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Samenvatting

� Summary in Dutch �

Unmanned Aerial Vehicles (UAV's), beter bekend als drones, zijn een op-
komende technologie met het potentieel om in verschillende industrieën
te worden gebruikt om een breed scala aan toepassingen en diensten te
bieden, zoals luchtinspecties, fotogra�e, pakketbezorging en zoek- en red-
dingsoperaties. Tijdens het laatste decennium is er een groeiende focus
van het onderzoek naar de netwerk- en toepassingsparadigma's van UAV's,
wat heeft geleid tot e�ectievere en betrouwbaardere verbindingen tussen
de drone en de controller of het Internet. Het aanbod van verschillende
drones met verschillende toepassingsmogelijkheden heeft echter geleid tot
een langzaam en omslachtig ontwikkelingsproces voor drone-toepassingen.
Omdat elke drone kleine verschillen heeft in de beschikbare hardware en
de geïnstalleerde software, kan het ontwikkelproces per drone verschillen.
Overstappen op nieuwe drones of het installeren van nieuwe randapparaten
aan boord brengen veel complicaties met zich mee in het ontwikkelingsproces
vanwege niet-compatibele hardware. Bovendien moet er veel op de drone
zelf worden ontwikkeld, omdat implementatie op afstand doorgaans niet
mogelijk is. Deze ontwikkeling op de drone is niet wenselijk omdat drones
doorgaans maar een beperkte batterijduur hebben, wat leidt tot noodzake-
lijke en soms lange laadpauzes waarbij de toepassingen niet getest kunnen
worden. Het gebruik van cloudtechnologieën in de ontwikkeling van drones
zou het leven van ontwikkelaars van drone-applicaties gemakkelijker maken,
maar een totaaloplossing die rekening houdt met het netwerk- en het app-
licatiebeheer van UAV's en de cloud is nog steeds een fundamentele tekort-
koming.
Met de invoering van de nieuwe EASA-regelgeving voor het veilig opereren
van UAV's in het Europese luchtruim, werden Beyond-Visual-Line-of-Sight
(BVLOS) vluchten toegestaan, evenals andere mogelijkheden om met een
UAV in de private of publieke ruimte te vliegen. Een BVLOS-vlucht vereist
een stabiele, veilige en snelle netwerkverbinding met de controller, terwijl de
op deze UAV ingezette applicaties soepel en zonder fouten moeten werken
om een succesvolle vlucht te kunnen uitvoeren.
Cloud computing is een vast begrip in de IT-dienstverlening van vandaag,
dat het optimale gebruik van datacenters, servers en edge devices (zoals
computers, tablets, smartphones en smartwatches) mogelijk maakt met
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behulp van virtualisatie- en containertechnologieën. Complexe bere-
keningen kunnen worden verspreid over meerdere apparaten en com-
plexe toepassingen kunnen worden gebouwd en ingezet als microservices,
waardoor elke dienst kan worden geschaald en responsief kan zijn in functie
van het aantal verzoeken en de beschikbare middelen. Cloud computing-
platformen vereisen ook complexe monitoringoplossingen om het hele
systeem te observeren wat betreft de huidige toestand, de beschikbare
middelen, eventuele fouten in het systeem, enz. Anderzijds zijn er 5G-
netwerken die het gebruik van network slicing-concepten mogelijk maken
om te voldoen aan Quality-of-Service-beperkingen, die kunnen worden
geïmplementeerd door gebruik te maken van Software-De�ned Networking
(SDN)-oplossingen. Cloud en 5G concepten kunnen worden gebruikt
om de huidige tekortkoming op te lossen om een totale UAV-bewuste
cloudoplossing te bekomen.
Daarom stelt deze dissertatie het antwoord voor op de volgende vier on-
derzoeksuitdagingen of -doelstellingen: (i) hoe de Quality-of-Service op
netwerkniveau te behouden in een UAV-bewuste context, (ii) hoe netwerk-
slicing met hoge prioriteit mogelijk te maken in geval van nood, (iii) hoe een
beter applicatiebeheer op UAVs mogelijk te maken door gebruik te maken
van cloud computing en (iv) hoe de ingezette applicaties in de cloud op
een niet-indringende manier te monitoren. Deze vier doelstellingen wor-
den beantwoord en gevalideerd doorheen dit proefschrift door middel van
verschillende Proof-of-Concepts (PoCs) of prototypes.
In Hoofdstuk 2 wordt een inplugbare SDN-applicatie voorgesteld, genaamd
Domino, die gedeeltelijk de uitdaging aangaat om te voldoen aan Quality-
of-Service beperkingen op netwerkniveau (i). In dit hoofdstuk is Domino in
staat om heterogene SDN-netwerken te beheren, waarbij de moeilijkheden
van het consequent integreren van verschillende SDN-controllertypes wor-
den opgelost. Een mogelijke standaard voor de northbound API van SDN
controllers wordt voorgesteld, waardoor verschillende SDN netwerken aan
elkaar gekoppeld kunnen worden. Domino is geïmplementeerd als een micro-
service plugin architectuur en geëvalueerd door middel van een kortste pad
routing algoritme over heterogene SDN netwerken.
Hoofdstuk 3 pakt onderzoeksuitdagingen (i) en (ii) gelijktijdig aan door
gebruik te maken van het framework uit Hoofdstuk 2 en een algoritme
toe te voegen om de bandbreedtebeperkingen van noodnetwerkstromen te
garanderen en tegelijkertijd de overige best-e�ort stromen te optimaliseren
over de resterende beschikbare bandbreedte. Bestaande stromen in het
netwerk worden geoptimaliseerd door het voorgestelde Lineair Programme-
ren (LP) algoritme of het Integer Lineair Programmeren (ILP) algoritme,
terwijl een online aanpak nieuwe inkomende stromen in real-time behandelt
tussen de berekeningen van het algoritme in. Zowel het LP- als het ILP-
algoritme worden geëvalueerd door middel van simulaties en er wordt een
kleiner prototype geïmplementeerd om het ILP-algoritme in combinatie met
de online aanpak te demonstreren en te evalueren.
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Zoals hierboven vermeld, zijn de cloud en cloud computing belangrijke
concepten die in dit proefschrift zullen worden gebruikt. Daarom wordt
in Hoofdstuk 4 een agent-gebaseerde, niet-intrusieve monitoring oplossing
voorgesteld om complexe microservice omgevingen in de cloud te observeren,
waarmee doelstelling (iv) wordt bereikt. Deze is in staat om zowel intern
als extern ontwikkelde diensten te monitoren door het gebruik van sidecar
containers, waarbij de status, de metrieken en het netwerkverkeer worden
geobserveerd. Een prototype van de implementatie bewijst dat een complexe
microservice omgeving kan worden gemonitord met een geringe impact op
de gemonitorde diensten zelf.
Doelstelling (iii) wordt zowel in Hoofdstuk 5 als in Hoofdstuk 6 behandeld.
Terwijl Hoofdstuk 5 de fundamenten van een UAVs-as-a-Service (UAVaaS)
container platform beschrijft samen met een prototype implementatie,
wordt in Hoofdstuk 6 het resultaat van dit UAVaaS platform gebruikt door
het uit te breiden met een container-orchestratie platform gebaseerd op
Kubernetes en beheerd met een prototype applicatie om gecontaineriseerde
applicaties uit te rollen in de cloud of op de drone. Een evaluatie van een
use-case met het SDN-framework dat in Hoofdstuk 3 wordt voorgesteld,
bewijst dat toepassingen met succes kunnen worden ingezet op een drone
of in de cloud en dat prioritering van bepaalde drones in noodgevallen kan
worden toegepast.
Hoewel in de verschillende hoofdstukken de tekortkomingen van het ontbre-
ken van een applicatie en netwerkbeheer van UAVs in de cloud grotendeels
zijn opgelost, zijn er nog veel onopgeloste uitdagingen of verbeteringen.
Deze uitdagingen, samen met conclusies en verdere onderzoeksrichtingen
worden besproken in Hoofdstuk 7.





Summary

Unmanned Aerial Vehicles (UAVs), better known as drones, are an em-
erging technology with the potential to be used in industries and various
sectors of human life to provide a wide range of applications and services,
such as aerial inspections, photography, package delivery and search-and
rescue operations. During the last decade, there has been a growing focus
of research on the network and application paradigms of UAVs, resulting
in more e�ective and trustworthy connections between the drone and the
controller or the Internet. However, having all kinds of drone types with
di�erent application potential has led to a slow and cumbersome develop-
ment process for drone applications. As each drone has small di�erences in
available hardware and installed software, the development process can be
di�erent per drone. Switching to new drone types or installing new on-board
add-on devices then brings many complications to the development process
because of non compatible hardware. Moreover, a lot of development needs
to happen on the drone itself as no remote deployment is typically possible.
This on-drone development is undesirable because the drones typically have
a limited battery life, leading to necessary and sometimes long charging
breaks during which the applications cannot be tested. Bringing cloud
technologies to drone development would ease the life of drone application
developers but a total solution taking network and application management
of UAVs and the cloud into account is still a fundamental shortcoming.
With the introduction of the new EASA regulations for safe operations of
UAVs in the European skies, Beyond-Visual-Line-of-Sight (BVLOS) �ights
became allowed, as well as other opportunities for �ying a UAV in private
or public space. A BVLOS �ight requires a stable, secure and fast network
connection to the controller while the application deployed on this UAV
must run smoothly and without errors in order to have a successful �ight.
Cloud computing is a �xed term in the IT-services of today, allowing the
optimal use of data centers, servers and edge devices (such as computers,
tablets, smartphones and smartwatches) with the aid of virtualisation and
container technologies. Complex calculations can be spread across multiple
devices and complex applications can be built and deployed as microservices,
allowing each service to be scaled and responsive in function of the number
of requests and available resources. Cloud computing platforms also require
complex monitoring solutions in order to observe the whole system in terms
of the current state, the available resources, eventual errors in the system,
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etc. On the other hand, there are 5G networks, allowing the use of network
slicing concepts in order to satisfy Quality-of-Service constraints, which can
be implemented by using Software-De�ned Networking (SDN) solutions.
Combined, cloud and 5G technology can be used to solve today's shortcom-
ing to have a total UAV-aware cloud solution.
Therefore, this dissertation proposes to answer the following four research
challenges or objectives: (i) how to maintain Quality-of-Service at network
level in a UAV-aware context, (ii) how to enable high priority slicing in case
of an emergency, (iii) how to allow better application management on UAVs
by using cloud computing and (iv) how to monitor the deployed applications
in the cloud in an unobtrusive manner. These four objectives are answered
and validated throughout this dissertation by means of di�erent Proof-of-
Concepts (PoCs) or prototypes.
In Chapter 2, a pluggable SDN framework called Domino is proposed which
partly tackles the challenge to satisfy Quality-of-Service constraints at net-
work level (i). In this chapter, Domino is able to manage heterogeneous SDN
networks, solving the di�culties of consistently integrating di�erent SDN
controller types. A possibility to standardize the northbound API of the
SDN controllers is proposed, allowing di�erent SDN networks to be linked
together. Domino is implemented as a microservice plugin architecture and
evaluated by means of a shortest path routing algorithm over heterogeneous
SDN networks.
Chapter 3 tackles research challenge (i) and (ii) at the same time by using
the framework provided in Chapter 2 and adding an algorithm to guarantee
the bandwidth constraints of emergency network �ows while optimizing
the remaining best-e�ort �ows over the remaining available bandwidth.
Existing �ows in the network are optimized by the proposed Linear Pro-
gramming (LP) or Integer Linear Programming (ILP) algorithm while an
online approach handles new incoming �ows in real-time in between the
calculations of the algorithm. Both the LP and ILP algorithms are evaluated
by means of simulations and a smaller prototype is implemented to de-
monstrate and evaluate the ILP algorithm in combination with the online
approach.
As stated above, the cloud and cloud computing are important concepts that
will be used throughout this dissertation. Therefore Chapter 4 proposes
an agent-based unobtrusive monitoring solution to observe complex micro-
service environments in the cloud which will address objective (iv). It is
able to monitor both internally and externally developed services by the
use of sidecar containers, observing state, metrics and network tra�c. A
prototyped implementation proves that a complex microservice environment
can be monitored with a negligible impact on the monitored services itself.
Objective (iii) is tackled in both Chapter 5 and Chapter 6. While Chapter 5
describes the fundaments of a UAVs-as-a-Service (UAVaaS) container plat-
form together with a prototype implementation. Chapter 6 uses the
outcome of this UAVaaS platform by extending it with container orche-
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stration based on Kubernetes and managed by a software prototype to
deploy containerized applications in the cloud or on the drone. A use case
evaluation with the SDN framework proposed in Chapter 3 proves that
applications can be successfully deployed on a drone or in the cloud and
that emergency prioritization of select drones can be applied.
Although the di�erent chapters resolve most of the shortcomings of not
having an application and network management of UAVs in the cloud,
many unsolved challenges or improvements still remain. These challenges,
together with conclusions and future research directions are discussed in
Chapter 7.





1
Introduction

Drones, also known as Unmanned Aerial Vehicle (UAV)s have been on the

rise for the last decades. Today, drones and the bene�ts that come with

them can no longer be ignored. Their usage started in the military, then

spiked with many hobbyists using them for photography, and currently,

the industry adoption is going through the roof [1]. Drones can be used

for wildlife surveys, �re mapping, forest health monitoring, and to monitor

destructive activities, such as poaching and illegal logging [2]. In the more

popular culture, drones appear in many applications such as aerial photo-

graphy, express shipping and delivery, ambulance drone, thermal sensing for

search and rescue operations, disaster management, and many more [3][4][5].

Drones are very useful in these use cases due to their inherent characteristics:

their �ying capacities let them come where machines or humans cannot,

their size makes them compact to handle, they can be controlled very

precisely and remotely, and they are widely available at a more and more

fair price [6].

Because of their �exibility and ease of use, some issues and concerns come

up as well. Often equipped with a camera, drones can easily invade people's

privacy. They can be used to track license plates, follow people, look inside

private homes, and more. Also, cases have been reported where drones were

hacked, leading to privacy-sensitive data being leaked or malicious use of the

drone [7]. Air safety concerns must be taken into account as well since drones

share the airspace with other aircrafts such as airplanes, and collisions could

have disastrous consequences, as shown in Figure 1.1, where a drone hit
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Figure 1.1 Nose cone and radome damage to an airplane on �nal approach
to a Mexican airport caused by drone. [8]

an airplane during his �nal approach to a Mexican airport [8]. To �nd a

balance between the bene�ts and the issues, legislation was put into place

in most countries [9][10], allowing Beyond-Visual-Line-of-Sight (BVLOS)

�ights, as also other opportunities for �ying a UAV in private or public

space. Although there has been some controversy about drones concerning

privacy and safety, they have proven their value in multiple sectors.

Having all kinds of drones with di�erent application possibilities has led

to a slow and cumbersome development process for drone applications. As

each drone has small di�erences in available hardware (e.g. regular camera,

thermal camera, LIght Detection And Ranging or Laser Imaging Detection

And Ranging (LiDAR)) and the installed software, the development process

can be di�erent per drone. Switching to new drones then brings many

complications to the development process. Moreover, a lot of development

needs to happen on the drone itself as no remote deployment is typically

possible. This on-drone development is undesirable because the drones

typically have a limited battery life, leading to required long charging breaks

during which the applications cannot be tested. The installed software

on a drone is generally rather limited, and for many applications, extra

software needs to be installed. The process of installing software can be

cumbersome, and it is hard to remove unnecessary software from the drone

as well. Another common point of thought during drone development is

the limited resources available on the drone in terms of processing power,

memory and storage.

The limited resources on drones imply that one has to take into account how
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applications can comply with these limitations. A solution can be to o�-load

certain tasks to the cloud. In the regular software industry, cloud usage and

deployment have been around for quite some time. What started as simply

using extra servers to strengthen and expand the available resources quickly

turned into virtualizing monolithic applications in a Virtual Machine (VM)

on cloud servers. More recently, a container-based approach with micro-

services has proven bene�cial in terms of scalability, platform portability

and easy, fast and e�cient application deployment. Container-based de-

ployment systems are used in many large companies such as Net�ix [11],

Spotify [12], Google [13] and even The New York Times [14].

Drone communication also plays a critical role in di�erent operations nowa-

days, making it important to understand the types of UAV communication.

However, di�erent wireless channels and network protocols are employed

in drone communication, depending on the application and the scenario in

which the drone is used. For example, in outdoor communication, it has

been observed that a simple line of sight point-to-point communication link

between the drone and the device can be utilized without any break in signal

transmission. Another example is surveillance, where drones e�ectively

communicate through satellite communication links. Satellite communic-

ation technique is a preferable choice for drone communication when they

are used for security, defense, or more extensive outreach operations. On

the other hand, for civil and personal applications, cellular communication

technologies, such as 4G or 5G networks, are preferred [15].

This disseration mainly focusses on drone communication over the 5G

cellular network. In comparison with the 4G network, the 5G network

improves the network capacity and scale requirements (thousand-fold

capacity increase with respect to 4G and the ability to provide connectivity

to billions of devices) [16], but 5G also introduces tight constraints in

terms of latency and reliability which are imposed by critical services, such

as virtual reality o�ce, teleprotection for smart grids, real-time remote

computing for mobile terminals, and tra�c safety and e�ciency. These

use cases are regarded as key use cases for 5G networks [17]. Together

with Software-De�ned Networking (SDN) technologies, the whole network

architecture can be dynamically managed in terms of bandwidth allocation,

delay constraints, and more [18].

This chapter is further organised as follow: in Section 1.1 a brief introduc-

tion about cloud computing is given, followed by the explenation of SDN and

5G networks in Section 1.2. Section 1.3 provides an overview of the di�erent

drone types and �nally Section 1.4, 1.5, 1.6, 1.7, 1.8 and 1.9 propose the re-

search challenges, the research questions with their hypotheses, the outline

of this dissertation, the publications and the code repositories respectively.
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1.1 Cloud Computing

Cloud computing implements the idea of utility computing, which was �rst

coined by Professor John McCarthy in 1961, where computing was viewed

as a public utility just as the telephone system. There is a plethora of

de�nitions for cloud computing, from both academia and industry. Among

them, Rimal et al. [19] de�ned cloud computing as a model of service

delivery and access where dynamically scalable and virtualized resources

are provided as a service over the Internet. Cloud computing provides a

paradigm shift of business and IT, where computing power, data storage,

and services are outsourced to third parties and made available as commo-

dities to enterprises and customers. Cloud computing is a center point for

the most highly impactful technologies such as mobile Internet, Arti�cial

Intelligence (AI), Internet-of-Things (IoT), and Big Data. Further, cloud

technology can o�er tremendous economic bene�ts. For example, the total

economic impact of cloud technology could be $1.7� $6.2 trillion annually in

2025, and the proliferation and further sophistication of cloud services could

become a major driving force in making entrepreneurship more feasible in

the coming decade [20].

Cloud service models can be classi�ed into three groups: Software-as-

a-Service (SaaS), Platform-as-a-Service (PaaS), and Infrastructure-as-a-

Service (IaaS):

1. Software-as-a-Service (SaaS): SaaS, commonly referred to as the

Application Service Provider model, is a way of delivering centrally

hosted applications over the Internet as a service. It shares common

resources and a single instance of both the object code of an applica-

tion as well as the underlying database to support multiple customers

simultaneously.

2. Platform-as-a-Service (PaaS): The idea behind PaaS is to provide de-

velopers with a platform including all the systems and environments

comprising the end-to-end life cycle of developing, testing, deploying,

and hosting of sophisticated web applications as a service delivered by

a cloud. It provides an easier way to develop business applications and

various services over the Internet. PaaS can slash development time

and o�er hundreds of readily available tools and services compared to

conventional application development.

3. Infrastructure-as-a-Service (IaaS): IaaS is the delivery of resources

(e.g., processing, storage, networks) as a service over the Internet.

Aside from the higher �exibility, a key bene�t of IaaS is the usage-

based payment scheme. This allows IaaS customers to pay as they
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grow.

This dissertation proposes a UAVaaS group, which is actually a subgroup

of the IaaS group. It delivers the use of di�erent drones as a service over

the Internet, along with resources in the cloud itself.

The deployment modes can be categorized into three groups: Public Cloud,

Private Cloud, and Hybrid Cloud:

1. Public Cloud: It describes the cloud computing in the traditional

mainstream sense, whereby resources are dynamically provisioned on

a �ne-grained, self-service basis over the Internet, via web applications,

from an o�-site third-party provider who shares resources.

2. Private Cloud: Data and processes are managed within the orga-

nization without the restrictions of network bandwidth, security

exposures, and legal requirements that using public cloud services

across open, public networks might entail.

3. HybridCloud: The environment is consisting of a combination of pri-

vate and public cloud provisions.

To summarize, in cloud computing, resources are provided to users over

the Internet. These cloud resources act as a highly variable and scalable

virtual environment for the user to deploy their applications to. The cloud's

physical hardware or software can be located anywhere from a geographical

point of view. Moreover, the used infrastructure is, to a certain extent,

irrelevant to the user [21]. This can be achieved by using VMs or contai-

ner technologies, with the accompanied orchestrators, which are explained

below.

1.1.1 Containers vs. Virtual Machines

Following Red Hat's de�nition, a VM is a virtual environment that functions

as a virtual computer system with its own Central Processing Unit (CPU),

memory, network interface, and storage, created on a physical hardware

system. The hypervisor is the piece of software responsible for separating the

machine's resources from the hardware and provisions them appropriately

so they can be used by the VM [23]. A server can have multiple VMs

that use the server's hardware. This way, the capacity of a server farm

can be optimally used. VMs can be initialized on a server until the server's

capacity is fully occupied, and other servers should only be activated if more

resources are necessary.

Containers are another form of virtualization. A container provides virtu-

alization on the Operating System (OS) level. The host's kernel provides
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Figure 1.2 Containers versus virtual machines [22]

(a) Container overview (b) Virtual machine overview

the possibility to create multiple user-space instances that can be used to

run containerized applications. This, in contrast to a VM that emulates a

complete operating system (1 system per VM) where applications run on top

of these emulated operating systems, as illustrated in Figure 1.2 [22]. Since

the virtualization happens at the OS-level instead of the hardware level,

there is less overhead involved. On top of that, containers do still provide

many of the bene�ts that come with VMs such as security, decoupling from

the hardware and separation of concerns.

1.1.2 Container orchestration

Internet products or services that follow a container approach often exist out

of many of these containers that interact with each other. One container can

be replicated multiple times to ensure availability or to split the workload.

For larger systems, the containers can be deployed on di�erent hardware for

multiple reasons:

� In case of hardware failure, the containers are moved to another server.

� In case of temporary high workload, the containers are replicated and

started on multiple servers to ensure all requests are taken care of.

� The services provided by a container are used locally by users with

di�erent consumer hardware.

� Systems can easily be switched from cloud provider without worrying

about hardware compatibility.

These features call for a way to manage the containers. Container orche-

stration is precisely that. It automates the deployment of containers to

provide scaling possibilities and general container management. Well-known
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Figure 1.3 Monoliths and Microservices[26]

examples of container orchestrators are Docker Swarm [24] and the industry

de-facto standard Kubernetes [25].

Therefore, this dissertation proposes a container-based deployment system

for drones, unlocking container technologies for drone application develop-

ment orchestrated by a Kubernetes-compatible framework handling a range

of (micro)service-based application components both on a drone �eet and

in the cloud backend.

1.1.3 Microservices

In short, the microservice architectural style is an approach to developing

a single application as a suite of small services, each running in its

own process and communicating with lightweight mechanisms, often an

Hypertext Transfer Protocol (HTTP) resource Application Programming

Interface (API) [26]. These services are built around business capabilities

and independently deployable by fully automated deployment machinery.

There is a bare minimum of centralized management of these services,

which may be written in di�erent programming languages and use di�erent

data storage technologies. Microservice based design is in sharp contrast to

monolithic software design, where all application functionality resides in one

big inseperable component. An illustration about monolithic applications

and microservices is shown in Figure 1.3.
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1.2 5G and SDN Networks

SDN is an important technology to realize dynamic and �exible network

management which overcomes the current shortcomings of traditional net-

works, such as complex design and complex con�guration [27, 28]. A sche-

matic overview of SDN is shown in Figure 1.4 and further explained. With

SDN, the control plane, that decides how to handle network tra�c, and

the data plane, that forwards tra�c according to the decision made by the

control plane, are separated. Due to the separation of the control and data

planes, network switches in the data plane become simple packet forwarding

devices instructed by the rules created by the SDN controller application

in the control plane. The data plane always consists of the southbound

API, which is further explained below, and the network infrastructure. The

SDN controller (also called the Network Operating System (NOS)) and the

corresponding northbound API are part of the control plane. A network

hypervisor can eventually be added. Finally, the application plane bundles

the di�erent possible network applications who implement the control-logic

that will be translated into commands to be installed in the data plane.

These applications can perform traditional functions such as routing, load

balancing and security but they can also explore novel approaches such as

reducing power consumption. [29] The above-mentioned features of SDN

are harder to achieve in traditional networks due to the complex network

control and the di�erent protocols. Also the limited testing environments

and the long standardization process are avoided when using SDN.

Communication between the control plane and the data plane, the south-

bound API, follows the OpenFlow protocol in most cases [30, 31], giving

the control plane access to network switches and routers in the data plane.

OpenFlow allows switches from di�erent vendors, each having their own

interfaces, to be managed remotely using a single, open protocol. The

OpenFlow protocol has evolved from version 1.0 which supported only 12

�xed match �elds and a single �ow table, to version 1.5.1 (released on March

26, 2015) which features multiple tables, more than 41 matching �elds and

several new functions [32] such as the addition of egress tables, enabling

processing to be done in the context of the output port instead of in the

context of the input port. The business applications on top of the control

plane communicate over a custom northbound API.

The 5G network uses the principles of SDN networks for the management

of the wired structure, while similar solutions are used for the wireless part

(the so called Radio Access Network (RAN) slicing).

This dissertation proposes a solution for generalizing the nortbound API

within di�erent SDN networks (and 5G networks) together with the use of
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Figure 1.4 Schematic overview of Software-De�ned Networking planes[33]

these principles to create high priority �ows in order to achieve Quality-of-

Service (QoS) constraints at network level for emergency use cases where

network tra�c dealing with the incident at hand (e.g. emergency service

communication) should be prioritised over other network tra�c.

