
SoftwareX 17 (2022) 100971

J
I

h
2

Contents lists available at ScienceDirect

SoftwareX

journal homepage: www.elsevier.com/locate/softx

Original software publication

tsflex: Flexible time series processing & feature extraction
onas Van Der Donckt ∗,1, Jeroen Van Der Donckt1, Emiel Deprost, Sofie Van Hoecke
DLab, Ghent University - imec, Technologiepark Zwijnaarde 126, 9052 Zwijnaarde, Belgium

a r t i c l e i n f o

Article history:
Received 15 September 2021
Received in revised form 16 December 2021
Accepted 21 December 2021

Keywords:
Time series
Processing
Feature extraction
Machine learning
Python

a b s t r a c t

Time series processing and feature extraction are crucial and time-intensive steps in conventional
machine learning pipelines. Existing packages are limited in their applicability, as they cannot cope
with irregularly-sampled or asynchronous data and make strong assumptions about the data format.
Moreover, these packages do not focus on execution speed and memory efficiency, resulting in
considerable overhead. We present tsflex, a Python toolkit for time series processing and feature
extraction, that focuses on performance and flexibility, enabling broad applicability. This toolkit
leverages window-stride arguments of the same data type as the sequence-index, and maintains the
sequence-index through all operations. tsflex is flexible as it supports (1) multivariate time series,
(2) multiple window-stride configurations, and (3) integrates with processing and feature functions
from other packages, while (4) making no assumptions about the data sampling regularity, series
alignment, and data type. Other functionalities include multiprocessing, detailed execution logging,
chunking sequences, and serialization. Benchmarks show that tsflex is faster and more memory-
efficient compared to similar packages, while being more permissive and flexible in its utilization.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

Code metadata

Current code version v0.2.3
Permanent link to code/repository used for this code version https://github.com/ElsevierSoftwareX/SOFTX-D-21-00171
Code Ocean compute capsule Not available
Legal Code License MIT
Code versioning system used git
Software code languages, tools, and services used Python3.7+
Compilation requirements, operating environments & dependencies poetry is used for dependency management, package installation, and

publishing to PyPi. The poetry-toml file is used to install the required
packages.

If available Link to developer documentation/manual https://predict-idlab.github.io/tsflex
Support email for questions jonvdrdo.vanderdonckt@ugent.be

Software metadata

Current software version v0.2.3
Permanent link to executables of this version https://github.com/predict-idlab/tsflex
Legal Software License MIT
Computing platforms/Operating Systems Linux, OS X, Microsoft Windows
Installation requirements & dependencies Python3.7+
If available, link to user manual - if formally published include a reference to
the publication in the reference list

https://predict-idlab.github.io/tsflex

Support email for questions jonvdrdo.vanderdonckt@ugent.be

∗ Corresponding author.
E-mail address: jonvdrdo.vanderdonckt@ugent.be (Jonas Van Der Donckt).

1. Motivation and significance

Data-driven modelling and forecasting of time series is a major

1 Contributed equally. topic of interest in academic research and industrial applications,
ttps://doi.org/10.1016/j.softx.2021.100971
352-7110/© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.softx.2021.100971
http://www.elsevier.com/locate/softx
http://www.elsevier.com/locate/softx
http://crossmark.crossref.org/dialog/?doi=10.1016/j.softx.2021.100971&domain=pdf
http://creativecommons.org/licenses/by/4.0/
https://github.com/ElsevierSoftwareX/SOFTX-D-21-00171
https://github.com/python-poetry/poetry
https://pypi.org/project/tsflex/
https://github.com/predict-idlab/tsflex/blob/main/pyproject.toml
https://github.com/predict-idlab/tsflex/blob/main/pyproject.toml
https://github.com/predict-idlab/tsflex/blob/main/pyproject.toml
https://github.com/predict-idlab/tsflex/blob/main/pyproject.toml
https://github.com/predict-idlab/tsflex/blob/main/pyproject.toml
https://github.com/predict-idlab/tsflex/blob/main/pyproject.toml
https://github.com/predict-idlab/tsflex/blob/main/pyproject.toml
https://github.com/predict-idlab/tsflex/blob/main/pyproject.toml
https://github.com/predict-idlab/tsflex/blob/main/pyproject.toml
https://github.com/predict-idlab/tsflex/blob/main/pyproject.toml
https://github.com/predict-idlab/tsflex/blob/main/pyproject.toml
https://github.com/predict-idlab/tsflex/blob/main/pyproject.toml
https://github.com/predict-idlab/tsflex/blob/main/pyproject.toml
https://github.com/predict-idlab/tsflex/blob/main/pyproject.toml
https://github.com/predict-idlab/tsflex/blob/main/pyproject.toml
https://predict-idlab.github.io/tsflex
mailto:jonvdrdo.vanderdonckt@ugent.be
https://github.com/predict-idlab/tsflex
https://predict-idlab.github.io/tsflex
mailto:jonvdrdo.vanderdonckt@ugent.be
mailto:jonvdrdo.vanderdonckt@ugent.be
https://doi.org/10.1016/j.softx.2021.100971
http://creativecommons.org/licenses/by/4.0/

