077.500.12700.112010.30120.390.05380.015616.1077.020.12760.114210.40119.230.05550.016116.2076.540.12860.120610.50118.100.05730.016616.3076.070.12860.120610.60116.980.05910.017216.4075.610.12830.124510.70115.890.66090.017816.5075.150.12620.123611.00112.730.06660.024416.8073.810.12520.122511.10111.710.06860.021416.9073.370.12650.139211.30109.730.07210.023517.1072.510.12500.139211.40106.770.0390.024717.2072.090.12260.134411.60106.900.07750.022517.3071.680.09770.119411.70105.980.07900.030017.6070.450.11790.123011.90104.200.08330.030117.7070.060.12260.133911.00105.08 </td <td>D. Pt</td> <td></td> <td></td> <td></td> <td>15.50</td> <td>80.00</td> <td>0.1238</td> <td>0.0996</td>	D. Pt				15.50	80.00	0.1238	0.0996
Δ/nm b/vev δ β 15.70 78.98 0.1256 0.1043 10.00 124.00 0.0490 0.0144 15.80 78.48 0.1262 0.1094 10.10 122.77 0.0506 0.0148 15.90 77.99 0.1269 0.1094 10.30 120.39 0.0538 0.0156 16.10 77.02 0.1270 0.1120 10.40 119.23 0.0555 0.0161 16.20 76.54 0.1286 0.1206 10.60 116.98 0.0591 0.0172 16.40 75.61 0.1286 0.1206 10.60 114.81 0.0628 0.0186 16.60 74.70 0.1207 0.1328 10.90 113.76 0.0666 0.0204 16.80 73.31 0.1252 0.1225 0.1328 11.00 112.73 0.0666 0.0244 17.00 72.94 0.1262 0.1349 11.30 109.73 0.0224 17.00 72.51 0.1260 <		1 / 11	0		15.60	79.49	0.1248	0.1019
10.00 124.00 0.0490 0.0144 15.80 77.99 0.1262 0.1094 10.10 122.77 0.0506 0.0148 15.90 77.99 0.1269 0.1094 10.20 121.57 0.0522 0.0152 16.00 77.50 0.1270 0.1120 10.30 120.39 0.0538 0.0166 16.10 77.02 0.1286 0.1266 10.60 116.98 0.0573 0.0166 16.30 76.07 0.1286 0.1266 10.60 116.98 0.0591 0.0172 16.40 75.61 0.1283 0.1245 10.70 115.89 0.0609 0.0178 16.50 74.17 0.1267 0.1286 10.80 114.81 0.0628 0.0184 16.60 74.27 0.11252 0.1252 11.00 112.73 0.0666 0.0244 16.80 73.81 0.1252 0.1324 11.20 110.71 0.0733 0.0224 17.00 72.94 0.1262 0.1349 11.30 109.73 0.0771 0.0235 17.10<	λ/nm	<i>b</i> v/eV	δ	β	15.70	78.98	0.1256	0.1043
10.10 122.77 0.0506 0.0148 15.90 77.99 0.1269 0.1094 10.20 121.57 0.0522 0.0152 16.00 77.50 0.11270 0.1120 10.30 120.39 0.0538 0.0156 16.10 77.02 0.1276 0.1142 10.40 119.23 0.0573 0.0166 16.30 76.07 0.1286 0.1206 10.60 116.98 0.0591 0.0172 16.40 75.61 0.1283 0.1245 10.70 115.89 0.0669 0.0178 16.50 73.15 0.1267 0.1288 10.90 113.76 0.0647 0.0194 16.70 74.25 0.1162 0.1328 11.00 112.73 0.0666 0.0204 16.80 73.81 0.1252 0.1251 11.10 111.71 0.0684 0.0214 16.90 73.37 0.1262 0.1342 11.30 109.73 0.0721 0.0235 17.10 72.51 0.1250 0.1392 11.40 108.77 0.0739 0.0247 17.20<	10.00	124.00	0.0490	0.0144	15.80	78.48	0.1262	0.1069
10.20 121.57 0.0522 0.0152 16.00 77.50 0.1270 0.1120 10.30 120.39 0.0538 0.0156 16.10 77.02 0.1276 0.1142 10.40 119.23 0.0555 0.0161 16.20 76.54 0.1286 0.1286 10.60 116.98 0.0591 0.0172 16.40 75.61 0.1283 0.1245 10.70 115.89 0.0609 0.0178 16.50 75.15 0.1267 0.1286 10.80 114.81 0.0628 0.0186 16.60 74.47 0.1229 0.1328 10.90 112.73 0.0666 0.0204 16.80 73.81 0.1252 0.1255 11.10 111.71 0.0664 0.0214 16.90 73.37 0.1265 0.1364 11.30 109.73 0.0721 0.0235 17.10 72.51 0.1250 0.1324 11.50 107.83 0.0757 0.0272 17.40 71.26 0.0999 0.1560 11.50 106.59 0.0775 0.0272 17.40 </td <td>10.10</td> <td>122.77</td> <td>0.0506</td> <td>0.0148</td> <td>15.90</td> <td>77.99</td> <td>0.1269</td> <td>0.1094</td>	10.10	122.77	0.0506	0.0148	15.90	77.99	0.1269	0.1094
10.30 120.39 0.0538 0.0156 16.10 77.02 0.1276 0.1142 10.40 119.23 0.0555 0.0161 16.20 76.54 0.1284 0.1170 10.50 118.10 0.0573 0.0166 16.30 76.07 0.1286 0.1206 10.60 116.58 0.0591 0.0172 16.40 75.61 0.1283 0.1245 10.70 115.89 0.0609 0.0178 16.50 75.15 0.1267 0.1288 10.80 114.81 0.0628 0.0186 16.60 74.70 0.1209 0.1328 10.90 113.76 0.0647 0.0194 16.70 74.25 0.1162 0.1328 11.00 111.71 0.0666 0.0244 16.90 73.37 0.1250 0.1392 11.40 116.71 0.0739 0.0247 17.20 72.09 0.1225 0.1440 11.50 107.83 0.0757 0.0259 17.30 71.68 0.1164 <td>10.20</td> <td>121.57</td> <td>0.0522</td> <td>0.0152</td> <td>16.00</td> <td>77.50</td> <td>0.1270</td> <td>0.1120</td>	10.20	121.57	0.0522	0.0152	16.00	77.50	0.1270	0.1120
10.40 119.23 0.0555 0.0161 16.20 76.54 0.1284 0.1170 10.50 118.10 0.0573 0.0166 16.30 76.07 0.1286 0.1206 10.60 116.98 0.0591 0.0172 16.40 75.61 0.1283 0.1245 10.70 115.89 0.0602 0.0178 16.50 75.15 0.1267 0.1288 10.80 114.81 0.0628 0.0186 16.60 74.70 0.1209 0.1328 10.90 113.76 0.0647 0.0194 16.80 73.81 0.1252 0.1365 11.10 111.71 0.0684 0.0214 16.90 73.37 0.1262 0.1392 11.30 109.73 0.0721 0.0235 17.10 72.51 0.1252 0.1440 11.50 107.83 0.0757 0.0227 17.40 71.26 0.0999 0.1506 11.70 105.98 0.0792 0.0285 17.50 70.86 0.0977 <td>10.30</td> <td>120.39</td> <td>0.0538</td> <td>0.0156</td> <td>16.10</td> <td>77.02</td> <td>0.1276</td> <td>0.1142</td>	10.30	120.39	0.0538	0.0156	16.10	77.02	0.1276	0.1142
10,50 118,10 0.0573 0.0166 16.30 76.07 0.1286 0.1206 10,60 116,98 0.0591 0.0172 16.40 75.61 0.1283 0.1245 10,70 115,89 0.0609 0.0178 16.50 75.15 0.1267 0.1283 0.1245 10,80 114,81 0.0628 0.0186 16.60 74.70 0.1209 0.1328 10,90 112,73 0.0666 0.0204 16.80 73.81 0.1252 0.1306 11,20 110,71 0.0703 0.0224 17.00 72.94 0.1265 0.1392 11,30 109,73 0.0721 0.0255 17.10 72.51 0.1250 0.1440 11,50 107.83 0.0757 0.0259 17.30 71.68 0.1164 0.1498 11,60 106,90 0.0775 0.0272 17.40 71.26 0.0999 0.1205 11,60 106,90 0.0824 0.0355 17.50 70.86 0.0977 0.1194 11,70 105.98 0.0792 0.0285<	10.40	119.23	0.0555	0.0161	16.20	76.54	0.1284	0.1170
10.60 116.98 0.0591 0.0172 16.40 75.61 0.1283 0.1245 10.70 115.89 0.0609 0.0178 16.50 75.15 0.1267 0.1288 10.80 114.81 0.0628 0.0186 16.60 74.70 0.1209 0.1328 10.90 113.76 0.0666 0.0204 16.80 73.81 0.1252 0.1255 11.10 111.71 0.0666 0.0214 16.90 73.37 0.1265 0.1306 11.20 110.71 0.0703 0.0224 17.10 72.94 0.1222 0.1439 11.30 109.73 0.0721 0.0235 17.10 72.51 0.1260 0.1392 11.40 108.77 0.0739 0.0247 17.20 72.09 0.1225 0.1440 11.50 107.83 0.0775 0.0272 17.40 71.68 0.1164 0.1498 11.70 105.98 0.0792 0.0285 17.50 70.86 0.0997 0.1194 11.80 106.40 0.8834 0.0315 17.70 </td <td>10.50</td> <td>118.10</td> <td>0.0573</td> <td>0.0166</td> <td>16.30</td> <td>76.07</td> <td>0.1286</td> <td>0.1206</td>	10.50	118.10	0.0573	0.0166	16.30	76.07	0.1286	0.1206
10.70 115.89 0.0609 0.0178 16.50 75.15 0.1267 0.1288 10.80 114.81 0.0628 0.0186 16.60 74.70 0.1209 0.1328 10.90 113.76 0.0647 0.0194 16.70 74.25 0.1162 0.1222 0.1251 11.00 112.73 0.0666 0.0204 16.80 73.81 0.1252 0.1255 11.10 111.71 0.0684 0.0214 16.90 73.37 0.1265 0.1306 11.30 109.73 0.0721 0.0235 17.10 72.94 0.1250 0.1392 11.40 108.77 0.0739 0.0247 17.20 72.09 0.1255 0.1440 11.50 107.83 0.0757 0.0272 17.40 71.68 0.164 0.1498 11.60 106.90 0.0775 0.0272 17.40 71.26 0.0999 0.1506 11.70 105.88 0.0899 0.0300 17.60 70.45 0.1179 0.1235 11.90 104.20 0.0824 0.0315 </td <td>10.60</td> <td>116.98</td> <td>0.0591</td> <td>0.0172</td> <td>16.40</td> <td>75.61</td> <td>0.1283</td> <td>0.1245</td>	10.60	116.98	0.0591	0.0172	16.40	75.61	0.1283	0.1245
10.80 114.81 0.0628 0.0186 16.60 74.70 0.1209 0.1328 10.90 113.76 0.0647 0.0194 16.70 74.25 0.1162 0.1236 11.00 112.73 0.0664 0.0204 16.80 73.37 0.1265 0.1361 11.10 111.71 0.0684 0.0214 16.90 73.37 0.1262 0.1392 11.30 109.73 0.0721 0.0235 17.10 72.51 0.1250 0.1392 11.40 108.77 0.0739 0.0247 17.20 72.09 0.1225 0.1440 11.50 107.83 0.0775 0.0225 17.50 70.86 0.0999 0.1506 11.70 105.98 0.0792 0.0225 17.50 70.86 0.0977 0.1194 11.80 105.08 0.0809 0.300 17.60 70.45 0.1179 0.1230 11.70 104.20 0.0824 0.0315 17.80 69.66 0.1240 0.1339 12.00 103.33 0.0883 0.0370 E.Ptre	10.70	115.89	0.0609	0.0178	16.50	75.15	0.1267	0.1288