1.3 Drones

A drone or UAV is an aircraft without a human pilot on board. Drones

exist in many shapes and sizes. Where the military UAVs are typically

quite large and have a large range combined with top-notch technology,

the hobbyist UAVs are typically smaller and come with a shorter range of

use [1]. In the literature, drones are being classi�ed in 4 categories: multi-

rotor drones, �xed-wing drones, single-rotor drones and �xed-wing hybrid

Vertical Take-O� and Landing (VTOL) drones [34], as illustrated in Figure

1.5.

In the context of this dissertation, one can think of the typical quadcopter

multi-rotor drone with an onboard computer and autopilot. The most

famous brand in drone retail is DJI [35] with, e.g. their Phantom and

Mavic series as illustrated in Figure 1.6
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Figure 1.5 Drone categories [34]

(a) Multi rotor drone (b) Fixed wing drone

(c) Single rotor drone (d) Fixed wing hybrid VTOL

Figure 1.6 DJI models [35]

(a) DJI Mavic series (b) DJI Phantom series

1.4 Research Challenges

Based on the shortcomings of the current state of the art and the identi�ed

gaps discussed in the previous sections, we present four obstacles which we

will tackle in this dissertation.
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C1: Quality-of-Service at network level in a UAV-aware context.

When �ying a drone, a reliable network connection to the drone is

required, especially during BVLOS drone �ights. An objective of

this dissseration is to �nd a solution in order to maintain the QoS

constraints at network level.

C2: High priority slicing. In case of an emergency, the network connec-

tion to a drone handling this emergency use case must be prioritized

above other network connections. Based on the �rst objective (C1),

this disseration will prove such high priority slicing is possible and the

other remaining network connections will be allocated on a best-e�ort

basis.

C3: Drone application management. Application development and

management for drones is nowadays a struggle for developers. There-

fore, a solution is proposed that brings cloud technologies and concepts

to drone application development and management, with the use of

container technologies and container orchestrators.

C4: Unobtrusive container monitoring. When a container applica-

tion is deployed in the cloud, monitoring can improve the reliability

and allow users to �x new issues as soon as possible. This must

be done in an unobtrusive manner in order to avoid impact on the

observed services. This dissertation proposed such a new monitoring

system to overcome this issue.

1.5 Research Questions & Hypotheses

In order to overcome the obstacles discussed in Section 1.4, we form several

hypotheses which will be evaluated throughout this dissertation.

1.5.1 Bringing Quality-of-Service at network level with

SDN technologies

As discussed in Section 1.2, SDN networks decouple the control plane from

the network plane, allowing dynamic and �exible network management.

Multiple SDN-controllers can be used in a network, avoiding a single point

of failure, with the requirement that every controller must run the same

software. When �ying a drone, there is the possibility that a connection

must be made with other networks not running the same SDN controller

software. Therefore, we hypothesize that a solution can be found to manage

heterogeneous SDN networks and apply the QoS constraints within these

di�erent networks.
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RH1: Managing heterogeneous SDN networks while maintaining QoS con-

straints should be feasible with a negligible overhead on the perfor-

mance of the network.

1.5.2 Enable high-priority slicing in UAV-aware SDN

networks

In case of an emergency, the network tra�c from and to certain devices

must be prioritized over the other, remaining network tra�c. In terms of

UAVs, this means that a drone which is handling an emergency situation

(e.g. streaming a video feed from the incident area) must have priority

over the other network tra�c. This other network tra�c however cannot

be ignored and should be divided and allocated over the remaining network

resources.

RH2: Ensure high-priority network tra�c and optimize the remaining net-

work tra�c over the remaining resources.

1.5.3 Cloud-based drone application development and

management

When having multiple drones in operation, each drone will be equipped

with a speci�c application to run. This application can send a video feed to

the cloud, capture sensor data from equipped sensors on the drone, execute

on-board preprocessing (e.g. preliminary object detection on a video feed

without relying on cloud-based analysis) and many other possibilities. At

the moment, it is not possible to change these applications during �ight

and every drone can have slightly di�erent on-board hardware making it

di�cult to change the application on each drone. Therefore, a container-

based solution must be introduced allowing applications to be built and

deployed as containerized applications, allowing easy management and de-

velopment.

Orchestration of these containers is also possible in order to integrate drones

with services running in a cloud backend. Therefore, a Kubernetes-like

solution must be investigated that allows UAV-aware cloud applications.

RH3: Design and develop a UAV-aware cloud solution with minimal re-

source impact on the drones. This solution must be able to migrate

containerized application components from the drone to the cloud and

vice versa from an easy-to-use web platform.
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Figure 1.7 Dissertation overview

1.5.4 Unobtrusive monitoring in cloud based environ-

ments

When a larger application is deployed in the cloud, this is mostly done

as a microservice environment because of the many advantages this brings

such as better scaling options. However, these microservice environments

may also rely on third-party services that in turn may also introduce errors

due to undocumented code changes or updates. Therefore, a monitoring

solution must be introduced that can observe the microservice itself but

also the integrations with any third-party services. This must be done with

a negligible impact on the monitored services itself.

RH4: Design and development an unobtrusive monitoring solution that

has a negligble impact on the monitored services.

1.6 Dissertation Outline

This doctoral dissertation is comprised of 7 chapters, including an introduc-

tion and conclusion. The other 5 chapters are research focused and some are

inspired by research projects, summarized in Section 1.7. In what follows,

we brie�y introduce the contents of each chapter with an overview of how

each of the chapters maps to the di�erent provided objectives. An overview

of the chapters with the mapping of the Research Challenges is provided in

Figure 1.7.
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Chapter 2 � Pluggable SDN Framework for Managing

Heterogeneous SDN Networks

In Chapter 2, the Domino framework is proposed, a pluggable SDN frame-

work for managing heterogeneous SDN networks, which allows research into

SDN networks controlled by di�erent SDN controllers. Domino is deployed

as a microservice architecture and it tackles C1 and RH1. With the

outcome of this research, a heterogeneous SDN network can be controlled,

allowing to control the QoS constraints within the network.

Chapter 3 � Towards Distributed Emergency Flow Prio-

ritization in SDN Networks

With the outcome of Chapter 2, Chapter 3 and Appendix A adds an ap-

proach to guarantee the bandwidth allocation for emergency network �ows

while optimizing the allocation of the remaining bandwith over the other

�ows. This approach, designed as joint online-o�ine, consists of a Lineair

Programming (LP) and Integer Lineair Programming (ILP) algorithm (the

o�ine side) and an online algorithm. Where the o�ine approach handles

all the known network �ows as a batch, the online approach will handle all

the new incoming �ows, tackling C1, C2 and RH2.

Chapter 4 � Towards cloud-based unobtrusive monitor-

ing in remote multi-vendor environments

Objective C4 and hypothesis RH4 are both handled in chapter 4. This

chapter proposes a monitoring framework to observe complex microservice

environments and the corresponding third party services it relies on in an

unobtrusive manner. Advanced service monitoring can o�er a solution to

quickly detect anomalies and possible "upcoming errors" in order to resolve

these errors as quickly as possible.

Chapter 5 � UAVs-as-a-Service: Cloud-based Remote

Application Management for drones

Chapter 5 presents the fundamental research required in Chapter 6 to solve

objective C3 and RH3. It presents a container-based deployment system

for drones called UG-One, bringing cloud technologies to drone applica-

tion development and management. By using containerized application

workloads, drone development has become much easier and a new IaaS

platform is thus created, called UAVs-as-a-Service (UAVaaS).
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Chapter 6 � Towards a cloud-based drone application

management platform in emergency situations

As stated above, Chapter 6 builds upon the outcome of Chapter 5, bringing

also container orchestration capabilities to UAV-aware clouds. A Kuber-

netes based approach, called K3S, is used as container orchestrator due to

the low impact it has on the edge device (e.g. drones). From this moment,

every drone is fully integrated into the cloud and container-based applica-

tions can be deployed on either the cloud or on a drone. The networking

side within K3S is implemented with the outcome of Chapter 2 and 3 and

hereby concludes the work of this dissertation.

1.7 Research Projects

Parts of the research conducted in this dissertation are the result of di�erent

national research projects which are listed below:

5Guards (imec.icon): In this project, the aim was to investigate how the

network slicing concept of future 5G networks could provide the means

to meet the connectivity requirements of security services. Network

slicing aims at providing the ability to allocate resources on demand

by creating multiple isolated logical networks on top of a common

shared physical infrastructure. The focus lied primarly on emergency

or operational use cases for 5G network slicing in the public (e.g. �re

departments) and industrial sectors. A major asset of the project is

the involvement of multiple industrial and academic players who cover

the complete 5G network � from the radio link over the radio access

network to the core network.1

3DSafeGuard-VL (ITEA3): This project focused on research activities

which resulted in the development of a Proof-of-Concept (PoC) of a

new UAV-platform. This platform can be used by emergency workers

to increase in real time the global situational awareness and support

decision processes of an active emergency situation. Our main task

in this project was to collect the on-board sensor data of the UAV

which is used to create a map in real time and distributed an annotate

information on that map towards creating information to advice and

support decisions of the o�cers and hazard workers on site.2

1https://www.imec-int.com/en/what-we-o�er/research-portfolio/5guards
2https://droneport.eu/�emish-consortium-demonstrates-unique-drone-technology-

for-emergency-services/?lang=en

https://www.imec-int.com/en/what-we-offer/research-portfolio/5guards
https://droneport.eu/flemish-consortium-demonstrates-unique-drone-technology-for-emergency-services/?lang=en
https://droneport.eu/flemish-consortium-demonstrates-unique-drone-technology-for-emergency-services/?lang=en
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DynAMo (imec.icon): DynAMo seeks to reduce integration problems

and achieve faster go-live of software deployments by giving companies

more insights into their own IT service o�ering, and also into third-

party services interacting with it. The project developed a dynamic

architecture monitoring solution that learns normal service behavior

from data and detects when services are not operating in line with the

rules governing interfaces, protocols, performance and security.3

1.8 Publications

The results obtained during this PhD research have been published in

scienti�c journals and presented at di�erent international conferences and

workshops. Moreover, di�erent talks were given to di�erent news outlets

over the course of this PhD for the broader public. The following list

provides an overview of these publications and talks.

1.8.1 Publications in A1 Journals

[1] J. Moeyersons, PJ. Maenhaut, F. De Turck and B. Volckaert

Pluggable SDN framework for managing heterogeneous SDN networks.

Published in the International Journal of Network Management,

vol. 30, no. 2, e2087, 2020.

[2] J. Moeyersons, B. Farkiani, T. Wauters, B. Volckaert and

F. De Turck Towards distributed emergency �ow prioritization in

software-de�ned networks. Published as special issue paper in the

International Journal of Network Management, vol. 31, no. 1, e2127,

2021.

[3] J. Moeyersons, S. Kerkhove, T. Wauters, F. De Turck and

B. Volckaert Towards cloud-based unobtrusive monitoring in remote

multi-vendor environments. Published in Software: Practice and

Experience, 2021.

[4] J. Moeyersons, M. De Schutter, F. De Turck and B. Volckaert

Towards a cloud-based drone application management platform in em-

ergency situations. Submitted for review, 2022.

1.8.2 Publications in International Conferences

[1] J. Moeyersons, PJ. Maenhaut, F. De Turck and B. Volckaert Aiding

�rst incident responders using a decision support system based on live

3https://www.imec-int.com/en/what-we-o�er/research-portfolio/dynamo

https://www.imec-int.com/en/what-we-offer/research-portfolio/dynamo
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drone feeds. In Jian Chen, Y. Yamada, M. Ryoke, & X. Tang (Eds.),

Knowledge and Systems Sciences (pp. 87-100), 2018, Singapore:

Springer Singapore.

[2] J. Moeyersons, B. Verhoeve, PJ. Maenhaut, B. Volckaert and

F. De Turck Pluggable drone imaging analysis framework for mob

detection during open-air events. In ICPRAM2019, the 8th

International Conference on Pattern Recognition Applications and

Methods (pp. 64-72).

[3] J. Moeyersons, B. Farkiani, B. Bakhshi, S. A. Mirhassani,

T. Wauters, B. Volckaert and F. De Turck Enabling emergency �ow

prioritization in SDN Networks. In 15th International Conference on

Network and Service Management (CNSM). IEEE, 2019. p. 1-8.

[4] J. Moeyersons, M. Gevaert, K. Réculé, B. Volckaert and F. De Turck

UAVs-as-a-service : cloud-based remote application management

for drones. In Manage-ioT2021, part of IM2021, the IFIP/IEEE

Symposium on Integrated Network and Service Management. 2021.

p. 1-6.

1.8.3 Talks

[1] Belgian Drone Federation. Webinar: Innovatie met drones. Webinar.

June 2021.

URL: https://belgiandronefederation.be/nl/news/webinar-1-

juni-2021-innovatie-met-drones.

[2] Drone-Days 2021 - Fly to Adventure. Digital Convention: Drones @

Work. Conference. November 2021.

URL: https://www.drone-days.be/en/drone-days.

1.9 Code Repositories

We advocate for open and reproducible research. The following list provides

an overview of all public code repositories.

[1] The Last Post Thermal Dataset

URL: https://github.com/IBCNServices/Last-Post-Dataset.

[2] UG-ONE

URL: https://github.com/IBCNServices/UG-One.

https://belgiandronefederation.be/nl/news/webinar-1-juni-2021-innovatie-met-drones
https://belgiandronefederation.be/nl/news/webinar-1-juni-2021-innovatie-met-drones
https://www.drone-days.be/en/drone-days
https://github.com/IBCNServices/Last-Post-Dataset
https://github.com/IBCNServices/UG-One
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2
Pluggable SDN Framework for

Managing Heterogeneous SDN

Networks

In this chapter, the Domino framework is proposed, allowing to manage

heterogeneous SDN networks from a single framework. In the context of this

dissertation, it enables the management and allocation of network resources

where multiple drones are connected by means of SDN technologies and

provide an answer to Research Challenge 1 (C1) discussed in Chapter 1. We

hypothesize that management of these networks while maintaining Quality-

of-Service constraints can be done with a minimal overhead (RH1). The

Domino framework is implemented using a plugin-based microservices ap-

proach and evaluated in terms of performance, interoperability and modi-

�ability. A use case exemplifying a simple Dijkstra routing algorithm over

multiple SDN networks showcases the possibilities and features of this frame-

work. Results show that the most frequent commands within the Domino

framework are executed within 1 second, making it usable for managing the

network in a drone related context.

⋆ ⋆ ⋆
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Abstract Software-De�ned networking (SDN) is a new network paradigm

that is separating the data plane and the control plane of the network,

making one or more centralized controllers to supervise the behaviour of

the entire network. Di�erent types of SDN controller software exist and re-

search dealing with the di�culties of consistently integrating these di�erent

controller types has mostly been declared future work. In this chapter the

Domino framework is proposed, a pluggable SDN framework for managing

heterogeneous SDN networks. In contrast to related work the proposed

framework allows research into SDN networks controlled by di�erent types

of SDN controllers attempting to standardize the northbound API of them.

Domino implements a microservice plugin architecture where users can link

di�erent SDN networks to a processing algorithm. Such an algorithm allows

for e.g. adapting the �ows by building a pipeline using plugins that either

invoke other SDN operations or generic data processing algorithms. The

Domino framework is evaluated by implementing a Proof-of-Concept im-

plementation which is tested on the initial requirements. It achieves the

modi�ability and the interoperability with an average successful exchange

ratio of 99.99 %. The performance requirements are met for the frequently

used commands with an average response time of 0.26 seconds and the

framework can handle at least 72 plugins simultaneously depending on the

available amount of RAM. The proposed framework is evaluated by means

of the implementation of a shortest path routing algorithm between hetero-

geneous SDN networks.

2.1 Introduction

The Internet is essential in today's society, needed for applications such

as social networks, cloud computing and people's working, studying and

living styles. However, traditional network technology cannot meet the

requirements of the current network demands because of the high complexity

for both design and con�guration [1]. A new network design, Software-

De�ned Networking (SDN) has been proposed that can manage networks

dynamically and �exibly.

SDN is an important technology to realize dynamic and �exible network

management which overcomes the aforementioned weaknesses of traditional

networks [3, 4]. A schematic overview of SDN is shown in Figure 2.1
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Figure 2.1 Schematic overview of Software-De�ned Networking planes[2]

and further explained. With SDN, the control plane, that decides how to

handle network tra�c, and the data plane, that forwards tra�c according

to the decision made by the control plane, are separated. Due to the

separation of the control and data planes, network switches in the data

plane become simple packet forwarding devices instructed by the rules

created by the SDN controller application in the control plane. The data

plane always consists of the southbound Application Programming Interface

(API), which is further explained below, and the network infrastructure.

The SDN controller (also called the Network Operating System (NOS)) and

the corresponding northbound API are part of the control plane. A network

hypervisor can eventually be added. Finally, the application plane bundles

the di�erent possible network applications who implement the control-logic

that will be translated into commands to be installed in the data plane.

These applications can perform traditional functions such as routing, load

balancing and security but they can also explore novel approaches such

as reducing power consumption. [5] The above-mentioned features of SDN

are harder to achieve in the traditional networks due to the complex net-

work control and the di�erent protocols per problem. Also the limited

testing environments and the long standardization process are avoided when

using SDN. A brief comparison between SDN and conventional networking

is provided in Table 2.1.

Communication between the control plane and the data plane, the south-

bound API, follows the OpenFlow protocol in most cases [6, 7], giving the
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control plane access to network switches and routers in the data plane.

OpenFlow allows switches from di�erent vendors, each having their own

interfaces, to be managed remotely using a single, open protocol. The

OpenFlow protocol has evolved from version 1.0 which supported only 12

�xed match �elds and a single �ow table, to the latest version 1.5 which

features multiple tables, more than 41 matching �elds and several new

functions [8] such as the addition of egress tables, enabling processing to

be done in the context of the output port instead of in the context of

the input port. The major di�erences between the di�erent OpenFlow

versions are summarized in Table 2.2. The business applications on top

of the control plane communicate over a custom northbound API. For now,

the northbound API has no well-de�ned standards to clarify what it is and

can do [9, 10]. Zhou et al. [11] for example proposed a possible design for the

northbound API in a RESTful manner through a set of REST API design

patterns.

The original design of SDN consists of a single centralized controller for

managing the whole network, resulting in a potential single point of failure.

A single centralized controller also cannot handle the day-to-day increasing

network demands due to performance limitations of the controller itself. To

overcome these issues, a multi-controller architecture is proposed in several

works [14�16], in which multiple controllers together ful�ll the tasks of a

logically centralized controller.

In multi-controller environments, the same SDN controllers such as Ryu [17],

Floodlight [18] or Open Network Operating System (ONOS) [19] are used

to manage the whole network. In these multi-controller environments, east-

and westbound APIs, similar to the north- and southbound APIs, are

essential components to enable clear communication between the di�erent

distributed controllers. [5] To enable and provide common compatibility

and interoperability between the di�erent controllers, it is necessary to

have standard east/westbound interfaces such as SDNi [20], which de�nes

common requirements to coordinate �ow setup and exchange reachability

information across multiple domains. Many solutions have already been

proposed for creating and managing these homogeneous SDN networks. [21�

25]

This chapter however focuses on the requirements for and the management

of heterogeneous SDN networks by creating a pluggable framework that

allows users to control the heterogeneous network, proposing a standard

northbound API. The framework allows for research over heterogeneous

SDN networks by linking those networks together in a standardized manner.

To test the viability of the architecture, a proof-of-concept prototype is

implemented and evaluated in terms of performance, modi�ability, interop-
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erability and security. As a use case, a shortest path routing algorithm is

implemented and evaluated within the framework, which aims to identify the

shortest path between di�erent heterogeneous SDN networks. In case of an

emergency case, regular communication and video streams from e.g. CCTV

cameras and drones used by the public services should not be interrupted,

delayed or down scaled while other, unimportant network communication

such as live streams from Facebook, must be down scaled to a minimum or

even blocked completely. This can be achieved by calculating the shortest

path from source (the cameras) to destination (the public services) and

there is no guarantee that this will happen between homogeneous SDN con-

trollers. As such, we investigated that our proposed solution is capable of

creating and managing new emergency (high priority) �ows over di�erent

heterogeneous SDN networks. The remainder of this chapter is organized

as follows. In Section 2.2 related work is discussed. Section 2.3 presents

the requirements for the management of heterogeneous SDN networks and

the corresponding framework design is discussed in Section 2.4. Section 2.5

presents the implementation of the framework prototype; the use case for

setting up shortest path �ows across heterogeneous SDN networks impl-

emented on top of the framework is discussed in Section 2.6. Evaluation of

the framework and the results for the shortest path algorithm are presented

in Section 2.7. Finally, Section 2.8 draws conclusions from this research and

indicates potential avenues for future research.

2.2 Related Work

Recent research on SDN has shown that many challenges in a multi-

controller network have already been tackled [27]. These challenges include

scalability, consistency, reliability and load-balancing. Solutions for the

scalability problem are categorized into two aspects: the placement and

number of controllers [28] and how to divide the network into multiple

domains for a multi-controller SDN network [14]. Consistency between

di�erent controllers [22] and between the applied strategies [14] is required

to have a correctly working multi-controller SDN network. A key feature of

SDN is that the functionality of the network highly depends on the control-

ler software. Misbehaving software, hardware errors or failing physical links

among switches and controllers can lead to an inconsistent network state.

There are solutions for both guaranteeing reliable controller nodes [21] and

reliable connection links between switches and controllers [23]. Another

challenge, load-balancing, is achieved by clustering controllers together [29]

or migrating switches from one controller to another [24, 25, 30, 31],

resulting in load-balanced SDN controllers. Some existing solutions will
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be explained to determine the requirements imposed on the framework

proposed in this chapter.

Dixit et al. [24] proposed ElastiCon, the �rst switch migration framework

based on a dynamic multi-controller architecture. ElastiCon contains three

main modules namely a load measurement module, load adaptation decision

module and an action module. The load measurement module collects the

load of each controller and sends the information to the load adaptation

decision module, which decides on load allocation between the di�erent con-

trollers. The action module is responsible for migrating switches and adding

or removing controllers from the network to achieve an elastic network. One

of the main drawbacks of ElastiCon is the decision making in setting load

balancing issues among controllers. This can settle uneven load distribut-

ion among controllers due to the extra time needed to collect informat-

ion from all controllers and to send appropriate load balancing commands

to the overloaded controller. As a result, Yu et al. [25] proposed a load

balancing mechanism based on a load information strategy for controllers

whereby the mechanism is running as an extra module on each controller.

The load balancing mechanism is now responsible for measuring the load

metrics of a controller, sharing the load information to other controllers

and making decisions about load balancing and switch migration. Both

Elasticon and the proposed load balancing mechanism of Yu et al. are

evaluated on a simulated homogeneous multi-controller SDN network. In

the work proposed in this chapter, similar architectures can be deployed

and evaluated on both real- and simulated- heterogeneous SDN networks

instead of homogeneous SDN networks.

A problem that can occur in both homogeneous and heterogeneous SDN

networks is a connection failure between the controllers and the switches.

Behesthi and Zhang [23] created a protection metric for the connections

between the controllers and the switches, resulting in fast failover for the

control tra�c. Cascone et al. [32] propose SPIDER, a failure recovery in

SDN that provides a fully programmable abstraction to application devel-

opers for de�ning the rerouting policies and for management of the failure

detection mechanism. The results from their work can be integrated in our

proposed framework to achieve improved reliability.

A lot of research on homogeneous multi-controller SDN networks has already

been realized. However, research concerning heterogeneous SDN networks

has to the best of our knowledge mostly been declared future work. In this

chapter, the focus is on this type of SDN network by designing, prototyping

and evaluating a management framework that enables research into SDN

networks controlled by di�erent SDN controller types.
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2.3 Requirements

In this section, both functional and non-functional requirements for the

proposed framework will be discussed. The functional requirements will

determine which actors can use the framework and their speci�c tasks. The

non-functional requirements describe framework operational constraints

that need to be taken into account.

2.3.1 Functional requirements

Three general actors are identi�ed for the framework: an end-user that

wants to manage di�erent SDN networks for a speci�c use case, SDN experts

implementing APIs for di�erent SDN controller software (further called SDN

plugins) and network planning/managing module developers integrating

new processing algorithms or methods (further called processing plugins)

into the framework so that end-users can utilize them to build their appli-

cations. The SDN experts and the processing software developers are gen-

eralized to an actor called plugin developer, who develops plugins to extend

the functionality of the framework. These plugins are the building blocks

with which the end-user can build SDN network managing applications. An

end-user can choose from the di�erent provided plugins to create and adapt

his application with the framework. Plugin developers should be able to add

new SDN network APIs and processing methods or adapt existing plugins.

The tasks of both end-users and plugin developers are explained below and

summarized in Figure 2.2.

A plugin developer is responsible for creating and maintaining new plugins.

A plugin should implement a REST API that allows communication with

other plugins. Each plugin should a least have an endpoint to link two

plugins to each other and an endpoint to remove the link between two

connected plugins. Each plugin should be uploaded to a distribution service

where it will be available for use in the framework. An overview of the use

cases for the plugin developers is illustrated in Figure 2.2b.

An end-user can use plugins from the di�erent plugin distribution services

to create custom SDN network managing networks. The SDN plugins are

available from the SDN distribution and the processing plugins are available

from the Processing distribution. Through the framework's Command Line

Interface (CLI), the end-user can enlist the di�erent available plugins and

create a custom application (further called a pipeline) by linking di�erent

SDN plugins to a single processing plugin. Afterwards he can add or remove

SDN plugins from the pipeline or swap the processing plugin. The end-user

can also start and stop the entire framework through the CLI. The di�erent

use cases for the end-users are illustrated in Figure 2.2a.
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Figure 2.2 Use case diagram for Dominos end-users and plugin developers

(a) End-user use cases (b) Plugin developer use cases

2.3.2 Non-functional requirements

The non-functional requirements specify how the framework is supposed to

operate, or in what manner it should execute its functionality. Requirements

that will be discussed are performance, interoperability, modi�ablity and

security. In terms of performance, the framework should be able to meet

timing requirements such as maximum allowed latency and scalability. The

software industry has not de�ned a quanti�ed `acceptable latency' for end-

users, but a 4 second latency rule is often used as a rule-of-thumb [33]. The

average response time for general framework commands should therefore be

less than 2 seconds, with a standard deviation of 1 second. The latency

introduced by the framework is caused by both the management of all

plugins and the translation of the SDN control calls but it will not introduce

any delay on the ongoing network operations in the underlying SDN net-

works. The number of users that can use the framework simultaneously is

assumed to be low, so the assumption is made that a maximum of �ve users

can use the framework at the same time based on the use case where one

end-user, three SDN plugin developers and one processing plugin developer

use the framework simultaneously. In terms of maximum number of active

plugins, the framework should at least work with several active plugins

without any remarkable performance downgrade. The number of active

plugins that the framework is able to handle is evaluated in Section 2.7.