Jonas Van Der Donckt, Jeroen Van Der Donckt, Emiel Deprost et al. SoftwareX 17 (2022) 100971

b
e
d

(
o
r
r
t
(
t
s

e
n
a
o
s
m
t
k
f
d
h
t
s
m
i
f
s
t

p
w
f

(
o
s
a
a
a
o
s

o
s
e

2

a

eing a key component in various domains such as climate mod-
lling [1], patient monitoring [2], industrial maintenance [3], and
ecision-making in finance [4].
Two traditional steps in machine learning on time series are

pre)processing and feature extraction, often performed in this
rder. Processing is concerned with cleaning or transforming the
aw data, e.g., filtering noise, detrending, clipping outliers, and
esampling. Feature extraction aims to extract a set of characteris-
ics, i.e., the features, with the intention of constructing a relevant
lower-dimensional) representation of the data. Both steps are
ime-consuming and rather complex, yet they are crucial for a
uccessful machine learning pipeline [5].
In many cases the time series measurements might not nec-

ssarily be observed at a regular rate or could be unsynchro-
ized [6]. Moreover, the presence or absence of measurements
nd the varying sampling rate may carry information on its
wn [7]. Unfortunately, current Python time series packages
uch as seglearn [8], tsfresh [9], TSFEL [10], and kats [11]
ake strong assumptions about the sampling rate regularity and

he alignment of modalities. Furthermore, to the best of our
nowledge, no library today supports multiple strided-window
eature extraction, varying data types (e.g., handling categorical
ata), and chunking of (multiple) time series. These observations
ighlight the need for a flexible processing and feature extrac-
ion package. Therefore, we present tsflex, a package designed
olely concerning these two steps, as it aims to get the funda-
entals right. tsflex offers, next to custom functions, seamless

ntegration with other data science packages, e.g., processing or
eature functions from libraries such as NumPy [12], SciPy [13],
eglearn [8], tsfresh [9], and TSFEL [10], or machine-learning
oolkits like scikit-learn [14].
tsflex can be employed from prototyping machine learning

ipelines to deploying real-world time series projects. Currently,
e are amongst others using tsflex in real-time data pipelines

or the mBrain study [15]. Here tsflex is used for processing
and feature extraction of raw sensor data streams in which gaps,
irregular sampling rates and large data chunks occur.

The remainder of this paper is as follows. In Section 2 we
elaborate on the software and its functionality. Next on, Section 3
provides an illustrative example. Section 4 stresses the impact of
tsflex by both positioning our toolkit among existing libraries
and benchmarking these libraries against tsflex. Finally, we end
with a conclusion in Section 5.

2. Software description

tsflex is a Python package that leverages (under the hood)
efficient NumPy [12] data operations on pandas [16] data for
pre)processing and extracting features from time series. We
pted for pandas data (either pd.DataFrame or pd.Series)
ince this is a convenient format for sequence data, and supports
mongst others sequence indexing, integrated column names,
nd various data types. A direct result of complying with the
vailable pandas data types is that tsflex allows performing
perations on numerical, categorical, boolean, time based, and
tring-like data.
Users can install tsflex by using pip; pip install tsflex,

r conda; conda install -c conda-forge tsflex. Once in-
talled, our documentation together with various examples should
nable the user to apply this toolkit for their purpose.

.1. Software architecture

tsflex consists of two separated entities, i.e., a processing
nd a feature extraction submodule. The following subsections

Fig. 1. UML diagram of the (a) tsflex.processing and (b)
tsflex.features submodule.

describe the architecture of both submodules, visually aided by
Fig. 1.

Remark that these two submodules work on a different scope.
The processing submodule works on full sequences, i.e., full scope,
whereas the feature extraction submodule works on strided win-
dows, i.e., restricted scope.

2.1.1. Processing submodule
Fig. 1(a) depicts the main components of the

tsflex.processing submodule. The processing functionality is
provided by the SeriesPipeline which contains one or multi-
ple SeriesProcessor steps. The processing steps are applied
sequentially on the data that is passed to the processing pipeline.
This sequential order is crucial as the processing operations can
create new series or update existing ones, which can be used in
the succeeding steps, e.g., first applying a filter-processor and in
the next steps decomposing that filtered signal. We summarize
the objective of each component:

• SeriesPipeline: serves as a pipeline, withholding the
to-be-sequentially-applied processing steps.

• SeriesProcessor: an instance of this class describes a
processing step.
A processing step is defined by a function (the Callable
processing-function), series_names (the name(s) of the
series that should be processed), and **kwargs (optional
keyword arguments for function).

2.1.2. Feature extraction submodule
Fig. 1(b) depicts the tsflex.features components. The fea-

ture extraction functionality is provided by a FeatureCollec-
tion that contains one or multiple FeatureDescriptors. The
features are calculated (possibly in parallel) on the data that is
passed to the feature collection. We describe the objective of each
component:

• FeatureCollection: serves as a registry, withholding the
to-be-calculated features.

• FeatureDescriptor: an instance of this class describes a
feature.
A feature is defined by a series_name (the name(s) of
the input series on which the feature-function will oper-
ate), function (the Callable feature-function), and window
and stride (the sequence-index based window and stride
range).

