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Abstract
Purpose To create an accurate 3D reconstruction of the vascular trees, it is necessary to know the exact geometrical param-
eters of the angiographic imaging system. Many previous studies used vascular structures to estimate the system’s exact
geometry. However, utilizing interventional devices and their relative features may be less challenging, as they are unique in
different views. We present a semi-automatic self-calibration approach considering the markers attached to the interventional
instruments to estimate the accurate geometry of a biplane X-ray angiography system for neuroradiologic use.
Methods A novel approach is proposed to detect and segment the markers using machine learning classification, a combi-
nation of support vector machine and boosted tree. Then, these markers are considered as reference points to optimize the
acquisition geometry iteratively.
Results The method is evaluated on four clinical datasets and three pairs of phantom angiograms. The mean and standard
deviation of backprojection error for the catheter or guidewire before and after self-calibration are 7.13 ± 6.47 mm and
0.10± 0.06 mm, respectively. The mean and standard deviation of the 3D root-mean-square error (RMSE) for some markers
in the phantom reduced from 0.51 ± 0.11 to 0.31 ± 0.08 mm.
Conclusion A semi-automatic approach to estimate the accurate geometry of the C-arm system was presented. Results show
the reduction in the 2D backprojection error as well as the 3D RMSE after using our proposed self-calibration technique.
This approach is essential for 3D reconstruction of the vascular trees or post-processing techniques of angiography systems
that rely on accurate geometry parameters.

Keywords Self-calibration · Biplane X-ray imaging system · Perspective projection · Digital subtraction angiography (DSA)

B Negar Chabi
negar.chabi@isg.cs.ovgu.de

Domenico Iuso
Domenico.Iuso@uantwerpen.be

Oliver Beuing
obeu.rad@bernburg.ameos.de

Bernhard Preim
bernhard.preim@ovgu.de

Sylvia Saalfeld
sylvia.saalfeld@ovgu.de

1 Faculty of Computer Science, Otto-von-Guericke University
Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany

2 Imec-Vision Lab, University of Antwerp, Universiteitsplein 1,
2610 Antwerp, Belgium

3 Department of Radiology, AMEOS Hospital Bernburg,
Kustrenaer Str. 98, 06406 Bernburg, Germany

4 Forschungscampus STIMULATE, Magdeburg, Germany

Introduction

Biplane angiography has found increasing use in minimally
invasive endovascular interventions to treat different types
of aneurysms via coiling or stent placement. However, X-ray
projection images lack 3D information of the vascular struc-
tures. This canbe compensated forwith the 3D reconstruction
of vessels from a series (or a pair) of digital X-ray images.
3D reconstruction of the structures is of great clinical and
diagnostic importance, since it allows physicians to examine
the complex arterial network and to assess disease-induced
changes in the vascular structure in three dimensions.

To reliably reconstruct vascular structures, the exact
geometry of the system, including the rotation and translation
parameters that relate the two projection views, is needed
for each configuration of the C-arm. Although DICOM
image files contain angiographic system parameters, projec-
tion matrices directly derived from those parameters may not
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accurately describe the spatial relationship between the two
views. Some main reasons are [1]:

1. The recorded gantry parameters may not exactly define
the orientations of the C-arm

2. Unknown parameters such as skew parameter and prin-
cipal point coordinate

An accurate geometry description of the imaging system
is obtained through a calibration procedure using a spe-
cific calibration phantomorwith self-calibration approaches.
Although using a calibration phantom to determine the exact
geometry of the system provides reliable results, it is not well
suited for use in an intervention context due to its interference
with the already complex clinical setting [2,3].

On the other hand, self-calibration techniques, which use
a set of reference points to iteratively optimize the projection
parameters, impose a slight change to the clinical workflow.