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	10.80	114.81	0.0628	0.0186	16.60	74.70	0.1209	0.1328
11.00 112.73 0.0666 0.0204 16.80 73.81 0.1252 0.1255 11.10 111.71 0.0684 0.0214 16.90 73.37 0.1265 0.1306 11.20 110.71 0.0703 0.0224 17.00 72.94 0.1262 0.1349 11.30 109.73 0.0721 0.0235 17.10 72.51 0.1250 0.1392 11.40 108.77 0.0739 0.0247 17.20 72.09 0.1225 0.1440 11.50 107.83 0.0757 0.0259 17.30 71.68 0.1164 0.1498 11.60 106.90 0.0775 0.0252 17.40 71.26 0.0999 0.1506 11.70 105.98 0.0792 0.0285 17.50 70.86 0.0977 0.1194 11.80 105.08 0.0809 0.0300 17.60 70.45 0.1179 0.1230 12.00 103.33 0.0838 0.0329 17.80 69.27 0.1249 0.1370 12.30 10.64 0.0869 0.0355 18.00 <td>10.90</td> <td>113.76</td> <td>0.0647</td> <td>0.0194</td> <td>16.70</td> <td>74.25</td> <td>0.1162</td> <td>0.1236</td>	10.90	113.76	0.0647	0.0194	16.70	74.25	0.1162	0.1236
11.10 111.71 0.0684 0.0214 16.90 73.37 0.1265 0.1306 11.20 110.71 0.0703 0.0224 17.00 72.94 0.1262 0.1349 11.30 109.73 0.0721 0.0235 17.10 72.91 0.1250 0.1392 11.40 108.77 0.0739 0.0247 17.20 72.09 0.1225 0.1440 11.50 107.83 0.0757 0.0259 17.30 71.68 0.1164 0.1498 11.60 106.90 0.0775 0.0225 17.50 70.86 0.0997 0.1194 11.80 105.08 0.0809 0.0300 17.60 70.45 0.1179 0.1230 11.90 104.20 0.0824 0.0315 17.70 70.06 0.1246 0.1339 12.10 102.48 0.0853 0.0341 17.90 69.27 0.1249 0.1370 12.20 101.64 0.0869 0.355 18.00 68.89 0.1259 0.1396 12.50 99.20 0.0914 0.0394 V	11.00	112.73	0.0666	0.0204	16.80	73.81	0.1252	0.1255
11.20110.710.07030.022417.0072.940.12620.134911.30109.730.07210.023517.1072.510.12500.139211.40108.770.07390.024717.2072.990.12250.144011.50107.830.07570.025917.3071.680.11640.149811.60106.900.07750.027217.4071.260.09990.150611.70105.980.07920.028517.5070.860.09770.119411.80105.080.08090.030017.6070.450.11790.123011.90104.200.08240.031517.7070.060.12260.129512.00103.330.08380.032917.8069.660.12400.133912.10102.480.08530.034117.9069.270.12490.137012.20101.640.08690.035518.0068.890.12590.139612.30100.810.08830.0370 E.PrTe1 12.4010.000.04610.015312.7097.640.09520.042210.10122.770.04730.016512.8096.880.07700.043910.20121.570.04870.017712.9096.120.09880.045710.30120.390.05150.019513.0095.380.10050.047610.40119.230.05150.0195 </td <td>11.10</td> <td>111.71</td> <td>0.0684</td> <td>0.0214</td> <td>16.90</td> <td>73.37</td> <td>0.1265</td> <td>0.1306</td>	11.10	111.71	0.0684	0.0214	16.90	73.37	0.1265	0.1306
11.30109,730.07210.023517.1072.510.12500.139211.40108,770.07390.024717.2072.090.12250.144011.50107.830.07570.025917.3071.680.11640.149811.60106.900.07750.027217.4071.260.09990.150611.70105.980.07920.028517.5070.860.09970.119411.80105.080.08090.030017.6070.450.11790.123011.90104.200.08240.031517.7070.060.12260.129512.00103.330.08380.032917.8069.660.12400.133912.10102.480.08690.035518.0068.890.12590.139612.30100.810.08870.038217.9069.270.12490.137012.40100.000.88970.038214.0069.660.04610.015312.7097.640.09520.042210.10122.770.04730.016512.8096.880.09700.043910.20121.570.04870.017712.9096.120.09880.045710.30120.390.05010.018513.0095.380.10050.047610.40119.230.05150.019513.1094.660.10220.049410.50118.100.05290.022413.30 <td< td=""><td>11.20</td><td>110.71</td><td>0.0703</td><td>0.0224</td><td>17.00</td><td>72.94</td><td>0.1262</td><td>0.1349</td></td<>	11.20	110.71	0.0703	0.0224	17.00	72.94	0.1262	0.1349
11.40 108.77 0.0739 0.0247 17.20 72.09 0.1225 0.1440 11.50 107.83 0.0757 0.0259 17.30 71.68 0.1164 0.1498 11.60 106.90 0.0775 0.0272 17.40 71.26 0.0999 0.1506 11.70 105.98 0.0792 0.0285 17.50 70.86 0.0977 0.1194 11.80 105.08 0.0809 0.0300 17.60 70.45 0.1179 0.1230 11.90 104.20 0.0824 0.0315 17.70 70.06 0.1226 0.1295 12.00 103.33 0.0838 0.0329 17.80 69.66 0.1240 0.1339 12.10 102.48 0.0853 0.0341 17.90 69.27 0.1249 0.1370 12.20 101.64 0.0869 0.0355 18.00 68.89 0.1259 0.1396 12.30 100.81 0.0887 0.0382 1.000 68.89 0.1259 0.1396 12.50 99.20 0.0914 0.0394 10.00 122.77 0.0473 0.0165 12.60 98.41 0.0952 0.0422 10.10 122.77 0.0473 0.0165 12.80 96.88 0.0970 0.0439 10.20 121.57 0.0487 0.0177 12.90 96.12 0.0988 0.0457 10.30 120.39 0.0501 0.0185 13.00 95.38 0.1005 0.0476 10.4	11.30	109.73	0.0721	0.0235	17.10	72.51	0.1250	0.1392
11.50107.830.07570.025917.3071.680.11640.149811.60106.900.07750.027217.4071.260.09990.150611.70105.980.07920.028517.5070.860.09970.119411.80105.080.08090.030017.6070.450.11790.123011.90104.200.08240.031517.7070.060.12260.129512.00103.330.08380.032917.8069.660.12400.133912.10102.480.08690.035518.0068.890.12590.139612.30100.810.08830.0370 E.PTE 12.40100.000.08970.038212.5099.200.09140.0394 λ/mm bv/eV δ β 12.6098.410.09520.042210.10122.770.04730.016512.8096.880.09700.043910.20121.570.04870.017712.9096.120.09880.045710.30120.390.05010.018513.0095.380.10050.047610.40119.230.05150.019513.1094.660.10220.049410.50118.100.05290.020913.2093.940.10410.051510.60116.980.05400.022413.3093.230.10580.053910.70115.890.05550.0236	11.40	108.77	0.0739	0.0247	17.20	72.09	0.1225	0.1440
11.60106.90 0.0775 0.0272 17.4071.26 0.0999 0.1506 11.70105.98 0.0792 0.0285 17.5070.86 0.0997 0.1194 11.80105.08 0.0809 0.0300 17.6070.45 0.1179 0.1230 11.90104.20 0.0824 0.0315 17.7070.06 0.1226 0.1295 12.00103.33 0.0838 0.0329 17.80 69.66 0.1240 0.1339 12.10102.48 0.0853 0.0341 17.90 69.27 0.1249 0.1370 12.20101.64 0.0869 0.0355 18.00 68.89 0.1259 0.1396 12.30100.81 0.0883 0.0370 E.PtTeEF 12.40100.00 0.0897 0.0382 λ/nm bv/eV δ β 12.5099.20 0.0914 0.0394 λ/nm bv/eV δ β 12.6098.41 0.0932 0.0406 10.00124.00 0.0461 0.0153 12.7097.64 0.0952 0.0422 10.10122.77 0.0473 0.0165 12.8096.88 0.0970 0.0439 10.20121.57 0.0487 0.0177 12.9096.12 0.0988 0.0457 10.30120.39 0.0501 0.0185 13.0095.38 0.1005 0.0476 10.40119.23 0.0515 0.0296 13.1094.66 0.1022	11.50	107.83	0.0757	0.0259	17.30	/1.68	0.1164	0.1498
11.70105.98 0.0792 0.0285 17.50 70.86 $0.097/$ 0.1194 11.80105.08 0.0809 0.0300 17.60 70.45 0.1179 0.1230 11.90104.20 0.0824 0.0315 17.70 70.06 0.1226 0.1295 12.00103.33 0.0838 0.0329 17.80 69.66 0.1240 0.1339 12.10102.48 0.0853 0.0341 17.90 69.27 0.1249 0.1370 12.20101.64 0.0869 0.0355 18.00 68.89 0.1259 0.1396 12.30100.81 0.0883 0.0370 $E. PtTe$ 12.40100.00 0.0897 0.0382 λ/nm bv/eV δ β 12.6098.41 0.0952 0.0422 10.10 122.77 0.0461 0.0153 12.7097.64 0.0952 0.0422 10.10 122.77 0.0473 0.0165 12.8096.88 0.0970 0.4439 10.20 121.57 0.0487 0.0177 12.9096.12 0.0988 0.0476 10.40 119.23 0.0515 0.0195 13.1094.66 0.1022 0.0446 10.50 118.10 0.0529 0.0220 13.2093.94 0.1041 0.0515 10.60 116.98 0.0540 0.0224 13.3093.23 0.1058 0.0537 10.90 115.76 0.0572 0.0254 13.6091.85	11.60	106.90	0.0775	0.0272	17.40	71.26	0.0999	0.1506
11.80105.080.08090.030017.6070.450.11790.123011.90104.200.08240.031517.7070.060.12260.129512.00103.330.08380.032917.8069.660.12400.133912.10102.480.08530.034117.9069.270.12490.137012.20101.640.08690.035518.0068.890.12590.139612.30100.810.08830.0370 E.PtTe 12.40100.000.08970.0382 λ/nm bv/eV δ β 12.6098.410.09320.040610.00124.000.04610.015312.7097.640.09520.042210.10122.770.04870.017712.9096.120.09880.045710.30121.570.04870.017512.9095.380.10050.047610.40119.230.05150.019513.1094.660.10220.049410.50118.100.05290.020913.2093.940.10410.051510.60116.980.05400.022413.3093.230.10580.053910.70115.890.05550.023613.4092.540.10710.056410.80114.810.05720.025413.6091.180.10920.606811.00112.730.05550.023613.6091.850.10820.0587 <td< td=""><td>11.70</td><td>105.98</td><td>0.0792</td><td>0.0285</td><td>17.50</td><td>70.86</td><td>0.09//</td><td>0.1194</td></td<>	11.70	105.98	0.0792	0.0285	17.50	70.86	0.09//	0.1194