• FuncWrapper: a wrapper around Callable functions, in-
tended for advanced feature-function configuration (e.g.,
customizing feature output-names, passing **kwargs to
feature functions), and defining the function input data-type
(i.e., numpy.array or pandas.Series).
2

https://pandas.pydata.org/pandas-docs/stable/user_guide/basics.html#dtypes
https://pypi.org/project/tsflex/
https://anaconda.org/conda-forge/tsflex
https://predict-idlab.github.io/tsflex/
https://github.com/predict-idlab/tsflex/tree/main/examples

Jonas Van Der Donckt, Jeroen Van Der Donckt, Emiel Deprost et al. SoftwareX 17 (2022) 100971

2

f
t

2

f
p
f
m
m
p
s

2

c
s
u
a
a
b
s
i
c
t
i
p
i
t
i

2

u
d
s
t
L
k
w
c

U
s
s
t
f
d
b

.2. Software functionalities

In the sections below, we further detail the processing and
eature extraction functionalities, together with other utilities of
sflex.

.2.1. Processing
The processing functionality is concerned with either trans-

orming (i.e., replacing) sequences or creating new ones. tsflex
rovides flexible processing by accepting a generic processing
unction prototype. Such processing functions should take one or
ultiple sequences as input, followed by optional keyword argu-
ents. This generic processing function prototype enables com-
atibility with many existing libraries, e.g., scipy.signal [13],
tatsmodels.tsa [17].2

.2.2. Feature extraction
The feature extraction functionality is concerned with cal-

ulating features on strided-rolling windows. tsflex was de-
igned to define the window and stride arguments in the same
nit as the sequence-index its datatype (e.g., window=‘‘5min’’
nd stride=‘‘30s’’ for time-indexed sequences, or window=300
nd stride=30 for numeric-indexed sequences). As existing li-
raries define the window and stride in terms of number of
amples [8–10], they implicitly assume that the sampling rate
s fixed and there are no gaps. tsflex’s flexibility is a direct
onsequence of not making such assumptions; by default, fea-
ures can be extracted on multivariate time series with vary-
ng sampling rates and even gaps.3 In addition, tsflex sup-
orts a wide range of feature functions, again enabling compat-
bility with many existing libraries, e.g., numpy, scipy.stats,
sfresh.feature_extraction, seglearn.feature_funct-
ons, tsfel.feature_extraction.

.2.3. Other functionalities
tsflex serves various additional functionalities, such as em-

bedded serialization, execution time logging, native support for
categorical and time based data, and handling of time series in
chunks. Chunking of sequence data can be performed by calling
the chunk_data function from the tsflex.chunking submod-
le. Processing and extracting features on chunked data pro-
uces lower memory peaks, enabling time series handling in con-
trained environments (e.g., streaming, edge devices [18]). Addi-
ionally, chunking allows parallelizing the sequential processing.
astly, the FeatureCollection its reduce(feat_cols_to_
eep) method returns a new FeatureCollection instance,
ithholding the subset of features that constitute the output
olumn names listed in feat_cols_to_keep.

nit tests. The provided functionalities of tsflex are exten-
ively tested through unit testing. For example, these tests as-
ure that the functions should perform view-based operations,
hat tsflex handles categorical and time-based data, and that
eature-functions are not allowed to change the view-based input
ata. Every claim about tsflex we make in this paper is backed
y unit testing.

2 Processing functions can return an arbitrary amount of sequences; tsflex
supports one-to-one, one-to-many, many-to-one, and many-to-many func-
tions; see https://predict-idlab.github.io/tsflex/processing/index.html#versatile-
processing-functions.
3 It is the feature-function its responsibility to handle such cases correctly.

Note that a feature-function can easily be made robust using the make_robust
wrapper from tsflex.features.utils.

2.3. Limitations

Currently, there is no agreed standard for time series in Python
[19]. The main cause for this disagreement is that each format has
its own benefits and disadvantages. An in-depth discussion about
this topic is out of scope for this paper. For tsflex, we made the
design decision to operate on single-indexed wide/flat data (such
as a list of series or a wide-dataframe) whose index represents
the sequence-position. In our opinion, this data format is most
intuitive to wrangle with, e.g., slicing, visualizing, processing.
Therefore, two limitations of tsflex are that it (1) does not
support long data, nor (2) multi-indexed data (and columns).
Remark that a long-dataframe can be transformed into a list of
series (that has the same in-memory size). A third limitation is
that tsflex uses sequence-names as identifiers, resulting in the
assumption that each sequence should have a unique name.

3. Illustrative examples

As illustrative example, we provide three snippets containing
working code. An online version can be found in the examples
folder of the tsflex repository.

Data loading. Listing 1 fetches the data for the examples. In total,
three pd.DataFrames are loaded, containing multimodal data of
different sampling rates. This data is an excerpt of a wrist-worn
wearable from the WESAD study [20]. The characteristics of the
dataframes are summarized in Table 1. The df_tmp dataframe
withholds skin temperature data, df_acc withholds accelerom-
eter data along the 3 movement axes, and df_ibi contains the
Inter-Beat-Interval (IBI) data, representing the time between two
consecutive heartbeats. Remark that IBI data is only available
when two consecutive, successfully detected beats took place,
making IBI an irregularly sampled series.

from tsflex.utils.data import load_empatica_data

df_tmp, df_acc, df_ibi = load_empatica_data(["tmp", "acc", "ibi"])

Listing 1: Data loading code for illustrative example.