Vascular features, such as bifurcations, are generally used
to estimate the geometrical parameters of an angiographic
system, while they may be too few or nonexistent in some
clinical conditions [3–5]. For instance, acute proximal total
coronary obstruction or carotid and vertebral vasculature
may have few or even no bifurcations or identifiable corre-
sponding points. Moreover, in calibration based on vascular
centerlines, the epipolar lines intersect more than one cen-
terline in most cases, which may increase the computations
[1,5,6]. Therefore, interventional tools, such as guidewires,
catheters, or stents with adhered radio-opaque markers, are
ideal for calculating the systemgeometry [2]. The uniqueness
of these devices may ease the finding of correspondences in
two views compared to the search for corresponding vascu-
lar features. Interventional devices have rarely been used to
optimize the system geometry [2].

We propose a semi-automatic approach to compute the
more accurate geometrical parameters of the system, consid-
ering corresponding catheter or guidewire opaquemarkers in
two views as reference points. The parameters are initialized

considering the gantry recorded information, and an iterative
nonlinear optimization is used to compute the parameters. To
detect and segment the adhered markers in projection views,
a novel machine learning approach is presented.

Material andmethods

The pipeline of our self-calibration approach is presented in
Fig. 1.

Data acquisition

Clinical biplane X-ray angiogramswere acquired in intracra-
nial endovascular interventions with an Artis Q (Siemens
Healthineers, Forchheim,Germany) to treat vascular patholo-
gies such as an aneurysm by coiling or stent placement.
Images of a vascular silicon phantom with an aneurysm-
like structure were acquired at 70 kV with the Siemens Artis
Zeego angiography system (SiemensHealthineers, Erlangen,
Germany).

Radio-opaquemarker detection and segmentation

Interventional instruments including catheters, guidewires,
stents and flow diverters are equipped with radio-opaque
markers that are typically made of gold and platinum to pro-
vide high visibility under fluoroscopy. We propose a novel
method composed of two successive classifications to local-
ize opaque markers. Therefore, they facilitate the detection
of these devices. The first classifier aims to detect probable
marker areas (Fig. 1). During this step, some marker regions
may be missed, and at the same time, many false positives
(FP) occur. We aim to select the classifier that has fewer false
negatives (FN). In the second step, our goal is to remove FPs
and to segment the markers.

To train the classification model for the 1st stage, four
patient datasets, which include 30 images in total, were used.

Probable marker area detec�on False posi�ves elimina�on & marker segmenta�on

Nonlinear
Op�miza�on

Geometrical system's parameter op�miza�on

Op�mal imaging system‘s geometry

Final Output:

Markers' centers

Recorded gantry parameters
&

Patch 
extrac�on

Feature 
extrac�on

Trained
MG-SVM

Output : Probable 
marker area patches

Feature 
extrac�on

Trained boosted
tree

Output : 
Segmented markers

Angiogram
images Pre-processing

Input:

Fig. 1 Our proposed self-calibration method pipeline includes marker detection and segmentation part plus the imaging system’s parameter
optimization
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Then, patches with a size of 20 × 20 pixels or 3.08 × 3.08
mmwere extracted from the normalized original 2D angiog-
raphy images and their respective pre-processed image. This
size is selected to include even the largest markers. For pre-
processing, a bottomhat filterwas used [7]. This filter enables
background removal while keeping dark objects which are
smaller than a specified structural element. Patches that
include thewholemarkers are consideredmarker areas,while
patches that include parts of the markers are discarded from
the training set, and all other remaining patches from other
parts of the image are considered as non-marker patches. The
whole number of patches used to train the first stage clas-
sifiers includes 310 marker patches and 100k non-marker
patches selected randomly among all non-marker patches.