Interoperability is the degree to which two or more independent systems

can usefully exchange meaningful information via interfaces in a particular

context. The framework will interoperate with SDN controllers and process-

ing methods via framework plugins as shown in Figure 2.3a. An SDN plugin

is a plugin that represents an API of a speci�c SDN Controller software

for e.g. getting the current �ows and meters and set improved �ows and

meters with a higher priority. A processing plugin retrieves the current �ows

and meters from speci�c SDN plugins and processes them as illustrated in
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Figure 2.3 Interoperability diagrams

(a) Framework interoperability (b) Plugin interoperability

Figure 2.3b. In some cases it is possible that a process plugin will forward

improved �ows and/or meters to the di�erent SDN plugins. The framework

will thus interact with the SDN and processing plugins, with which the

framework exchanges requests to link them together, control their process-

ing, etc. The more correct exchanges there are between them, the better

the user can use the plugin for building applications with the framework.

Modi�ability is the cost and risk of changing the functionality of the

system. One of the most important values of the framework is modi�ability

of the supported SDN and processing plugins. The framework needs to

be extendable for new functionalities by enabling developers to add new

plugins. End-users should be able to modify the components that they use

for their applications easily and quickly to allow for interchangeable SDN

controller software and processing methods. To enable end-users to choose

the extensions they need, the framework will need a distribution service

that contains all possible plugins available for the framework. When a

user adds a plugin from the distribution to his version of the framework,

the framework should only reload once before making the plugin useable.

Another part of modi�ability is deployability, de�ned as the di�erent device

con�gurations that specify how the framework can be deployed. If the

framework can be deployed in di�erent fashions such as completely local,

completely distributed or a combination of both where some components

are deployed locally while others are deployed distributed, this can increase

the value for the end-user.

Security has three main characteristics. Con�dentiality is the property

that data or services are protected from unauthorized access. Integrity

is the property that data or services are protected from unauthorized

manipulation. Availability is the property of the system maintaining its

functionality during a possible attack. Security is important for the frame-

work if it is deployed on multiple devices that use a public network to

communicate.
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2.4 Design of a heterogeneous SDN controller

framework

In this section, the proposed software architecture will be discussed. First,

an overview of the required design patterns to meet requirements from

Section 2.3 is explained. Next, the static overview is shown with extra

information about the architecture of the plugins. Finally, di�erent deploy-

ment possibilities will be summarized.

2.4.1 Application of design patterns

To meet the requirements listed in Section 2.3, several design patterns

have been applied to the proposed framework. To meet the non-functional

architectural requirements, the microkernel pattern in combination with the

microservices pattern is proposed. The microkernel pattern [34] allows the

addition of application features as plugins to the core application, provi-

ding extensibility as well as feature separation and isolation. The pattern

consists of two components: a core system called the kernel and plugins.

The kernel only contains the minimal functionality required to make the

system operational. The plugins are standalone independent components

that contain specialized processing, additional features and custom code.

The microservices pattern [35] structures the application as a collection of

loosely coupled services that implement business capabilities. Each compon-

ent of the pattern is deployed as a separate unit that can be deployed on one

or multiple devices. Interoperability and deployability of these components

can be ensured by the microservices pattern, as it designs the microservices

to have well de�ned interfaces for interoperability and allows for the frame-

work to be deployed in a distributed fashion.

2.4.2 Static view

Figure 2.4 presents an overview of the architecture as a component-

connector diagram. Components are the boxes that represent di�erent

software entities. The components have interfaces through which they

interact with other components. The type of data exchanged is noted next

to the interface. Multiple boxes indicate that multiple components of the

same kind can exist at runtime.

The two used patterns, described in Section 2.4.1, are also shown in Figure

2.4. Each component is a microservice that implements its own interface

that can interact with other components. As will be explained in Section

2.4.4, di�erent components can be deployed on either a single machine or

spread across di�erent machines. The microkernel pattern is implemented
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Figure 2.4 Component-connector overview of the framework. The clear
components are the core components of the framework that each user needs
to install to use the framework. The colored components are used for the
distribution of plugins.

as di�erent core components namely the client interface, the pipeline, the

SDN manager, the processing manager and the plugins for both SDN and

processing modules.

The architecture of the framework includes, next to the core components and

the plugins, also distribution services (colored components in Figure 2.4) for

framework plugins to extend the functionality. These are not installed with

the core framework but can run as remote instances with which the user can

interact to extend the core framework. An end-user can use the framework

via the CLI, building pipelines that are maintained in the Pipeline compon-

ent. The Pipeline component makes requests to the Processing Manager

and SDN Manager components to activate and control the selected plugins

to build the pipeline. Additional plugins can be added to the framework

and are distributed via the SDN and Processing distribution components.

The pipeline and the di�erent plugins are further discussed in Section 2.4.3.

The communication between the microservices must follow a communicat-

ion protocol. There are two types of tra�c exchanged between the micro-

services. First, there are command requests that are exchanged between

microservices to edit resources or change state. Second, there are API calls

that are exchanged between the Processing and SDN plugins. For both types

of tra�c, the requests must be reliable and executed only once. HTTP can

be used when communication reliability is of concern, while UDP can be
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Figure 2.5 Plugin Diagram

(a) SDN Plugin (b) Processing Plugin

used if latency is deemed more important. For our prototype we prefer

HTTP communication to obtain the reliability and to guarantee that a

request is executed only once.

2.4.3 A pipeline: linked Processing and SDN plugins

A plugin represents an independent element, either of the Processing type

(e.g. a �ow viewer application) or the SDN type (e.g. a Ryu API applica-

tion). Plugins are deployed as a standalone microservice providing a REST

API interface that the framework uses to control the plugin. Figure 2.5

represents the plugin diagram for both SDN plugins (Figure 2.5a) and Pro-

cessing plugins (Figure 2.5b). A plugin receives data from other plugins

called sources, processes this data and forwards it to other plugins called

listeners. An SDN plugin has only one source and one listener, which is

in both cases a Processing plugin. A Processing plugin has both sources

and listeners, which are di�erent SDN plugins whereby the SDN plugin

functions both as source and listener. For example, di�erent SDN plugins

will send �ow information to one Processing plugin, who will process the

�ows to create better paths and afterwards will push the new �ows to each

SDN plugin. When di�erent plugins are activated through the framework's

CLI, they are linked to each other which is further called a pipeline. A

pipeline is thus the collection of di�erent SDN plugins who are linked to

one speci�c processing plugin. An example is illustrated in Figure 2.7. In

this example, three heterogeneous SDN networks are controlled by three

SDN plugins which are sending �ow information (source) to a Processing

plugin called `�ow viewer'. Through a custom de�ned web interface in the

processing plugin, a user can update the �ows and these updated �ows will

then be pushed back to the di�erent SDN plugins (listeners).

The plugin REST API should a least provide three endpoints: a /state

resource representing the state of the plugin, a /sources resource that

represent the sources from which the plugin receives data to process and

a /listeners resource which represent the listeners to which the plugin

transmits the processed data.
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Figure 2.6 Plugin state transition diagram

Figure 2.7 Example of a pipeline whereby three di�erent SDN networks
are connected to three SDN plugins which are connected to one processing
plugin called `�ow viewer'. The �ow viewer application can be reached
through his custom made API which visualizes the di�erent �ows in the
three SDN networks.

A plugin can be in three di�erent states: INACTIVE, STOP and

PLAY. When a plugin is in the INACTIVE state, no active microservice

is running. This is the initial state of a plugin and only visible to the

framework. When a plugin is in the STOP state, the framework has

instantiated a microservice running the plugin that now is waiting to have

listeners and or sources. Once the plugin receives a listener or a source, the

state of the plugin is PLAY. Figure 2.6 shows the possible state transitions

for each plugin. If a plugin needs to be put in the INACTIVE state from

the PLAY state, the plugin will �rst make the transition from PLAY to

STOP to make sure that all sources and listeners are released from the

plugin before shutting it down and putting it in the INACTIVE state.

2.4.4 Deployment view

The di�erent deployment options are illustrated via deployment diagrams in

Figure 2.8. `Host' speci�es the device on which components are deployed and

the `microservice' indicates the isolated environment in which components

are running. These isolated environments on the host are realized as

software containers that enable portability of the components to other de-
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Figure 2.8 Deployment diagrams

(a) Local con�guration (b) Distributed con�guration

ployment con�gurations. The Processing and SDN distribution components

were left out of the diagrams. Two deployment con�gurations are presented:

a local con�guration in which all components are deployed on a single

device and the distributed con�guration in which di�erent components

can be distributed across multiple devices. The proposed microservice

architecture enables di�erent deployment options because of the use of

software containers which can be deployed in di�erent manners.

The local con�guration is shown in Figure 2.8a. With this con�guration, the

framework can work o�ine if the required plugins are already available on

the host. The components are still deployed as separate microservices due to

the architecture of the framework. This has an impact on the performance

because for every interaction between components the HTTP protocol is

used which introduces an extra overhead compared to direct invocation of

commands.

Figure 2.8b illustrates the distributed con�guration, deploying the frame-

work on multiple devices. The components are distributed over these

devices, made possible by the microservice isolation and communicat-

ion protocols. Due to the distributed nature, performance will be worse

when compared to the local con�guration, because each request between

components travels over a network connection that is subject to potential

delays.
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2.5 Prototype Implementation

To prove the concept of the architecture discussed in the previous chapters,

a prototype is implemented. First the di�erent possible microservice frame-

works are discussed. Afterwards the di�erent deployment options are ex-

plained followed by implementation of the di�erent SDN and Processing

plugins. Next an overview of the CLI is provided which will discuss the

possible commands that can be used to manage the framework and �nally

the used hardware is illustrated.

2.5.1 Microservice frameworks

The architecture presented in Section 2.4 relies heavily on the microservices

pattern. Therefore this section aims to present the chosen microservice

framework. Figure 2.9 depicts the results of the Rethink IT survey querying

the most used frameworks for microservices by developers [36]. The most

popular frameworks, Java EE and Spring Boot are written in Java. The Java

EE framework is more of a one-stop-shop framework instead of a specialised

lightweight microservice framework and is therefore not considered. Spring

Boot is clearly a very popular and mature framework, more streamlined

for microservices. Vert.x is a more recent framework gaining in popularity,

renowned for its performance, making it worthwhile to explore. Python is

a language for web development and because it is excellent for prototyping,

several microservice frameworks for this language exist.

For the prototype implementation, Flask [37] is selected. Flask is a micro

web development framework for Python, providing a glue layer to build

a REST API around the application and uses the concept of Python

decorators to bind Python functions to a REST API. Because it is a

microframework, the memory footprint is small with the binary �le only

being 535KB large. Flask is in use by several large companies such as

Net�ix and Reddit [38]. In a production environment the default Flask

web server is not su�cient, as it only serves one user at the time, and a

production WSGI server such as Waitress [39] needs to be used. However

for prototyping and evaluation purposes the Flask web server su�ces.

2.5.2 Deployment framework

To allow for the modi�ability and interoperability requirements discussed

in Section 2.3 and the di�erent deployment con�gurations in Section 2.4.4

Docker and Kubernetes are used.

Docker started as an open-source project at dotCloud in early 2013. It

was an extension of the technology the company had developed to run its
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Figure 2.9 Rethink IT: Most used tools and frameworks in 2017 based
on an online survey for microservices [36]. The X-axis shows the usage
percentage for the most used frameworks/tools (shown on the Y-axis) to
built microservices.

cloud applications on thousands of servers [40]. Now, Docker is a standalone

mature company providing a software container platform for the deployment

of applications [41]. Docker provides two main services: a simple tool set

and API for managing Linux containers and a cloud platform which provides

easy access to images for software containers created by other developers

[42]. Docker is the container technology with most public traction and is

becoming the container standard at the time of writing, due to its o�ered

functionality and responsive community [43]. It o�ers to easily build and

run containers but also manages them in large clusters. A design decision

that limits Docker is that each container can only run one process at a time

in combination with the Docker client. Docker consists of a daemon that

manages the containers and the API Engine, a REST client. Should this

client fail, dangling containers can arise [44]. A dangling container can be

compared to a zombie process. Docker Compose [45] is a tool for de�ning

and running multi-container Docker applications. With Compose, a YAML

�le is used to con�gure the di�erent application services and these can be

started or stopped with a single command.

Kubernetes [46] is an open source cluster manager for Docker containers

developed by Google and later on by the open source community. It allows

for decoupling of application containers from the details of the systems on
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which they run. This decoupling simpli�es application development since

users only ask for abstract resources like cores and memory, and it also

simpli�es data center operations. One or more containers deployed in Kub-

ernetes are grouped together inside a pod, which will have its own unique IP

address inside the Kubernetes cluster allowing communication with other

pods whether they are co-located on the same physical machine or not. The

concept of a pod [47] in Kubernetes makes it easy to tag multiple containers

that are treated as a single unit of deployment. They are co-located on the

same host and share the same resources. Each container running within

the same pod gets the same hostname, so they can be addressed as one

unit. When a pod is scaled out, all containers within this pod are scaled

out automatically. Services in Kubernetes maintain a well-de�ned endpoint

for each pod. As a pod could be relocated from one node to another, the

endpoint of the pod will be changed but the endpoint of the service remains

the same. Multiple pods running across multiple nodes of the Kubernetes

cluster can be exposed as a service, which is an essential building block of

microservices.

2.5.3 SDN and processing plugins

The prototype implementation includes three SDN plugins and two pro-

cessing plugins. The processing plugins that are implemented are a �ow

viewer API, which simply retrieves the current active �ows of the linked

SDN plugins and a shortest path algorithm plugin which will be explained

in Section 2.6. The three included SDN plugins are explained below.

The three SDN plugins are APIs built on top of three well-known SDN con-

trollers. Each SDN plugin is then distributed as an Docker image, ready to

be used by the framework. The �rst SDN plugin is an API on top of the

Ryu SDN controller. Ryu [17] is a framework written in Python, providing

several components useful for SDN applications such as a simple switch and

a topology discoverer and viewer. It allows the modi�cation of existing

components or the creation of new components to combining them to form

a Ryu application. Ryu supports OpenFlow version up to and including

1.3 and Nicira [48] extensions. The created SDN plugin is built on top

of the Ryu base application and the endpoints are implemented with the

Flask package [37]. The second SDN plugin is built on top of the Floodlight

SDN controller software [18], an open-source enterprise level controller impl-

emented in Java that declares itself to be designed for high performance

and easy to use and deploy. It o�ers a module loading system that allows

user extension and enhancements. Floodlight supports OpenFlow versions

up to and including 1.5 and several extensions. The custom API for the

SDN plugin is implemented using the Java Restlet framework [49]. The
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Listing 1 Info.yml �le for the Ryu SDN plugin
---

meta-information:

version: 0.1

name: Ryu API

description: |

API for Ryu based Controllers

author: Jerico Moeyersons

build:

context: .

dockerfile: Dockerfile

ports:

api_port: 5000

OF_port: 6633

---

ONOS [19] SDN controller framework is used to implement the last SDN

plugin. It declares itself as scalable, highly performant and highly available

thanks to the modular software that is based on Floodlight and implemented

in Java. ONOS also supports OpenFlow versions up to and including 1.5.

The provided API for the SDN plugin is implemented using the Java Restlet

framework.

Each SDN plugin should be accompanied by an info.yml �le, describing the

meta-information such as description, author, name and version, the build

and the ports used for both the API endpoint and the OpenFlow port. Each

processing plugin should also be accompanied by an info.yml �le, which

is similar to the �le used for the SDN plugins but with no OpenFlow port

entry. An example info.yml �le for the Ryu SDN plugin is illustrated in

Listing 1.

2.5.4 The command line interface

The CLI is the main entry point for an end-user to use and manage the

entire framework. It can be installed with Python pip and referred to as

Domino. The name comes from both the game where di�erent dots needs

to be interconnected to eachother (re�ering to the pluggable feature of the

framework) and from the Latin dominus, meaning the master of its slaves

and servants which are in this case the plugins. It is built in Python with

the Click package by Armin Ronacher [50]. Click is CLI creation kit. It

resembles the Flask framework that is used to create the microservices and it

also leverages Python decorators for most of its functionality. With Domino,
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the end-user can start or stop the framework, get a list of the installed

plugins, activate plugins and link plugins to each other. The following

commands are implemented:

� domino: Displays a help page listing command groups

� domino on: Starts the application

� domino off: Stops the activated plugins and the application

� domino plugins: Groups all commands to manage plugins. In the

current prototype, a list command has been implemented.

� domino plugins ls: Lists all locally installed plugins

� domino pipeline: Groups all commands to manage the current pipe-

line

� domino pipeline add <type> <name> : Adds a SDN or processing

plugin to the pipeline. The type can be a processing_plugin or an

sdn_plugin and the name is the name of the plugin as shown in the

domino plugins ls command. When a new plugin is added to the

pipeline, it will be linked automatically to the other active plugins in

the pipeline.

� domino pipeline delete <name> : Deletes an SDN or processing

plugin with the provided name. If all is �lled in, all plugins will

be removed from the pipeline.

� domino pipeline elements: Lists all SDN and processing plugins

that are added to the pipeline

A typical use of the application would be to �rst start the application

using the domino on command. Then plugins are added to the pipeline

using domino pipeline add <type> <name> , which will instantiate the

corresponding plugins in the SDN Manager or Processing Manager compon-

ent. Note that only one processing plugin can be added to the pipeline due

to design choices. As mentioned in the commands above, linking between

the plugins inside a pipeline will happen automatically when a plugin is

added to it.

2.5.5 Used hardware

To implement the described framework di�erent hardware is used. The SDN

networks are built with switches from Northbound Networks [51] namely
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Zodiac ZX [52] and the Zodiac GX [53], both OpenFlow enabled switches

with 10/100 Mbps Ethernet ports and 1Gbps Ethernet ports respectively.

The Zodiax FX supports OpenFlow version up to and including 1.3 and the

Zodiac GX supports the same OpenFlow versions but also version 1.4 and

1.5. OpenFlow version 1.3 is chosen to be used in all SDN networks to have

consistency between the two di�erent types of SDN switches.

The framework is deployed in two ways, a local deployment on a server

and a distributed deployment on both the same server as on a Kubernetes

development cluster. The server consists of 4 Intel(R) Xeon(R) CPU E5645

@ 2.40GHz and 4GB RAM, which is running Ubuntu 16.04.03 LTS with

Docker CE version 18.09.3. The Kubernetes cluster has one master node

with 2 Intel(R) Xeon(R) CPU E5645 @ 2.40GHz and 4GB RAM and one

worker node with 4 Intel(R) Xeon(R) CPU E5645 @ 2.40GHz and 4GB

RAM.

2.6 Case Study: SDN Routing algorithm im-

plementation in DOMINO

In case of an emergency, �nding the shortest path from source A to

destination B is useful for setting up high priority routes for e.g. streaming

purposes. In this case, a camera stream that is �lming the emergency

incident uses the created high priority route with eventual higher band-

width possibilities while other cameras use the normal route. In case source

A and destination B are not part of the same SDN network, the proposed

framework is able to �nd the shortest path between A and B by adding the

SDN plugins of the di�erent SDN networks between A and B and linking

these plugins to the shortest path algorithm processing plugin, which is

summarized in Figure 2.10. In this section the shortest path processing

plugin will �rst be discussed, followed by the implementation and the use

of it in the framework.

The shortest path processing plugin is implemented in Python and based on

Dijkstra's algorithm [54]. The algorithm is used for �nding the shortest path

between two nodes in a graph, in this case a network topology. The more

common variant is used in this plugin, where one node is chosen as the source

node and the shortest path to all other nodes in the graph are calculated.

Once the requested destination node is reached, the algorithm will stop and

the shortest path from the source to the destination is determined. The

algorithm runs in time O|V 2| where |V | is the number of nodes.
To use Dijkstra's algorithm as processing plugin, some small changes are

introduced. First of all, a Flask wrapper is created that enables the micro-

services pattern. As required by the framework, the plugin will have at
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Listing 2 Activate the Dijkstra algorithm in Domino

$ domino on

$ domino pipeline add sdn_plugin ryuapi

$ domino pipeline add sdn_plugin floodlightapi

$ domino pipeline add sdn_plugin onosapi

$ domino pipeline add processing_plugin dijkstra

$ domino pipeline elements # returns:

# elements:

# sdn_plugin: ryuapi

# sdn_plugin: floodlightapi

# sdn_plugin: onosapi

# processing_plugin: dijkstra

least three endpoints as discussed in Section 2.4.3. An extra endpoint is

added that will start the calculations for getting the shortest path from

the given source to the given destination. Next, the feature to collect the

needed data from the linked sources is implemented. The plugin will query

the di�erent switches, links and hosts from each SDN plugin for further

processing. Finally, Dijkstra's algorithm is executed and eventual new �ows

are installed on the SDN plugins (where they act now also as listener).

When the plugin is uploaded to the processing distribution, it is available

for use in the framework. To activate and link the Dijkstra plugin, the

framework is used with required steps visualized in Listing 2. Figure 2.10a

demonstrates the step when the ryuapi SDN plugin is added to the empty

pipeline. Next, the �oodlightapi and the onosapi SDN plugins are being

added which is illustrated in Figure 2.10b. Finally the Dijkstra Process-

ing plugin is added to the pipeline. In this �nal step, the framework

automatically creates the links between the SDN plugins and the Pro-

cessing plugin, summarized in Figure 2.10c. Now, the shortest path from

a source A to destination B can be requested from http://<docker-ip>:

5000/emergency_path/<src>/<dst> which will return the shortest path

in the form [(< nexthop >,< in_port >,< out_port >), ...].

2.7 Evaluation Results

The goal of this section is to present the results of the framework and the

use case experiment. The results of the framework evaluation are explained

in Section 2.7.1 and the results of the use case experiment are presented in

Section 2.7.2.

http://<docker-ip>:5000/emergency_path/<src>/<dst>
http://<docker-ip>:5000/emergency_path/<src>/<dst>
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Figure 2.10 Building the use case Pipeline

(a) Add the Ryu SDN plugin
(b) Add the Floodlight and ONOS
SDN plugin

(c) Addition of Dijkstra Processing
plugin, the link with the SDN plugins
is automatically created by Domino
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2.7.1 Framework results

To evaluate the framework, di�erent tests are conducted that evaluate if

the framework meets the requirements described in Section 2.3. First the

performance is evaluated followed by the evaluation of the interoperability

and the modi�ability.

2.7.1.1 Performance evaluation

To evaluate the performance of the framework, the resource usage impact

is monitored and the storage footprint is measured, giving an overview of

the eventual overhead the framework will create. The framework execution

times of each command executed with the CLI are measured. Each

command is executed 200 times except for the on and o� commands,

which are measured manually 10 times because these commands launched

system threads and their �nish signal could not be captured, they had to be

measured manually. As explained in Section 2.5.5, this is evaluated on both

the local deployment and the distributed deployment. The summarized

results of this evaluation are visualized in Table 2.3. The average execution

times for listing the plugins, adding a plugin to the pipeline and listing

the elements of the current pipeline do not exceed the 2 second bound

speci�ed in Section 2.3.2, while the average execution times of on, o� and

the delete plugin from the current pipeline commands do exceed this bound.

Especially the delete and o� command exceed the requirements. The delete

plugin command shuts down a plugin and removes the Docker container or

Kubernetes Pod from the host. This action is costly in time due to security

reasons of Docker (safely shutdown of the container and then remove it).

The O� command removes all the plugins and all the microservices of

the framework and thus su�ers from the same costly action. This could

be ameliorated by having the framework not remove the containers but

stopping them instead, which requires less resources as it only stops the

process running in the container but does not purge the container from the

system. The time to start the framework is measured in two ways, with

and without cache. Without cache, the framework needs an average of 66

seconds to start. This is due to downloading di�erent docker base images,

building the di�erent containers and �nally starting them. With cache it

only takes an average of 2.356 seconds to start the framework. The On

command is left out of the 2 second bound delay, because it acts more like

an installation, which requires more time.

The scalability requirement can be met if the Flask Werkzeug server is

changed by a production WSGI server such as Waitress. However, in the

proposed prototype Flask is used and the Flask Werkzeug server is only
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Table 2.3: Performance test for both local and distributed setup, measured in
seconds

Metric On On (cache) O� plugins ls
Avg 66.176 2.356 11.453 0.026
Std deviation 0.347 0.530 0.053 0.005
25 Percentile 66.054 1.902 11.405 0.024
Median 66.176 2.345 11.441 0.005
75 Percentile 66.299 2.799 11.495 0.028
90 Percentile 66.372 2.826 11.510 0.031
95 Percentile 66.397 2.836 11.515 0.034

Metric add plugin delete plugin elements
Avg 0.745 10.466 0.008
Std deviation 0.216 0.025 0.001
25 Percentile 0.770 10.451 0.008
Median 0.778 10.457 0.008
75 Percentile 0.839 10.487 0.009
90 Percentile 0.861 10.496 0.010
95 Percentile 0.885 10.497 0.010

able to process one request at a time.

As suggested in Section 2.3.2, the framework should be able to handle

several active plugins at the same time without any remarkable performance

downgrade. To evaluate this, new plugins are incrementally added to the

pipeline while measuring the time needed to activate this plugin. Afterwards

the time needed to request the elements in the pipeline is measured. The

results are summarized in Figure 2.11 and explained further. The framework

can handle 73 plugins in one pipeline without any remarkable performance

downgrade. Namely, the average time to add a plugin is 0.9358 seconds and

the time to request the active elements measures 0.0137 seconds. As from

plugin 74, a major increase in time for both commands can be observed.

The reason for this increase in time from an average 0.9358 seconds to 7

seconds or even 12 seconds is due to the memory constraints of the server.

Monitoring showed that the available memory of the server was too low to

start a new container and therefore Docker shut down another container.