11.90 104.20 0.0824 0.0315 17.70 70.06 0.1226 0.1295 12.00 103.33 0.0838 0.0329 17.80 69.66 0.1240 0.1339 12.10 102.48 0.0853 0.0341 17.90 69.27 0.1249 0.1370 12.20 101.64 0.0869 0.0355 18.00 68.89 0.1259 0.1396 12.30 100.81 0.0883 0.0370 E. PtTeE. PtTeE 12.40 100.00 0.0897 0.0382 λ/nm bv/eV δ β 12.60 98.41 0.0952 0.0406 10.00 124.00 0.0461 0.0153 12.70 97.64 0.0952 0.0422 10.10 122.77 0.0473 0.0165 12.80 96.88 0.0970 0.0439 10.20 121.57 0.0487 0.0175 12.90 96.12 0.0988 0.0457 10.30 120.39 0.0501 0.0185 13.00 95.38 0.1005 0.0476 10.40 119.23 0.0515 0.0195 13.10 94.66 0.1022 0.0494 10.50 118.10 0.0529 0.0209 13.20 93.94 0.1041 0.0515 10.60 116.98 0.0540 0.0224 13.30 93.23 0.1058 0.0537 10.90 113.76 0.0578 0.0272 13.60 91.18 0.1092 0.6068 11.00 112.73	11.80	105.08	0.0809	0.0300	17.60	/0.45	0.11/9	0.1230
12.00103.330.08380.032917.8069.660.12400.135912.10102.480.08530.034117.9069.270.12490.137012.20101.640.08690.035518.0068.890.12590.139612.30100.810.08830.0370 E.PtTe k k β 12.40100.000.08970.0382 k k h b k β 12.5099.200.09140.0394 k h k β 12.6098.410.09320.040610.00124.000.04610.015312.7097.640.09520.042210.10122.770.04730.016512.8096.880.09700.043910.20121.570.04870.017712.9096.120.09880.045710.30120.390.05010.018513.0095.380.10050.047610.40119.230.05150.019513.1094.660.10220.049410.50118.100.05290.020913.2093.940.10410.051510.60116.980.05400.022413.3093.230.10580.053910.70115.890.05550.023613.4092.540.10710.056410.80114.810.05720.025413.6091.180.10920.060811.00112.730.05920.0225413.60	11.90	104.20	0.0824	0.0315	17.70	/0.06	0.1226	0.1295
12.10102.480.08530.034117.90 69.27 0.1249 0.1370 12.20101.640.08690.035518.00 68.89 0.1259 0.1396 12.30100.810.08830.0370 E. PtTe 12.40100.000.08970.0382 λ/mm bv/eV δ β 12.6098.410.09320.040610.00124.000.04610.015312.7097.640.09520.042210.10122.770.04730.016512.8096.880.09700.043910.20121.570.04870.017712.9096.120.09880.045710.30120.390.05010.018513.0095.380.10050.047610.40119.230.05150.019513.1094.660.10220.049410.50118.100.05290.022413.3093.230.10580.053910.70115.890.05400.022413.4092.540.10710.056410.80114.810.05720.025413.6091.180.10920.060811.00112.730.05920.022513.6091.180.10920.060811.00112.730.05920.022413.7090.510.11050.063111.10111.710.06030.0302(Table continued)11.20110.710.06130.0321	12.00	103.33	0.0838	0.0329	17.80	69.66	0.1240	0.1339
12.20101.640.08690.035518.0068.890.12590.139612.30100.810.08830.0370E.PtTe12.40100.000.08970.0382 λ/nm bv/eV δ β 12.5099.200.09140.0394 λ/nm bv/eV δ β 12.6098.410.09320.040610.00124.000.04610.015312.7097.640.09520.042210.10122.770.04730.016512.8096.880.09700.043910.20121.570.04870.017712.9096.120.09880.045710.30120.390.05010.018513.0095.380.10050.047610.40119.230.05150.019513.1094.660.10220.049410.50118.100.05290.020913.2093.940.10410.051510.60116.980.05400.022413.3093.230.10580.053910.70115.890.05550.023613.4092.540.10710.056410.80114.810.05720.025413.6091.180.10920.060811.00112.730.05920.028513.7090.510.11050.063111.10111.710.06030.0302(Table continued)11.20110.710.06130.0321	12.10	102.48	0.0853	0.0341	17.90	69.2/	0.1249	0.13/0
12.30100.810.08830.0370E. PrTe12.40100.000.08970.0382 λ/nm bv/eV δ β 12.5099.200.09140.0394 λ/nm bv/eV δ β 12.6098.410.09320.040610.00124.000.04610.015312.7097.640.09520.042210.10122.770.04730.016512.8096.880.09700.043910.20121.570.04870.017712.9096.120.09880.045710.30120.390.05010.018513.0095.380.10050.047610.40119.230.05150.019513.1094.660.10220.049410.50118.100.05290.020913.2093.940.10410.051510.60116.980.05400.022413.3093.230.10580.053910.70115.890.05550.023613.4092.540.10710.056410.80114.810.05720.025413.6091.180.10920.060811.00112.730.05920.028513.7090.510.11050.063111.10111.710.06030.0302(Table continued)11.20110.710.06130.0321	12.20	101.64	0.0869	0.0355	18.00	08.89	0.1239	0.1396
12.40100.000.089/0.0382 λ/nm $b\nu/eV$ δ β 12.5099.200.09140.0394 λ/nm $b\nu/eV$ δ β 12.6098.410.09320.040610.00124.000.04610.015312.7097.640.09520.042210.10122.770.04730.016512.8096.880.09700.043910.20121.570.04870.017712.9096.120.09880.045710.30120.390.05010.018513.0095.380.10050.047610.40119.230.05150.019513.1094.660.10220.049410.50118.100.05290.020913.2093.940.10410.051510.60116.980.05400.022413.3093.230.10580.053910.70115.890.05550.023613.4092.540.10710.056410.80114.810.05720.025413.5091.850.10820.058710.90113.760.05780.027213.6091.180.10920.060811.00112.730.05920.028513.7090.510.11050.063111.10111.710.06030.0302(Table continued)11.20110.710.06130.0321	12.30	100.81	0.0883	0.03/0	E. PtTe			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	12.40	100.00	0.0897	0.0382	λ/nm	bv/eV	δ	β
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	12.60	98.41	0.0932	0.0406	10.00	124.00	0.0461	0.0153
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	12.70	97.64	0.0952	0.0422	10.10	122.77	0.0473	0.0165
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	12.80	96.88	0.0970	0.0439	10.20	121.57	0.0487	0.0177
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	12.90	96.12	0.0988	0.0457	10.30	120.39	0.0501	0.0185
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	13.00	95.38	0.1005	0.0476	10.40	119.23	0.0515	0.0195
13.20 93.94 0.1041 0.0515 10.60 116.98 0.0540 0.0224 13.30 93.23 0.1058 0.0539 10.70 115.89 0.0555 0.0236 13.40 92.54 0.1071 0.0564 10.80 114.81 0.0572 0.0254 13.50 91.85 0.1082 0.0587 10.90 113.76 0.0578 0.0272 13.60 91.18 0.1092 0.0608 11.00 112.73 0.0592 0.0285 13.70 90.51 0.1105 0.0631 11.10 111.71 0.0603 0.0302 (Table continued) 11.20 110.71 0.0613 0.0321	13.10	94.66	0.1022	0.0494	10.50	118.10	0.0529	0.0209
13.30 93.23 0.1058 0.0539 10.70 115.89 0.0555 0.0236 13.40 92.54 0.1071 0.0564 10.80 114.81 0.0572 0.0254 13.50 91.85 0.1082 0.0587 10.90 113.76 0.0578 0.0272 13.60 91.18 0.1092 0.0608 11.00 112.73 0.0592 0.0285 13.70 90.51 0.1105 0.0631 11.10 111.71 0.0603 0.0302 (Table continued)	13.20	93.94	0.1041	0.0515	10.60	116.98	0.0540	0.0224
13.40 92.54 0.1071 0.0564 10.80 114.81 0.0572 0.0254 13.50 91.85 0.1082 0.0587 10.90 113.76 0.0578 0.0272 13.60 91.18 0.1092 0.0608 11.00 112.73 0.0592 0.0285 13.70 90.51 0.1105 0.0631 11.10 111.71 0.0603 0.0302 (Table continued) 11.20 110.71 0.0613 0.0321	13.30	93.23	0.1058	0.0539	10.70	115.89	0.0555	0.0236
13.50 91.85 0.1082 0.0587 10.90 113.76 0.0578 0.0272 13.60 91.18 0.1092 0.0608 11.00 112.73 0.0592 0.0285 13.70 90.51 0.1105 0.0631 11.10 111.71 0.0603 0.0302 (Table continued) 11.20 110.71 0.0613 0.0321	13.40	92.54	0.1071	0.0564	10.80	114.81	0.0572	0.0254
13.60 91.18 0.1092 0.0608 11.00 112.73 0.0592 0.0285 13.70 90.51 0.1105 0.0631 11.10 111.71 0.0603 0.0302 (Table continued) 11.20 110.71 0.0613 0.0321	13.50	91.85	0.1082	0.0587	10.90	113.76	0.0578	0.0272
13.70 90.51 0.1105 0.0631 11.10 111.71 0.0603 0.0302 (Table continued) 11.20 110.71 0.0613 0.0321	13.60	91.18	0.1092	0.0608	11.00	112.73	0.0592	0.0285
(Table continued) 11.20 110.71 0.0613 0.0321	13.70	90.51	0.1105	0.0631	11.10	111.71	0.0603	0.0302
				(Table continued)	11.20	110.71	0.0613	0.0321