From both the original and pre-processed images, 21 fea-
tures were extracted. Due to the blob-like structure of the
markers, blob analysis was used to generate features. Differ-
ence of Gaussian (DoG), Laplacian of Gaussian (LoG), and
two types of the Determinant of Hessian (DoH) were com-
puted for all the extracted patches [8]. The Hessian matrix
for the first type of DoH is the directional gradient of the
input, while the Hessian matrix for the second type of DoH
is the second derivative of the Gaussian of the input. Then,
their relative statistical features including mean and standard
deviation were computed. The average and standard devi-
ation value of the patches from the bottom hat image and
the average, minimum and standard deviation of the patches
extracted from the original image were added to the set of
features too.

Different types of classifiers and different combinations
including a variety of SVM, Naive Bayes, discriminant anal-
ysis, and Boosted Trees classifiers were trained [9]. Amongst
them, the combination of medium Gaussian support vec-
tor machine (MG-SVM) for the marker detection part and
Boosted Tree classifier for the segmentation stage provides
the best results in terms of different criteria such as FNs and
FPs.

For the first stage of classification, an MG-SVM model
was trained. During finding probable marker areas in the
first step, detected areas still contain many FPs. To get rid of
these areas, another segmentation-based classification step
was conducted. Detected patches from the previous stage
were used as input for the second stage (namely the segmenta-
tion stage). The same type of features was used in the second
stage to segment the markers and eliminate false positive
regions. Features were fed vector-wise into the classifica-
tion model (Fig. 2). A Boosted Tree classifier was trained
by manual annotation of the markers, and for some patches
to have a more accurate boundary for the markers, the mul-
tiplication of the thresholded original image patch and the
thresholded DoH type one patch was used as ground truth.
These thresholds were selected empirically. After segmenta-
tion, some areas that are no true markers, are still incorrectly

Fig. 2 Vector-wise input features for second classification stage (seg-
mentation)

segmented. Since the markers are necessarily located in the
vessels, the results are further constrained by considering
a vessel mask obtained by digital subtraction angiography
(DSA).

Prerequisites

Mathematical model of biplane angiography

X-ray angiographic acquisition is similar to the pinhole cam-
era model (Fig. 3). The difference is that in the angiographic
system, the image is magnified and not inverted. Projection
of a specific object point in space Xi onto the image plane is
μi = (ui , vi ) . In Fig. 3, (uc, vc) refers to the principal point
coordinate, SID and SOD denote the source to detector dis-
tance and the source to patient distance, respectively. Based
on the perspective projection model, the projection process
is represented as follows:

(xi , yi , zi )
T →

(
SI D · xi

zi
+ uc, SI D · yi

zi
+ vc

)T

= (ui , vi )
T (1)

If we consider 3D space points and 2D points on the image
plane in homogeneous coordinates as Xi = (xi , yi , zi , 1)T

and μi = (ui , vi , 1)T , respectively, then the above equation
can be represented in terms of projection matrix P for one
view as below:

μi = K [I | 0] Xi = PXi (2)
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Fig. 3 Angiographic projection
geometry and its mathematical
model [1]

K =
⎡
⎢⎣

SI D j
pu

SI D j
pv · s uc

0
SI D j
pv vc

0 0 1

⎤
⎥⎦

where I is a 3 × 3 identity matrix, 0 is a 3 × 1 zero vec-
tor, and K represents the intrinsic camera parameters. pu, pv
stand for image pixel spacing and s is the skew parameter.
When there are two angiographic views, the geometric rela-
tionship between these views can be defined in terms of a
3 × 3 rotation matrix R and a 3 × 1 translation vector T .
Finally, the projection of an object point Xi is defined as fol-
lows (if we consider the source position of the first projection
as the world origin):

x1,i = P1Xi = K1[I | 0]Xi

x2,i = P2Xi = K2[R | T ]Xi
(3)

where R and T are described as follows:

R = Rx (−β2)Ry(α2) · (Rx (−β1)Ry(α1))
−1 (4)

T = T2 − R · T1 (5)