Adding extra memory to the system would increase the maximum number

of active plugins in a pipeline, but this is not further evaluated as 73 active

plugins at the same time is deemed su�cient.

Our evaluations show that the three performance requirements are not

completely met by the prototype. However this is mostly due to some

actions being very slow such as shutting down the framework or removing a
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Figure 2.11 Time required to add and activate a new plugin to the pipeline
and time required to request active plugins in the pipeline as a function of
the number plugins in the pipeline

plugin. As these actions occur less frequently when a user is using the frame-

work, they are deemed less important in terms of perceived user quality.

Frequent actions such as adding and listing elements perform well. The

number of active plugins that the framework can handle simultaneously

is su�cient and the scalability requirement can be met if the di�erent

components are deployed through a production GI server instead of the

provided Flask Werkzeug server.

The total size of all the Docker images of the components of the framework

is illustrated in Table 2.4. The core components of the framework have

an average size of 105 MB, while the plugins have sizes that range from

122MB to 775MB. The size can be explained due to the used base images

and additionally installed software in the images. The images of the core

framework are optimized by using lightweight UNIX base images, but as

the plugins can be added by other parties (such as SDN experts), the size

of di�erent plugin images may vary.

2.7.1.2 Interoperability evaluation

The systems with which the framework exchanges data are the plugins.

These plugins must follow the plugin model presented in Section 2.4.3,

implement the presented resources using a REST API, the state machine

and the protocols. If these speci�cations are met by a plugin, the frame-
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Table 2.4: Total size of framework components.

Image Size [MB]
sp-manager 95.9
sdn-manager 96.7
processing-manager 122
ryuapi 311
�oodlightapi 195
onosapi 775
�ow-viewer 183
shortestpathalgorithm 92.9

Table 2.5: Interoperability test results (p.= Plugin)

Value Play Stop Link p. Unlink p. List linked p.
Correct 49985 50000 50000 49999 50000
Incorrect 15 0 0 1 0
Ratio (%) 99.97 100 100 99.998 100

work will be able to exchange information with the plugin. To evaluate

this, a new mock plugin is implemented. For each resource of the plugin,

the framework is given random mock input data to exchange with the dif-

ferent plugins. When the exchange is complete, the values in the plugin are

requested and compared to the given input. If the input matches the value

in the plugin, the exchange was successful. These tests were executed 50000

times and the results are summarized in Table 2.5.

Play and Stop are the requests to change the state of the plugin, the link

and unlink plugin manipulate the sources and listeners of the plugin and

the list linked plugins shows the status of the pipeline in the framework.

Overall there were 16 errors made when exchanging information, only when

changing the state of a plugin there were 15 incorrect exchanges and there

was 1 incorrect exchange when a plugin was removed from the pipeline

(unlinked). The cause of these incorrect exchanges is due to Kubernetes

that cannot handle names containing an underscore and Flask's inability

to handle special characters. The ratios achieved are always 100 % correct

exchanges except for changing the state and deleting an element from the

pipeline which are 99.97 % and 99.998 % respectively, so this requirement

is met.
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2.7.1.3 Modi�ability evaluation

Plugins are installed for the prototype by building and adding their image

to the image repository of the Docker host. The framework does not need

to restart to install these images and the framework can detect newly

installed plugins when starting up. End-users can extend the framework

with new plugins by installing them by building the respective plugin

images. Pipelines can be modi�ed by linking di�erent plugins by design.

The prototype is deployed in both a local and distributed fashion without

major changes to the code base.

In general the framework is designed to be modi�able for di�erent SDN

networks and processing plugins. The hybrid microkernel/microservices

architecture enables this modi�ability. The microkernel plugin architecture

allows a user to modify a pipeline during framework use and the micro-

services architecture allows for a modi�able deployment con�guration.

2.7.2 Routing evaluation results

To evaluate the shortest path use case based on Dijkstra's algorithm, a

pipeline is implemented with the prototyped framework. This pipeline,

consisting of three di�erent SDN plugins, namely the ryuapi, the onosapi

and the �oodlightapi, and one processing plugin namely the dijkstra plugin

is evaluated on both a real SDN network and on a simulated SDN network

with Mininet [55]. To attach multiple SDN controllers to Mininet, a custom

Switch() class needs to be created whereby the di�erent Mininet switches

can be mapped onto the corresponding remote SDN controllers. An example

is available on the Mininet GitHub repository1. To evaluate the use case,

the average response time of 100 requests to determine the shortest path

is measured as a function of the number of SDN switches. The results are

illustrated in Figure 2.12 and further explained.

Two di�erent topologies are used to evaluate the algorithm namely a linear

and a binary tree topology. The linear topology allows to evaluate the

performance when the shortest path covers multiple switches compared to

the binary tree topology, where the shortest path algorithm is essential to

�nd the correct path from the root node to a speci�c leaf node (or any

other node in the topology). The �rst topologies which require less than 6

di�erent switches are created using the hardware described in Section 2.5.5

and from 6 switches onwards Mininet is used. It is clear that the response

time for the tree topology is higher than for the linear topology probably

because of there are more links between the di�erent switches in the tree

topology. As described in Section 2.6, the algorithm runs in time O|V 2|
1https://github.com/mininet/mininet/blob/master/examples/controllers.py
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Figure 2.12 Average response time to calculate the shortest path as a
function of the number of SDN switches in a linear or tree topology. From
6 switches onwards, Mininet [55] is used to simulate the network topology.
The dotted line illustrates the calculation time for the Dijkstra's algorithm
without the framework.

where |V | is the number of switches and this can also be seen in the Figure

(line plot). It is clear that the use of the framework has an impact on the

solution time for the Dijkstra's algorithm. This is due to the di�erent HTTP

requests that are sent between the di�erent plugins to obtain the status of

the di�erent SDN networks before the algorithm can be executed. But, the

framework requirements specify a 2 second bound which is not exceeded in

this evaluation.

2.8 Conclusion

Software-De�ned networking separates the data plane and control plane of

the network, making one or more centralized controllers control the behav-

iour of the entire network. Communication between these controllers and

the switches follows a standardized southbound API which is in most cases

implemented using the OpenFlow protocol. The applications on top of the

controllers to manage the networks communicate through the Northbound

API of these controllers, which has no clear standards to clarify what it

can and cannot do. In most cases, a REST API is chosen as northbound

API. Therefore the goal of this chapter was to design, build and evaluate a

pluggable framework that allows building applications in a modi�able way
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over heterogeneous SDN networks, in an attempt to standardize the north-

bound API. The speci�c use case of determining the shortest path between

di�erent heterogeneous SDN networks in case of an emergency situation was

investigated as a sample use case for the framework. Hereby, high priority

�ows needed to be implemented over the heterogeneous SDN network, guar-

anteeing the network tra�c from source (e.g. a drone) to destination (e.g.

dispatch centre).

A hybrid combination of the microkernel pattern and the microservices

pattern is used to meet the performance, interoperability and modi�abi-

lity requirements as the microkernel pattern enables interchanging the SDN

and Processing plugins via a plugin system and the microservices pattern

enables di�erent deployment con�gurations for the framework. To build

and evaluate the framework, several technologies were needed: container

and container orchestration technologies for the software architecture, SDN

controller software and a processing plugin for the shortest path use case.

The microservices frameworks know a lot of variety, depending a lot on the

use case for the application. Some aim at quick prototyping while others

focus on performance etc. Flask was selected as microservice framework as

it is easy to use and designed for prototyping, however, this comes with a

performance trade-o�. To deploy the microservices, container technology

was chosen, utilising Docker containers on top of Kubernetes orchestration.

The implementation of the prototype includes di�erent sample plugins such

as the ryuapi, �oodlightapi, onosapi, �ow viewer and the dijkstra algorithm.

The framework is limited to one processing plugin for di�erent SDN plugins

and is deployed in both a local and distributed fashion. The shortest path

algorithm based on Dijkstra is also implemented using a pipeline created by

the framework consisting of three SDN plugins and one processing plugin.

Afterwards, di�erent aspects of the framework are evaluated. The perfor-

mance requirements of the framework for the frequently used commands are

met with an average response time of 0.26 seconds. Other commands such

as deleting plugins, stopping or starting the framework do not meet the per-

formance requirements since Docker requires signi�cant time to start, stop

and remove containers. The size of the core components of the framework

is small with an average size of 105 MB per image. The size of the plugins

depends on the images created and can vary between 183 MB to 775 MB.

The framework can handle at least 73 plugins simultaneously without any

performance downgrade on a server with 4GB of RAM. The interoperability

requirements are all met by the framework with most exchanges having a

100 % successful exchange ratio. The modi�ability requirements regarding

the plugins and the deployment options are met by the framework. Finally

the use case is evaluated regarding the response time in function of the



54 Chapter 2

number of connected switches, which in this case resulted in an average

response time between 0.02 and 0.45 seconds for a linear topology and 0.01

and 0.5 seconds for a tree topology.

In terms of future work, the framework should add security measures. In

the distributed con�guration, communications rely on an external network

and additional security is therefore recommended. The creation of multiple

pipelines with the framework will also be investigated in future work.
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Addendum

Note on the requirements in a drone use case: In this chapter, dif-

ferent requirements are made and evaluated without the noti�cation of the

drone use case. We stated that a 4 second latency is acceptable and that

the average response time for the general framework commands should be

less than 2 seconds, with a standard deviation of 1 second. Evaluations

proved that these requirements are met (for the most common commands

in the Domino framework). In a drone use case where the focus lies on

the installation of emergency �ows, these requirements are also acceptable,

knowing that the moment an emergency occurs, the new plugin to handle

this emergency can be installed within 0.745 seconds (as shown in Table 2.3).
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3
Towards Distributed Emergency Flow

Prioritization in SDN Networks

With the outcome of the previous chapter, the next step is to look into em-

ergency �ow prioritization in SDN networks. Therefore, this chapter along

with Appendix A proposes an o�ine and online approach to guarantee emer-

gency �ows in SDN networks while optimizing the best e�ort �ows over the

remaining network resources, corresponding to Research Challenge 2 (C2)

and hypothesis 2 (RH2). Evaluations prove that such an approach is feasible

and that network tra�c from speci�c drones, who are part of handling

the emergency situation, can be prioritized over network tra�c from other

drones and devices while these still receive some network resources depending

on the overall available resources in the network. It is also clari�ed how

multiple heterogeneous SDN controllers can collaborate to distribute network

management load, which otherwise would be limited by resource constraints

alike controller memory limitations.

⋆ ⋆ ⋆ ⋆ ⋆

J. Moeyersons, B. Farkiani, T. Wauters, B. Volckaert. and

F. De Turck

Published in International Journal of Network Management, June
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Abstract Emergency services must be able to transfer data with high

priority over di�erent networks. With 5G, slicing concepts at mobile net-

work connections are introduced, allowing operators to divide portions

of their network for speci�c use cases. In addition, Software-De�ned

Networking (SDN) principles allow to assign di�erent Quality-of-Service

(QoS) levels to di�erent network slices.

This chapter proposes a microservices-based framework, able to run both

centralized and distributed, that guarantees the required bandwidth for the

emergency �ows and maximizes the best-e�ort �ows over the remaining

bandwidth based on their priority. The proposed framework consists of

an o�ine linear model, allowing to optimize the problem for a batch of

�ow requests. For dynamic situations, an online approach is also required

in the framework to handle new incoming �ows by calculating the path

with a shortest path algorithm and utilising a greedy approach in assigning

bandwidth to the intermediate �ows.

In this chapter, the linear model is evaluated through simulation, the distri-

buted architecture is evaluated through emulation while the online approach

is validated through physical experiments with SDN switches. The results

show that the linear model is able to guarantee the resource allocation for

the emergency �ows while optimizing the best-e�ort �ows with a sub-second

execution time. The distributed architecture is able to split up the man-

aged network into di�erent parts, allowing division of work between con-

trollers. As a proof-of-concept, a prototype with Zodiac switches validates

the feasibility of the centralized framework.

3.1 Introduction

During an emergency event, it is required to prioritize the network tra�c

that is coming from and going to the emergency services in the presence

of large civilian crowds in order to coordinate the relief and response. The

enabler for this statement were the terror attacks at Brussels airport and

the metro station in Maalbeek on March 22, 2016 [1]. Right after the two

explosions, the phone networks in Belgium had broken down and saturated

as a lot of people were looking to contact the emergency services, friends

and family. This also caused communication problems within the emer-

gency services itself. To avoid similar cases in the near future, ASTRID, the

specialist telecoms operator for Belgium's emergency and security services,

launched priority SIM cards for speci�c persons. This will allow these

persons (such as the minister of defense, �rst aid commanders, etc) to have

secure and priority access to the mobile network [2]. However, these priority

SIM cards cannot be shared with other persons that may need it during a
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speci�c emergency situation, because every situation can be di�erent and

will require other capabilities. Therefore, a more generalized solution is

required that can guarantee the bandwidth of emergency network tra�c

and can optimize the other, non-priority tra�c, over the remaining band-

width in the network. The solution can be found by �rst looking into the

next generation mobile networks, called 5G.

Since Release Document 15 of 3rd Generation Partnership Project (3GPP)

[3], the 5G system is introduced and explained. In Release 16, expected to

be formally released in June 2020, the completion of the 5G speci�cations

as well as enhancements to many early capabilities for 5G standalone mode,

including Ultra-Reliable and Low Latency Communication (URLLC), V2X

Phase 3 and more are described. While some parts are thus already impl-

emented and rolled out by the industry, the formal release of 5G is expected

be sometime in 2021 [4]. One of the future aspects of 5G systems is to cater

a wide range of services di�ering in their requirements and types of devices,

going further than the traditional human-type communications and thus

includes machine-type communications. In that case, the network must be

able to take di�erent forms depending on the required service, leading to the

slicing of the network on a per-service basis. Technologies such as Software-

De�ned Networking (SDN) and Network Function Virtualization (NFV) can

be used to provide these network slicing concepts, simultaneously providing

a multitude of diverse services over a common underlying physical infra-

structure [5]. This will allow network operators to provide portions of their

networks for speci�c use cases such as Internet-of-Things (IoT), streaming

videos and smart energy grids.

There are three layers needed that enable network slicing in the future

5G networks, namely the infrastructure layer, the network function layer

and a service layer [5], all containing the necessary tools for the operators,

enterprises, etc. These three layers are managed by a management and or-

chestration (MANO) controller. The architecture is illustrated in

Figure 3.1 and the infrastructure and network function layer will be further

explained. The infrastructure layer refers to the physical network infrastruc-

ture including both the Radio Access Network (RAN) and the Core Net-

work (CN) but also the deployment, control and management of the infra-

structure. The allocation of resources to slices will also happen in this layer

where the resources of each slice can be revealed and managed by the net-

work function layer and eventual extra layers such as the service layer. The

network function layer encapsulates the operations that are related to the

con�guration and life cycle management of the network functions that o�er

end-to-end service in the network slice. These network functions must how-

ever be placed optimally over the virtual infrastructure and chained together
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to work optimally. In this layer, the industry and researches have already

found a consensus about the role of SDN and NFV. [6�8] NFV separates

network functions from the underlying proprietary hardware appliances,

[9] enabling the life cycle management and orchestration of the network

functions. The network functions running on dedicated hardware are thus

transferred to software-based applications running in datacenters, network

nodes, end-user premises etc. SDN on the other hand is an important

technology to implement dynamic and �exible network management by

separating the data plane from the control plane in networks [10]. Every

SDN switch (further called switch) within an SDN network operates as a

simple packet forwarding device that is controlled by a logically centralized

software program, the SDN controller. An SDN controller performs all

complex functions such as routing, naming and security checks. The con-

troller de�nes the data �ows that occur in the network, considering that e.g.

the communication is permissible by the network policy. If the controller

allows a �ow, it computes a route for the �ow and adds an entry for that

�ow in each of the switches along the path. Switches are now responsible

for managing their own �ow tables whose entries are thus populated by the

controller. The switch also performs certain functions in an SDN network.

When a new packet of a �ow arrives at the switch, the switch forwards and

encapsulates it to the controller. The controller can thus decide to add the

�ow to the �ow table of the switch or always drop the packets in that �ow.

Other packets are forwarded to the speci�c output port of the switch, based

on the entries in the �ow table. Some �ow tables may include priority

information set by the controller. The controller can also decide to drop

speci�c packets, apply bandwidth meters to limit the maximum bandwidth

available to certain �ows, etc. The communication between the controller

and the switches uses a standardized protocol API, most commonly with

the OpenFlow speci�cation. [11] In this chapter we will focus on the net-

work function layer within the network slicing concept in order to provide

a generalized solution for the above described problem.

Therefore, this chapter presents a generalized and containerized framework

to guarantee the bandwidth of emergency network tra�c by generating SDN

high-priority �ows while other, non-priority tra�c, will receive best-e�ort

resources. The proposed framework is thus a use case within the slicing

concept of 5G networks. Because di�erent operators can collaborate in one

network topology or because multiple controllers can manage the SDN-based

network topology, a distributed approach is necessary. This allows for better

management of the topology while guaranteeing the emergency �ows and

optimizing the best-e�ort �ows. Fog computing and smart cities are other

use cases that can bene�t from the proposed framework. [12] A simulation,
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Figure 3.1 Generic framework representing various 5G architectural pro-
posals [5].

emulation and prototype has been implemented in order to evaluate our

proposed framework in terms of speed, scalability and accuracy. In real

cases, network operators deploying software-de�ned technologies can allow

emergency �ows to reserve speci�c slices of bandwidth for a speci�c amount

of time.

This chapter contributes to four main topics: (i) design of models for

guaranteed bandwidth allocation for emergency �ows while optimizing best-

e�ort �ows over the remaining network resources, (ii) design of a joint

online-o�ine approach to practically implement the model, (iii) design and

implementation of a centralized and distributed microservices-based frame-

work and (iv) the validation of the model through simulations, emulations

and practical evaluation. The remainder of this chapter is organized as

follows: Section 3.2 presents related work. In Section 3.3, the problem

description is given followed by the problem formulation as linear model.

Section 3.4 presents the architectural design and implementation of our

framework followed by the evaluation methods and the corresponding result

in Section 3.5. Finally, Section 3.6 discusses conclusions and future avenues

of research.

3.2 Related work

The network slicing concept introduces the possibility to enable new features

such as more �ne-grained Quality-of-Service (QoS), and a lot of research is



66 Chapter 3

done on SDN over the past few years. [13, 14] Di�erent algorithms to provide

QoS, but without considering bandwidth guarantees, are presented. [15, 16]

Yan et al. [15] proposed a QoS solution based on SDN technology. They

�rst de�ned a cost function which assigns a positive value to each link based

on bandwidth, length and congestion of the link. Afterwards, they utilized a

weighted shortest path algorithm [17] to �nd multiple paths for each source

and destination pair in the network. When a new �ow arrives, the path

with the lowest cost is selected as the routing path for the �ow. Zhang et

al. [16] proposed a QoS framework based on the OpenFlow protocol which

dynamically calculates a path for each �ow. If the �ow is a QoS-required

�ow, an algorithm based on Dijkstra is used to �nd the path with minimum

delay and cost values.

Akella et al. [18] presented an approach to allocate bandwidth and satisfy

QoS requirements. They categorized �ows into QoS and best e�ort �ows and

de�ned a metric, used in path selection, that considers the requested rates.

Shaohua et al. [19] categorized cloud applications into three levels based

on the sensitivity to delay and bandwidth. A �ow-based adaptive routing

algorithm which utilizes Dijkstra and K-shortest path [20] algorithms with

the aim of maximizing the utilization of network resources is proposed and

evaluated through simulation by Tomovic et al. [21] Pinto et al. [22] de�ned

four service classes including best e�ort and bandwidth guaranteed classes.

Each new �ow is �rst assigned to the probing class and its behavior is

monitored. After some time, if the network can support its bandwidth

along the path it will be reassigned to the bandwidth guaranteed class or

otherwise the best e�ort class. A method to provide bandwidth guarantees

by using OpenFlow meters and queues is presented by Krishna et al. [23] The

authors categorized �ows into QoS �ows which have minimum guaranteed

bandwidth and best e�ort �ows with no requirements. For each QoS �ow,

�rst, an admission control process checks whether there is a path that can

accommodate the �ow rate. After that, by using a meter at the ingress

switch, the input rate of the �ow is monitored and if it exceeds the de�ned

rate, the packets will be marked. Using three di�erent queues at the egress

port of each switch along the path for marked and unmarked QoS and

best e�ort �ows, tra�c prioritization is made possible. Morin et al. [24]

used Multiprotocol Label Switching (MPLS) tunnels to provide end-to-end

bandwidth guarantees, which is similar to the work of Krishna et al. [23]

where they used OpenFlow meters at the ingress switches. For each �ow

the input rate of the �ow is monitored and based on that, a priority value

is set in the header of each packet. Then, an MPLS tunnel is used to

route the packets toward the egress switch and the priority of each packet

speci�es its output queue. Lu et al. [25] utilized preplanned network slices to
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both satisfy QoS requirements and maximize the overall throughput of the

network. The authors used the tra�c history to create network slices which

have �xed con�gurations during the network lifetime. When a �ow arrives,

it is assigned to a slice by using the VLAN ID of the slice. The MaxStream

framework [26] is proposed in order to maximize the number of streaming

sessions and bandwidth provisioning. The authors formulated two Integer

Lineair Programming (ILP) problems. The �rst problem maximizes the

number of accepted �ows by considering the requested rate of the �ows.

Then, the set of accepted �ows is used in the second problem to maximize

the total rate of the accepted �ows. Since the authors focused on multimedia

streams, they ignored best e�ort �ows with no QoS requirements.

More recent work proposes auction-based resource allocation in multi-

tenant networks [27] and an SDN-based architecture for providing QoS

to high-performance distributed applications. [28] The auction-based re-

source management scheme provides an online approach by means of a

non-cooperative game theory. It achieves gains of up to 5 x reduction

in transmission delays, but it does not focus on cases where di�erent

types of �ows are active in the network. The architecture to develop a

QoS provisioning, presented by Oliveira et al., [28] assumes that network

operators implement speci�c QoS levels in the network topology whereby in

our case, we optimize the existing best-e�ort �ows (and the corresponding

QoS levels) over the network without pre-con�gured QoS levels.

The most relevant studies are summarized in Table 3.1. In our previous

article, [29] we have utilized both online and o�ine approaches to provide

bandwidth guarantees for emergency �ows and maximize the total rate of

best e�ort �ows. The o�ine approach optimized all existing emergency

and best-e�ort �ows while the online approach routed, based on a weighted

shortest path algorithm, and allocated sub-optimally new incoming �ows

through a greedy heuristic in between o�ine batches. In this chapter

however, we recreated the previous solution as a containerized framework,

allowing us to also evaluate the distributed behaviour of our framework in

di�erent network topologies. As in the previous solution, only drop meter

policies are used in this chapter because the current OpenFlow versions

[30] do not support other policies such as 2-color-marking [31] and 3-color-

marking. [32].

3.3 Problem Description and Formulation

In this section, the problem described in Section 3.1 is analyzed in detail.

Afterwards, a linear model to solve this problem is presented, aiming to

guarantee emergency �ows while the best-e�ort �ows are optimized over
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the remaining bandwidth in the network. This approach is designed for

topologies where all the network �ows are gathered based on prior knowledge

or predictions and no new �ows will be created. In a more realistic case,

where new �ows arrive dynamically, a second approach, further called the

online approach, is described. It combines the solutions from the linear

model, further called the o�ine approach, with a sub-optimal solution to

handle new incoming �ows.

3.3.1 Problem description

Within an SDN network, OpenFlow-enabled switches are connected to one

or more SDN controllers and di�erent best-e�ort �ows in each of the switch

�ow tables are responsible for the correct routing of the network tra�c. A

�ow is described using a tuple <source, destination, class> whereby

the class describes the tra�c class of the �ow based on a priority value and

the corresponding lower and upper bound bandwidth rates. In an emergency

situation where e.g. a video feed must be transferred over the network, em-

ergency �ows will be requested for prioritizing this tra�c. These emergency

�ows need to be satis�ed by guaranteeing the requested bandwidth while

the remaining bandwidth of the network should be allocated to the other

best-e�ort �ows. The priority of the tra�c classes will be used to optimize

the best-e�ort �ows where a higher priority requires a larger share of the

available network bandwidth.

This chapter proposes a solution to maximize the total input rate of the

best-e�ort �ows in the network while the requested rates of the emergency

�ows are satis�ed and the bandwidth capacity constraints of the network

are respected. The assumption is made that the requested rate for the

emergency �ows is not higher than the total available rate in the network.

A linear model, LP, is de�ned aiming to solve this problem. This Lineair

Programming (LP) formulation uses the principles of �ow splitting, allowing

�ows to be separated over di�erent links which optimize the bandwidth

resource allocation. [37] The packet reordering e�ect that can occur when

using �ow splitting, can be mitigated using hash-based splitting and packet

tagging. [38] However, �ow splitting is not supported by every OpenFlow-

enabled switch, and a more generalized linear model is needed. Therefore, a

second formulation, ILP, is de�ned where �ows cannot be split up and each

�ow needs to be assigned to a single path from source to destination. Both

o�ine models are evaluated afterwards.

The formulations of these two o�ine models are provided in Section 3.3.2

and Section 3.3.3. Notations used in the formulations are summarized

in Table 3.2. Some described constraints contain a multiplication of a

continuous and a binary variable and because this cannot be directly solved
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by state-of-the-art solvers, they need to be linearized �rst. These formula-

tions will optimize the best-e�ort �ows over the remaining bandwidth that

is not used by emergency �ows. In case the o�ine models are not able to run

in real-time, the online approach manages new incoming �ows in between

o�ine batches, providing the shortest (but possible sub-optimal) path with

a greedy-based solution to allocate bandwidth to these new �ows.