Research	Article
----------	---------

λ/nm	hv/eV	δ	β	λ/nm	hv/eV	δ	β
11.30	109.73	0.0625	0.0339	17.30	71.68	0.0207	0.0958
11.40	108.77	0.0640	0.0361	17.40	71.26	0.0231	0.0921
11.50	107.83	0.0633	0.0398	17.50	70.86	0.0260	0.0928
11.60	106.90	0.0643	0.0401	17.60	70.45	0.0263	0.0942
11.70	105.98	0.0658	0.0425	17.70	70.06	0.0264	0.0953
11.80	105.08	0.0655	0.0444	17.80	69.66	0.0264	0.0958
11.90	104.20	0.0659	0.0467	17.90	69.27	0.0262	0.0960
12.00	103.33	0.0662	0.0486	18.00	68.89	0.0261	0.0961
12.10	102.48	0.0665	0.0504	F. Te			
12.20	101.64	0.0666	0.0524	1 /	Luti	2	0
12.30	100.81	0.0665	0.0543	۸/nm	nviev	0	р
12.40	100.00	0.0663	0.0563	10.00	124.00	0.0403	0.0127
12.50	99.20	0.0660	0.0582	10.10	122.77	0.0413	0.0137
12.60	98.41	0.0659	0.0600	10.20	121.57	0.0424	0.0148
12./0	97.64	0.0656	0.061/	10.30	120.39	0.0435	0.0160
12.80	96.88	0.0655	0.0635	10.40	119.23	0.0446	0.0172
12.90	90.12	0.0049	0.0031	10.50	118.10	0.0458	0.0185
13.00	99.38	0.004)	0.0008	10.60	116.98	0.0469	0.0199
13.10	94.00	0.0038	0.0085	10./0	115.89	0.0481	0.0214
13.30	93.23	0.0627	0.0718	10.80	114.81	0.0495	0.0251
13.40	92.54	0.0619	0.0736	10.90	112.70	0.0504	0.0249
13.50	91.85	0.0612	0.0751	11.00	112.73	0.0523	0.0209
13.60	91.18	0.0605	0.0767	11.10	111.71	0.0523	0.0200
13.70	90.51	0.0596	0.0784	11.20	109.73	0.0537	0.0336
13.80	89.86	0.0590	0.0797	11.50	109.75	0.0543	0.0361
13.90	89.21	0.0581	0.0813	11.50	107.83	0.0546	0.0387
14.00	88.57	0.0574	0.0827	11.60	106.90	0.0546	0.0413
14.10	87.94	0.0568	0.0838	11.70	105.98	0.0545	0.0440
14.20	87.32	0.0554	0.0854	11.80	105.08	0.0540	0.0467
14.30	86.71	0.0545	0.0866	11.90	104.20	0.0533	0.0492
14.40	86.11	0.0529	0.0883	12.00	103.33	0.0523	0.0515
14.50	85.52	0.0520	0.0895	12.10	102.48	0.0513	0.0536
14.60	84.93	0.0507	0.0905	12.20	101.64	0.0501	0.0555
14.70	84.35	0.0487	0.0919	12.30	100.81	0.0490	0.0572
14.80	83.78	0.0476	0.0925	12.40	100.00	0.0478	0.0588
14.90	83.22	0.0462	0.0932	12.50	99.20	0.0467	0.0602
15.00	82.67	0.0455	0.0935	12.60	98.41	0.0457	0.0616
15.10	82.12	0.0430	0.0949	12.70	97.64	0.0448	0.0631
15.20	81.05	0.0422	0.0949	12.80	96.88	0.0438	0.0646
15.40	80.52	0.0407	0.0955	12.90	96.12	0.0428	0.0662
15.50	80.92	0.040)	0.0959	13.00	95.38	0.041/	0.06//
15.60	79.49	0.0380	0.0965	13.10	94.00	0.0403	0.0092
15.70	78.98	0.0359	0.0970	13.20	93.94	0.0392	0.0718
15.80	78.48	0.0355	0.0970	13.40	92 54	0.0364	0.0730
15.90	77.99	0.0352	0.0968	13.50	91.85	0.0352	0.0741
16.00	77.50	0.0345	0.0974	13.60	91.18	0.0340	0.0751
16.10	77.02	0.0328	0.0979	13.70	90.51	0.0330	0.0763
16.20	76.54	0.0316	0.0985	13.80	89.86	0.0319	0.0775
16.30	76.07	0.0311	0.0979	13.90	89.21	0.0307	0.0789
16.40	75.61	0.0295	0.0975	14.00	88.57	0.0293	0.0803
16.50	75.15	0.0284	0.0959	14.10	87.94	0.0277	0.0817
16.60	74.70	0.0285	0.0950	14.20	87.32	0.0258	0.0830
16.70	74.25	0.0290	0.0953	14.30	86.71	0.0236	0.0841
16.80	73.81	0.0290	0.0967	14.40	86.11	0.0213	0.0849
17.00	72.94	0.0266	0.0994	14.50	85.52	0.0189	0.0854
17.10	72.51	0.0243	0.0998	14.60	84.93	0.0166	0.0858
17.20	72.09	0.0217	0.0992	14.70	84.35	0.0145	0.0859

(Table continued)

λ/nm	bv/eV	δ	β	λ/nm	bv/eV	δ	β
14.80	83.78	0.0125	0.0859	12.30	100.81	0.0433	0.0638
14.90	83.22	0.0107	0.0858	12.40	100.00	0.0438	0.0643
15.00	82.67	0.0091	0.0857	12.50	99.20	0.0443	0.0650
15.10	82.12	0.0076	0.0860	12.60	98.41	0.0452	0.0660
15.20	81.58	0.0062	0.0863	12.70	97.64	0.0460	0.0671
15.30	81.05	0.0050	0.0865	12.80	96.88	0.0468	0.0683
15.40	80.52	0.0037	0.0868	12.90	96.12	0.0476	0.0696
15.50	80.00	0.0025	0.0872	13.00	95.38	0.0482	0.0710
15.60	79.49	0.0012	0.0872	13.10	94.66	0.0488	0.0725
15.70	78.98	-0.0001	0.0877	13.20	93.94	0.0492	0.0738
15.80	78.48	-0.0016	0.0880	13.30	93.23	0.0495	0.0753
15.90	77.99	-0.0030	0.0880	13.40	92.54	0.0498	0.0766
16.00	77.50	-0.0046	0.0881	13.50	91.85	0.0500	0.0778
16.10	77.02	-0.0063	0.0883	13.60	91.18	0.0502	0.0792
16.20	76.54	-0.0079	0.0884	13.70	90.51	0.0503	0.0801
16.30	76.07	-0.0095	0.0883	13.80	89.86	0.0504	0.0811
16.40	75.61	-0.0111	0.0882	13.90	89.21	0.0507	0.0822
16.50	75.15	-0.0127	0.0882	14.00	88.57	0.0511	0.0832
16.60	74.70	-0.0144	0.0883	14.10	87.94	0.0512	0.0842
16.70	74.25	-0.0159	0.0880	14.20	87.32	0.0519	0.0854
16.80	73.81	-0.0176	0.0881	14.30	86.71	0.0523	0.0864
16.90	73.37	-0.0194	0.0879	14.40	86.11	0.0529	0.0881
17.00	72.94	-0.0211	0.0876	14.50	85.52	0.0533	0.0896
17.10	72.51	-0.0228	0.0873	14.60	84.93	0.0536	0.0914
17.20	72.09	-0.0245	0.0868	14./0	84.35	0.0536	0.0931
1/.30	/1.68	-0.0262	0.0865	14.80	83./8	0.0539	0.0951
17.40	/1.26	-0.02/8	0.0860	14.90	83.22	0.0540	0.0969
17.50	/0.86	-0.0295	0.085/	15.00	82.6/	0.0540	0.0989
17.60	/0.45	-0.0312	0.0851	15.10	82.12	0.0536	0.1004
17.70	/0.06	-0.0330	0.0845	15.20	01.)0 91.05	0.0531	0.1023
17.80	69.00	-0.0348	0.0838	15.30	80.52	0.0516	0.1040
18.00	68.89	-0.0383	0.0855	15.50	80.02	0.0505	0.1008
10.00	00.07	-0.0303	0.0017	15.60	79 49	0.0909	0.1099
G. Ni				15.70	78.98	0.0477	0.1111
λ/nm	b ν/eV	δ	β	15.80	78.48	0.0463	0.1124
10.00	124.00	0.0414	0.0486	15.90	77.99	0.0448	0.1131
10.10	122.77	0.0411	0.0495	16.00	77.50	0.0435	0.1139
10.20	121.57	0.0409	0.0504	H N: A1			
10.30	120.39	0.0406	0.0511	11. INI3AI			
10.40	119.23	0.0404	0.0518	λ/nm	hv/eV	δ	β
10.50	118.10	0.0403	0.0525	10.00	124.00	0.0265	0.0394
10.60	116.98	0.0403	0.0530	10.10	122.77	0.0267	0.0405
10.70	115.89	0.0404	0.0535	10.20	121.57	0.0268	0.0415
10.80	114.81	0.0407	0.0541	10.30	120.39	0.0269	0.0421
10.90	113.76	0.0409	0.0551	10.40	119.23	0.0272	0.0426
11.00	112.73	0.0410	0.0561	10.50	118.10	0.0274	0.0433
11.10	111.71	0.0410	0.0569	10.60	116.98	0.0270	0.0441
11.20	110.71	0.0410	0.0578	10.70	115.89	0.0270	0.0449
11.30	109.73	0.0411	0.0586	10.80	114.81	0.0269	0.0458
11.40	108.77	0.0409	0.0594	10.90	113.76	0.0268	0.0467
11.50	107.83	0.0408	0.0597	11.00	112.73	0.0268	0.0475
11.60	106.90	0.0408	0.0600	11.10	111.71	0.0268	0.0480
11./0	105.98	0.0405	0.0602	11.20	110.71	0.0267	0.0487
11.80	105.08	0.0406	0.0610	11.30	109./3	0.026/	0.0489
11.70	104.20	0.040/	0.0611	11.40	108.//	0.0259	0.0496
12.00	103.33	0.0412	0.0616	11.50	10/.83	0.0258	0.0509
12.10	102.48	0.0420	0.0020	11.00	100.90	0.0203	0.0518
12.20	101.04	0.042/	0.0033	11./0	103.98	0.0203	0.0921

(Table continued)