Xi is computed by triangulation from two views, as described
in [10]:Cross-product is performedonEq. (3) to eliminate the
homogeneous scale factor, then we have x1,i ×P1Xi = 0 and
x2,i × P2Xi = 0. Then, e.g., for the first view, the resulting
equations are:

x(P3T
1 Xi ) − (P1T

1 Xi ) = 0

y(P3T
1 Xi ) − (P2T

1 Xi ) = 0

x(P2T
1 Xi ) − y(P1T

1 Xi ) = 0

(6)

Where x1 =
⎛
⎝x
y
1

⎞
⎠ , PiT

1 shows the i th row of P1. The above

equation is linear relative to Xi (Eq. (7)). As a result, if the
projection matrices and correspondences in the two images
are known, the space point Xi can be accurately determined
through these equations.

⎡
⎢⎢⎣

x P3T
1 − P1T

1

yP3T
1 − P2T

1

x P2T
1 − yP1T

1

⎤
⎥⎥⎦

︸ ︷︷ ︸
A

·Xi = 0 (7)

Iterative optimization algorithm

True correspondences,which are semi-automatically detected
as described in Sect. 2.2, are used to find the accurate geom-
etry of the system. Optimization is performed to determine
both intrinsic and extrinsic parameters. Parameter values
recorded by the system are used as initialization to start opti-
mization. Then, for the intrinsic matrix, the skew parameter
(s) is considered zero, and the principal point coordinate is
initialized as the width and height of the image

C j
2 and

R j
2 .

px j and py j refer to the image pixel spacing.
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K j , | j=1,2=

⎡
⎢⎢⎢⎣

SI D j
px j

s
C j
2

0
SI D j
py j

R j
2

0 0 1

⎤
⎥⎥⎥⎦ (8)

Initialization for the extrinsic parameters, including rotation
matrix R and translation vector T is as follows: Based on the
assumed coordinate system, rotation matrix and translation
vector are computed as follows:

R = Rx (−β2)Ry(α2) · (Rx (−β1)Ry(α1))
−1 (9)

T = T2 − R · T1 (10)

where α j , | j=1,2 refers to the LAO/RAO (left anterior
oblique, right anterior oblique) angle, the rotation along the
left, right-hand side of the patient and β j , | j=1,2 refers to the
CAU/CRA (caudal/cranial) rotation towards the patient for
the two views. The goal of optimization is to minimize a cost
function (Eq. (11)), here defined as the Euclidean distance
between the position of the true correspondences and the
backprojection of the 3D-reconstructed correspondences.

argmin
Pint ,Pext

f (Pint , Pext )

= argmin
Pint ,Pext

n∑
i=1

d(x1,i − x̂1,i )
2 + d(x2,i − x̂2,i )

2 (11)

where d denotes the Euclidean distance between two points.
x j,i and x̂ j,i , | j=1,2,i=1:n are the reference points (extracted
correspondences) and their relative backprojection of the 3D
reconstructed reference points in two views, respectively, and
n is the number of reference points. To minimize Eq. (11),
an optimization algorithm, which is well suited for nonlinear
least-square optimization, called the Levenberg–Marquardt
algorithm, was used [11].

Experimental results

In this section, the performance of our technique on routine
clinical angiograms and phantom angiograms is evaluated.
First, results of marker detection and segmentation for three
test sets are presented in Fig. 4.

During marker detection, the classifier most likely rec-
ognizes other marker-like structures such as the tip of the
catheter or guidewire, and the location where the catheter or
guidewire bends as marker areas leading to FPs. In the next
stage (third and sixth column of Fig. 4), to limit the FPs and
segment themarkers, another classifierwas trained.Different
types of classifiers with different combinations were trained
for both stages. Regions that were truly detected and seg-
mented are enclosed by a green circle (TPs), regions that are
wrongly detected and segmented as markers (FPs) are shown
inside red circles, and regions that are missed and wrongly

a1 c1 d1 e1 f1b1

a2 b2 c2 d2 e2 f2

a3 b3 c3 d3 e3 f3

Fig. 4 Results of marker detection and segmentation for test sets
1-3. Green, red and blue circles show the TPs, FPs, and FNs, respec-
tively. (a1–a3). Original 1st view with the markers inside green circles,
(b1–b3). Detected probable marker areas (1st view), (c1–c3). Marker

segmentation results (1st view), (d1–d3). Original 2nd view with the
markers inside green circles, (e1–e3). Detected probable marker areas
(2nd view), (f1–f3). Marker segmentation results for the 2nd view
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Table 1 Performance comparison of different classifiers for marker detection