3.3.2 The ILP formulation

The ILP formulation will maximize the sum of the tra�c rates of the best-

e�ort �ows, multiplied by their assigned weights over the remaining band-

width after allocating the emergency �ows. This is illustrated in (3.1),

subjected to the constraints [(3.2) - (3.5)] and explained further below.

max
∑

i∈B|{u=Source(i),(u,v)∈E}

Wi × Zi
u,v (3.1)

Subject to:

∑
(u,v)∈E

yiu,v −
∑

(v,u)∈E

yiv,u =


1 u = Source (i)

0 otherwise

-1 u = Destination (i)

∀u ∈ V, i ∈ F

(3.2)

∑
i∈B

yiu,v ×Ri +
∑
i∈M

yiu,v × τi ⩽ Cap(u,v) (3.3)

∑
(u,v)∈E

yiu,v ⩽ 1 ∀u ∈ V, i ∈ F (3.4)

∑
(v,u)∈E

yiv,u ⩽ 1 ∀u ∈ V, i ∈ F (3.5)

Ri ∈
[
minRatei, maxRatei

]
(3.6)

yiu,v ∈ {0, 1} (3.7)

Cap (u, v) ⩾ τi ∀i ∈M (3.8)

(3.2) is the �ow conservation constraint, guaranteeing a path from source to

destination. (A.3) enforces the capacity limit of each physical link and (3.4)

and (3.5) are used to prevent loops as much as possible. (3.6) and (3.7)

specify the bounds for the assigned rate and whether tra�c is passing

through link (u, v). Finally in (3.8), the assumption is made that the

network is at least able to handle all requested emergency �ows.
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The second constraint contains a multiplication of a continuous and a binary

variable as in
∑
i∈B

yiu,v ×Ri. The constraint can be linearized as follows:

Zi
u,v ⩽ Cap(u,v) × yiu,v (3.9)

Zi
u,v ⩽ Ri (3.10)

Ri + Cap (u, v)× yiu,v − Zi
u,v ⩽ Cap(u,v) (3.11)

Zi
u,v ∈

[
0, maxRatei

]
(3.12)

3.3.3 The LP formulation

The LP formulation will use the principles of �ow splitting to solve the

described problem. The main objective is again to maximize the sum of

the tra�c rates of the best-e�ort �ows multiplied by their assigned weights

over the remaining bandwidth after allocating the emergency �ows. This is

illustrated in (3.13), subjected to constraints [(3.14) - (3.16)] and explained

further below.

max
∑
i∈B

Wi ×Ri (3.13)

Subject to:

∑
(u,v)∈E

yiu,v −
∑

(v,u)∈E

yiv,u =


−Ri u = Source (i)

0 otherwise

−Ri u = Destination (i)

∀u ∈ V, i ∈ B

(3.14)

∑
(u,v)∈E

yiu,v −
∑

(v,u)∈E

yiv,u =


τ u = Source (i)

0 otherwise

−τi u = Destination (i)

∀u ∈ V, i ∈M

(3.15)

∑
i∈F

yiu,v ⩽ Cap(u,v) (3.16)

Ri ∈
[
minRatei, maxRatei

]
(3.17)

yiu,v ∈ R⩾0 (3.18)

Cap (u, v) ⩾ τi ∀i ∈M (3.19)

(3.14) and (3.15) are the �ow conservation constraints for the best e�ort

and emergency �ows respectively. (3.16) enforces the bandwidth capacity

limits of physical links. The LP formulation is solvable in polynomial time.

[39, 40]
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3.3.4 Online approach

In a realistic scenario, the LP or ILP model runs in batches in order to

continuously optimize the network topology. When a new �ow arrives in

between this batch of the linear model, it should be handled appropriately

in order to avoid long delays in assigning this new �ow. Therefore,

the online approach handles new incoming �ows through a sub-optimal

solution in between the o�ine batches. The shortest path between source

and destination is determined by using a weighted shortest path algorithm

based on Dijkstra's algorithm. [17] A new incoming emergency �ow will

obtain its requested bandwidth while newly arriving best-e�ort �ows will

be temporary assigned to the average best-e�ort tra�c class. In case there

is no bandwidth available for the new �ow, a greedy heuristic determines

which other best-e�ort �ows should be decreased in bandwidth until the

o�ine batches optimizes this again. This is illustrated in Algorithm 1 and

the complete online approach is described in Algorithm 2. Note that the

solution from the online approach is only temporary because it will be

replaced with the optimal results from the linear model.

Algorithm 1 Greedy heuristic

τ ← requested bandwidth
C ← tra�c classes sorted by priority (low to high)
for i in count(C)− 1 do

a← τ/2
τ ← τ/2
band[i]← a

end for
band[count(C)− 1]← τ
for each tra�c_class in C do

i← index
s← number of meters in tra�c_class
for each meter in tra�c_class do

meter ← meter − band[i]/s
end for

end for

3.4 Framework Design

In this section, the microservice based framework design is explained. First,

the di�erent architectural components are identi�ed. Afterwards the di�er-

ent components are prototyped in order to create the proposed framework.
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Algorithm 2 Online approach

R← average best-e�ort tra�c rate
B ← best-e�ort �ows
while batch is running do

X ← new incoming �ow
if X is emergency then

τ ← requested bandwidth by X
else

τ ← R
end if
if τ is not available then

apply_greedy_heuristic()
end if
apply_�ows()

end while
run_batch()

3.4.1 Architectural components and tasks

To be able to identify the microservices-based architecture of our proposed

framework, di�erent components need to be identi�ed based on the problem

described in Section 3.1 and Section 3.3.1. The main goal is to manage

SDN network topologies, so an SDN controller is the �rst component of

our architecture. Next, the o�ine and online problem should be able to

manage existing and new incoming �ows, and will be called the solver. The

o�ine problem requires network topology information in order to calculate

the optimal solution for our problem, a data store is thus needed. Finally,

a REST API is required in order to communicate with and manage the

di�erent components. An overview of the di�erent components is depicted

in Figure 3.3.

Every component is responsible for a speci�c set of tasks. The controller

component is responsible for the management of the corresponding network

topology. It will handle new incoming �ows by forwarding them to the

solver in order to receive a correct path and tra�c class. The controller

will also update the database with the discovered topology and when the

solver noti�es the controller that a new solution is available, the controller

pulls this new information from the database. The main task of the solver

is thus to optimize the current �ows in the current operational network

topology, both with the online and o�ine method described in Section 3.3.

Finally, the REST API component creates an API in order to manage and

retrieve information from the solver and the controller components. It is

also responsible for managing multiple instantiations of this architecture, as
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Figure 3.2 Topology of the MySQL database. The tables devices, device_-
ports, meters, topology and tra�c_classes are �lled in based on the network
topology. The table �ows contains the required �ows in the topology and
�ow_rates and �ow_routings contain the optimized best-e�ort and emer-
gency �ows after solving the o�ine problem.

will be explained in the next section.

3.4.2 Framework prototype

Now that the di�erent architectural components are identi�ed, each com-

ponent has been prototyped. The di�erent components are container-

ized using Docker CE Version 19.03. [41] The controller component is

instantiated with a custom Ryu SDN Controller [42] and an API impl-

emented with the Python Flask framework [43] in order to communicate

with the other components. The solver component is split up into two

containers, the online problem is responsible for the communication with

the controller, calculating the shortest path from source to destination

for new incoming �ows and allocating bandwidth based on the greedy

heuristic, both explained in Section 3.3.4, and �nally it runs the o�ine

model in batches. The o�ine model pulls the topology information from the

database and stores the results. The o�ine model is based on openJDK [44]

version 8 update 181 and IBM ILOG CPLEX [45] v12.7. The database

component is instantiated as a MySQL version 8.0.18 database [46] and the

table design is illustrated in Figure 3.2 and further explained.

The �ows table contains the di�erent �ows in the network topology. Each

�ow is connected to a speci�c tra�c class in the tra�c_classes table and
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a tra�c class is connected to two bandwidth meters, one for specifying

the minimum rate and one for the maximum rate. Each �ow is also twice

connected to the devices table, one for specifying the source and one for

the destination. This devices table also contains the di�erent switches in

the network topology. Each device has one or more ports, enlisted in the

device_ports table and the links between the di�erent devices, forming the

actual network topology, is stored in the topology table. The �ow_routings

table contains the di�erent hops per �ow and the �ow_rates table contains

the assigned meters per �ow. These two tables are �lled in by the o�ine

model. The status table contains the practical information about the dif-

ferent calculations performed during the processing of the o�ine model.

The proposed framework can be used both centrally and distributed. In

case of a centralized architecture, illustrated in Figure 3.3 within the dotted

circle, only one controller is responsible for the whole network and the net-

work topology is thus added completely to the MySQL database. This

approach is similar to the approach used in our previous paper [29]. A

distributed approach enables the network topology to be managed by dif-

ferent controllers and is also a more realistic case, as for example di�erent

operators are responsible for the entire network. This is shown in Figure 3.3

and further explained. The two controllers will add a special virtual switch

called xx to connect it with the border switches1 of their part of the net-

work. When the online or o�ine problem calculates �ow routes going over

multiple network providers, the controllers detect that the xx switch is part

of the route, and ask the other controller(s) to check which of their border

switches are connected with the xx switches in their part. Once the next

part is found, the controller constructs a path from the border switch under

its' control to the border switch in the next part, allowing the network tra�c

to be sent over di�erent parts in the topology. The connections between the

border switches in the di�erent parts of the network topology are based on

prior knowledge.

This distributed architecture allows to calculate optimal paths for best-

e�ort �ows after guaranteeing the bandwidth for emergency �ows. In case

when the network topology is great, or the hardware resources to run the

framework are limited, the framework o�ers a division of the topology in

several smaller parts in order to calculate the necessary results.

1A border switch is a switch in the current part of the topology that is connected to
a switch in another part of the topology.
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Figure 3.3 The architectural components and the instantiation of our
proposed framework. The dotted circle illustrates a centralized architecture
while the whole �gure illustrates a distributed approach where two network
operators collaborate, both having their own solvers, controllers and data
stores.

3.5 Implementation, Simulation and evaluation

In this section, the proposed framework is evaluated in three ways. First,

the o�ine models described in Section 3.3.2 and Section 3.3.3 are evaluated

by simulation. Next, the framework is implemented and deployed on di�er-

ent systems in order to evaluate the distributed behaviour on an emulated

network topology. Finally, the framework is evaluated on a smaller scale

together with a practical environment.

3.5.1 Simulation Environment

The proposed o�ine models are �rst validated using simulations. The

evaluated topology, as shown in Figure 3.4, consists of 16 ingress/egress

points of tra�c and 32 switches. Switches 16-30 are backbone switches and

the backbone network has the same topology as the Internet2 network. [47]

This topology is used to simulate a provider network catering to about 2050

�ows. Switches 31-38 are mobile base stations and the ingress/egress points

attached to them represent mobile users. Switches 39-46 are DSL switches

and the ingress/egress points attached to them represent DSL users. The

bandwidth of each the backbone network link is 40 Gbps bidirectional. The

speci�cations of the network scenario are summarized in Table 3.3. IBM

ILOG CPLEX v12.7 is used to implement the models and the simulations

are executed on a server with 2 Xeon E5-2690 v4 CPUs operating at 2.6GHz

with 16GB of memory.

We de�ned 3 tra�c classes with ranges [0, 25000], [0, 10000] and

[0, 5000] Kbps with priorities of 100, 50 and 10, respectively for best e�ort
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Figure 3.4 The simulation topology based on the Internet2 network.

Table 3.3: Speci�cation of the network scenario

Source/Destination of All Flows 0 - 15

Backbone Network (40 Gbps) 16 - 30

Source/Destination Emergency Flows {0, 2, 3, 5, 7, 8, 11, 13, 14}

DSL Network 39 - 46

Mobile Network 31 - 38

�ows. Moreover, the requested rate of each emergency �ow was randomly

chosen from set {25000, 10000, 5000} Kbps because of the variation in types

of emergency network tra�c. Each best e�ort �ow was randomly assigned

to a class. Each evaluation result is the average of 30 simulation runs.

3.5.2 Simulation Evaluation - Results

The performance of the two models is compared in Figure 3.5. By increasing

the number of best e�ort �ows, the solving time increases in both models.

However, the increase rate of the ILP model is exponentially higher than for

the LP model. For 2000 best e�ort �ows along with 50 emergency �ows, the

ILP model solves the problem in almost two minutes. It is worthwhile to

mention that the solving time of the ILP model can further be decreased by

up to one order of magnitude when using acceleration methods such as the

novel algorithm based on the Benders decomposition method as described

in Behrooz et al. [48]

To investigate the operational details of the models, we �rst generated 500
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Table 3.4: Comparison of the LP and ILP model simulation results

LP Model ILP Model

Solving Time-Before(ms) 484 18408

Solving Time-After(ms) 484 15210

Figure 3.5 The solving time of the ILP and LP models. Standard
deviations are shown in the form of error bars

best e�ort �ows and solved both the ILP and LP models. After that, we

added 50 emergency �ows and solved the problems again. Both models

reported the same optimal values before and after adding the emergency

�ows which means that the same result is achieved by both models and the

LP model solved the problem 30 times faster than the ILP model. After

adding the emergency �ows, the models decreased the rate of best e�ort

�ows to allocate the requested bandwidth of the emergency �ows which

resulted in a lower optimal value. A summary of the results is shown in

Table 3.4.

3.5.3 Prototype Implementation

To implement the proposed framework, both an emulated network topology

(as illustrated in Figure 3.4) and a practical network topology consisting

of Zodiac SDN switches, [49, 50] depicted in Figure 3.6 are used. The

emulated network topology, used to evaluate the distributed approach, is

implemented using Mininet version 2.3.0d6 [51] and contains 420 �ows. The

default installation of Mininet only supports OpenFlow version 1.0, but
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Figure 3.6 Topology of the evaluation environment. Sw1 is a Zodiac GX
switch, sw2 - sw9 are Zodiac FX switches and d1 - d10 are Raspberry Pi's
3.

SW1

SW2 SW3 SW4

SW5

SW6

SW7

SW8

SW9

d2

d3
d4

d5

d7

d8

d9

d10

d6

d1

because our framework will use OpenFlow meters to implement the di�erent

tra�c classes, OpenFlow version 1.3 or higher is required. In order to

let Mininet use OF 1.3, the CPqD switch [52] must be installed together

with Mininet.2 The distributed approach is evaluated using 2 systems,

one with 24GB RAM and 2 CPUs, each with 6 cores and hyper-threading

enabled running at 2.4GHz3 and one with only 2GB RAM and 1 CPU

and 1 core (without hyper-threading) running at 1.12GHz. The practical

network topology is built with 1 Zodiac GX switch [50] (sw1), 8 Zodiac FX

switches [49] (sw2 - sw9) and 10 Raspberry Pi's model 3B (d1 - d10). The

Zodiac GX has an uplink of 1 gbps while the Zodiac FX switches have an

uplink of 100 mbps. The used tra�c classes are illustrated in Table 3.5

and the requested bandwidth rates based on destination are summarized

in Table 3.6. OpenFlow v1.3 meters were used to specify the upper bound

and lower bound rates of each tra�c class. Note that with the provided

meters in this prototype, the o�ine model will rather assign the meter

with 0 kbps bandwidth to �ows with a lower priority in case there is a

shortage. When more meters per tra�c class are allocated, a downgrade is

possible, but this is currently not implemented. The used system to run the

framework has 16GB RAM and 4 cores running at 2.8GHz. Because the

same framework is used for both the emulated and the practical topology

and because the Zodiac switches do not support �ow splitting, the o�ine

model is implemented with the slower ILP model.

Assume { m1,m2, . . . ,mn} are n de�ned meter rates and mi ⩽ mi+1 ∀i.

2To install mininet with the CPqD switch, use the following command:
mininet/util/install.sh -n3f

3The command nproc -all outputs 24 (2 CPUs x 6 cores x 2 threads per core). We
will use 24 processing units in the remainder of this chapter to refer to this server.
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Table 3.5: Tra�c classes (all in kbps)

Id Name Minimum Rate Maximum Rate

1 High Priority 0 25000

2 Normal Priority 0 10000

3 Low Priority 0 5000

Table 3.6: Requested rates per �ow based on the destination. Rates between 0
and 4999 kbps are part of tra�c class 3, rates between 5000 and 9999
kbps are part of tra�c class 2 and rates higher dan 10000 kbps are part
of tra�c class 1.

Destination Tra�c class Destination Tra�c class

d1 3 d2 3

d3 3 d4 3

d5 3 d6 2

d7 2 d8 2

d9 2 d10 1

The weight of best e�ort �ow i is calculated by
⌈
Pi × mn

m1+1

⌉
in which Pi

is the priority of the class that the �ow belongs to and ⌈x⌉ is the ceiling

function.

When a new �ow arrives, it is added to the database by the controller.

When the previous batch of the o�ine model is �nished, the online model

runs it again after a certain speci�ed amount of time or when the previous

calculation is done. The ILP model reads the database information, solves

the problem and stores the results in the database. The output of the

ILP is the assignment of each �ow to one meter and the routing of �ows

over the network. To assign a �ow to a meter, whether it be best e�ort

�ows or emergency �ows, the implementation rounds down the calculated

rate to the nearest de�ned meter rate. Based on the simulation results

summarized in Section 3.5.2, the ILP model provides optimal results with a

high number of �ows but not in real-time. To combat this, we run the o�ine

model consecutively while the online approach is used to route and to apply

the corresponding meter to new incoming �ows. Best-e�ort �ows will be

assigned to the average meter with 10000 kbps while emergency tra�c will

be assigned to their requested rate. To decrease the impact on the current

best-e�ort and emergency �ows, a greedy heuristic is applied to reassign

available bandwidth from other best-e�ort �ows, based on their priority.
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Figure 3.7 The ILP execution time for the left part, right part and full
part on a server with 24GB RAM and 24 processing units, each running at
2.4GHz.

3.5.4 Distributed architecture - evaluation

The distributed architecture with the emulated network topology is �rst

evaluated on the system with a lot of resources (24GB RAM and 24 pro-

cessing units in total). The network topology is split up into two parts,

further called the left part and the right part. The left part contains sw-

itches 16-21, 23, 24, 31-34, 39-42 and the right part contains switches 22,

25-30, 35-38, 43-46. The ILP model is executed 10 times for both parts

and the results are visualized in Figure 3.7. The ILP execution time for

the whole network topology (full part) is also added in this �gure. It is

clear that the division of the network results in a speed-up of about 15%.

However, the �ow routing results of the two smaller parts di�er from the

full part but the objective from the ILP model is the same. This means that

there are di�erent routes in both cases, and with the distributed architecture

it is possible that a �ow is not routed along its shortest path, but this is

without any noticeable delay. Because the objective from the ILP model

is the same, the same optimization is achieved in both cases, meaning that

the �ows received the same tra�c classes.

Next, the distributed architecture is evaluated on a system with fewer

resources (2GB RAM and 1 processing unit), whereby the network topology

is again split up into the same two parts. The results of this evaluation are

illustrated in Figure 3.8. In comparison with the other server, the results

of the full part are not included in this �gure, because the calculation
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Figure 3.8 The ILP execution time for the left part and right part on a
server with 2GB RAM and 1 processing unit, running at 1.12GHz. Note
that the ILP execution for the full part had not enough memory and is thus
not visualized.

was not possible due to the lack of memory. This already illustrates the

importance of the distributed architecture, because most SDN controllers

have limited resources in practice. Both parts achieve the same objective

as in the evaluation on the other server, but it takes about 51% more time

to come to a solution.

3.5.5 Evaluation of the practical network topology -

Example scenario

The framework with the centralized architecture is also evaluated on a

practical network topology to study the behavior of the online approach

and the �ndings are illustrated in Figure 3.9. When the batch calculation

is running, the online approach will handle the new incoming �ows. The

�ow responsible for the tra�c going from d1 to d5, which is part of tra�c

class 3, is already allocated together with 87 other �ows. Next at time t1,

a new incoming emergency �ow going from d1 to d10 is added to the net-

work, with a requested bandwidth of 25,000 kbps. Because of its priority,

the requested bandwidth is allocated and the greedy heuristic reduced the

bandwidth from the other best-e�ort �ows. The �ows part of tra�c class 3

have an average decrease of 284 kbps. Afterwards at time t2, a �ow going

from d8 to d10 is added, which is part of tra�c class 1. As this is a best-

e�ort �ow, the average best-e�ort meter with a bandwidth of 10,000 kbps
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Figure 3.9 Throughput of 2 best-e�ort �ows and 1 one emergency �ow. At
time t1, the emergency �ow is added and assigned by the online approach.
At time t2, another best-e�ort �ow is added and assigned by the online
approach. At time t3, the o�ine batch has calculated and applied the
optimal solution.

is allocated. The greedy heuristic again determines the bandwidth for each

best-e�ort �ow without impacting the current emergency �ows. Finally,

the batch calculations (visualized by the gray vertical line at time t3 in

Figure 3.9) optimizes the �ows of the whole network again.

It is clear that the online approach is guaranteeing the bandwidth of the

emergency �ows and creates a sub-optimal solution for the new incoming

best-e�ort �ows. The sub-optimal solution has 2.76% di�erence per �ow

compared to the result of the o�ine batches in the whole example scenario.

In some cases, this di�erence is 100% because the online approach does

not drop any new incoming �ows, while the o�ine batches can decide to

drop a �ow much faster as explained in Section 3.5.3. Afterwards, the

batch calculations optimize the best-e�ort �ows over the remaining available

bandwidth not used by emergency �ows. The solving time of the batch

calculations before and after adding 50 emergency �ows is illustrated in

Table 3.7 and shows that the proposed o�ine model can solve small-sized

networks e�ciently.
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Table 3.7: The ILP model results

Before After

Solving Time (ms) 20520.234 17489.531

3.6 Conclusion

Emergency network tra�c needs to have priority over best-e�ort tra�c

during emergency situations. With the expected release of 5G, slicing

concepts at network level will enable prioritization of the emergency net-

work tra�c over mobile connections. In addition, SDN principles allow to

assign di�erent QoS levels to di�erent network slices.

In this chapter, we therefore �rst propose two mathematical linear models

that guarantee the requested rate of emergency �ows and maximize the best-

e�ort �ows over the remaining available bandwidth. The LP model uses

the principles of �ow splitting, which is not supported by every OpenFlow-

enabled switch. Therefore, a second linear model, ILP, is proposed that is

supported by most of the OpenFlow-enabled switches running version 1.3 or

higher. Afterwards, an online approach is explained, handling new incoming

�ows in between batches of the linear model. The shortest path, based

on Dijkstra's algorithm, is calculated and a greedy heuristic is applied to

obtain bandwidth from the best-e�ort �ows. When the new incoming �ow

is an emergency �ow, the requested bandwidth will be allocated by any

means, a new incoming best e�ort �ow will be allocated with the average

bandwidth of all the active best-e�ort �ows. Finally, a microservices-based

framework is discussed and prototyped. This framework is able to run

both in a centralized and a distributed manner, enabling scalability over

larger network topologies. The distributed approach is necessary as di�erent

network operators can collaborate in managing cross-operator �ows in the

network topology or when the hardware resources are limited.

The two o�ine models are �rst evaluated by simulations and the results

show that both the ILP and LP mathematical problems can be used with

the ILP model exhibiting plus-second execution time while the LP model

works 30 times faster for 500 best-e�ort �ows and 50 emergency �ows. Next,

the distributed approach is evaluated by using an emulated network. Results

show that the distributed architecture is a solution in case there is a lack

of resources, allowing to split up the network topology in multiple parts in

order to calculate and optimize the emergency and best-e�ort �ows. When

enough resources are available, a split up of the network in two parts results

in speed up around 15%. When the results of the distributed architecture

are compared with the centralized architecture, it shows that di�erent paths
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are chosen for some �ows, but the allocation of resources remain the same.

Afterwards, the centralized framework is evaluated on an SDN network

consisting of Zodiac Switches and Raspberry pi's. The Zodiac switches do

not support �ow splitting, so the use of the slower ILP model is obliged. The

practical evaluation shows that the online problem e�ciently handles new

incoming �ows while guaranteeing the bandwidth for all the emergency �ows

and providing a sub-optimal temporary solution for the best-e�ort �ows.

Research concerning the distributed approach when three or more control-

lers are connected is envisaged as future work. This is because the overhead

of adding a virtual switch that will connect the border switches of a speci�c

part can be greater, possibly resulting in longer calculation times for the

�ow allocation. An improved network topology discovery service that is

able to optimally divide the network into di�erent parts along with better

handling of inter-part �ows can o�er a solution.

Addendum

Note on the distributed approach: In this chapter we stated that

the connection between the di�erent network segments are based on prior

knowledge. It is thus known how a network packet can go from one net-

work segment to another, resulting in parallel computations for each net-

work segment. In case there is no prior knowledge of the network toplogy

between the di�erent segments or when it is not known on which border

switch the packet will arrive from the previous segment, a slower sequential

calculation is required. This can be improved by letting all the network

segments calculate multiple solutions in advance, each starting with a dif-

ferent border switch.

Note on the LP, ILP and online approach: Evaluations proved that

the LP model is much faster (2 seconds) than the ILP model (2 minutes)

but the LP cannot be used in our prototyped solution. It is important to

note that the outcome of both the models are the same. Due to the longer

calculation time of the used ILP model, an online approach with a greedy

heuristic is introduced. The bandwidth guarantee for the emergency �ows

in the online approach is the same as in the o�ine approach with the LP

and ILP models. The di�erence between the online and o�ine approach

is the slightly di�erent allocation of the best-e�ort �ows in between the

calculation of the o�ine approach.
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4
Towards cloud-based unobtrusive

monitoring in remote multi-vendor

environments

In this dissertation, a UAV-as-a-Service (UAVaaS) platform is proposed,

allowing to extend drone application development and management into the

cloud. Because many di�erent applications can be developed and deployed

on drones, and each application can be complex, monitoring is required to

keep everything running smoothly. Research Objective 4 (C4) describes that

unobtrusive monitoring for container-based applications is necessary and

therefore this chapter proposes such a system. Based on the sidecar contai-

ner pattern, an unobtrusive monitoring solution is designed, prototyped and

evaluated on a simulated railway passenger information system, showing

an average impact of 0.02 % in terms of CPU usage on the application

performance and hereby con�rming Hypothesis 4 (RH4). Note that the

prototyped solution can be used in every microservice based environment

and thus afterwards can be used in our UAVaaS platform.