Table 1
Properties of the data used in the illustrative example.

columns shape sampling rate

df_tmp [TMP] (30200, 1) 4.0 Hz
df_acc [ACC_x, ACC_y, ACC_z] (241620, 3) 32.0 Hz
df_ibi [IBI] (1230, 1) Irregularly sampled

3.1. Processing

Listing 2 shows how various processing steps are applied on
the loaded data. For each processing step a SeriesProcessor
object is created, which records the series names4 (i.e., the names
of the sequences that should be processed) and the optional
keyword arguments. Observe that the smv function creates a new
series.

3.2. Feature extraction

Listing 3 shows how feature extraction can be performed on
the previously processed data. Two MultipleFeatureDescr-
iptors5 are created; the first defines some general statistical

4 When a processing function should be applied on multiple series, a list
should be passed to the series_names argument. When a processing function
handles multiple series as input, a tuple (or a list thereof) should be passed to
the series_names argument.
5 MultipleFeatureDescriptors are a convenient way to define features

containing multiple functions, series names, windows, and strides.
3

https://predict-idlab.github.io/tsflex/processing/index.html#processing-functions
https://predict-idlab.github.io/tsflex/processing/index.html#processing-functions
https://predict-idlab.github.io/tsflex/processing/index.html#processing-functions
https://docs.scipy.org/doc/scipy/reference/reference/signal.html#module-scipy.signal
https://www.statsmodels.org/stable/tsa.html#time-series-filters
https://numpy.org/doc/stable/reference/routines.html
https://docs.scipy.org/doc/scipy/reference/tutorial/stats.html
https://github.com/blue-yonder/tsfresh/blob/main/tsfresh/feature_extraction/feature_calculators.py
https://dmbee.github.io/seglearn/feature_functions.html
https://dmbee.github.io/seglearn/feature_functions.html
https://dmbee.github.io/seglearn/feature_functions.html
https://tsfel.readthedocs.io/en/latest/descriptions/modules/tsfel.feature_extraction.html#module-tsfel.feature_extraction.features
https://predict-idlab.github.io/tsflex/chunking/index.html
https://predict-idlab.github.io/tsflex/features/index.html#tsflex.features.FeatureCollection.reduce
https://predict-idlab.github.io/tsflex/features/index.html#tsflex.features.FeatureCollection.reduce
https://predict-idlab.github.io/tsflex/features/index.html#tsflex.features.FeatureCollection.reduce
https://predict-idlab.github.io/tsflex/processing/index.html#versatile-processing-functions
https://predict-idlab.github.io/tsflex/processing/index.html#versatile-processing-functions
https://github.com/predict-idlab/tsflex/tree/main/examples
https://github.com/predict-idlab/tsflex/tree/main/examples
https://github.com/predict-idlab/tsflex/tree/main/examples

Jonas Van Der Donckt, Jeroen Van Der Donckt, Emiel Deprost et al. SoftwareX 17 (2022) 100971

a
d
s
I
f
T
w
a
e
d
s

4

a
i
p
e
d

import pandas as pd; import numpy as np; from scipy.signal import

savgol_filter

from tsflex.processing import SeriesProcessor, SeriesPipeline

Create the processing functions

def clip_data(sig: pd.Series, min_val=None, max_val=None) --> np.ndarray:

return np.clip(sig, a_min=min_val, a_max=max_val)

def smv(*sigs) --> pd.Series:

sig_prefixes = set(sig.name.split(’_’)[0] for sig in sigs)

result = np.sqrt(np.sum([np.square(sig) for sig in sigs], axis=0))

return pd.Series(result, index=sigs[0].index, name=’|’.join(sig_prefixes

)+’_’+’SMV’)

Create the series processors (with their keyword arguments)

tmp_clippper = SeriesProcessor(clip_data, series_names="TMP", max_val=35)

acc_savgol = SeriesProcessor(

savgol_filter, ["ACC_x", "ACC_y", "ACC_z"], window_length=33, polyorder

=2

)

acc_smv = SeriesProcessor(smv, ("ACC_x", "ACC_y", "ACC_z"))

Create the series pipeline & process the data

series_pipe = SeriesPipeline([tmp_clippper, acc_savgol, acc_smv])

out_data = series_pipe.process([df_acc, df_tmp, df_ibi])

Listing 2: Processing example. Continuation of code snippet 1.

from tsflex.features import MultipleFeatureDescriptors, FeatureCollection

from tsflex.features.integrations import seglearn_feature_dict_wrapper

from tsflex.features.utils import make_robust

Import / create the feature functions

from seglearn.feature_functions import base_features

def area(sig: np.ndarray): return np.sum(np.abs(sig))

Create the feature descriptors

general_feats = MultipleFeatureDescriptors(

functions=seglearn_feature_dict_wrapper(base_features()) + [area],

series_names=["ACC_SMV", "TMP"],

windows=["5min", "2.5min"], strides="2min",

)

ibi_feats = MultipleFeatureDescriptors(

[make_robust(f) for f in [np.min, np.max, np.mean, np.std]] + [len],

series_names="IBI", windows="5min", strides="2min"

)

Create the feature collection & calculate the features

fc = FeatureCollection(feature_descriptors=[general_feats, ibi_feats])

feat_df = fc.calculate(out_data, return_df=True, approve_sparsity=True)

Listing 3: Feature extraction example. Continuation of code snippet 2.

nd spectral features on the ACC_SMV and TMP signal for two
ifferent windows, and the second defines a robust version of
ome statistical features (and the number of samples) for the
BI signal. Remark that in general_feats, seglearn feature-
unctions are imported and wrapped in a convenient manner.
hese two descriptor objects are enclosed in a feature collection,
hich is used for extracting (i.e., calculating) the features. The
pprove_sparsity flag enables the user to explicitly acknowl-
dge that there might be sparse data, i.e., irregularly sampled
ata. Setting this flag avoids warnings that are raised in case of
parsity.