Research Article

Vol. 61, No. 8 / 10 March 2022 / Applied Optics 2071

λ/nm	bv/eV	δ	β	λ/nm	hv/eV	δ	β
11.80	105.08	0.0265	0.0533	11.30	109.73	0.0180	0.0443
11.90	104.20	0.0263	0.0540	11.40	108.77	0.0183	0.0457
12.00	103.33	0.0263	0.0546	11.50	107.83	0.0178	0.0468
12.10	102.48	0.0262	0.0554	11.60	106.90	0.0180	0.0465
12.20	101.64	0.0260	0.0556	11.70	105.98	0.0180	0.0471
12.30	100.81	0.0255	0.0565	11.80	105.08	0.0177	0.0478
12.40	100.00	0.0254	0.0577	11.90	104.20	0.0176	0.0483
12.50	99.20	0.0253	0.0585	12.00	103.33	0.0176	0.0488
12.60	98.41	0.0250	0.0595	12.10	102.48	0.0176	0.0493
12.70	97.64	0.0248	0.0609	12.20	101.64	0.0176	0.0500
12.80	96.88	0.0245	0.0619	12.30	100.81	0.0173	0.0511
12.90	96.12	0.0242	0.0629	12.40	100.00	0.0171	0.0526
13.00	95.38	0.0238	0.0636	12.50	99.20	0.0167	0.0541
13.10	94.66	0.0235	0.0641	12.60	98.41	0.0162	0.0557
13.20	93.94	0.0232	0.0646	12.70	97.64	0.0155	0.0573
13.30	93.23	0.0230	0.0650	12.80	96.88	0.0147	0.0585
13.40	92.54	0.0227	0.0653	12.90	96.12	0.0140	0.0593
13.50	91.85	0.0225	0.0656	13.00	95.38	0.0135	0.0598
13.60	91.18	0.0222	0.0660	13.10	94.66	0.0131	0.0601
13.70	90.51	0.0220	0.0664	13.20	93.94	0.0127	0.0603
13.80	89.86	0.0219	0.0666	13.30	93.23	0.0122	0.0604
13.90	89.21	0.0217	0.0669	13.40	92.54	0.0116	0.0605
14.00	88.57	0.0215	0.0672	13.50	91.85	0.0110	0.0603
14.10	87.94	0.0213	0.0676	13.60	91.18	0.0105	0.0601
14.20	87.32	0.0214	0.0678	13.70	90.51	0.0101	0.0598
14.30	86.71	0.0214	0.0682	13.80	89.86	0.0098	0.0596
14.40	86.11	0.0214	0.0687	13.90	89.21	0.0096	0.0593
14.50	85.52	0.0216	0.0689	14.00	88.57	0.0094	0.0589
14.60	84.93	0.0219	0.0690	14.10	87.94	0.0094	0.0585
14.70	84.35	0.0220	0.0694	14.20	87.32	0.0095	0.0580
14.80	83.78	0.0217	0.0694	14.30	86.71	0.0096	0.0579
14.90	83.22	0.0215	0.0694	14.40	86.11	0.0095	0.0577
15.00	82.67	0.0210	0.0696	14.50	85.52	0.0092	0.0576
15.10	82.12	0.0204	0.0693	14.60	84.93	0.0088	0.0573
15.20	81.58	0.0200	0.0690	14.70	84.35	0.0085	0.0566
15.30	81.05	0.0195	0.0684	14.80	83.78	0.0083	0.0562
15.40	80.52	0.0193	0.0684	14.90	83.22	0.0082	0.0564
15.50	80.00	0.0190	0.0680	15.00	82.67	0.0077	0.0566
15.60	79.49	0.0190	0.0678	15.10	82.12	0.0068	0.0562
15.70	78.98	0.0197	0.0680	15.20	81.58	0.0062	0.0551
15.80	78.48	0.0202	0.0688	15.30	81.05	0.0061	0.0540
15.90	77.99	0.0204	0.0697	15.40	80.52	0.0062	0.0533
16.00	77.50	0.0202	0.0706	15.50	80.00	0.0068	0.0528
L NiAl				15.60	79.49	0.0072	0.0524
		•		15.70	78.98	0.0080	0.0528
λ/nm	bv/eV	δ	β	15.80	78.48	0.0084	0.0532
10.00	124.00	0.0205	0.0367	15.90	77.99	0.0088	0.0540
10.10	122.77	0.0203	0.0375	16.00	77.50	0.0091	0.0548
10.20	121.57	0.0202	0.0382	L Ni2Ala			
10.30	120.39	0.0202	0.0389	j	1 / 37	0	0
10.40	119.23	0.0205	0.0391	λ/nm	bv/eV	ð	ß
10.50	118.10	0.0207	0.0407	10.00	124.00	0.0147	0.0304
10.60	116.98	0.0205	0.0419	10.10	122.77	0.0147	0.0316
10.70	115.89	0.0204	0.0427	10.20	121.57	0.0145	0.0320
10.80	114.81	0.0199	0.0434	10.30	120.39	0.0145	0.0327
10.90	113.76	0.0193	0.0438	10.40	119.23	0.0143	0.0335
11.00	112.73	0.0187	0.0440	10.50	118.10	0.0137	0.0345
11.10	111.71	0.0183	0.0441	10.60	116.98	0.0131	0.0346
11.20	110.71	0.0181	0.0442	10.70	115.89	0.0129	0.0349

(Table continued)

λ/nm	bv/eV	δ	β	λ/nm	hv/eV	δ	β
10.80	114.81	0.0125	0.0351	10.75	115.35	0.0559	0.0050
10.90	113.76	0.0122	0.0351	11.00	112.73	0.0596	0.0052
11.00	112.73	0.0122	0.0354	11.25	110.22	0.0637	0.0053
11.10	111.71	0.0121	0.0357	11.50	107.83	0.0677	0.0056
11.20	110.71	0.0121	0.0361	11.75	105.53	0.0723	0.0062
11.30	109.73	0.0122	0.0369	12.00	103.33	0.0769	0.0069
11.40	108.77	0.0110	0.0371	12.10	102.48	0.0789	0.0072
11.50	107.83	0.0108	0.0366	12.20	101.64	0.0807	0.0077
11.60	106.90	0.0121	0.0372	12.30	100.81	0.0828	0.0084
11.70	105.98	0.0118	0.0377	12.40	100.00	0.0853	0.0084
11.80	105.08	0.0124	0.0385	12.50	99.20	0.0874	0.0084
11.90	104.20	0.0125	0.0393	12.60	98.41	0.0896	0.0089
12.00	103.33	0.0129	0.0401	12.75	97.25	0.0930	0.0095
12.10	102.48	0.0132	0.0409	13.00	95.38	0.0990	0.0111
12.20	101.64	0.0129	0.0416	13.25	93.58	0.1053	0.0130
12.30	100.81	0.0122	0.0428	13.50	91.85	0.1118	0.0154
12.40	100.00	0.0115	0.0433	13.75	90.18	0.1185	0.0181
12.50	99.20	0.0110	0.043/	14.00	88.5/	0.1250	0.0213
12.60	98.41	0.0106	0.0446	14.25	87.02	0.1315	0.0250
12./0	97.64	0.0103	0.0460	14.50	85.52	0.1382	0.0294
12.80	96.88	0.0098	0.0468	14./5	84.07	0.1454	0.0346
12.90	96.12	0.0092	0.04/6	15.00	82.0/	0.1526	0.0404
13.00	93.38	0.0080	0.0480	15.25	81.31	0.1390	0.0404
13.10	94.00	0.0081	0.0487	15.50	80.00 78.73	0.1694	0.0528
13.30	93.23	0.0079	0.0487	16.00	77.50	0.1094	0.0552
13.40	92 54	0.0064	0.0493	16.00	76.31	0.1794	0.0000
13.50	91.85	0.0058	0.0492	16.50	75.15	0.1840	0.0804
13.60	91.18	0.0051	0.0492	16.75	74.03	0.1893	0.0886
13.70	90.51	0.0046	0.0489	17.00	72.94	0.1928	0.0974
13.80	89.86	0.0041	0.0486	17.25	71.88	0.1971	0.1066
13.90	89.21	0.0036	0.0484	17.50	70.86	0.2002	0.1150
14.00	88.57	0.0032	0.0481	17.75	69.86	0.2008	0.1237
14.10	87.94	0.0027	0.0479	18.00	68.89	0.2007	0.1337
14.20	87.32	0.0026	0.0478	18.25	67.95	0.1991	0.1433
14.30	86.71	0.0024	0.0478	18.50	67.03	0.1967	0.1521
14.40	86.11	0.0021	0.0476	18.75	66.13	0.1960	0.1607
14.50	85.52	0.0021	0.0474	19.00	65.26	0.1927	0.1676
14.60	84.93	0.0020	0.0470	19.25	64.42	0.1882	0.1760
14.70	84.35	0.0016	0.0468	19.50	63.59	0.1856	0.1825
14.80	83.78	0.0019	0.0464	19.75	62.78	0.1824	0.1870
14.90	83.22	0.0020	0.0462	20.00	62.00	0.1822	0.1934
15.00	82.6/	0.0021	0.045/	L. Ru ₃ Re			
15.10	82.12 81.58	0.0025	0.0431	λ/nm	hv/eV	δ	в
15.30	81.05	0.0036	0.0440	10.00	12/ 00	0.0/25	0.0105
15.40	80.52	0.0050	0.0449	10.00	124.00	0.0425	0.0105
15.50	80.00	0.0040	0.0457	10.10	122.77	0.0435	0.0100
15.60	79.49	0.0041	0.0461	10.20	121.37	0.0440	0.0108
15.70	78.98	0.0043	0.0459	10.50	119.23	0.0450	0.0104
15.80	78.48	0.0044	0.0462	10.10	118.10	0.0479	0.0104
15.90	77.99	0.0044	0.0467	10.60	116.98	0.0491	0.0104
16.00	77.50	0.0046	0.0467	10.70	115.89	0.0504	0.0102
K Ru				10.80	114.81	0.0521	0.0103
	• • ==			10.90	113.76	0.0533	0.0105
λ/nm	bv/eV	δ	β	11.00	112.73	0.0546	0.0103
10.00	124.00	0.0460	0.0052	11.10	111.71	0.0562	0.0104
10.25	120.98	0.0491	0.0053	11.20	110.71	0.0577	0.0103
10.50	118.10	0.0523	0.0052	11.30	109.73	0.0593	0.0103

(Table continued)