⋆ ⋆ ⋆ ⋆ ⋆
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Abstract Nowadays, many complex multi-vendor production environ-

ments, such as telecom infrastructures in smart cities or on-board passenger

information systems in trains, are based on microservices and deployed in

the cloud. From a service integrator point-of-view, building new solutions

for these environments, which can host a large number of externally designed

and developed microservices, is often complex and error-prone. This is in

part due to undocumented behaviour or undocumented architectural

speci�cations of such systems. Advanced service monitoring can o�er a

solution to quickly detect anomalies or unexpected service interaction be-

haviour during on-site integration. However, the monitoring service should

not have an impact on the production environment itself. Therefore, this

chapter proposes an agent-based unobtrusive monitoring platform, capable

of monitoring both internally developed and externally developed services

through the use of sidecar containers. It monitors state, metrics and net-

work tra�c at microservice level and the research was conducted as part

of the DynAMo research project, a collaboration with various industry

partners. Prototype evaluation proves that our solution has a negligible

impact (below 0.02% CPU usage on average) on an existing microservice en-

vironment just as other monitoring systems like Prometheus while o�ering

additional functionality focused on multi-vendor service integration. This

makes it suitable to be deployed in complex production domains to further

aid on-site integration and quickly �nd potential new anomalies.

4.1 Introduction

On-site integration of software o�erings in an operational environment can

be complex and error-prone. The runtime dependencies and services in these

environments at times do not comply with the interface behaviour agreed

at design time. Undocumented service behavior can give rise to unstable

operational software systems which are di�cult to debug. Such breaches

can be observed at the level of interfaces, order of protocol interactions,

performance and timing properties as well as security aspects such as con-

�dentiality, authentication and authorisation.

In the case of cyber-physical systems, such as information systems onboard

trains [1], infrastructure in a smart home and smart city [2, 3] or Internet-

of-Things (IoT) systems [4, 5], some hardware and software components
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are under control of di�erent external parties. These ecosystems are highly

dynamic (updates and functional changes can be installed at any time for

any service), can contain software solutions from di�erent companies and

have a lot of third-party dependencies and service interactions.

These cyber-physical systems nowadays require integration of software and

updates in a dev-ops manner with continuous operation of devices and appli-

cations, at times in mission critical environments (e.g. train passenger in-

formation systems which need to convey the right information to passengers

at all times). This results in three main challenges. The �rst challenge is

that this continuous integration process encounters problems at many levels,

such as inside the cyber-physical system between the services operating on

the devices, between the on-site platform and the self-managed back-end

services, between the services in the back-end and between external parties

and the self-managed services. The second challenge is that current de-

velopment practices often lead to a lack of explicit system architectures

describing subsystems, interfaces and protocols. System models are often

out of date compared to the actually deployed subsystem, while interface

and protocol descriptions often lack non-functional properties such as per-

formance guarantees or security features and functions properties like auth-

entication, authorisation and constraints. A third and �nal challenge is

the mission-critical nature of the cyber-physical system (e.g., a train where

passenger information systems are interconnected with main train operating

software services signaling location, door status and occupancy), which does

not allow intrusive interactions for inspecting or even halting or restarting

the system or some of its constituent services. Interactive inspection and

analysis of system performance, adherence to protocols and security should

thus occur in a non-intrusive way, but preferably also on a runtime copy of

the actual system.

In-depth monitoring of di�erent, potentially multi-vendor services in pro-

duction environments allows to quickly detect anomalies or unwanted be-

haviour. However, this monitoring must be performed in an unobtrusive

manner, in order to avoid having an impact on the production environment

itself.

A production environment typically consists of di�erent services, some of

which are potentially developed and managed by third parties, deployed

over one or more servers. When such a third-party service is updated, errors

can occur in the production domain. Therefore, this chapter proposes an

unobtrusive monitoring and analysis platform to e�ciently monitor remote

(multi-vendor) service environments from a cloud-based backend. Di�erent

remotely con�gurable tra�c probes, from here on called agents, are added

at each link in the environment capturing interactions between the di�er-
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ent components, even when network interruptions and time drifts occur.

The deployed agents are able to capture the state, processing, storage and

memory metrics and network tra�c from these services, where the analysis

of the network tra�c can aid in monitoring the behaviour of third-party

services that communicate with the services under control of the company

monitoring the system. An agent runs fully alongside an existing service

imposing no integration requirements. No changes need to be made to the

actual service, which is useful when the service is a black box or cannot be

modi�ed or recompiled (e.g. due to not having access to the source code).

If an agent would fail for some reason, it must not have an impact on the

deployed production system. As such an important design decision was to

avoid the use of proxies that intercept messages and forward them to their

destination.

When di�erent services need to be monitored, a management system is

needed in order to orchestrate and manage the di�erent deployed agents.

Therefore, every agent needs to have an endpoint in order to communicate

with this orchestration service. An agent should also be remotely (re)-

con�gurable in order to tune the monitoring behaviour for the speci�c pro-

duction service at hand. The agent orchestrator is responsible for this and

keeps track of all deployed agents and their con�guration. An essential com-

ponent in the architecture is the master clock because time synchronization

between agents is of critical importance. Time between various servers and

edge hardware can di�er signi�cantly. If there would be a deviation in

the local time of the various recipients in a �ow, it becomes very hard to

reconstruct the �ow of events (timestamped with local time) in a service

trace. The agent orchestrator therefore time-syncs agents to the master

clock allowing to accurately timestamp service interactions.

This chapter provides a solution to monitoring complex systems consisting

of a mixture of controlled and uncontrolled entities (services or hardware)

by focusing on the following novel contributions: (i) architectural design of a

monitoring system for monitoring complex third party software ecosystems,

(ii) research and prototyping of an unobtrusive and widely applicable mon-

itoring component by using a sidecar container pattern and (iii) evaluation

and a comparison to Prometheus[6] on a real-world use case. The concept

of this monitoring system is illustrated in Figure 4.1.

The remainder of this chapter is organized as follows: Section 4.2 provides

an overview of existing technologies, including their bene�ts and drawbacks.

Next, in Section 4.3, the di�erent components of the proposed platform are

discussed and in Section 4.4, technological choices for the prototype are

explained. Afterwards, Section 4.5 evaluates the impact of the proposed

monitoring system together with a comparison to the Prometheus monitor-
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Figure 4.1 Concept of an unobtrusive monitoring and analysis platform.
Every gear wheel represents a microservice that needs to be monitored.

ing system while conclusions and avenues for future research are summarized

in Section 4.6.

4.2 Related Work

Di�erent service monitoring solutions for complex service deployments exist

today (Telegraf [7], Prometheus [6], etc.). These solutions focus on services

deployed on controlled backend environments. At the service interface

side, di�erent API monitoring solutions o�er metrics about deployed APIs

(Rigor [8], APImetrics [9], etc.) and operational monitoring can be baked

into API gateways (Kong [10], Trae�k [11], etc.). Monitoring a full cross-

technology service o�ering integrated with third party services that cannot

be altered or recompiled remains a research challenge [12].

Such type of service deployments also su�er from di�culties to assess ad-

herence to security constraints. Current security monitoring solutions are

often limited to network-level intrusion detection systems or monitoring

authentication attempts. Deep inspection of distributed application-level

authentication and authorisation is often missing.

Vaculin et al. [13] add an event model on top of the OWL-S standard,

including error handling, which allows the description of services and their

components, as well as interactions with them. This approach (like OWL-

S) stems from a time in which services were relatively heavy components,

contrary to current highly agile microservice approaches, and is therefore

considered to be dated.

Calero et al. [14] mention in their publication on MonPaaS (a solution

for the cloud consumer, not the service provider) that, at the time of

writing, no real solution exists for the monitoring of rapidly changing,

virtual infrastructures (cloud computing). The problems of traditional mon-
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itoring they mention are twofold: a rapid life cycle of virtual assets and the

need for custom monitor software. Their attempt to counter these problems,

by implementing MonPaaS, is realized by attaching their solution to the

communications middleware that handles all tra�c between the respective

cloud and consumers' and administrators' monitoring solution. This way,

they can automatically respond to changes in the topology.

Pina et al. [12] proposes a nonintrusive monitoring system of microservice-

based systems based on log gateway activity to register all calls to and

between microservices, as well as their responses, thus enabling the

extraction of topology and performance metrics, without changing source

code. The authors resorted to three Net�ix components to gather metrics

outside of the critical path while our proposed solution uses an agent-based

approach to gather metrics. Another example is presented by Noor et

al. [15], which has the same architecture as Pina et al. The authors present

a generic agent-based monitoring framework, where the agents are deployed

as start-up packages in di�erent VMs, making it an intrusive solution. Our

proposed solution can be deployed at any time, making it more unobtrusive

than the solution proposed by Noor et al.

Alhamazani et al. [16] proposes, develops and validates CLAMBS, Cross-

Layer Multi-Cloud Application Monitoring and Benchmarking as-a-Service

for e�cient QoS monitoring and benchmarking of cloud applications hosted

on multi-clouds environments. Souza et al. [17] presents an osmotic monit-

oring model, based on CLAMBS, for monitoring IoT systems applications

decomposed as microservices and executed in an Osmotic computing en-

vironment. The proposed solution in this chapter monitors cloud and/or

edge systems, as both works, but avoids eventual vendor lock-ins and adds

monitoring of external third-party services.

Cinque et al. [18] presents a non-intrusive novel monitoring approach to

accompany microservices logs with black box tracing to help practitioners

in making informed decisions for troubleshooting. It is thus a passive tracing

solution and it aims to cope with the �exibility requirements of microservices

systems, but only on log level.

Version-based Microservice Analysis, Monitoring, and Visualization

(VMAMV) [19] is a system that automatically detects potential design

problems for microservice with multiple versions in design time, discover

service anomalies for all service versions in runtime, and immediately

noti�es users of problems shortly after they occur. This solution focuses

on the di�erent dependencies and their corresponding version of micro-

services deployed in a production environment, making it able to early

detect anomalies triggered by version mismatches. The monitoring of

microservices itself is not handled in this chapter.



Towards cloud-based unobtrusive monitoring 99

Nagios [20], a current industrial player, focuses on network analysis,

alongside automated alerts. Additionally, they o�er application and server

monitoring with their (closed-source) Nagios XI [21]. Nagios runs on Linux

and is mostly tailored to host or network monitoring. Various forks exist

of the Nagios core open-source project, which may be of interest [22, 23].

Zabbix [24] is an open-source solution, o�ering real-time monitoring of

metrics (both host and application metrics). These are collected by agents

in an active or passive manner. In the passive mode, the backend server

connects to the agent and polls for a certain value (e.g., host CPU load). The

backend waits until the agent on the host responds with the value. Then the

server gets the value back, and the connection closes. In the active mode, all

data processing is performed on the agent, without the interference of the

backend. However, the agent must know what metrics should be monitored.

Their service monitoring requires custom written plugins.

Zenoss [25] is a SaaS solution that o�ers monitoring for IT infrastruc-

ture (services, network, storage, etc.). They o�er root cause analysis for

degraded services as well as discovering trends and dependency issues

between services that may cause future problems. Their proposed solution

is aided by Arti�cial Intelligence and can be labeled AIOps (AI for IT

operations), combining DevOps with advances in AI research. They require

custom monitors that connect to services through, e.g., Simple Network

Management Protocol (SNMP) or Hypertext Transfer Protocol (HTTP),

rendering it less suitable for use here because this cannot be deployed in an

unobtrusive way, especially when dealing with third party services.

Siemens provides the MindSphere [26] platform which is an open cloud plat-

form for IoT applications. It stores operational data of various producers,

be it hardware or software. Hardware applications such as Siemens' Mind-

Connect can be used to collect and transfer data from the �eld, either

real-time or bu�ered, to MindSphere. The platform o�ers outlier detection,

anomaly detection and can perform trend prediction. The Siemens plat-

form is speci�cally aimed at industrial IoT. Similar functionality is o�ered

by Thingworx [27], who employ AI and machine learning technologies for

IoT systems in their ThingWorx analytics package.

Acronis [28] o�ers detailed monitoring as a service. While most targets

are prede�ned, such as common web services or operating systems, it is

possible to de�ne own monitors through custom agents. While their o�ering

can group targets and show meaningful information through a Graphical

User Interface (GUI), it seems that it is not possible to approach black box

services or include deep state analysis or replays.

Dynatrace [29] attempts to inspect the runtime of processes. It includes

resource utilisation on process level, which is further than what most monit-
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oring solutions o�er but requires code changes in production services, which

the solution proposed in this chapter aims to avoid (as some of the services

are third party and cannot be adapted).

Google Cloud's operations suite [30] is a systems management platform

that has a couple of properties relevant to this research. It operates on

top of AWS (Amazon) and/or Google Cloud, while the solution proposed

here aims to be platform agnostic (running on any platform that Docker

can be installed on). Relevant properties are real-time debugging and state

inspection. More commonly, Google Cloud's operations suite also allows

monitoring, logging, and diagnostics of the con�gured services. Prede�ned

pro�les are available for commonly used platforms and programs, allowing

detailed monitoring of, e.g., an Nginx web server or PostgreSQL database.

Also of note, auto discovery of such services is supported.

It is clear that di�erent technologies exist but most technologies assume

full control over the services or operational platform at hand, which is not

the case when developing for or integrating in existing multi-vendor service

solutions. These shortcomings are for example vendor lock-in, the potential

to impact operational systems when the monitoring system fails (e.g. by

means of solutions proxying communications) and requiring changes (e.g.

recompilation or linking external libraries) in the production environment

to allow monitoring. Table 4.1 provides a comparison of all the monitoring

solutions discussed above from which we can conclude that this chapter

provides an unobtrusive monitoring platform that can operate in a platform

agnostic manner, can be integrated in an existing production environment

and which is capable of monitoring incoming network tra�c from third-

party services which are not in control of the production environment owner.

4.3 Architectural design

This section will explain the di�erent components of the proposed solution.

First, the functionality of a single agent are listed. Afterwards, the agent

management system, responsible for the orchestration of the di�erent agents

and the collection of data, is discussed. Finally the overall architecture is

presented.

4.3.1 Agent functionality

The main goal of the agent is to provide insight in the behaviour of each

service. Primarily, this is executed in a non-intrusive way, by extracting or

observing the desired information. Network tra�c is extracted in a passive

manner, as well as generic system state (CPU usage, memory usage, etc.)
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which can be easily retrieved from various systems when rudimentary access

is available. Secondly, when permitted (e.g. service is self-developed or is

third party but open sourced), additional information can be extracted by

modifying the service. This entails having the service to actively send in-

formation to the agent, or making data available in a way that would not

be possible in its default state. Detailed state extraction will be intrusive

(changes are required to the service in production) in order to extract

insights into the inner workings of the service.

Service Interaction Monitoring: To monitor service interaction, agents

capture incoming and outgoing tra�c for each service. The ideal case would

be a containerised service, where network tra�c is relevant for the service

(as most if not all communication with the containerised environment is

aimed at that service or stemming from that service). However the default

approach should take into account a generic network device that is located in

a LAN. When faced with raw data streams, it is not trivial to reconstruct the

intended data �ow in the actual messages. Sensors, actuators and other low

level hardware can use raw encrypted Transmission Control Protocol (TCP)

streams or User Datagram Protocol (UDP) diagrams to communicate with

a central service (e.g. hardware installed in trains). In this case, access to or

knowledge about proprietary code and components is not trivial and custom

solutions needs to be added to the agent in order to interpret the raw stream

of data. In other cases when a more standardized protocol such as HTTP or

Google Remote Procedure Call (gRPC) is used, the agent can automatically

detect the communication content and transform it to message requests and

responses.

Another problem is to identify if a certain packet is intended for the monit-

ored service or not. In the ideal case, a tra�c �ow ID would be available in

order to identify a data �ow through several di�erent services. E.g. an event

is generated in a sensor which is then picked up by a service that performs a

transformation and sends it on to another service or a database. Having this

data �ow tagged with an ID will greatly ease analysis of the network tra�c.

The agent needs to reassemble the various network packets. These packets

can then be sent to the agent endpoint, potentially disregarding message

bodies. Messages can be stored on the agent in a bu�er with limited size,

which can be fetched later by the agent endpoint in case more details about

a speci�c data �ow are needed. However, doing this in a reliable way may

require intrusive instrumentation of the monitored service.

System State Monitoring: System state envelops the concepts of, e.g.,

hardware state (memory, CPU, secondary storage, temperature) or contai-

ner state (replication level, disk use). An agent can collect metrics about

the health of its observing container. These metrics can also be recorded
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alongside the captured messages and can provide valuable insights as to why

a service is unable to handle an incoming request properly, e.g., when disk

storage is full or the system is memory-starved.

Runtime State Monitoring: Runtime state envelops concepts such

as extracting information from a running system and using it to detect

and possibly react to observed behaviors satisfying or violating certain

properties. Such information is crucial to do highly contextual anomaly

detection and almost always imply implementations or changes to the

services running in production. These metrics can however easily be

exposed through an interface such as the Promotheus exporter [31]. This

type of monitoring is not always available: only when the service itself

o�ers external access to these parameters, the agent can scrape them. An

extra feature may be to analyze and parse the service container logs and

send those to the agent management system as well.

Time Synchronization: Time synchronization between agents is a

critical component as discussed in Section 4.1. The local time between

various servers and edge hardware can di�er which can make it di�cult

to reconstruct the �ow of events in a trace, especially if there is no

correlation ID. Other issues such as jumps in time when the Network Time

Protocol (NTP) client has performed a resynchronization on the host would

also hamper correct reconstruction of a �ow, as it is entirely possible to

suddenly have messages out of order or tagged with future timestamps. To

mitigate this issue, the proposed system hosts its own master wall clock

to which all agents periodically sync to, preventing clock drift. There are

a number of protocols that can be used with varying precision from a

holdover stability of 250 milliseconds per year to 3 seconds per year [32].

O�ine Support: It is possible that an agent cannot reach the system

endpoint to report recorded messages. The agent then needs to store all

pending upstream data in a locally persisted queue that is processed when

the endpoint becomes reachable again.

Remote (re)con�guration: Agents should be able to fetch their con�gur-

ation from the management system and periodically synchronize to ensure

they are properly recon�gured. Operators might not always want to be able

to access the agents remotely, so having a management system that pushes

the con�guration to the agents is key. This con�guration also entails a set

of �lters on considered tra�c and messages.

This remote recon�guration encompasses the scheduling of a speci�c time

window that needs to be recorded in full detail i.e. all data exchanges must

be captured instead of sampled data exchanges. This detailed recording can

be used in a later stage to reproduce service interactions in order to identify

issues in a controlled environment.
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4.3.2 Agent Management System

When di�erent services need to be monitored, an agent management system

is required in order to orchestrate and manage the various deployed agents.

Therefore, every agent needs to have an endpoint in order to communicate

with this orchestration service. These two components are further explained

below.

Agent endpoint: The agent endpoint is the ingest point for all messages

captured and is the (only) access point for all the deployed agents. An

agent establishes a bidirectional communication channel with the endpoint

to stream messages, synchronize the master clock and ful�ll requests for full

body messages.

If all links within the production system contain agents, most messages are

received twice: once from the agent monitoring the service that sent the

message and once from the agent monitoring the service that received the

message. The only exception would be messages going through 3rd party

external services. To prevent storing duplicate data, the endpoint needs

to match these messages, based on 1) from, to, message body hash, 2)

correlation id, if available and 3) acceptable time window. While not strictly

required, removing duplicates from the system early on reduces load and

makes it easier to follow and replay traces. It can also give insight into the

actual latency between sending and receiving messages.

The endpoint also needs to stream the received messages to the other

components of the system, either through a shared bu�er (e.g. Kafka) or

directly through Server-Sent Events (SSE), where the latter is a standard

describing how servers can initiate data transmission towards clients once an

initial client connection has been established, providing a memory-e�cient

implementation of XHR streaming [33]. To keep the endpoint scalable so

that multiple instances can be deployed, a shared bu�er is probably the

better option, even though it introduces latency.

Agent orchestrator: A centralized system is required to (re)con�gure

deployed agents remotely. From the previous section we can deduce that

an agent has many con�gurable features or parameters: which modules to

load, the local transmission queue, which metrics to capture, at which rate

the metrics are captured and so on. A consistent reliable connection is

not always feasible, especially on edge networks. To account for connection

properties, an agent could be con�gured when it is �rst installed or on-the-

�y when a stable internet connection is available. For the latter, it is possible

that due to changing production load the agent needs to be recon�gured to

change its impact on the production environment.

The agent orchestrator keeps track of all deployed agents and their con�gur-

ation when they periodically synchronize with the system. The system can
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Figure 4.2 Detailed agent-based architecture of the proposed monitoring
platform

de�ne pro�les, with reduced or full tracing capabilities, that determine a set

of con�gurations to use. This allows operators to quickly reduce potential

load issues by reducing the impact agents have.

The orchestrator can also be in charge of the aforementioned master clock

to ensure all agents use timestamps relative to a single clock.

4.3.3 Overall architecture

Based on the architecture described in Section 4.3.1, 4.3.2 and the unobtru-

sive requirement described in Section 4.1, it is now clear which components

an agent can support, how an agent and the full prototyped architecture

needs to be deployed and how every agent is managed in a complex multi-

service environment. A more detailed architecture is proposed and explained

in Figure 4.2.

The blue components are the services in a production environment that

need to be monitored, the orange components are the agents of our proposed

system, deployed as sidecar containers. An agent is deployed to monitor an

existing service and capture the �Network IN� and �Network OUT� tra�c,

process this tra�c and eventually send it to the agent orchestration service

through the agent endpoint. This is visualized on the left hand side of

Figure 4.2. Each microservice in the production environment, under control

of the integrating company, (blue gears in Figure 4.2) will be monitored in

this way. The orchestration service stores the captured information in a time
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Figure 4.3 Detailed architecture of our sidecar container implementation.
A monitoring agent is attached to the monitored service through the net-
work interface, allowing to capture and monitor all incoming and outgoing
network tra�c.

series based data store for potential further use, such as anomaly detection

(e.g. identifying faulty service interactions in speci�c context or state), and

is also responsible for clock synchronization between agents.

Figure 4.3 illustrates the employed sidecar container pattern. An agent

(displayed in orange) is attached to a microservice in the production envir-

onment through the network interface. This allows the agent to monitor

the incoming and outgoing network tra�c. System state monitoring data is

captured by reading out the kernel data of the monitored microservice. Run-

time state monitoring is only possible when the service itself o�ers external

access to these parameters over e.g. a REST API.

4.4 Proof-of-Concept implementation

For evaluation purposes a Proof-of-Concept (PoC) in dotnetcore 3.0 [34] is

implemented, which can run cross-platform and self-contained in a Docker

container [35]. The proposed solution can also run on other cloud solutions

such as VMs or bare metal servers but this is outside the scope of this

chapter. The agent is modularized, each component is seen as a module

with speci�c properties to con�gure. Modules can be built in or loaded

from additional external plugins with the help of Managed Extensibility

Framework (MEF) [36]. This modularization makes it easy to enable or

disable certain modules of the agent when desired or when the impact of

the agent is too large on the production environment hardware.

The agent is typically deployed alongside a service and its main task

is to unobtrusively collect messages that are sent from and received at

the service. With the help of .NET libraries such as Pcap.NET and
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PacketDotNet, packets are extracted from the network interface and (in

the case of TCP/IP) reconstructed into binary streams. Many protocols

exist on top of this, however, our implementation limits itself to HTTP

request/responses that form a message pair.

Each message consists of:

� Local timestamp: the timestamp of the �rst packet of the message.

� Master clock timestamp: the converted master clock timestamp

equivalent.

� From: the IP (or hostname) and port where the message came from.

� To: the IP (or hostname) and port where the message was sent to.

� Flow correlation ID: can be �lled in by custom modules into the

agent processing pipeline to chain messages together.

� Tags: a key value pair list to add extra information to a message,

that makes it easier to �lter on (e.g. HTTP method, HTTP status

code or message hash of the corresponding HTTP request).

� Is anomalous: a �ag indicating whether the message is anomalous.

This can be �lled in by a simple anomaly detector (e.g. HTTP 500

status code is an anomaly) or can be �lled in by a custom, more

complex anomaly detector.

� Captured on: the name of the agent the message was captured on.

� Fingerprint: a SHA256 hash of the entire binary stream, used to

match messages.

� Agent on receiving end: �ag indicating whether the message was

received at the agent's service or not.

The messages are conceived to be lightweight, holding a bare minimum of

data required. The full payload of the message is also obtained but not

sent through to the agent management system by default. Therefore, it is

�rst retained in memory but with a con�gured limit in terms of number of

messages and total size. Persisting this information to disk is an option but

undesirable when the hardware is using �ash storage with limited writing

cycles.

Messages that are captured are sent to a processing pipeline before being

sent to the agent management system. Extra modules can add additional

processors to alter the message, add tags to perform actions such as early

anomaly detection.
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The agent also reports its status periodically to the agent management

system to notify that it is still running. With this interaction, the mana-

gement system also reports back any tasks that the agent has to do, such

as:

� If the con�guration has changed, request the newer con�guration.

� Push the initial con�guration if the agent did not connect to the agent

management system before.

� Send the full payload for speci�c message hashes, if they are still

available. The management system can run a larger, more re-

source intensive anomaly detector that can �ag certain messages as

anomalous. For later root cause analysis it is desirable that the full

payload is also stored in a data store.

Agents are also tasked with collecting monitoring metrics of the host it is

running on (system state monitoring) and metrics from the service (runtime

state monitoring). To obtain metrics from the host, agents can be bundled

with a separate Netdata worker process [37]. This process exposes a large

amount of information through a Prometheus endpoint. This endpoint is

scraped regularly by the agent and the obtained metrics are sent to the

management system. The Prometheus format is chosen because of its wide

availability and easily parsable format. Many languages and frameworks

provide ready-made libraries to collect and expose metrics with a Prome-

theus endpoint.

To prevent clock drift between various hosts, the agent periodically syncs an

internal clock with the masterclock in the management system and converts

the timestamps of data that it sends to the master clock timestamp. The

roundtrip time of this synchronization is halved and added to be more

accurate.

Agents are typically deployed as sidecar containers[38] to the service con-

tainers they are observing. By tapping into the network namespace of

the service, it can unobtrusively monitor packets speci�c for that service.

Running the agent as a sidecar container prevents the agent from having

an impact on the monitored service. If the agent were to crash, the service

remains una�ected. One exception to this sidecar pattern is the agent that

captures monitoring data from the host, which is running in a standalone

container on the host network namespace.

The agent management backend consists of a gRPC endpoint, a binary

format making it more e�cient in terms of bandwidth and CPU usage, that

agents connect to. Agent metadata, such as its known con�guration state,

are stored in a MongoDB database [39].
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For actual data such as messages, full payload of messages and monitoring

data, Clickhouse [40] is used. Clickhouse is a classic Relational Database

Management System (RDBMS) instead of a time series database but can

handle large amounts of data, in its default con�guration, with ease.