Classifiers\Criteria TPR ( T P
T P+FN ) Precision( T P

T P+FP ) Miss rate ( FN
FN+T P ) FDR ( FP

FP+T P )

MG-SVM 0.65 0.56 0.34 0.44

C-SVM 0.72 0.25 0.27 0.74

Opt − N B1 0.81 0.01 0.18 0.98

RUSBT 0.90 0.02 0.09 0.97

BT 0.65 0.39 0.34 0.60

1Optimizable Naive Bayes (Opt-NB) Bold values indicates the best performance

Table 2 Performance comparison of different classifiers for marker segmentation

Classifiers\Criteria TPR ( T P
T P+FN ) Precision( T P

T P+FP ) Miss rate ( FN
FN+T P ) FDR ( FP

FP+T P )

MG-SVM 0.68 0.60 0.31 0.39

C-SVM 0.69 0.45 0.30 0.54

Opt-NB 0.94 0.21 0.05 0.78

RUSBT 0.86 0.41 0.13 0.58

BT 0.79 0.62 0.20 0.37

Bold values indicates the best performance

a1 b1 b2a2

a4 b4a3 b3

Fig. 5 Epipolar lines before and after optimization; epipolar lines with the same color with the cross sign are relative to each other (Set 1-4),
(a1–a4). Points and their relative epipolar lines before optimization, (b1–b4). Points and their relative epipolar lines after optimization

detected as non-marker (FNs) are enclosed by a blue circle.
All other parts of the image that are not segmented, are truly
classified as true negatives, which are not necessarily quan-
tified.

The overall results of six test sets (including nine images)
for some specific classifiers are listed in Tables 1 and 2 [12].
Amongst them, MG-SVM for the first classifier and BT for
the second classifier perform the best in terms of the highest
precision and lowest false discovery rate (FDR) (Tables 1

and 2). Therefore, a combination of MG-SVM and BT clas-
sifier was selected for the detection and segmentation part,
respectively.

The centers of connected components are used as ref-
erence points for the next step (geometrical parameter
optimization). The user corrects the results of segmentation
by confirming the true reference points and removing FPs.
Because the catheter and guidewire tip are almost identical
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Fig. 6 True correspondences backprojection before and after geometrical parameter optimization (Set 1-4), (a1–a4). 1st view before optimization,
(b1–b4). 1st view after optimization, (c1–c4). 2nd view before optimization, (d1–d4). 2nd view after optimization

to the markers, the method most likely detects these points
as well, which can be kept as true correspondences.

The performance of geometrical parameter optimization
is evaluated on four clinical sets (including three of test
sets and one of the training sets (mentioned as set 4) of
the first part (marker detection and segmentation)). Figure 5
shows epipolar lines before and after calibration for some
true correspondences (including markers or tip of catheter or
guidewire).