λ/nm	hv/eV	δ	β	λ/nm	bv/eV	δ	β
11.40	108.77	0.0615	0.0109	17.40	71.26	0.1896	0.1106
11.50	107.83	0.0627	0.0118	17.50	70.86	0.1909	0.1146
11.60	106.90	0.0637	0.0108	17.60	70.45	0.1923	0.1186
11.70	105.98	0.0661	0.0115	17.70	70.06	0.1936	0.1226
11.80	105.08	0.0671	0.0112	17.80	69.66	0.1948	0.1267
11.90	104.20	0.0692	0.0116	17.90	69.27	0.1958	0.1309
12.00	103.33	0.0709	0.0117	18.00	68.89	0.1965	0.1355
12.10	102.48	0.0727	0.0120	M. Ru ₃ Ta			
12.20	101.64	0.0746	0.0124	۸/nm	$h_{\rm W}/eV$	δ	ß
12.30	100.81	0.0/66	0.0128	×/ IIII	<i>bullet</i>		Ρ
12.40	100.00	0.0/8/	0.0130	10.00	124.00	0.0402	0.0110
12.50	99.20	0.080/	0.0132	10.25	120.98	0.0428	0.0112
12.60	98.41	0.082/	0.0136	10.50	118.10	0.0456	0.0113
12./0	97.64	0.0848	0.0141	10.75	115.35	0.0484	0.0115
12.80	96.88	0.08/0	0.0146	11.00	112.73	0.0516	0.0116
12.90	96.12	0.0893	0.0152	11.25	110.22	0.0549	0.0120
13.00	95.38	0.0915	0.015/	11.50	107.83	0.0585	0.0124
13.10	94.66	0.0938	0.0163	11.75	105.53	0.0622	0.0129
13.20	93.94	0.0962	0.01/0	12.00	103.33	0.0661	0.0136
13.30	93.23	0.0986	0.01/8	12.10	102.48	0.0677	0.0139
13.40	92.54	0.1010	0.018/	12.20	101.64	0.0694	0.0142
13.50	91.85	0.1035	0.0196	12.30	100.81	0.0709	0.0147
13.60	91.18	0.1060	0.0205	12.40	100.00	0.0726	0.0149
13./0	90.51	0.1085	0.0215	12.50	99.20	0.0743	0.0152
13.80	89.86	0.1110	0.0226	12.60	98.41	0.0760	0.0156
13.90	89.21	0.1135	0.0239	12.75	97.25	0.0787	0.0161
14.00	88.5/	0.1161	0.0252	13.00	95.38	0.0835	0.0172
14.10	8/.94	0.118/	0.0265	13.25	93.58	0.0886	0.0185
14.20	8/.32	0.1213	0.02/9	13.50	91.85	0.0940	0.0203
14.30	86./1	0.1239	0.0295	13.75	90.18	0.0996	0.0223
14.40	86.11	0.1265	0.0311	14.00	88.57	0.1053	0.0248
14.50	85.52	0.1291	0.0328	14.25	87.02	0.1112	0.0277
14.60	84.95	0.131/	0.0346	14.50	85.52	0.1170	0.0313
14./0	84.35	0.1342	0.0364	14.75	84.07	0.1226	0.0352
14.80	02./0	0.1307	0.0385	15.00	82.67	0.1283	0.0395
14.90	83.22	0.1592	0.0405	15.25	81.31	0.1340	0.0442
15.00	82.6/	0.1416	0.0424	15.50	80.00	0.1393	0.0492
15.10	82.12	0.1440	0.0445	15.75	78.73	0.1446	0.0547
15.20	81.58	0.1464	0.046/	16.00	77.50	0.1497	0.0604
15.50	81.05	0.1488	0.0489	16.25	76.31	0.1548	0.0666
15.40	80.32	0.1511	0.0512	16.50	75.15	0.1596	0.0731
15.50	80.00	0.1555	0.0556	16.75	74.03	0.1645	0.0804
15.00	/9.49	0.1593	0.0559	17.00	72.94	0.1687	0.0879
15.70	/ 8.98	0.1382	0.0384	17.25	71.88	0.1728	0.0956
15.00	/ 0.40	0.1003	0.0009	17.50	/0.86	0.1757	0.1041
15.90	77.59	0.162/	0.0655	17.75	69.86	0.1784	0.1126
16.00	//.30	0.1651	0.0662	18.00	68.89	0.1811	0.1221
16.10	7656	0.1675	0.0090	18.25	67.95	0.1826	0.1313
16.20	76.94	0.1093	0.0719	18.50	67.03	0.1836	0.1407
16.30	75.61	0.1710	0.0749	18.75	66.13	0.1824	0.1499
16.50	/ J.01 75 15	0.1/3/	0.0778	19.00	65.26	0.1807	0.15/9
16.60	/ J.1 J 7/ 70	0.1/3/	0.0010	19.25	64.42	0.1786	0.1662
16.70	/4./U 7/ 05	0.1///	0.0042	19.50	63.59	0.1768	0.1/34
16.20	/4.2) 72 01	0.1/77	0.00/5	19.75	62.78	0.1729	0.1793
16.00	/ 3.81	0.1012	0.0903	20.00	62.00	0.1727	0.1866
17.00	/ 3.3/ 72 0/	0.1020	0.0998	N. Ru _W			
17.00	72.74	0.1043	0.0909	λ/nm	$h_{\rm W}/eV$	ß	R
17.10	72.91	0.107/	0.1001		II VICT	v	<u>Р</u>
17.20	72.07	0.109/1	0.1054	10.00	124.00	0.0399	0.0122
1/.50	/ 1.00	0.1004	0.1000	10.10	122.77	0.0409	0.0123

2073

Research Article

(Table continued)

λ/nm	hv/eV	δ	β	λ/nm	bv/eV	δ	β
10.20	121.57	0.0420	0.0124	15.90	77.99	0.1504	0.0577
10.30	120.39	0.0430	0.0124	16.00	77.50	0.1526	0.0601
10.40	119.23	0.0440	0.0124	16.10	77.02	0.1548	0.0626
10.50	118.10	0.0451	0.0123	16.20	76.54	0.1570	0.0651
10.60	116.98	0.0461	0.0123	16.30	76.07	0.1590	0.0678
10.70	115.89	0.0471	0.0122	16.40	75.61	0.1611	0.0705
10.80	114.81	0.0482	0.0123	16.50	75.15	0.1631	0.0733
10.90	113.76	0.0494	0.0124	16.60	74.70	0.1650	0.0763
11.00	112.73	0.0507	0.0125	16.70	74.25	0.1669	0.0793
11.10	111.71	0.0519	0.0126	16.80	73.81	0.1687	0.0824
11.20	110.71	0.0531	0.0126	16.90	73.37	0.1704	0.0855
11.30	109.73	0.0544	0.0126	17.00	72.94	0.1720	0.0888
11.40	108.77	0.0556	0.0126	17.10	72.51	0.1736	0.0920
11.50	107.83	0.0570	0.0127	17.20	72.09	0.1751	0.0954
11.60	106.90	0.0587	0.0130	17.30	71.68	0.1767	0.0989
11.70	105.98	0.0602	0.0131	17.40	71.26	0.1780	0.1023
11.80	105.08	0.0618	0.0133	17.50	70.86	0.1792	0.1058
11.90	104.20	0.0635	0.0135	17.60	70.45	0.1805	0.1095
12.00	103.33	0.0653	0.0138	17.70	70.06	0.1816	0.1132
12.10	102.48	0.0670	0.0140	17.80	69.66	0.1826	0.1169
12.20	101.64	0.0692	0.0146	17.90	69.27	0.1836	0.1207
12.30	100.81	0.0710	0.0154	18.00	68.89	0.1848	0.1248
12.40	100.00	0.0721	0.0149	O. RuTa			
12.50	99.20	0.0735	0.0147				
12.60	98.41	0.0755	0.0151	λ/nm	<i>b</i> v/eV	δ	β
12.70	97.64	0.0774	0.0155	10.00	124.00	0.0333	0.0165
12.80	96.88	0.0794	0.0159	10.25	120.98	0.0353	0.0168
12.90	96.12	0.0814	0.0164	10.50	118.10	0.0374	0.0171
13.00	95.38	0.0834	0.0169	10.75	115.35	0.0397	0.0174
13.10	94.66	0.0855	0.0174	11.00	112.73	0.0421	0.0177
13.20	93.94	0.0876	0.0180	11.25	110.22	0.0447	0.0181
13.30	93.23	0.0897	0.0187	11.50	107.83	0.0474	0.0186
13.40	92.54	0.0919	0.0194	11.75	105.53	0.0503	0.0191
13.50	91.85	0.0941	0.0201	12.00	103.33	0.0533	0.0196
13.60	91.18	0.0963	0.0209	12.10	102.48	0.0545	0.0197
13.70	90.51	0.0986	0.0218	12.20	101.64	0.0558	0.0201
13.80	89.86	0.1009	0.0227	12.30	100.81	0.0570	0.0204
13.90	89.21	0.1033	0.0237	12.40	100.00	0.0584	0.0206
14.00	88.57	0.1056	0.0247	12.50	99.20	0.0596	0.0209
14.10	87.94	0.1080	0.0258	12.60	98.41	0.0610	0.0212
14.20	87.32	0.1104	0.0270	12.75	97.25	0.0631	0.0217
14.30	86./1	0.1128	0.0283	13.00	95.38	0.0667	0.0226
14.40	86.11	0.1152	0.0296	13.25	93.58	0.0706	0.0237
14.50	85.52	0.1177	0.0310	13.50	91.85	0.0747	0.0249
14.60	84.93	0.1201	0.0325	13.75	90.18	0.0789	0.0264
14./0	84.35	0.1225	0.0341	14.00	88.57	0.0833	0.0281
14.80	83./8	0.1249	0.035/	14.25	87.02	0.0878	0.0302
14.90	83.22	0.12/3	0.03/4	14.50	85.52	0.0925	0.0324
15.00	82.67	0.129/	0.0392	14.75	84.07	0.0971	0.0351
15.10	02.12	0.1321	0.0411	15.00	82.67	0.1017	0.0381
15.20	01.)0	0.1244	0.0429	15.25	81.31	0.1064	0.0414
15.00	01.UJ 80.50	0.1208	0.0449	15.50	80.00	0.1111	0.0449
15.50	00. <i>32</i> 80.00	0.1391	0.0409	15./5	/8./3	0.1154	0.0489
15.00	00.00 70.40	0.1414	0.0490	16.00	77.50	0.1199	0.0529
15 70	79.47 78.98	0.143/	0.0510	16.25	/6.31	0.1242	0.0575
15.80	70.20	0.1400	0.0554	16.50	/5.15	0.1285	0.0625
1.00	/ 0.40	0.1402	0.0774	16./5	/4.03	0.1324	0.0683

(Table continued)