The agent management system also provides a simple GUI for changing

the con�guration parameters of speci�c agents. Once the agent reports

its status, the management system checks and schedules the con�guration

update as a task back to the agent.

The PoC implementation can be deployed at any time by running a simple

startup script, which will spin up the management containers and will deploy

and couple agents with the network interface of each other service or con-

tainer that needs to be monitored.

4.5 PoC evaluation results

In this section, the impact of the proposed framework in terms of CPU and

memory usage is evaluated, discussed and compared to another monitor-

ing solution, namely Prometheus. First, the evaluation setup is illustrated

and explained, followed by the di�erent metrics that are important in this

evaluation. Finally, the obtained results are compared and conclusions are

made.

4.5.1 Evaluation setup and metrics

The proposed platform is evaluated in terms of unobtrusiveness. Our goal is

to evaluate the impact of our proposed agent on a service in a complex pro-

duction environment, whereby the service is �rst operating without monitor-

ing additions and afterwards running with our agent monitoring the service.

The evaluation setup is illustrated in Figure 4.4 and is a simulation railway

passenger information system from the Televic Group1, a company respon-

sible for developing, manufacturing and installing top end communication

systems for niche markets such as trains. This simulator is very close to the

real case scenario, as it combines containers from di�erent vendors and it

takes into account the delays and struggles in the communication process

when a train is continuing its journey. The services simulate a journey of one

train with all necessary stops and passenger and personnel communication.

This use case is an example of a complex multi vendor integration consisting

of Darwin systems, systems from the train manufacturer, systems from

integrator companies and multi vendor hardware. The whole simulation en-

vironment consists of services deployed in Docker containers (with a single

1https://www.televic.com
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Figure 4.4 Simulation and evaluation setup. The items in red are third-
party services.

service instantiated per container). One other can conclude that other pro-

duction microservice environments are working similarly.

The train part consist of following items:

� The isync server is responsible for communication with the wayside

� An onboard rail database for storing information that needs to be

visualised on the train information systems

� The tcms-simulator simulates the third-party (! (()TCMS)

� The Main Unit Controller (MUC) is responsible for translating the

TSMC messages.

� The Digital Signage Server (DSS) is responsible for broadcasting

messages to di�erent screens in the train

� The diagnostics client (TFT) is responsible for collecting diagnostics

on the train

� The MongoDB database stores general information

� The Journey Information Manager (JIM) is the journey message

listener

The wayside part (wayside is a term used extensively in railway systems to

denote any system that is not located on the trains e.g. trackside systems,

cloud backend infrastructure, etc.) consist of the following items:

� The isync UI is the user interface for the isync service
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Figure 4.5 The railway communication application, provided by the
industry partner in the DynAMo research project, to conduct the detailed
performance evaluations.

� The isync server is the management server for the isync services on

the wayside and on the trains

� The MongoDB database stores general information on the wayside

� The xdata service is the message broker

All these services act like black boxes and are running as individual con-

tainers on a server with 2 Hexacore Intel E5645 (2.4GHz) CPUs, 24GB of

RAM and Ubuntu 18.04 LTS installed. As already mentioned, the service is

�rst monitored without monitoring active, afterwards with the Prometheus

solution monitoring the Docker containers and �nally with the agent and

the agent management system active.

4.5.2 Obtained results

To evaluate the platform, a simulation of a train journey is executed.

This is a train journey covering 6 stops from Liverpool to Crewe, with an

average train speed of 20m/s. A screenshot of the simulation is provided

in Figure 4.5. After each simulation, the system is restarted completely

in order to avoid interference by e.g. a garbage collection system. During

the simulation, the statistics of each docker container are stored every

second using the docker stats command. Per service, the CPU usage and

memory usage in percentages are plotted, without the monitoring active,

with Prometheus monitoring active and with our proposed solution active.
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Figure 4.6 Evaluation of the CPU usage (%) of the train isync service
without any monitoring system, with Prometheus monitoring and with our
proposed solution active

The train isync service has an average CPU usage of 1.33% with a standard

deviation of 2.02% (afterwards mentioned as +/- 2.02%) and memory usage

of 1.58% (+/- 0.03%) without any monitoring solution active. When Pro-

metheus is monitoring the whole setup, the total average CPU usage of this

service is 1.42% (+/- 3.86%) and the total average memory usage is 1.46%

(+/- 0.04%). With our monitoring system, the total average CPU usage of

this service is 1,31% (+/- 1.23%) and the total average memory usage is

1.40% (+/- 0.03%). The graphical results of this service are illustrated in

Figure 4.6 and Figure 4.7. The statistical results for all the other services

are illustrated in Table 4.2.

Taking the standard deviation of each result into account, one can see that

the proposed system has a negligible impact on the simulation environment.

The evaluation of the Prometheus system shows that these results are also

similar to the results of our proposed system. This means that the proposed

system works while portraying similar performance to Prometheus despite

o�ering additional functionality such as remote recon�guration, o�ine sup-

port and anomaly detection - all while being tailored to complex multi-

vendor service integration environments. The major requirement to create

an unobtrusive monitoring system is thus proven.

The agents monitoring the production services are also evaluated in terms

of CPU-usage and memory usage. Figure 4.8 illustrates the CPU usage of

each agent and Figure 4.9 illustrates the memory usage of each agent. In
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Figure 4.7 Evaluation of the Memory usage (%) of the train isync service
without any monitoring system, with Prometheus monitoring and with our
proposed solution active
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Figure 4.8 CPU usage of deployed agents monitoring the di�erent services
in the train passenger information system simulator. The CPU usage of
every agent remains low with some with average CPU usage at 0.01% and
outliers up to 0.19%

general, the CPU and memory usage of each agent remains low, supporting

our conclusion that our monitoring system has a negligible impact. On the

other hand, the CPU and memory usage is getting larger in time, due to

the garbage storage in each agent. When the system limits are achieved,

this is resolved by the automatic garbage collection in .NET. The CPU and

memory usage of each agent itself can also be limited with the corresponding

docker commands when starting the proposed system, ensuring the unob-

trusive requirement.

4.6 Conclusion

Monitoring services in complex cloud-enabled production environments,

hosting services from di�erent vendors or developers, is mostly complex

and error-prone. Therefore, this chapter proposed the design and inception

of a monitoring system that does not have signi�cant impact on the pro-

duction environment. The required components are discussed together

with the management system responsible for orchestrating di�erent agents

in such a production environment. Every agent is unobtrusive, remotely

con�gurable and can handle network interruptions and time drifts.

To evaluate the impact of our proposed platform, a PoC simulation environ-

ment is deployed and evaluated in terms of CPU usage and memory usage

without any monitoring system, with Prometheus monitoring and with our
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Figure 4.9 Memory usage of deployed agents monitoring the di�erent
services in the train passenger information system simulator. The memory
usage is increasing over time due to the garbage storage in the agent, but
is resolved automatically by means of a garbage collection process in the
proposed PoC. Hence, the conclusion can be made that the memory usage
remains low.

proposed solution active. It was clear that our approach has a negligible

impact on the production environment, works with similar performance as

Prometheus while o�ering additional functionality focused on multi-vendor

service integration, and that the required resources to deploy our agents are

small (an average of 0.02 % in terms of CPU usage).

The evaluation of the monitoring metrics in a (simulation) production envir-

onment is foreseen as future work. Also, further processing of the monitoring

metrics stored by the agent orchestrator is planned to allow coupling with

error and anomaly detection, error prediction and AI solutions. All this

will eventually lead to the creation of a digital twin environment that can

provide a duplicate (including stubs imitating external service interaction

behavior) of software services running in the production environment. This

digital twin should allow controlled study of software interactions causing

errors and the impact of proposed solutions or patches to remediate these

faults.
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5
UAVs-as-a-Service: Cloud-based

Remote Application Management for

drones

In this chapter, Research Challenge 3 (C3) is partly addressed. It proposes a

container-based application platform for drone development, enabling cloud-

to-drone development. In a �rst stage, it is investigated how to deploy con-

tainerized applications on drones, followed by the creation of the prototype

UAVaaS platform, allowing to deploy application components either on

drones from a drone �eet, or connect them to components deployed and

running in the cloud. A drone also requires speci�c application components

to be deployed at startup to enable remote drone management and piloting

from an application or from a ground control station. The proposed plat-

form enables these application components when a drone is connected to

the system. Three reference implementations are deployed by means of this

system to demonstrate its capabilities.

⋆ ⋆ ⋆ ⋆ ⋆
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Published in �2021 IFIP/IEEE International Symposium on Inte-

grated Network and Service Management, Proceedings�



122 Chapter 5

Abstract In recent years, the Internet-of-Drones (IoD) became an

important research topic for both industry and academy. An IoD en-

vironment consist of di�erent drones, called Unmanned Aerial Vehicles

(UAVs), �ying in di�erent zones whereby communication is important.

Therefore, drones are becoming increasingly ambiguous, capable and more

cost e�ective than ever before. These drones have been equipped with

di�erent sensors, making it IoT-enabled drones, capable of capturing

multiple data sources and send them to the cloud for further research,

but the continuous advance in drone technology has not necessarily made

drone application development easier. While mature Infrastructure-as-

a-Service (IaaS) platforms o�er features such as hardware abstraction,

resource allocation and tools to manage applications remotely, commercial

drones often o�er a restrictive software environment instead. Inspired by

the technical success and convenience of IaaS platforms, this chapter sets

out to bring that experience to drones, resulting in the creation of the

UG-One UAVaaS platform. Many of the technologies used in the UAVaaS

platform can be found in the world of Cloud computing as well. Appli-

cations created for drones are containerized using Docker and application

management can be done through a web interface. The drones host a

REST API for platform management and they have a Linux onboard

computer. Developers can deploy applications on the drones or forward

the required data and deploy their applications on a remote server instead.

This approach has delivered promising results when evaluated using several

reference applications that either represent real world applications such

as video streaming and movement control or instead just stress tests to

check for resource availability and reliability. In the end, the UG-One

platform is shown to succeed in simplifying drone application development

and management while maintaining the reliability and versatility required

from any drone platform.

5.1 Introduction

The last decade, Internet of Things (IoT), where various objects (or things)

are connected through the Internet, has made a technological advance-

ment [24]. Drones are one of these things [27], consisting of several IoT

smart devices, such as LIDAR, thermal sensors, cameras, chemical sensors

and many more [28]. They have become increasingly ambiguous and drone

manufacturers have been able to create cost e�ective devices that can �y

longer, carry heavier loads and have better on-board hardware. Even drone

management systems have been developed to maintain a good overview of

several deployed drones. [26]. The continuous advance in drone technology
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certainly has improved the capabilities of drones, but it has not necessarily

made drone application development easier.

When building applications that need to run in the cloud, developers create

containerized applications which are remotely deployed and managed, have

guarantees when it comes to resource availability and developers certainly

do not need to worry about the vendor of the hardware on which their

applications are deployed. This is not the case when developing an appli-

cation for a drone, where a developer needs to take into account di�erent

aspects such as speci�c hardware constraints, power constraints and load

constraints. Therefore, this chapter proposes a platform, further called

the UG-One platform, unlocking the potential of these drone innovations

towards a larger number of less drone-savvy developers.

By creating the UG-One UAVaaS platform based on cloud technologies,

developers can now work in a familiar environment were applications are

containerized, platform components communicate using REST APIs, drones

run Linux and application deployment happens through a web interface.

However drones are not cloud servers, they need to make real-time decisions

and run applications that often need access to on-board hardware such as

cameras and actuators, or even require the ability to plot a new course for

the drone. Instead of trying to create an all-in-one system that provides all

the required functionality, the UG-One drone design is based on separate

non-proprietary components with each component optimized for speci�c

tasks. On a hardware level, the autopilot controls the drone while a Linux-

based on-board computer runs applications. On a software level, each part

of the UG-One drone system is containerized and can work independently

without in�uencing other applications or components.

While a UG-One drone can be used on its own, deploying applications

through a REST API or Swagger-UI is far from user-friendly and application

management quickly becomes complex when dealing with multiple drones.

For this purpose, the UG-One back-end has been created. This cloud system

allows users to manage the applications running on a �eet of drones and

simpli�es things such as deploying applications that remotely control the

drones, or even individually control drones through ground control software.

The remainder of this chapter is organised as follows: Section 5.2 covers how

drones can �y reliably and the need for an on-board generic computing plat-

form while Section 5.3 explains the use of Docker on this on-board compu-

ter. In Section 5.4, the proposed system is illustrated en explained in detail

followed by some reference implementations and validation in Section 5.5.

Section 5.6 explains how a drone �eet can be managed and conclusions are

summarized in Section 5.7
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5.2 Reliable drone �ight and on-board compu-

ter

As with most aviation systems, drones need to be reliable and thoroughly

tested, which can slow down development. Each time software or hardware

that controls the drone is modi�ed, all aspects needs to be evaluated again.

To prevent this kind of slowdown, open-source autopilots such as Pix-

hawk [20] and ArduPilot [16] can be used. These autopilots are good at

following precise instructions such as follow a speci�c path, �y to these

coordinates and �y at this speed. These instructions are communicated

through the open-source MAVLink protocol [18], which is utilized by the

two most popular and advanced open-source autopilot software projects,

PX4 [2] and ArduPilot. Since most developers do not have any experience

with MAVLink, the open-source MAVSDK library has been created by the

team behind Pixhawk [19]. With these thoroughly tested, maintained and

documented autopilots, developers do not need the time or skills required

to create an autonomous drone themselves, instead they can focus on their

applications which are deployed on a separate Linux-based on-board com-

puter. If the on-board computer fails, the autopilot simply pilots the drone

back home. The on-board computer hardware and software can as such be

optimized for application deployment, performance and e�ciency instead of

redundancy and reliability at all cost. This allows the usage of mainstream

low-energy consumption embedded computers such as a Raspberry Pi. Since

most of the drone speci�c challenges are handled by the autopilot, the on-

board computer can now be interpreted as a remote deployment server. The

remote connection between the drone and the ground has been implemented

using a simple network connection over Wi-Fi during development, but this

can be done over cellular as well.

While MAVSDK can be used to �Talk MAVLink�, a communication pipe-

line between the autopilot and the applications that use MAVSDK is

still needed. Between the autopilot and the onboard computer, this

happens over Universal Asynchronous Receiver-Transmitter (UART). On

the onboard computer itself, a program called MAVLink-Router [1] then

forwards these messages over UDP and routes them to applications on the

drone or anywhere else, such as a cloud back end or possibly even another

drone. Since multiple autopilots utilize the MAVLink protocol, it should

now also be possible to simply switch out one autopilot with another, or in

other words, deploy the same application on multiple drones with di�erent

autopilots.
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5.3 Dockerised Drone

Because the on-board computer now acts as a remote deployment server, the

software running on it can be developed in a way that takes full advantage of

container technologies such as Docker [17]. In fact, each platform component

or application that runs on the drones is containerized. By making use of

container virtualisation technology, the system becomes inherently more

reliable, it has improved hardware compatibility and it is easier to deploy

(e.g. new hardware requires only that docker is supported).

It is also much easier to manage the resources available to containerized

applications. This is critical as without resource management, any appli-

cation can utilize as much of the available resources as it wants to use,

resulting in applications slowing down or even crashing.

5.3.1 Resource management

Resource management is done by a containerized component running on

each UG-One drone called the UG-One API. This application, among other

responsibilities, exposes a REST API which can be used to easily integrate

the drones into a cloud back end. The API is designed to provide all of

the Docker functionality that is needed to manage applications on a drone,

but with the required limitations to guarantee resources. It also exposes

endpoints that provide information on the system such as connected USB

devices, available disk space and current memory usage.

While the UG-One API can guarantee a �xed amount of memory available

to applications, using underlying Docker functionality, it does not guarantee

a �xed percentage of CPU time. Instead, it works by allowing developers to

assign a CPU priority weight. As long as the CPU is not being used 100%,

any application can utilize as much of the CPU as it wants. However, as

soon as applications start competing for processing power, the distribution

of CPU time will be made based on the weight of each application that is

making calculations at that time.

5.3.2 Unmanaged resources

While CPU and memory resources are handled by the system, the system

still lacks network bandwidth prioritization and disk space limiting. Net-

work bandwidth prioritization is not yet part of Docker and while it is

possible to limit the size of a Docker container, it is not yet possible to limit

the volume on the host that users can mount.

Despite these shortcomings, the UG-One API is still capable of reliably

managing containers and guaranteeing two critical resources. Because of
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this, it is used to manage all the components on a UG-One drone, including

itself.

5.4 System overview and implementation de-

tails

This section covers the system overview, illustrated in Figure 5.1. The

upper part covers the autopilot and the on-board computer on the drone,

which was covered in Section 5.2 and Section 5.3. The other part visualizes

the UG-One back-end and is explained below.

5.4.1 Back-end API

To ensure that the front-end can obtain dynamic content from the database,

the API servers and from the drones, there is a need for a central unit that

will retrieve this information. This unit also needs to ensure that the drones

can extract data from the database and make it possible that drones can

retrieve their con�guration. This central unit is the Back-end API which is

created by a Node.js [40] server and the npm module Express [4].

To make a connection with the database, drones and API servers, several

node modules are used. The �rst node module is Axios [5] which is a

promise-based HTTP client npm module for the browser and Node.js.

Through Axios, it is possible to retrieve information from the drones,

manage the applications and request resources by using their UG-One API.

Via the node module docker-hub-api [6], information of Docker Hub images

from a public registry can be retrieved. To retrieve information from a

Docker Image on GitLab, an attempt was �rst made to access it via a

node module. These node modules were node-gitlab [9] and gitlab [7]. Due

to lack of documentation and the absence of features which can retrieve

Docker images, the GitLab API is chosen. With the GitLab API server [3],

the di�erent Docker images as their meta-information can be retrieved. The

Mongoose node module [8] is used to access the MongoDB [23] database in

the cloud to manage the data and modify the database structure.

For the development of a cloud platform, a data store is not to be missed out.

For the cloud infrastructure, only one database was chosen for simplicity,

but multiple types of databases can be used. Before a database can be

deployed, research was done to determine if a SQL or a NoSQL data store

is best suited for the cloud platform [37]. By weighing up the advantages and

disadvantages, a choice was made to choose for a NoSQL database. NoSQL

databases are easier to scale horizontally than SQL databases [31], because

a NoSQL database ensures that if the data that needs to be stored grows,
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Figure 5.1 UG-One system components overview
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the database can easily be expanded. Also, there is no need to create a pre-

de�ned schema and NoSQL databases are more suited to handle big data

then SQL databases [37]. This is important because di�erent applications on

the drones, can store many di�erent types of data in di�erent structures. By

comparing the di�erent NoSQL databases and taking the CAP theorem [29]

into account, the MongoDB database has been chosen. The CAP theorem

states that it is di�cult for a distributed datastore to simultaneously provide

more than two out of the following elements: consistency, availability and

partition tolerance. For the cloud infrastructure of the UG-One platform,

consistency and partition tolerance are the two most important elements.

Therefore, MongoDB was chosen because it o�ers consistency (all nodes see

the same data at the same time) and partition tolerance (the system must

work continuously without the loss of messages or partition failure).

5.4.2 UDP Port Forward Server

When the drone is con�gured and starts up, it is able to send MAVLink

messages through the UDP Protocol to an application on a client's device

such as a ground control station. A ground control station is a typical

software application that runs on a computer on the ground. Through

wireless telemetry, the computer on the ground communicates with the

UAV. A ground control station can display real-time data about the perfor-

mance, position, altitude, etc. of the UAVs. It can also be used to control

an in-�ight UAV, upload new mission commands and set parameters like

altitude [21]. When the drone is ready to �y, one possibility is to send

MAVLink messages directly to the client's device. However this has a

couple of disadvantages. When the drone boots up, an IP address must

be given to the drone to send MAVLink messages to. This IP address

cannot be changed when the drone is active so when the IP address of

the user changes, the connection with the drone will be lost. Also, when

another user wants to take over the drone, this architecture prevents the

user from controlling the drone. Another drawback is when multiple drones

are sending their MAVLink messages to the same endpoint of an applica-

tion or on the back-end. One can choose to try to distinguish the MAVLink

messages from the di�erent drones in that endpoint, but this can lead to

complex routing systems within the endpoint. To solve these problems of

the direct drone-client connection architecture, a protocol between the drone

and the Back-end API has been set up and an UDP Port forward server

was developed.

To make sure that not all drones send their MAVLink messages to the same

port on the back-end, a protocol between the drone and the back-end is

created. At drone startup time, the IP address of the back-end is given,
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which always has the same IP address. However, the drone needs to be

given a speci�c port to which it can send its data. Not all drones can send

their data to the same port because then the back-end would have issues

in knowing which data stems from which drone. The solution used in this

chapter is to tie each drone to one speci�c port on the back-end. When

a drone boots up, one of the �rst actions it performs is to send a request

to the Back-end API to negotiate for a MavlinkPort. When the drone is

registered to the platform, it receives a MavlinkPort. This Mavlinkport

is the port on the UDP Port Forward Server to which the drone needs to

send his MAVLink messages to. This MavlinkPort makes sure that only

that speci�c drone is allowed to send to that speci�c port. This solves the

problem that di�erent drones would send their MAVLink messages to the

same endpoint.

To solve the issues when a client IP address changes or another client wants

to take over the drone, an UDP Port Forward Server is created. As the

name implies, this server will forward UDP messages to another port on a

di�erent IP address. To con�gure the forwarding of the UDP messages, a

REST request must be sent to the UDP Port Forward Server. This REST

request will dynamically open or close the ports and con�gure the forwarding

mechanism. Through this UDP Port Forward Server, multiple drones can

send their MAVLink messages to the server and it forwards them to the

right device of the client. Through the web application, the user can make

sure that these MAVLink messages arrive on the application on the client's

device or on an application on the back-end. The web application sends

a request to the back-end API with the con�guration data. The back-end

API will in turn extract additional data from the database and send it to

the UDP Port Forward Server. Using this con�guration data, the UDP Port

Forward Server can open the MavlinkPort as well as a ClientPort on the

UDP Port Forward Server. The ClientPort is a port that is used to send

data from the client back to the MavlinkPort on the drone's IP Address.

This way, multiple drones can connect to the cloud and users can monitor

all their drones with a ground control station.

When the IP address of the user changes or when another user wants to

monitor or control the drone, this is no problem anymore. By recon�guring

the ports and IP addresses of the UDP Port Forward Server, a user can

reconnect with their drone or another user can take control of a drone.

We investigated how such an UDP Port Forward Server could be properly

incepted. The �rst solution was to use a Router of which the Routing- and

IPTables could be modi�ed [32, 36]. This solution had one drawback, the

router had to be rebooted every time the UDP Port Forward Server would

set up new forwarding connections. The solution that therefore was used
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here is an API Server. On this server, UDP sockets (ports) can dynamically

be opened and closed. Also, incoming requests with con�guration details

can be handled and ports can easily be set up. For simplicity, Express.js

was used to set up an API Server. To forward the UDP Messages, several

possibilities were evaluated. Eventually the node module dgram [22] was

chosen to forward UDP messages. It has extensive documentation and can

be con�gured easily.

5.4.3 Front-end

To ensure that users can easily manage their drones and their applications,

a web application is created as illustrated in Figure 5.2. Through the web

application, di�erent Docker applications can be deployed on the drone.

It is also possible to retrieve information, stop, restart and delete these

applications. Through the web application, Docker images, which can be

stored on Docker Hub or GitLab, can be linked to our solution. Those

linked images can then be used for deployment of the Docker applications

on the drone. To create this web-based front-end, several front-end frame-

works were studied and the choice was made to use the framework React.

React [30] is an UI library that uses a component-based architecture just

like Angular. React is characterized by several features such as one-way-

databinding [13], JSX [10] and the Virtual DOM [15]. Unlike the Angular

framework, React does not have an app-level state. All the states are stored

in all the di�erent components of the web application. When a component

wants to use information from another component, di�erent components

must pass their state to each other so that these components in their turn

will pass their state to other components and so on. For larger projects,

this can lead to errors and di�culties in managing the application. This

problem can be solved by using Redux [14, 25] or Context API [12]. Redux

and Context API [38] add structures and components to manage the app-

level state. They also o�er the possibility to work more conveniently by

using this one central unit to store the state. When creating the web ap-

plication, a combination of Redux and Context API was used [33, 34]. The

Context API methods are used to recreate the structure and components of

Redux. Redux itself is not easy to understand and to use. The combination

of both app-level state managers makes it easier and faster for a developer

to create a web application with an app-level state. But when creating a

bigger more complex web application, Redux is recommended because it

can manage the data better and clearer and o�ers tools to help manage the

app-level sate.

For the deployment of the web server, NGINX was chosen [11]. This

web server has a low memory load, is lightweight and o�ers the basic
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Figure 5.2 The UG-One front-end showing the active containers on a
speci�c drone

functionalities to host a web server.

5.5 Reference implementations and validation

In order to validate and demonstrate some of the capabilities of the UG-One

platform, several component reference implementations have been created.

These have the added bene�t of demonstrating how certain applications

can be implemented by developers that want to start developing for the

UG-One platform. The source code is publicly available through https:

//github.com/IBCNServices/UG-One.

5.5.1 Video streaming

First of, a reference implementation [39] is created that connects to an

on-board drone camera and streams video to both on-board and o�-board

applications. While this implementation can still be optimized signi�cantly,

it was already capable of providing a high-resolution stream to on-board

and low-resolution stream to o�-board applications, reducing bandwidth

and battery usage.

5.5.2 Stress testing

The second application was created to simply run a stress test and use

as much resources as possible. This application was used to validate the

resource management capabilities of the UG-One drones. As expected, these

applications could never exceed their memory limit and could only claim

CPU time in relation to their weight. This means that no critical container

https://github.com/IBCNServices/UG-One
https://github.com/IBCNServices/UG-One
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with a signi�cantly higher CPU share value, or weight, ever experienced any

real slowdowns while a stress test was running.

5.5.3 MAVLink application

Finally, as mentioned before, one of the reference applications was a contai-

ner that reads out telemetry data provided by the autopilot over MAVLink.

5.6 Managing a drone �eet

Users can deploy and manage their applications, request system resources

and more through the REST API on the drone. But this way of working

is not user-friendly and certainly not when multiple applications need to

be managed on multiple drones. To be able to manage those applica-

tions in a fast and easy way, a back-end cloud infrastructure is needed.