. Impact

We first indicate the impact of tsflex by positioning it
mong other packages. Then, we present tsflex’s performance
n terms of memory usage and computation time, and com-
are these results to related packages. We conclude with some
xamples and references to notebooks which highlight the cross-
omain applicability of tsflex for time series.

4.1. Functionalities

Irregularly sampled data is ubiquitous. However, most existing
time series toolkits assume that either the user segments the data
in valid chunks or that the data is regularly sampled. The former
induces a significant user burden, whilst the latter is a fairly
strong assumption. By employing a sequence range based
window-stride approach and thus not a sample based one, tsflex
interoperates natively with irregularly sampled sequence data.
We position such functionalities of tsflex against other related
packages in Table 2. Remark that tsflex is the only package
that (1) allows defining multiple window-stride combinations, (2)
can operate on non-numerical data, and (3) serves time-based
chunking functionalities. Moreover, except for tsfresh, tsflex
is the only other library that maintains the index of the data,
encouraging index based analysis of the obtained outputs. We
refer to example notebooks for more concrete illustrations of
these functionalities.

4.2. Feature extraction performance

Considering all Python toolkits, eligible for strided-rolling fea-
ture extraction [8–10], only seglearn mentions toolkit-
performance by comparing their computation time and model
accuracy with other packages. However, for real-world applicabil-
ity, computational efficiency is of utmost importance. Therefore,
we benchmarked tsflex its memory usage and runtime against
other libraries and open-sourced the benchmarking codebase at
this repository6 to encourage effortless benchmarking of tsflex
on other use cases (e.g., edge devices, extremely large datasets,
streaming use cases).

Profiling is realized by using the VizTracer [21] package with
the VizPlugins add-on. The benchmark dataset is a syntheti-
cally generated dataframe consisting of 5 channels and spans 1 h.
Its values have the numerical numpy.float32 data type. To com-
ply with the assumptions that other toolkits make, each modality
is sampled at 1000 Hz and does not contain gaps. The toolkit are
configured to extract the same features using a window-stride
of 30 s-10 s, respectively. The benchmark process follows these
steps for each toolkit-feature-extraction configuration:

1. Each toolkit feature extraction script is called 20 times to
average out the memory usage and runtime.7

2. Script execution:

(a) Construct the synthetic pd.DataFrame benchmark
data

(b) VizTracer starts logging
(c) Create the feature extraction configuration
(d) Extract and store the features
(e) VizTracer stops logging
(f) Write the VizTracer profile-results to a JSON-file

The profile JSONs were collected on a server with an Intel
Xeon E5-2650 v2 @ 2.60GHz CPU and SAMSUNG M393B1G73QH0-
CMA DDR3 1600MT/s RAM, with Ubuntu 18.04.5 LTS x86_64 as
operating system. Other running processes were limited to a
minimum.

6 We decided to only benchmark feature extraction, as this is the most
advanced functionality of tsflex. In our experience, the processing functionality
is rather straightforward and thus more dependent on the processing functions.
However, also here, experimental results indicate that we have a significant
efficiency advantage over other existing packages when parallel processing is
performed on chunked data.
7 Remark that by recalling the script in separate runs, no caching or memory

is shared among executions.
4

https://github.com/predict-idlab/tsflex/tree/main/examples
https://github.com/predict-idlab/tsflex-benchmarking
https://github.com/gaogaotiantian/vizplugins
https://numpy.org/doc/1.20/reference/arrays.scalars.html#numpy.float32
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html

Jonas Van Der Donckt, Jeroen Van Der Donckt, Emiel Deprost et al. SoftwareX 17 (2022) 100971

r

s
v

s
u
i
m
m
T
s
a
t
f
i

4

p

g

Table 2
Comparison of tsflex against other relevant packages. The ‘‘X-to-Y functions’’ in the Properties column with X, Y ∈ {one,many} represent the feature input-to-output
elationship; X = ‘‘one" denotes single-series input, whereas X = ‘‘many’’ represents multivariate inputs. When Y = ‘‘one’’ a single feature is returned, whilst the Y
= ‘‘many’’ returns multiple features. More info about these versatile functions can be found here. An online version of this table is shown here.
Properties tsflex seglearn tsfresh TSFEL kats

General
Time column requirements Any - sortable Any - sorted Any - sortable Any - sorted Datetimeindex
Multivariate time series ✓ ✓ ✓ ✓ ✓