The epipolar constraint refers to the relationship between
the epipolar plane and the epipolar line. The epipolar plane
between two views is the plane passing through the point of
interest on one of the image planes and the two source posi-
tions. The epipolar line is the intersection of this plane and
another image plane. According to the epipolar constraint,
given a point in the first view, its projection on another view
must lie on its relative epipolar line on that view. As can be
seen, upon self-calibration, the epipolar lines intersect accu-
rately with the projected markers in the second view, while
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Table 3 Geometrical system
parameters before and after
self-calibration

Parameters Parameter values (Set 1) Parameter values (Set 2)

Before calibration After calibration Before calibration After calibration

α1
1 −22.90 −21.92 −5.90 −3.41

α1
2 −107.80 −108.77 −93.20 −95.60

β1
1 27.60 25.15 1.40 3.21

β1
2 −16.00 −15.66 −0.20 −3.64

SOD2
1 715.23 716.44 745.97 743.70

SOD2
2 750.00 748.84 749.99 752.25

SI D2
1 1189.00 1188.24 1026.00 1027.66

SI D2
2 1207.00 1207.73 1131.00 1129.35

1In degree
1In mm

Table 4 Computed error based
on Euclidean distance for the
markers (mm)

1st or 2nd projection Test set 1 Test set 2 Test set 3 Set 4

1st 2nd 1st 2nd 1st 2nd 1st 2nd

Before self-calibration 5.38 4.84 4.78 31.95 13.69 22.97 15.39 13.46

After self-calibration 0 0 0.02 0.16 0 0 0.24 0.20

before parameter optimization they have a distance to their
respective position, which is shown by crosses with the same
color.

To better evaluate how optimizing the geometrical param-
eters affects the 3D reconstruction, we provide the results
of backprojection for some known true correspondences
(including markers and the tip of catheter and guidewire)
in both views. As shown in Fig. 6, backprojections for true
correspondences before calibration do not well coincide with
their real position in both views, while after calibration their
backprojections coincide very well with their real projec-
tion. Green pluses refer to the true correspondences (ground
truth), and red pluses show the back projection of the 3D
reconstructed points by the initial parameters (before opti-
mization) and with the optimized parameter after calibration.

As a quantitative result, the distance error (in Euclidean
distance) between real positions of the known correspon-
dences and the backprojection of their relative computed 3D
reconstructed position is presented in Table 4. The results are
provided in mm.

Furthermore, Table 3 lists both the initial values for
some parameters to be optimized, such as (LAO/RAO angle,
CAUD/CRAN angle, SID and SOD for both projection
views) and their respective values after self-calibration. As
can be seen, parameters do not deviate a lot from their initial
values and the changes are sensible.

Figure 7 shows the results of backprojection for the
guidewire and catheter in projection views before and after
calibration. 100 equal distance points are considered on the
catheter or guidewire in the first view, and the correspond-
ing epipolar lines are drawn in the second view using the

initial and optimized parameters. Corresponding points of
the catheter or guidewire in the second view are selected
considering the proximity to the epipolar lines or the intersec-
tion with the epipolar lines as well as a moving order which
starts from a specific starting point and ends in a specific
point on the device (starting point and end point could be the
device tip and the attached marker, respectively). These cor-
respondences are used to reconstruct the device in 3D based
on the initial and optimized parameters. Then, the backpro-
jection of the 3D reconstructed device is computed, and a
polynomial is fitted to the computed backprojection points
to have the results in the form of the curve in both views.
Figure 7 indicates that the backprojection of the catheter or
guidewire after self-calibration coincides verywell with their
real projections. Furthermore, to better evaluate themethod’s
performance,RMSEbetween the real projectionof the device
and its backprojection before and after self-calibration is
shown in Table 5. We conclude that the optimization does
not only fit some limited reference points, but also works for
other structures in the image.

Tovalidate themethod in 3D space,weused three different
pairs of angiograms fromaphantomacquiredwithMeVisLab
with specific parameters [13].

Projection angles have been changed by ±1◦ (a slight
change that may occur in real cases as well) alternatively
to α1, α2, β1, β2 for a total of 8 different combinations.