Research Article

Vol. 61, No. 8 / 10 March 2022 / Applied Optics 2075

λ/nm	bv/eV	δ	β	λ/nm
17.00	72.94	0.1361	0.0739	19.75
17.25	71.88	0.1397	0.0799	20.00
17.50	70.86	0.1433	0.0862	<u>о</u> т
17.75	69.86	0.1463	0.0926	Q. Ia
18.00	68.89	0.1491	0.0998	λ/nm
18.25	67.95	0.1514	0.1066	10.00
18.50	67.03	0.1535	0.1140	10.00
18.75	66.13	0.1553	0.1205	10.29
19.00	65.26	0.1566	0.1277	10.50
19.25	64.42	0.1571	0.1359	11.00
19.50	63.59	0.1578	0.1426	11.00
19.75	62.78	0.1576	0.1506	11.29
20.00	62.00	0.1574	0.1570	11.50
 DD /T				12.00
P. Kula ₃				12.00
λ/nm	b ν/eV	δ	β	12.20
10.00	124.00	0.0278	0.0219	12.30
10.25	120.98	0.0294	0.0221	12.40
10.50	118.10	0.0311	0.0224	12.50
10.75	115.35	0.0329	0.0227	12.60
11.00	112.73	0.0348	0.0232	12.75
11.25	110.22	0.0368	0.0236	13.00
11.50	107.83	0.0389	0.0241	13.25
11.75	105.53	0.0411	0.0246	13.50
12.00	103.33	0.0434	0.0251	13.75
12.10	102.48	0.0443	0.0253	14.00
12.20	101.64	0.0454	0.0256	14.25
12.30	100.81	0.0461	0.0261	14.50
12.40	100.00	0.0471	0.0262	14.75
12.50	99.20	0.0482	0.0265	15.00
12.60	98.41	0.0491	0.0267	15.25
12.75	97.25	0.0507	0.0271	15.50
13.00	95.38	0.0534	0.0278	15.75
13.25	93.58	0.0563	0.0285	16.00
13.50	91.85	0.0593	0.0295	16.25
13.75	90.18	0.0626	0.0305	16.50
14.00	88.57	0.0658	0.0317	16.75
14.25	87.02	0.0693	0.0330	17.00
14.50	85.52	0.0728	0.0344	17.25
14.75	84.07	0.0765	0.0360	17.50
15.00	82.67	0.0803	0.0378	17.75
15.25	81.31	0.0841	0.0399	18.00
15.50	80.00	0.0878	0.0421	18.25
15.75	78.73	0.0917	0.0446	18.50
16.00	77.50	0.0955	0.0472	18.75
16.25	76.31	0.0996	0.0502	19.00
16.50	75.15	0.1035	0.0533	19.25
16.75	74.03	0.1074	0.0568	19.50
17.00	72.94	0.1113	0.0604	19.75
17.25	71.88	0.1148	0.0640	20.00
17.50	70.86	0.1182	0.0682	R TARN
17.75	69.86	0.1218	0.0726	R. Iabiv
18.00	68.89	0.1251	0.0771	λ/nm
18.25	67.95	0.1283	0.0818	10.00
18.50	67.03	0.1318	0.0873	10.10
18.75	66.13	0.1344	0.0925	10.20
19.00	65.26	0.1374	0.0983	10.30
19.25	64.42	0.1398	0.1040	10.40
19.50	63.59	0.1420	0.1101	

λ/nm	bv/eV	δ	β
19.75	62.78	0.1443	0.1163
20.00	62.00	0.1458	0.1228
O. Ta			
<u> </u>	L. V	2	Q
λ/IIII	nviev	0	ρ
10.00	124.00	0.0233	0.0259
10.25	120.98	0.0244	0.0264
10.50	118.10	0.0256	0.0269
10.75	115.35	0.0269	0.0274
11.00	112.73	0.0283	0.0279
11.25	110.22	0.0299	0.0283
11.50	107.83	0.0315	0.0288
11.75	105.53	0.0331	0.0294
12.00	103.33	0.0348	0.0300
12.10	102.48	0.0355	0.0302
12.20	101.64	0.0361	0.0305
12.30	100.81	0.0368	0.0307
12.40	100.00	0.0375	0.0310
12.50	99.20	0.0382	0.0313
12.60	98.41	0.0390	0.0315
12.75	97.25	0.0401	0.0318
13.00	95.38	0.0421	0.0324
13.25	93.58	0.0441	0.0329
13.50	91.85	0.0463	0.0335
13.75	90.18	0.0486	0.0341
14.00	88.57	0.0511	0.0348
14.25	87.02	0.0537	0.0355
14.50	85.52	0.0564	0.0364
14.75	84.07	0.0593	0.0373
15.00	82.67	0.0623	0.0383
15.25	81.31	0.0654	0.0394
15.50	80.00	0.0685	0.0406
15.75	78.73	0.0719	0.0420
16.00	77.50	0.0754	0.0435
16.25	76.31	0.0790	0.0451
16.50	75.15	0.0827	0.0470
16.75	74.03	0.0864	0.0490
17.00	72.94	0.0901	0.0513
17.25	71.88	0.0940	0.0538
17.50	70.86	0.0980	0.0564
17.75	69.86	0.1018	0.0592
18.00	68.89	0.1058	0.0623
18.25	67.95	0.1100	0.0657
18.50	67.03	0.1141	0.0693
18.75	66.13	0.1185	0.0732
19.00	65.26	0.1222	0.0775
19.25	64.42	0.1265	0.0820
19.50	63.59	0.1304	0.0870
19.75	62.78	0.1347	0.0921
20.00	62.00	0.1383	0.0978
R. TaBN			
λ/nm	bv/eV	δ	β
10.00	124.00	0.0247	0.0234
10.10	122.77	0.0251	0.0237
10.20	121.57	0.0257	0.0238
10.30	120.39	0.0261	0.0239
10.40	119.23	0.0267	0.0239
	11/.40	0.020/	5.0237

(Table continued)

λ/nm	hv/eV	δ	β	λ/nm	hv/eV	δ	β
10.50	118.10	0.0271	0.0241	16.40	75.61	0.0813	0.0440
10.60	116.98	0.0278	0.0242	16.50	75.15	0.0829	0.0445
10.70	115.89	0.0282	0.0243	16.60	74.70	0.0837	0.0453
10.80	114.81	0.0291	0.0245	16.70	74.25	0.0850	0.0462
10.90	113.76	0.0296	0.0248	16.80	73.81	0.0867	0.0469
11.00	112.73	0.0303	0.0248	16.90	73.37	0.0879	0.0473
11.20	110.71	0.0315	0.0250	17.00	72.94	0.0892	0.0483
11.30	109.73	0.0322	0.0252	17.10	72.51	0.0902	0.0487
11.40	108.77	0.0331	0.0256	17.30	71.68	0.0939	0.0506
11.50	107.83	0.0337	0.0263	17.40	71.26	0.0954	0.0514
11.60	106.90	0.0341	0.0260	17.50	70.86	0.0972	0.0525
11.70	105.98	0.0353	0.0264	17.60	70.45	0.0985	0.0531
11.80	105.08	0.0356	0.0264	17.70	70.06	0.1001	0.0542
11.90	104.20	0.0364	0.0268	17.80	69.66	0.1019	0.0554
12.00	103.33	0.0372	0.0271	17.90	69.27	0.1032	0.0562
12.10	102.48	0.0380	0.0273	S. TaTeN			
12.20	101.64	0.0388	0.0277		1 / 17	0	0
12.30	100.81	0.0395	0.0280	λ/nm	bv/eV	δ	β
12.40	100.00	0.0402	0.0283	10.00	124.00	0.0279	0.0115
12.50	99.20	0.0410	0.0285	10.20	121.57	0.0293	0.0126
12.60	98.41	0.0418	0.0289	10.40	119.23	0.0307	0.0138
12.70	97.64	0.0426	0.0291	10.60	116.98	0.0320	0.0153
12.80	96.88	0.0434	0.0294	10.80	114.81	0.0334	0.0169
12.90	96.12	0.0443	0.0298	11.00	112.73	0.0347	0.0188
13.00	95.38	0.0451	0.0301	11.20	110.71	0.0360	0.0209
13.10	94.66	0.0460	0.0304	11.40	108.77	0.0369	0.0232
13.20	93.94	0.0468	0.0307	11.60	106.90	0.0376	0.0255
13.30	93.23	0.0477	0.0310	11.80	105.08	0.0381	0.0280
13.40	92.54	0.0486	0.0314	12.00	103.33	0.0384	0.0304
13.50	91.85	0.0495	0.0318	12.20	101.64	0.0384	0.0326
13.60	91.18	0.0505	0.0321	12.40	100.00	0.0383	0.0346
13.70	90.51	0.0514	0.0325	12.60	98.41	0.0381	0.0365
13.80	89.86	0.0524	0.0329	12.80	96.88	0.0379	0.0382
13.90	89.21	0.0533	0.0332	13.00	95.38	0.0375	0.0399
14.00	88.57	0.0540	0.0335	13.20	93.94	0.0371	0.0416
14.10	87.94	0.0551	0.0338	13.40	92.54	0.0367	0.0431
14.20	87.32	0.0560	0.0342	13.60	91.18	0.0361	0.0445
14.30	86.71	0.0571	0.0346	13.80	89.86	0.0355	0.0457
14.40	86.11	0.0580	0.0350	14.00	88.57	0.0347	0.0466
14.50	85.52	0.0591	0.0353	14.20	87.32	0.0340	0.0474
14.60	84.93	0.0601	0.0357	14.40	86.11	0.0334	0.0482
14./0	84.35	0.0609	0.0360	14.60	84.93	0.0330	0.0487
14.80	83.78	0.0620	0.0364	14.80	83.78	0.0327	0.0495
14.90	83.22	0.0631	0.036/	15.00	82.67	0.0325	0.0503
15.00	82.67	0.0641	0.03/1	15.20	81.58	0.0324	0.0510
15.10	82.12	0.0654	0.0376	15.40	80.52	0.0322	0.0521
15.20	81.58	0.0662	0.03/9	15.60	79.49	0.0320	0.0525
15.30	81.05	0.06/4	0.0384	15.80	78.48	0.0315	0.0537
15.40	80.52	0.0685	0.0389	16.00	77.50	0.0311	0.0546
15.50	80.00	0.0700	0.0392	16.20	76.54	0.0305	0.0550
15.60	79.49	0.0709	0.0397	16.40	75.61	0.0301	0.0552
15./0	/8.98	0.0723	0.0403	16.60	74.70	0.0297	0.0553
15.80	/8.48	0.0738	0.0407	16.80	73.81	0.0293	0.0557
15.90	77.99	0.0743	0.0410	17.00	72.94	0.0291	0.0558
16.00	//.50	0.0756	0.0418	17.20	72.09	0.0290	0.0556
16.10	//.02	0.0773	0.0422	17.40	71.26	0.0291	0.0558
16.20	/6.54	0.0780	0.0428	17.60	70.45	0.0293	0.0554
10.30	/6.0/	0.0800	0.0434	17.80	69.66	0.0296	0.0551

S. TaTeN

λ/nm	bv/eV	δ	β
18.00	68.89	0.0301	0.0549
18.20	68.13	0.0308	0.0546
18.40	67.39	0.0317	0.0543
18.60	66.67	0.0327	0.0542
18.80	65.96	0.0337	0.0544
19.00	65.26	0.0348	0.0546
19.20	64.58	0.0359	0.0550
19.40	63.92	0.0369	0.0557
19.60	63.27	0.0380	0.0560
19.80	62.63	0.0391	0.0571

Funding. Horizon 2020 Framework Programme (20IND04, 662338, 783247).

Acknowledgment. We thank the engineers of the EUV radiometry group at PTB Berlin for their support during the measurements, especially Christian Laubis, Christian Buchholz, Christian Stadelhoff, Jana Puls, Heiko Mentzel, Anja Babuschkin, and Ayhan Babalik. The authors acknowledge that this project has received funding from the Electronic Component Systems for European Leadership Joint Undertaking under grant agreement 662338–SeNaTe and 783247–TAPES3, as well as from the EMPIR programme 20IND04 ATMOC. These Joint Undertakings receive support from the European Union's Horizon 2020 research and innovation program along-side the Netherlands, France, Belgium, Germany, Czech Republic, Austria, Hungary, and Israel.

Disclosures. The authors declare no conflicts of interest.