Unevenly sampled data ✓ ✗ ✗ ✗ ✓

Time column maintenance ✓ ✗ ✓ ✗ ✗

Retain output names ✓ ✓ ✓ ✓ ✗

Multiprocessing ✓ ✗ ✓ ✓ ✗

Operation execution time logging ✓ ✗ ✗ ✗ ✗

Chunking (multiple) time series ✓ ✗ ✗ ✗ ✗

Feature extraction
Strided-window definition format Sequence index range Sample-based Sample-based Sample-based Na.
Strided-window feature extraction ✓ ✓ ✓ ✓ ✗

Multiple stride-window combinations ✓ ✗ ✗ ✗ ✗

Custom features ✓ ✓ ✓ ✓ ✗

One-to-one functions ✓ ✓ ✓ ✓ ✓

One-to-many functions ✓ ✓ ✓ ✓ ✓

Many-to-one functions ✓ ✓ ✗ ✗ ✗

Many-to-many functions ✓ ✗ ✗ ✗ ✗

Categorical data ✓ ✗ ✗ ✗ ✗

Datatype preservation ✓ ✗ ✗ ✗ ✗

Fig. 2. Average memory usage over time for a feature extraction task on evenly sampled data with a fixed window and stride. The origin of the runtime and memory
usage axis starts directly after the synthetic data was constructed; the feature extraction configuration is then initialized and called on the data. As noted in Table 2,
only seglearn v1.2.3 [8], tsfresh v0.18.0,christ2018tsfresh, and TSFEL v0.1.4,barandas2020tsfel support defining a (sample-based) window and
tride, making this comparison fair as the data for this benchmark is evenly sampled. For reference, the allocated memory for the data was 96.4 MB. An interactive
ersion (where you can switch to linear axes) of this figure is shown here.

Fig. 2 depicts the aggregated JSON-file results and Table 3
ummarizes the main outcomes of this visualization. For this
se-case, tsflex is ∼ 3× faster than its closest competitor
n both the sequential and multiprocessing variant. The peak
emory usage is of particular interest, as this determines the
inimum amount of RAM a system should have. tsflex and
SFEL apply view-based operations on the data, making them
ignificantly more memory efficient than other packages. Here
gain, tsflex requires ∼ 2.5× less memory than TSFEL. Note
hat tsfresh first expands the data into a tsfresh-compatible
ormat before applying feature extraction. This results in a slope
n the logarithmic domain from second 15 to second 80–150.

.3. Applicability

tsflex is a domain-independent package, enabling broad ap-
licability.8 For example, this package is already used in multiple

8 The cross-domain applicability is highlighted by the examples: https://
ithub.com/predict-idlab/tsflex/tree/main/examples.

Table 3
Tabular summary of VizTracer benchmarks, depicted in Fig. 2.

tsflex TSFEL seglearn tsfresh

mean peak memory
usage (MB ± std)
sequential 1.3 ± 0.1 3.5 ± 0.3 435.3 ± 1.5 3540 ± 13.9
multiprocessing 1.5 ± 0.1 3.7 ± 0.1 / 4044 ± 14.4
mean runtime
(s ± std)
sequential 4.3 ± 0.1 16.4 ± 0.8 9.2 ± 0.1 169.8 ± 1.6
multiprocessing 0.7 ± 0.0 2.1 ± 0.0 / 98.5 ± 1.2

projects such as wearable-based stress monitoring, automatic
sleep staging, occupancy detection in buildings, and anomaly
detection. tsflex’s computational efficiency (in both execution
time and memory usage) also paves the way towards applica-
bility in constrained environments, such as streaming or edge
computing [18].
5

https://predict-idlab.github.io/tsflex/features/index.html#versatile-functions
https://predict-idlab.github.io/tsflex/#comparison
https://pandas.pydata.org/docs/reference/api/pandas.DatetimeIndex.html#pandas-datetimeindex
https://predict-idlab.github.io/tsflex/#benchmark
https://github.com/predict-idlab/tsflex/tree/main/examples
https://github.com/predict-idlab/tsflex/tree/main/examples

Jonas Van Der Donckt, Jeroen Van Der Donckt, Emiel Deprost et al. SoftwareX 17 (2022) 100971

5

t
H
t
a
m
T
f
l
s
p
a
f
o
e
5
m
s
a
i
t
e

D

c
t

A

d
B
C
t

R

. Conclusions

Time series processing and feature extraction are arguably
he most important steps in classical machine learning pipelines.
owever, existing packages are limited in their applicability as
hey make strong assumptions about the underlying data types
nd data structure. Furthermore, these toolkits do not prioritize
emory and runtime efficiency, creating unnecessary overheads.
hese existing packages also tend to focus on including numerous
eature functions instead of conveniently integrating with other
ibraries. We argue that there is a need for a more permis-
ive toolkit, which concentrates on the essentials. Therefore, we
resent tsflex, a Python package that focuses on processing
nd feature extraction for time series. This paper describes the
unctionalities and performance of tsflex and compares it to
ther packages. We show that tsflex is more permissive than
xisting Python toolkits, and benchmarking indicates it is over
0% more efficient than comparable work in both runtime and
emory usage. The increased flexibility is realized by leveraging
equence-index based arguments and is reflected in the few
ssumptions that this library makes. We believe that tsflex’s
ntegration with other libraries, together with its advanced func-
ionalities, e.g., chunking, comprehensible feature output names,
nables real-world, cross-domain applicability.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared
o influence the work reported in this paper.

cknowledgements

Jonas Van Der Donckt and Emiel Deprost are funded by a
octoral fellowship of the Research Foundation – Flanders (FWO),
elgium. Part of this work is done in the scope of the imec.ICON
OSMO (HBC.2018.0531), imec.AAA Context-aware health moni-
oring, and VLAIO PoC Nervocity.

eferences

[1] Pieters O, Deprost E, Van Der Donckt J, Brosens L, Sanczuk P,
Vangansbeke P, et al. MIRRA: A modular and cost-effective micro-
climate monitoring system for real-time remote applications. Sensors
2021;21(13):4615.