Then, theRMSEbetween the ground truth coordinates and
the coordinates before and after self-calibration is computed
(Table 6).
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a1 c1 d1b1

a2 b2 d2c2

a3 b3 d3c3

a4 b4 c4 d4

Fig. 7 Backprojection of the catheter and guidewire before and after self-calibration, (a1–a4). 1st view before self-calibration, (b1–b4). 1st view
after self-calibration, (c1–c4). 2nd view before self-calibration, (d1–d4). 2nd view after self-calibration

Table 5 Computed error based
on Euclidean distance for the
catheter or guidewire (mm)

Test set 1 Test set 2 Test set 3 Set 4

Before self-calibration 1.16 5.94 17.97 3.47

After self-calibration 0.06 0.06 0.14 0.12

Table 6 3D error in mm. RMSE
between the ground truth and
the 3D reconstructed points
before and after self-calibration

Set 1 Set 2 Set 3

Before self-calibration 0.52 ± 0.13 0.64 ± 0.19 0.36 ± 0.10

After self-calibration 0.41 ± 0.14 0.34 ± 0.21 0.19 ± 0.20
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b3b1 b2

a1 a2 a3

Fig. 8 Comparison between ground truth epipolar lines, before self-
calibration (with deviated parameters) and after self-calibration, (a1–
a3). Comparison between ground truth epipolar lines and epipolar lines

before calibration, (b1–b3). Comparison between ground truth epipolar
lines and epipolar lines after calibration

Discussion

The 3D reconstruction of digital subtraction angiography
improves the safety of endovascular embolization of intracra-
nial aneurysms. The importance and value of 3D-DSA is
discussed in-depth in the study by Missler et al. [14]. In their
study, 3D-DSA was generated using rotational DSA and the
calculations are done based on calibrated images obtained
using several phantoms. In 89% of the cases, 3D-DSA pro-
vided additional information about the aneurysm anatomy
and 43% of these cases were better visualized on 3D-DSA
images than on standard DSA images.

We proposed a technique to calibrate the imaging system
using the adhered markers on the stent, catheter, guidewire,
or their tips as correspondences instead of vascular fea-
tures. We proposed a marker detection technique based on
machine learning, whichworkswell formarkers thatmay not
always be paired. Previous studies such as Schoonenberg et
al. [15] are specifically suitable for marker couple detection
in calibrated rotational angiography. Wang et al. [16] pro-
posed a technique to localize the balloon marker pair and the
guidewire between them with the aim of application for 3D
stent reconstruction. This method is suitable for pair marker
detection for balloon-mounted stents.

Therefore, for opaque markers that are not necessar-
ily pairwise like in our study, other techniques have to be
designed. Accordingly, in our previous study [8], we pro-
posed a general approach to detect stent and cathetermarkers.
The main differences between our previous and our current
approach, are as follows: different pre-processing techniques
were used, in the previous technique, adaptive thresholding
was used to detect probablemarker areas and its performance
highly depends on its sensitivity value, which finally nega-
tively affected the generalizability of the method. Then, to
differentiate marker areas from non-marker areas, classifica-
tion was used. While in the current approach, both detection
and segmentation were done using machine learning classi-
fication models.

According to Tables 1 and 2, MG-SVM for the first clas-
sifier and BT for the second stage perform the best in terms
of Precision and FDR, and at the same time, TPR pertains
at 65% and 79% for the first and second stage classification,
respectively. While other classifiers with higher TPR gener-
ate a high number of false positives, which is obvious based
on their precision and FDR value.

Most of the previous studies rely on bifurcation points
to self-calibrate the imaging system [3,5,17]. However, in
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some clinical situations, there may be a lack of or not
enough bifurcation points available to refine the system’s
geometrical parameters. Some studies utilized centerline cor-
responding to correct the systemgeometry,whichneeds exact
corresponding vessels or vessel branches to be specified in
different views [1,6].