Data availability. Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

REFERENCES

- V. Luong, V. Philipsen, E. Hendrickx, K. Opsomer, C. Detavernier, C. Laubis, F. Scholze, and M. Heyns, "Ni-Al alloys as alternative EUV mask absorber," Appl. Sci. 8, 521 (2018).
- V. Luong, V. Philipsen, K. Opsomer, J. Rip, E. Hendrickx, M. Heyns, C. Detavernier, C. Laubis, and F. Scholze, "Assessing stability of metal tellurides as alternative photomask materials for extreme ultraviolet lithography," J. Vac. Sci. Technol. B 37, 061607 (2019).
- M. Wu, D. Thakare, J.-F. de Marneffe, P. Jaenen, L. Souriau, K. Opsomer, J.-P. Soulié, A. Erdmann, H. Mesilhy, P. Naujok, M. Foltin, V. Soltwisch, Q. Saadeh, and V. Philipsen, "Study of novel EUVL mask absorber candidates," J. Micro/Nanopattern. Mater. Metrol. 20, 021002 (2021).
- M. Wu, J.-F. de Marneffe, K. Opsomer, C. Detavernier, A. Delabie, P. Naujok, Ö. Caner, A. Goodyear, M. Cooke, Q. Saadeh, V. Soltwisch, F. Scholze, and V. Philipsen, "Characterization of Ru(4-x)Ta(x) (x = 1, 2, 3) alloy as material candidate for EUV low-n mask," Micro Nano Eng. 12, 100089 (2021).
- B. Wu and A. Kumar, "Extreme ultraviolet lithography: a review," J. Vac. Sci. Technol. B 25, 1743–1761 (2007).
- B. Wu and A. Kumar, "Extreme ultraviolet lithography and three dimensional integrated circuit–a review," Appl. Phys. Rev. 1, 011104 (2014).
- J. S. Kim and J. Ahn, "Mask materials and designs for extreme ultra violet lithography," Electron. Mater. Lett. 14, 533–547 (2018).
- 8. V. Bakshi, EUV Lithography, 2nd ed. (SPIE, 2018).
- C. van Lare, F. Timmermans, and J. Finders, "Mask-absorber optimization: the next phase," J. Micro/Nanolithogr. MEMS MOEMS 19, 1 (2020).
- B. L. Henke, E. Gullikson, and J. Davis, "X-ray interactions: photoabsorption, scattering, transmission and reflection E = 50-30,000 eV, Z = 1-92," At. Data Nucl. Data Tables 54, 181–342 (1993).

- R. Soufli and E. M. Gullikson, "Optical constants of materials for multilayer mirror applications in the EUV/soft x-ray region," Proc. SPIE 3113, 222–229 (1997).
- L. G. Parratt, "Surface studies of solids by total reflection of X-rays," Phys. Rev. 95, 359 (1954).
- R. Müller, S. Yulin, P. Naujok, N. Kaiser, and A. Tünnermann, "Optical properties and oxidation resistance of different transition metals for soft x-ray and EUV applications," Thin Solid Films 624, 1–6 (2017).
- C. Tarrio, R. N. Watts, T. B. Lucatorto, J. M. Slaughter, and C. M. Falco, "Optical constants of in situ-deposited films of important extreme-ultraviolet multilayer mirror materials," Appl. Opt. 37, 4100–4104 (1998).
- H. Kiessig, "Untersuchungen zur totalreflexion von Röntgenstrahlen," Ann. Phys. (Berlin) 402, 715–768 (1931).
- M. Foster, M. Stamm, and G. Reiter, "X-ray reflectometer for study of polymer thin films and interfaces," Vacuum 41, 1441–1444 (1990).
- E. Chason and T. Mayer, "Thin film and surface characterization by specular x-ray reflectivity," Crit. Rev. Solid State Mater. Sci. 22, 1–67 (1997).
- M. Bass, C. DeCusatis, J. Enoch, V. Lakshminarayanan, G. Li, C. Macdonald, V. Mahajan, and E. Van Stryland, *Handbook of Optics*, 3rd ed. (McGraw-Hill, Inc., 2009), Vol. I: Geometrical and physical optics, polarized light, components and instruments.
- L. Nevot and P. Croce, "Caractérisation des surfaces par réflexion rasante de rayons X. Application à l'étude du polissage de quelques verres silicates," Rev. Phys. Appl. 15, 761–779 (1980).
- G. Vignaud and A. Gibaud, "REFLEX: a program for the analysis of specular x-ray and neutron reflectivity data," J. Appl. Crystallogr. 52, 201–213 (2019).
- H. Fujiwara, Spectroscopic Ellipsometry: Principles and Applications (Wiley, 2007).
- J. J. G. Perez and R. Ossikovski, *Polarized Light and the Mueller* Matrix Approach (CRC Press, 2016).
- J. Jaiswal, S. Mourya, G. Malik, S. Chauhan, A. Sanger, R. Daipuriya, M. Singh, and R. Chandra, "Determination of optical constants including surface characteristics of optically thick nanostructured Ti films: analyzed by spectroscopic ellipsometry," Appl. Opt. 55, 8368–8375 (2016).
- F. Scholze, J. Tümmler, and G. Ulm, "High-accuracy radiometry in the EUV range at the PTB soft x-ray beamline," Metrologia 40, S224 (2003).
- F. Scholze, C. Laubis, C. Buchholz, A. Fischer, S. Ploeger, F. Scholz, H. Wagner, and G. Ulm, "Status of EUV reflectometry at PTB," Proc. SPIE 5751, 749–758 (2005).
- T. Uno and K. Hayashi, "Reflective mask blank for EUV lithography and process for producing the same," U.S. patent 8,956,787 B2 (February 17, 2015).
- N. Koster, B. Mertens, R. Jansen, A. Van De Runstraat, F. Stietz, M. Wedowski, H. Meiling, R. Klein, A. Gottwald, F. Scholze, R. Vissere, M. Kurte, P. Zalme, E. Louis, and A. Yakshin, "Molecular contamination mitigation in EUVL by environmental control," Microelectron. Eng. 61, 65–76 (2002).
- C. Zhu, R. H. Byrd, P. Lu, and J. Nocedal, "Algorithm 778: L–BFGS– B: Fortran subroutines for large–scale bound–constrained optimization," ACM Trans. Math. Softw. 23, 550–560 (1997).
- R. Storn and K. Price, "Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces," J. Global Optim. 11, 341–359 (1997).
- P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J. van der Walt, M. Brett, J. Wilson, K. J. Millman, N. Mayorov, A. R. J. Nelson, E. Jones, R. Kern, E. Larson, C. J. Carey, I. Polat, Y. Feng, E. W. Moore, J. VanderPlas, D. Laxalde, J. Perktold, R. Cimrman, I. Henriksen, E. A. Quintero, C. R. Harris, A. M. Archibald, A. H. Ribeiro, F. Pedregosa, and P. van Mulbregt, and SciPy 1.0 Contributors, "SciPy 1.0: fundamental algorithms for scientific computing in Python," Nat. Methods 17, 261–272 (2020).
- F. Grønvold, H. Haraldsen, and A. Kjekshus, "On the sulfides, selenides and tellurides of platinum," Acta Chem. Scand 14, 1879–1893 (1960).
- D. L. Windt, W. C. Cash, M. Scott, P. Arendt, B. Newnam, R. Fisher, and A. Swartzlander, "Optical constants for thin films of Ti, Zr, Nb,

Mo, Ru, Rh, Pd, Ag, Hf, Ta, W, Re, Ir, Os, Pt, and Au from 24 Å to 1216 Å," Appl. Opt. **27**, 246–278 (1988).

- N. Pauly, F. Yubero, and S. Tougaard, "Optical properties of molybdenum in the ultraviolet and extreme ultraviolet by reflection electron energy loss spectroscopy," Appl. Opt. 59, 4527–4532 (2020).
- I. Diel, J. Friedrich, C. Kunz, S. Di Fonzo, B. Müller, and W. Jark, "Optical constants of float glass, nickel, and carbon from soft-x-ray reflectivity measurements," Appl. Opt. 36, 6376–6382 (1997).
- R. Soufli, F. Delmotte, J. Meyer-Ilse, F. Salmassi, N. Brejnholt, S. Massahi, D. Girou, F. Christensen, and E. M. Gullikson, "Optical constants of magnetron sputtered Pt thin films with improved accuracy in the N-and O-electronic shell absorption regions," J. Appl. Phys. 125, 085106 (2019).
- L. J. Bissell, D. D. Allred, R. S. Turley, W. R. Evans, and J. E. Johnson, "Determining ruthenium's optical constants in the spectral range 11–14 nm," Proc. SPIE 5538, 84–91 (2004).
- M. Hosoya, N. Sakaya, O. Nozawa, Y. Shiota, K. Hamamoto, O. Nagarekawa, S. Shimojima, T. Shoki, T. Watanabe, and H. Kinoshita, "Evaluating the optical index of Ta and Ta-based absorbers for an extreme ultraviolet mask using extreme ultraviolet reflectometry," Jpn. J. Appl. Phys. 47, 4898 (2008).
- L. V. Rodríguez-de Marcos, S. M. Kalaiselvi, O. B. Leong, P. K. Das, M. B. Breese, and A. Rusydi, "Optical constants and absorption properties of Te and TeO thin films in the 13-14 nm spectral range," Opt. Express 28, 12922–12935 (2020).

- 39. C. T. Chantler, "Theoretical form factor, attenuation, and scattering tabulation for Z = 1–92 from E = 1–10 eV to E = 0.4–1.0 MeV," J. Phys. Chem. Ref. Data **24**, 71–643 (1995).
- C. T. Chantler, "Detailed tabulation of atomic form factors, photoelectric absorption and scattering cross section, and mass attenuation coefficients in the vicinity of absorption edges in the soft X-ray (Z = 30–36, Z = 60–89, E = 0.1 keV–10 keV), addressing convergence issues of earlier work," J. Phys. Chem. Ref. Data 29, 597–1056 (2000).
- A. Andrle, P. Hönicke, J. Vinson, R. Quintanilha, Q. Saadeh, S. Heidenreich, F. Scholze, and V. Soltwisch, "The anisotropy in the optical constants of quartz crystals for soft x-rays," J. Appl. Cryst. 54, 402–408 (2021).
- J. T. Neumann, P. Gräupner, W. Kaiser, R. Garreis, and B. Geh, "Mask effects for high-NA EUV: impact of NA, chief-ray-angle, and reduction ratio," Proc. SPIE 8679, 867915 (2013).
- T. W. Barbee, S. Mrowka, and M. C. Hettrick, "Molybdenum-silicon multilayer mirrors for the extreme ultraviolet," Appl. Opt. 24, 883–886 (1985).
- 44. J. Slaughter, D. W. Schulze, C. Hills, A. Mirone, R. Stalio, R. Watts, C. Tarrio, T. B. Lucatorto, M. Krumrey, P. Mueller, and C. M. Falco, "Structure and performance of Si/Mo multilayer mirrors for the extreme ultraviolet," J. Appl. Phys. **76**, 2144–2156 (1994).
- S. Rizvi, Handbook of Photomask Manufacturing Technology (CRC Press, 2018).