[2] Topol EJ. High-performance medicine: the convergence of human and
artificial intelligence. Nat Med 2019;25(1):44–56.

[3] Cook AA, Mısırlı G, Fan Z. Anomaly detection for IoT time-series data: A
survey. IEEE Internet Things J 2019;7(7):6481–94.

[4] Taylor SJ. Modelling financial time series. World Scientific; 2008.
[5] Domingos P. A few useful things to know about machine learning.

Commun ACM 2012;55(10):78–87.
[6] Yadav P, Steinbach M, Kumar V, Simon G. Mining electronic health records

(EHRs) a survey. ACM Comput Surv 2018;50(6):1–40.
[7] Little RJ, Rubin DB. Statistical analysis with missing data, Vol. 793. John

Wiley & Sons; 2019.
[8] Burns DM, Whyne CM. Seglearn: a python package for learning sequences

and time series. J Mach Learn Res 2018;19(1):3238–44.
[9] Christ M, Braun N, Neuffer J, Kempa-Liehr AW. Time series feature

extraction on basis of scalable hypothesis tests (tsfresh–a python package).
Neurocomputing 2018;307:72–7.

[10] Barandas M, Folgado D, Fernandes L, Santos S, Abreu M, Bota P, et al. Tsfel:
Time series feature extraction library. SoftwareX 2020;11:100456.

[11] Kats - one stop schop for time series analysis in Python. 2021, URL
https://facebookresearch.github.io/Kats/.

[12] Harris CR, Millman KJ, van der Walt SJ, Gommers R, Virtanen P,
Cournapeau D, et al. Array programming with NumPy. Nature
2020;585(7825):357–62. http://dx.doi.org/10.1038/s41586-020-2649-2.

[13] Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D,
et al. SciPy 1.0: Fundamental algorithms for scientific computing in python.
Nature Methods 2020;17:261–72. http://dx.doi.org/10.1038/s41592-019-
0686-2.

[14] Buitinck L, Louppe G, Blondel M, Pedregosa F, Mueller A, Grisel O, et al.
API design for machine learning software: experiences from the scikit-
learn project. In: ECML PKDD workshop: Languages for data mining and
machine learning. 2013, p. 108–22.

[15] Brouwer MD, Vandenbussche N, Steenwinckel B, Stojchevska M, Don-
ckt JVD, Degraeve V, et al. MBrain: towards the continuous follow-up &
headache classification of primary headache disorder patients. BMC Med
Inf Decis Making 2021.

[16] pandas development team T. Pandas-dev/pandas: Pandas. 2020, http://dx.
doi.org/10.5281/zenodo.3509134.

[17] Seabold S, Perktold J. Statsmodels: Econometric and statistical modeling
with python. In: Proceedings of the 9th python in science Conference, Vol.
57. Austin, TX; 2010, p. 61.

[18] Shi W, Dustdar S. The promise of edge computing. Computer
2016;49(5):78–81.

[19] Christ M. Awesome time series in python - standardize time series for-
mats. 2020, URL https://github.com/MaxBenChrist/awesome_time_series_
in_python/blob/master/standardize_time_series_formats.md.

[20] Schmidt P, Reiss A, Duerichen R, Marberger C, Van Laerhoven K. Introduc-
ing WESAD, a multimodal dataset for wearable stress and affect detection.
In: Proceedings of the 20th ACM international conference on multimodal
interaction. 2018, p. 400–8.

[21] Gao T. Viztracer: a low-overhead logging, debugging, and profiling tool to
trace and visualize python code execution.. 2020, URL https://github.com/
gaogaotiantian/viztracer/.
6