Online calibration was implemented by Vachon et al. [2]
using elongated shaped instrumentations, such as a catheter
or guidewire inserted into the patient during treatment for
pulmonary stenosis. They used the segmented guidewire to
correct the correspondences in the 2nd view. Marked beads
were used to correct the epipolar lines in the 2nd projec-
tion. The beads are determined manually, and the guidewire
segmentation is corrected manually. The limitation of this
study is that elongated structure segmentation is a prerequi-
site, which needs to be corrected manually. Furthermore, the
marked beads were manually annotated.

If there are enough markers in addition to the tip of the
catheter and guidewire, these points can be considered as
reference points for modifying the recorded gantry param-
eters. Our proposed semi-automatic technique relies on the
markers attached to the guidewire or catheter to modify the
geometrical parameters of the system. This is very desirable
becausemarked guidewires, catheters or stents are frequently
used during intracranial endovascular interventions.

The proposed technique also improves accuracy in terms
of epipolar lines, which coincides accurately with the projec-
tion of the markers in the second view (Fig. 5). Furthermore,
the improved accuracy is confirmed by computing the
Euclidean distance of the markers with their projections
before (4.84–31.95 mm) and after self-calibration (0–.24
mm) (Table 4). The comparison of the projection of themark-
ers and the tip of catheter and guidewirewith the initial values
before and after self-calibration is well shown in Fig. 6. The
backprojection of the markers with the optimized parameters
coincides well with their real position in both views.

This improved accuracy is further confirmed for catheter
and guidewire, and it demonstrates that the optimization of
the parameters not only works for the markers, but also for
other objects in the projection images, the backprojection
error for the catheter and guidewire reduced from 7.13 ±
6.47 mm before self-calibration to 0.10 ± 0.06 mm after
self-calibration (Fig. 7 and Table 5).

Therefore, we expect that this approach also works for
other structures in the projections, such as vascular trees.

Validation in 3Dspacewas doneusing a phantom.Accord-
ing to the results in Table 6, it can be seen that the 3D RMSE
error reduced from [0.36−0.64] mmwith mean and STD of
0.51± 0.11 mm before self-calibration to [0.19− 0.41] mm
with mean and STD of 0.31±0.08 mm after self-calibration.

Furthermore, to visually assess the impact of self-
calibration, the epipolar lines before and after self-calibration
are drawn and compared with the ground truth epipolar lines

(Fig. 8). It is clear that before self-calibration there exists
deviation between the ground truth epipolar lines and epipo-
lar lines before calibration (some deviations are indicated
with black arrows) (Fig. 8 (a1-a3)), while this deviation is
clearly diminished after self-calibration (Fig. 8 (b1-b3)).

The total average processing time, excluding the time
needed for the confirmation of the markers for all three test
sets, was 20.01s.

One of the main limitations of our approach is that the
markers needed to be confirmed by the user and, in case of
false-negative, the user should select themarkerwhich causes
errors imposed by the user and may negatively affect the
accuracy of the method. In future work, we aim to alleviate
this problem by making it fully automatic.

Conclusion

This study presents a self-calibration approach for biplane
angiography using known correspondences in both views,
including the relative features of the interventional instru-
ment such as catheter and guidewire. The radio-opaque
markers attached to these devices as well as the tip of the
catheter and guidewire can be used as reference correspon-
dences to correct the geometrical parameters of the system.
To detect and segment the markers, a novel machine learn-
ing approach is proposed.An iterative nonlinear optimization
algorithm is employed to optimize the projection parameters.
Geometrical information provided in the DICOM header is
considered as a reasonable initialization for the optimization
process. This approach corrects the geometrical parameters
of the system with a slight change to the regular clinical
workflow.

Future stepsmay include considering not only the adhered
opaque markers or the device tip, but also the centerlines of
the catheter and guidewire to correct the system geometry
in case of insufficient correspondences or insufficient accu-
racy. Furthermore, the current approach could be improved
to a fully automatic self-calibration if the marked catheter or
guidewire is correctly segmented. Moreover, this approach
may be extended for other applications, including other
endovascular procedures with the presence of marked inter-
vention instruments.
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