http://refhub.elsevier.com/S2352-7110(21)00190-4/sb1
http://refhub.elsevier.com/S2352-7110(21)00190-4/sb1
http://refhub.elsevier.com/S2352-7110(21)00190-4/sb1
http://refhub.elsevier.com/S2352-7110(21)00190-4/sb1
http://refhub.elsevier.com/S2352-7110(21)00190-4/sb1
http://refhub.elsevier.com/S2352-7110(21)00190-4/sb1
http://refhub.elsevier.com/S2352-7110(21)00190-4/sb1
http://refhub.elsevier.com/S2352-7110(21)00190-4/sb2
http://refhub.elsevier.com/S2352-7110(21)00190-4/sb2
http://refhub.elsevier.com/S2352-7110(21)00190-4/sb2
http://refhub.elsevier.com/S2352-7110(21)00190-4/sb3
http://refhub.elsevier.com/S2352-7110(21)00190-4/sb3
http://refhub.elsevier.com/S2352-7110(21)00190-4/sb3
http://refhub.elsevier.com/S2352-7110(21)00190-4/sb4
http://refhub.elsevier.com/S2352-7110(21)00190-4/sb5
http://refhub.elsevier.com/S2352-7110(21)00190-4/sb5
http://refhub.elsevier.com/S2352-7110(21)00190-4/sb5
http://refhub.elsevier.com/S2352-7110(21)00190-4/sb6
http://refhub.elsevier.com/S2352-7110(21)00190-4/sb6
http://refhub.elsevier.com/S2352-7110(21)00190-4/sb6
http://refhub.elsevier.com/S2352-7110(21)00190-4/sb7
http://refhub.elsevier.com/S2352-7110(21)00190-4/sb7
http://refhub.elsevier.com/S2352-7110(21)00190-4/sb7
http://refhub.elsevier.com/S2352-7110(21)00190-4/sb8
http://refhub.elsevier.com/S2352-7110(21)00190-4/sb8
http://refhub.elsevier.com/S2352-7110(21)00190-4/sb8
http://refhub.elsevier.com/S2352-7110(21)00190-4/sb9
http://refhub.elsevier.com/S2352-7110(21)00190-4/sb9
http://refhub.elsevier.com/S2352-7110(21)00190-4/sb9
http://refhub.elsevier.com/S2352-7110(21)00190-4/sb9
http://refhub.elsevier.com/S2352-7110(21)00190-4/sb9
http://refhub.elsevier.com/S2352-7110(21)00190-4/sb10
http://refhub.elsevier.com/S2352-7110(21)00190-4/sb10
http://refhub.elsevier.com/S2352-7110(21)00190-4/sb10
https://facebookresearch.github.io/Kats/
http://dx.doi.org/10.1038/s41586-020-2649-2
http://dx.doi.org/10.1038/s41592-019-0686-2
http://dx.doi.org/10.1038/s41592-019-0686-2
http://dx.doi.org/10.1038/s41592-019-0686-2
http://refhub.elsevier.com/S2352-7110(21)00190-4/sb14
http://refhub.elsevier.com/S2352-7110(21)00190-4/sb14
http://refhub.elsevier.com/S2352-7110(21)00190-4/sb14
http://refhub.elsevier.com/S2352-7110(21)00190-4/sb14
http://refhub.elsevier.com/S2352-7110(21)00190-4/sb14
http://refhub.elsevier.com/S2352-7110(21)00190-4/sb14
http://refhub.elsevier.com/S2352-7110(21)00190-4/sb14
http://refhub.elsevier.com/S2352-7110(21)00190-4/sb15
http://refhub.elsevier.com/S2352-7110(21)00190-4/sb15
http://refhub.elsevier.com/S2352-7110(21)00190-4/sb15
http://refhub.elsevier.com/S2352-7110(21)00190-4/sb15
http://refhub.elsevier.com/S2352-7110(21)00190-4/sb15
http://refhub.elsevier.com/S2352-7110(21)00190-4/sb15
http://refhub.elsevier.com/S2352-7110(21)00190-4/sb15
http://dx.doi.org/10.5281/zenodo.3509134
http://dx.doi.org/10.5281/zenodo.3509134
http://dx.doi.org/10.5281/zenodo.3509134
http://refhub.elsevier.com/S2352-7110(21)00190-4/sb17
http://refhub.elsevier.com/S2352-7110(21)00190-4/sb17
http://refhub.elsevier.com/S2352-7110(21)00190-4/sb17
http://refhub.elsevier.com/S2352-7110(21)00190-4/sb17
http://refhub.elsevier.com/S2352-7110(21)00190-4/sb17
http://refhub.elsevier.com/S2352-7110(21)00190-4/sb18
http://refhub.elsevier.com/S2352-7110(21)00190-4/sb18
http://refhub.elsevier.com/S2352-7110(21)00190-4/sb18
https://github.com/MaxBenChrist/awesome_time_series_in_python/blob/master/standardize_time_series_formats.md
https://github.com/MaxBenChrist/awesome_time_series_in_python/blob/master/standardize_time_series_formats.md
https://github.com/MaxBenChrist/awesome_time_series_in_python/blob/master/standardize_time_series_formats.md
http://refhub.elsevier.com/S2352-7110(21)00190-4/sb20
http://refhub.elsevier.com/S2352-7110(21)00190-4/sb20
http://refhub.elsevier.com/S2352-7110(21)00190-4/sb20
http://refhub.elsevier.com/S2352-7110(21)00190-4/sb20
http://refhub.elsevier.com/S2352-7110(21)00190-4/sb20
http://refhub.elsevier.com/S2352-7110(21)00190-4/sb20
http://refhub.elsevier.com/S2352-7110(21)00190-4/sb20
https://github.com/gaogaotiantian/viztracer/
https://github.com/gaogaotiantian/viztracer/
https://github.com/gaogaotiantian/viztracer/

	tsflex: Flexible time series processing & feature extraction
	Motivation and significance
	Software description
	Software architecture
	Processing submodule
	Feature extraction submodule

	Software functionalities
	Processing
	Feature extraction
	Other functionalities

	Limitations

	Illustrative examples
	Processing
	Feature extraction

	Impact
	Functionalities
	Feature extraction performance
	Applicability

	Conclusions
	Declaration of competing interest
	Acknowledgements
	References