The proposed cloud infrastructure that was created o�ers a web application

that enables users to easily deploy applications, keep an overview of their

drone �eet, manage resources on the drones, etc. Because the web interface

shows dynamic content to the users, there is also a need for a back-end API

and a database. This back-end API is the central unit of the cloud infra-

structure which sends and receives requests to and from the web server,

database, drones, API servers, etc. Next to the web server, back-end API

and database, there is one last component present on the cloud, the UDP

Port Forward Server.

5.7 Conclusion

In line with the established cloud service models, a new UAVaaS model

and platform has been created, allowing developers with no previous drone

experience to develop and deploy applications on drones. Container tech-

nologies are used to o�er the convenience of application and drone manage-

ment through a web interface while it also continues to be modular and very

capable as well. Applications can run on any drone that has the required

hardware components and often can run on the back-end as well with little

to no modi�cation.

As resources on the drone on-board computing unit are considered scarce, in

future work we will investigate the use of more secure container technology

alike Kata containers [35] and on using uni-kernels, stripping out function-

ality not required by the applications running on the drone.
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6
Towards a cloud-based drone

application management platform in

emergency situations

This chapter is an extension of the work explained in the previous chapter,

along with a case study that used the insights of Chapter 2 and Chapter 3

to create a full drone-aware cloud platform. A lightweight Kubernetes based

approach, K3S, is used as container orchestrator and an extra application

layer allows developers to choose where to deploy a new containerized appli-

cation: either on the drone or in the cloud. With the creation of this plat-

form, on top of a K3S cluster with integrated drones, Research Challenge

3 (C3) and Hypothesis 3 (RH3) are con�rmed. Moreover, the use case

evaluation in this chapter proves that a drone can receive a high priority

network tra�c slice, which also con�rms Research Challenge 1 (C1) and

Research Challenge 2 (C2) resulting in the creation of the new UAVaaS

platform.

⋆ ⋆ ⋆ ⋆ ⋆

J. Moeyersons, M. De Schutter, F. De Turck and
B. Volckaert

Submitted for review, 2022
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Abstract Drones, also known as Unmanned Aerial Vehicles (UAVs), have

been on the rise for the last decades. As drones are aerial objects, they are

compact in size and shape, enforcing restrictions on the resources available

to the drone. The limited resources on drones imply that careful thought

must be put in place on how applications comply with these limitations.

In the regular software industry, an evolution to cloud usage accompanied

by arising virtualization techniques such as containerization and contai-

ner orchestration has transformed the industry. Inspired by this evolution,

this chapter presents an application management platform for drones that

enables o�oading resource usage to the cloud. Via a proposed communicat-

ion system, applications can be deployed to either a cloud or a drone without

modifying the application con�guration. K3S, a lightweight Kubernetes

container orchestrator, bundles the drones and the cloud in a single cluster

while NFV network slicing concepts are used to maintain the Quality-of-

Service and allows the use of high priority slices.

Evaluating the presented platform through three di�erent demo applications

and an emergency use case scenario demonstrates the scalability, ease-of-

use, low-resource usage, solidness and the network slicing concepts of the

proposed solution. It is further shown that deploying or rearranging appli-

cations via the platform takes a matter of seconds and the overhead by K3S

on the drone is limited to 120 MiB of memory and 4% of a CPU core.

In the end, the created platform succeeds in managing containerized drone

applications with the possibility to o�oad tasks to a cloud, all while giving

an overview of the cluster and its resource usage.

6.1 Introduction

Today, drones and the bene�ts that come with them can no longer be

ignored. Drones can be used for wildlife surveys, �re mapping, forest health

monitoring, and to monitor destructive activities, such as poaching and

illegal logging [1]. In more popular culture, drones appear in many appli-

cations such as aerial photography, express shipping and delivery, thermal

sensing for search and rescue operations, disaster management, and many

more [2][3]. As drones are aerial objects, they are compact in size and

shape, enforcing restrictions on the resources available to the drone. On

top of that, a limited battery life with according long loading times also

fortify the issues that arise when developing for drones. Using the cloud to

o�oad certain resource-intensive tasks can prove bene�cial.

In the industry, with the arrival of cloud computing, a trend is perceived

towards virtualization. What started as simply using extra servers to streng-

then and expand the available resources quickly turned into virtualizing



Towards a cloud-based drone application management platform 139

monolithic applications in a Virtual Machine (VM) on cloud servers.

More recently, a container-based approach with microservices has proven

bene�cial in terms of scalability, platform portability, and easy, fast, and

e�cient application deployment. Container-based deployment systems are

used in many large companies such as Net�ix [4], Spotify [5], Google [6],

and even The New York Times [7]. Also in drone development, a container-

based deployment system has his bene�ts in terms of developer friendly (a

developer only needs to implement the program once for multiple platforms)

and homogeneous development on the cloud and on the drone (the edge).

Container orchestrators are often used to manage the abundance of con-

tainers that can act together on di�erent computational machines, so-called

nodes, resulting in a cluster. Kubernetes [8] is currently the de-facto con-

tainer orchestrator with several features such as orchestrating containers in

both the cloud and on the edge, load balancing, resource allocation taking

into account the available resources on every node, especially drones and

application updates.

Inspired by these software industry trends, this approach can be translated

to drone deployment, and that is where a container-based deployment

system for drones comes into play. This chapter aims to design and

implement a container-based deployment system that allows for container

orchestration and aids in scheduling applications to the cloud or drones

whilst keeping in mind that resources on the drone are rather limited. Kub-

ernetes however, is not developed for low-resource devices. Alternatives

exist, such as K3S [9], K0S [10] and KubeEdge [11], which focus speci�cally

on low-resource devices. After investigating the possibilities, K3S turns out

to have the largest community, along with being the lightweight version

of Kubernetes and having a compatible API with the default Kubernetes.

Therefore, all developers familiar with Kubernetes are able to use K3S

without much e�ort [12]. Because of its lightweight character, K3S makes

an excellent candidate as a container manager for drones besides the cloud.

The architecture is designed with the concept of workers and servers where

a server node is the manager of the cluster, deployed in the cloud, and

worker nodes can then join the cluster. When drones join, it makes the

drones accessible via the cluster, while if cloud servers join the cluster as

worker nodes, they provide extra computational resources for the tasks that

are o�oaded to the cloud. In order to use a drone as a Kubernetes worker

node, the drone hardware must support container technologies. This is

already proven in one of our previous works [13].

In this chapter, a use case where drones are used for handling emergency

situations, is introduced. It therefore requires high priority network tra�c

which can be ful�lled by using Network Function Virtualization (NFV)
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network slicing concepts in 5G or Software-De�ned Networking (SDN)-

networks, allowing the use of e.g. high priority network slicing and the

Quality-of-Service guarantee. The prioritization of the network tra�c for

this use case is already described in our previous research [14], but this

chapter will combine it with the container-orchestration approach explained

in this chapter.

This chapter starts with an overview of the current state-of-the-art in

Section 6.2 and continues with an overview of the developed platform in

Section 6.3. The emergency use case is explained in Section 6.4 followed by

the evaluation of the platform in terms of ease of use, resource overhead,

scalability, resource overhead and network prioritization in Section 6.5.

Finally in Section 6.6, conclusions and avenues for future research are

summarized.

6.2 Related work

Deployment systems for drones are a specialized topic for research. In this

section, relevant research is discussed concerning the usage of containers for

drones and the combination of drones with cloud back-ends.

Mehrooz et al. [15] describe an open-source framework for Internet-of-

Drones (IoD) applications. Either on a drone or a simulated drone,

ROS [16] is used as a meta-operating system. A Kubernetes-powered cloud

provides the necessary cloud services. This setup makes it possible to

have a scalable cloud solution to take care of the resource-intensive tasks.

Communication is done via a REST API. In combination with ROS, these

technologies provide an excellent stack for drone development. Whereas

Mehrooz et al. describe a solid open-source framework for drone develop-

ment, the framework is still composed of the typical development in ROS on

the one side and development in the cloud on Kubernetes on the other side.

In this chapter, a more uni�ed platform is developed where the scalability

of drones and their applications come into play. Another remark is the lack

of objective measurements. Experiments to stipulate the trade-o� between

upload and download bandwidth usage and resource usage on the drone are

out of the scope of the work by Mehrooz et al. These items are therefore

tackled in this chapter.

A drone-as-a-service solution is presented by Hof et al. [17], making a system

where drones are accessible in the cloud. The idea is that drones are often

used for a single task, and via AnDrone, the drones are made accessible in

the cloud. This allows third parties to run their applications on a drone that

is �ying without interfering with its �ight path. Since the third-party users

don't need to obtain hardware for their tasks but can reuse the hardware



Towards a cloud-based drone application management platform 141

that is used for another task, the authors refer to this concept as using a

virtual drone. Multiple third-party users may run their virtual drone with

its application on the hardware of a single physical drone. The authors impl-

emented an AnDrone prototype that resulted in a low overhead of 1.5% for

a single virtual drone and the possibility of running multiple virtual drones

where the performance scales linearly with the workload. Moreover, these

virtual drones can run without compromising the stability and safety of

the drone. The concept proposed by Hof et al. is a source of inspiration

for this chapter. Just like in this chapter, the idea of having a platform to

deploy applications easily is combined with the usage of containers and con-

tainer orchestration to virtualize the applications. In AnDrone, the Linux

virtualization containers via Android Things are used. However, Google

will stop supporting new Android Things projects for non-commercial use

as of January 2022 [18]. The use of other container orchestrators will be

discussed in this chapter, possibly resulting in an overhead that is greater

than 1.5%. On another note, AnDrone uses the cloud to manage the virtual

drones but does not deploy applications to the cloud, an aspect that will be

a fundamental part of the research in this chapter.

Whilst not being related to drones speci�cally but to low-resource edge

devices in general, the paper by Goethals et al. [19] proposes FLEDGE, a

Kubernetes compatible container orchestrator for low-resource edge devices.

In this chapter, di�erent ways to achieve low-resource container orchestrat-

ion are examined. Finally, the proposed FLEDGE system is evaluated and

compared with other container orchestrators such as Kubernetes and K3S.

Although the resource usage is signi�cantly lower, FLEDGE is still highly

experimental, and further improvements can be investigated. Because of

this, FLEDGE will not be used as a container orchestrator in this chapter.

In another related work by Koubâa et al. [20], a cloud-based manage-

ment system is proposed for the Internet-of-Drones. The system called

Dronemap Planner provides communication between the cloud, users and

drones through the Mavlink protocol. In their paper, they describe two

main bene�ts of integrating drones with the cloud. A �rst one is virtualiza-

tion since the cloud virtualizes access to drone resources through abstract

interfaces. A second bene�t is computational o�oading. The drone can

provide data to the cloud via its sensors and then act based on the results

received from the cloud. Koubâa et al. focus mainly on the �rst bene�t, vir-

tualization. The research of this chapter speci�cally tackles the computation

o�oading aspect as well. In that way, this chapter can be seen as an addition

to their research.

Finally, a last cloud-based system architecture for drones was proposed by

Hong et al. [21]. Whereas the paper described above by Koubâa et al.
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only supports one drone, this system provides multi-UAV support. This is

a signi�cant improvement since one can think of many applications where

multiple drones are necessary and might have to cooperate. In this chapter,

the idea of having multiple drones that need to be managed is taken into

account as well. A signi�cant di�erence between the last two papers and this

chapter is the choice for container technology and container orchestrators

to build the cloud-based deployment system for drones.

6.3 Platform overview

The solution in this chapter is twofold. Foremost, a drone communication

system allows applications to be developed that communicate to the drone

�eet from the cloud. Secondly, a platform is built to manage the cluster

with its drones and applications. The platform also takes care of the correct

deployment of the drone communication system.

6.3.1 Drone Communication System

Flight controllers are used to pilot the drone. These are connected to

the hardware of the drone and can control the drone via provided SDK-

software. The included autopilot provides �ight control software to pilot

the drone. The two most used open-source autopilots are ArduPilot [22]

and Pixhawk [23]. In this chapter the �ight controller is the Pixhawk 4 [24],

resulting in Pixhawk being used as an autopilot. To deploy applications to

the drone, a Raspberry Pi 4 [25] is used as an onboard computer, providing

extra resources to the drone, as well as sidestepping any battery dependency

during development.

To communicate with the autopilot, the Mavlink [26] protocol is used. A

Mavlink-router [27], combined with MavSDK [28] servers allow for commun-

ication with a drone. Via this system, an application can reach and control

the drone, be it from the drone itself or from the cloud.

In Figure 6.1, an overview is given of the drone communication system. Via

a serial Telem2 connection, the onboard computer connects to the Pixhawk

autopilot. A containerized Mavlink Router then opens up access to the

�ight controller, which allows multiple applications to control the drone.

To talk with the drone from anywhere, a MavSDK Server is required. A

MavSDK container can start multiple servers that connect to the Mavlink

Router and serve the connection to the drone on a con�gurable port number

at the IP address of the drone. Other applications can connect to this

server using the aforementioned IP address and port number combination.

Crucial is the ability for containerized applications to connect from both
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Figure 6.1 Drone communication system

the cloud and the drone, making it possible to switch applications with the

same con�guration from drone to cloud and otherwise without any necessary

con�guration changes.

6.3.2 Management platform

The drone communication system allows applications to control the drone

from the drone itself or from the cloud. To manage this system, a manage-

ment platform is built, consisting of a backend, a frontend and a database to

store the user con�guration. The platform can be connected to a cluster by

providing the platform with the KUBECONFIG �le created by K3S called

k3s.yaml. After setting up the connection with the cluster, the platform

gives an overview of the nodes, deployments, and pods in the cluster.

In the nodes overview, all computers that joined the cluster are listed, along

with some metadata. Per node, a score is given as well, indicating the health

of the node by taking into account its CPU, memory, and bandwidth usage.

On top of that, the platform allows the end-user to indicate if a node is

a drone or not. This is required in order to allow the cluster to deploy

applications either in the cloud or on the drone because some workloads

must be deployed on a drone or vice versa. Upon indication, the Mavlink

Router and MavSDK containers are instantly and automatically deployed to

the drone, while an interface appears in the platform to manage the amount

of MavSDK servers along with the ports used to serve on.

In a deployments overview, all application deployments are grouped by

namespace. With a dropdown menu, it is possible to pin deployments to a

drone, to the cloud or don't interfere with the deployment and let K3S take
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Figure 6.2 Overview of the management platform

(a) Home page to connect to Kuber-
netes cluster (b) Nodes overview

(c) Pods overview (d) Deployments overview

care of the decision.

Finally, the pods' overview displays all pods, which are typically part of

a deployment. Therefore, by pinning a deployment to a drone or a cloud,

the platform will make sure all pods are deployed to the correct node type.

The pods are again grouped by namespace and show other metadata such

as the node it is deployed to, the pod's status, and to what node a pod is

deployed.

An overview of these web pages are illustrated in Figure 6.2.

6.4 Emergency Use Case

In case of an emergency situation, for example a large building �re, a drone

could be used to gain rapid insights into such a dangerous situation. In [29],

a decision support system is introduced to aid �rst incident responders on

scene based on live drone feeds. A custom-designed drone can �y auto-

nomously to the incident area to capture important video feeds from the

incident and these video feeds are afterwards processed with object detection

and decision support software in order to gain more detailed insights. An
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example of a possible outcome is when a victim is laying unconscious close

to a barrel with possible explosive goods and a �re is nearby. The decision

support system will then trigger an alert so the commander at scene can

give priority to this situation.

When thinking about such a system, multiple questions must be resolved:

(i) How will the video feed be delivered to the cloud, (ii) Can the drone

be piloted securely when �ying Beyond-Visual-Line-of-Sight (BVLOS), (iii)

Can the cloud handle and process the video feeds in (near)-realtime and (iv)

can multiple drones be orchestrated in such a use case. An answer to all

these questions is provided in the following subsection. The �rst subsection

handles the network connection between the drone and the cloud, answering

questions (i) and (ii) while the second subsection answers questions related

to (iii) and (iv) by the use of cloud technologies and the proposed platform

in this chapter.

6.4.1 Network connection between drones and the

cloud

With the advent of 5G-networks, network slicing concepts are introduced.

These network slicing concepts can be implemented with the aid of SDN net-

works, as stated in [14], Section 1. In case of an emergency situation, a high-

priority slice will receive the necessary requirements in terms of bandwidth,

delay and jitter based on the previous set requirements while another slice

for non-priority tra�c will obtain any remaining resources. This concept

allows the high-priority slice to maintain its Quality-of-Service (QoS) con-

straints.

In our previous research [14], Section 4, we introduced a distributed em-

ergency �ow prioritization model, which will calculate and guarantee the

required bandwidth for the emergency slices (or emergency �ows) and will

maximize the best-e�ort �ows over the remaining bandwidth. The proposed

ILP-model (Integer-Linear Programming) to optimize the �ows within the

network together with the online approach to allocate new incoming slices

in between the ILP calculations are used in the context of this chapter.

6.4.2 Cloud-based drone application management

By deploying a k3s cluster to the cloud and deploy k3s on the drones so

they can function as worker nodes. The network connection within the

cloud itself and between the cloud and the connected drones is done via the

OpenFlow protocol, enabling the use of the network slicing concepts within

SDN as stated in Section 6.4.1.
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Kubernetes already supports the use of PriorityClasses for allocating and

scheduling pods inside its cluster. In case of an emergency, the Pod res-

ponsible for analyzing the incoming data (e.g. video feeds and other drone

data) can by prioritized above the other running pods, making it possible

to analyze the data with the necessary amount of resources.

6.5 Evaluation

In this section, the evaluation of the platform and the emergency use case is

conducted. First, in Section 6.5.1, the prototyped drone-cloud platform is

evaluated in terms of ease of use, resource overhead, scalability, deployment

times and node disconnection and secondly, the evaluation of the emergency

use case in terms of Quality-of-Service on network level is explained in

Section 6.5.2

6.5.1 Platform Evaluation

The proposed communication system and platform are created to focus on

a low-resource environment and the possibility to o�oad resource-intensive

tasks to the cloud. To evaluate these goals, several aspects of the platform

are considered and evaluated by using three demo applications, namely a

telemetry, a video streaming and a resource-intensive application, explained

brie�y in Section 6.5.1.1. A drone is simulated by means of a Raspberry

Pi 4, with a Quad core Cortex-A72 (1.5GHz) processor and 4GB of RAM

memory, connected to the Pixhawk 4 autopilot while the cloud is simulated

by means of a single Ubuntu VM with a Dual core i7 (2.3GHz) processor

and 8GB of RAM memory. Scalability is not a research purpose of this

evaluation, hence a single node cluster will su�ce. Monitoring was set up

using Prometheus [30] and Grafana [31] to conduct these evaluations. A

schematic overview of this setup is shown in Figure 6.3.

6.5.1.1 Demo applications

Three demo applications are used to showcase the usability of the platform.

These applications were deliberately chosen to evaluate di�erent aspects of

the proposed platform and its communication system:

Telemetry application

A simple demo application showcases the Mavlink bidirectional com-

munication from drone to cloud and back. The Python application

running in the cloud only needs the IP address of the drone it should

connect to along with the port of the running MavSDK server. After
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Figure 6.3 Evaluation setup: The top side shows the cloud containing,
simulated by an Ubuntu Server VM, and running the monitoring services
Prometheus and Grafana. The bottom side shows the drone simulated by
a Raspberry Pi 4 connected to a PixHawk 4 Autopilot.

connecting to the MavSDK server, the application will continuously

read the battery level, GPS info, if the drone is �ying, and the drone's

position. By building a container image for both the drone and

the cloud's architectures, the application can be easily switched from

drone to cloud and vice versa by using the platform. This is required

due to the di�erent processor architecture: the drone has an arm64

architecture while the cloud has a x86-x64 processor architecture.

Video streaming

The video streaming application consists of two parts. The �rst part

resides on the drone and streams an onboard Logitech C920 camera

using cVLC, the headless version of VLC [32]. The second part resides

in the cloud and captures the stream. It then applies face detection

on the stream to mimic video streaming / object detection drone

applications. This way, the application showcases the possibility

to split applications functionality partly on the drone (camera feed

capture and stream communication) and partly in the cloud (facial

recognition algorithms) and deploy them via the platform, allowing

more resource-intensive tasks to be deployed to the cloud.
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Listing 3 Command to start a K3S cluster

$ curl -sfL https://get.k3s.io | \

sh -s - --write-kubeconfig-mode 644 --token token

Listing 4 Command to add a worker node to the cluster. Use the token
provided or generated in Listing 3.

$ curl -sfL https://get.k3s.io | \

K3S_URL=https://192.168.123.235:6443 K3S_TOKEN=token sh -

Resource-intensive application

The third and last demo application is designed to be heavy in terms

of CPU usage. It is based on a Mandelbrot application created to

enable high CPU loads on a computer. The application consists of an

API to create workers used for Mandelbrot calculations and to let the

workers start calculating. This application was already Dockerized.

Upon creation of the workers, containers were created on the same

Docker engine to start the calculations there. In this chapter, this ap-

plication was adapted to be used with Kubernetes, allowing to deploy

the application to a K3S cluster. Upon the creation of workers, pods

are now wrapped around the resulting containers to be deployed to

either drones or the cloud, depending on the con�guration.

6.5.1.2 Ease of use

In terms of cluster setup, K3S is signi�cantly easier to set up than a full-

�edged Kubernetes distribution as only a single command is necessary to

get a K3S cluster up and running, as shown in Listing 3. Adding new

worker nodes to the cluster, be it drones or additional compute resources

for the cloud, is remarkably simple as well. A single command will trigger

the installation script on the worker node, connecting it to the cluster as

provided in Listing 4.

Regarding the platform setup, all components (frontend, backend, database)

were containerized and combined by means of Docker Compose [33]. A

single command spins up all the platform's components.

Ease of use is an important design principle for the user experience of this

platform. The platform gives a clear overview of the existing cloud and

drone workers, pods, and deployments. Secondarily, it is straightforward

to assign a newly added node as a drone, and con�guring the Mavlink

settings to be used by new applications. Finally, the platform eases pinning

applications to the drone or the cloud and makes it possible to redeploy



Towards a cloud-based drone application management platform 149

Figure 6.4 CPU usage on Raspberry Pi with k3s cluster and monitoring
(Prometheus and Grafana) pods running

Figure 6.5 Memory usage on Raspberry Pi with k3s cluster and monitoring
(Prometheus and Grafana) pods running

them easily.

6.5.1.3 Resource overhead

Having a system that orchestrates all application containers has its bene�ts

but comes at a cost too, since the system imposes an overhead to work

correctly. The developed platform to control the cluster is created in such

a way that it is not part of the cluster and it can run on any other machine

be it in the cloud or a local setup (but not on a drone). The k3s cluster

does however consume resources which are discussed below along with the

measurements on the resource usage of the demo applications.

Idle resource overhead: When running the k3s cluster in an idle state

with Prometheus and Grafana deployed using the Ubuntu VM serving as

the cloud, and the Raspberry Pi as the drone, the CPU usage on the drone

is shown in Figure 6.4. An average of 7% of the CPU of a single core

is used, keeping in mind that the Raspberry Pi has 4 cores, which can
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Figure 6.6 Bandwidth usage on Raspberry Pi with k3s cluster and monit-
oring (Prometheus and Grafana) pods running

total to a maximum of 400%. In terms of memory, Figure 6.5 shows that

approximately 15% of the 4 GBs of RAM is occupied, resulting in a memory

usage of 600 MiB. Considering the bandwidth usage of the drone shown in

Figure 6.6, a steady 12 kB/s for both the transmission and reception can

be observed. Of course, these results also include resources occupied by the

operating system and other applications that might be running by default,

such as serving the SSH server and having Docker enabled. More advanced

metrics are used to better understand the resource usage of the cluster

itself. In Figure 6.7, one can observe that out of the 7% CPU usage earlier,

3% can be assigned to the monitoring through Prometheus and Grafana.

Concerning the memory usage, Figure 6.8 clari�es that approximately 100

MiB out of the 600 MiB was used by Prometheus and Grafana related pods.

The kube-system pods that foresee cluster management were responsible

for only 1,5 MiB of memory usage. Further investigating the resource usage

reveals that the remaining 4% CPU usage of one core can be assigned to the

k3s-agent service that needs to be running on the drone. In terms of memory

usage, the k3s-agent takes up approximately only 120 MiB. Furthermore,

another 100 MiB of memory could be assigned to Docker, which is not

strictly necessary to have the cluster running as other, more lightweight,

container runtimes can be used.

Mavlink-router and MavSDK resource usage: In this evaluation,

the Raspberry Pi was indicated as a drone node which triggers the de-

ployment of the Mavlink-router and MavSDK applications wherefore the

results can be seen in Figure 6.9, 6.10 and 6.11. The Mavlink-router appli-

cation has a negligible amount of CPU usage and only 1 MiB of memory

in use. Regarding the pod bandwidth usage, an initial speed of 10 kB/s

can be perceived which settles down to approximately 3 kB/s for both the

reception and transmission of data from that pod. When looking at the
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Figure 6.7 CPU usage of the monitoring pods (Prometheus and Grafana)
on the Raspberry Pi

Figure 6.8 Memory usage of the monitoring pods (Prometheus and
Grafana) on the Raspberry Pi
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Figure 6.9 CPU usage on Raspberry Pi by the Mavlink-router and Mavsdk
containers

Figure 6.10 Memory usage on Raspberry Pi by the Mavlink-router and
Mavsdk containers

usage of MavSDK, very similar results are perceived: a CPU usage of 0,3%

of a core with 5 MiB of memory and the same network usage starting o� at

10 kiB/s, which then drops down to 3 approximately kiB/s.

Telemetry resource usage: After the deployment of the telemetry ap-

plication, only 0.4% of a core of CPU is used, combined with 19 MiB of

memory. When looking at the network usage, a sole 15 kB/s is transmitted

and received.

Video streaming and processing resource usage: As explained in

Section 6.5.1.1, the streaming application consists of two parts. One part

is deployed to the drone and serves as a streamer, the other part of the

application is deployed to the cloud and processes the received stream.

With the VLCstreamer running on the drone, 1% of a core of CPU and

10 MiB of memory are used. The network speed levels at 12 kB/s reception

speed, but a speed of 150 kB/s for transmission is perceived. Of course, this

corresponds to the data that is streamed for the video. The streamprocessor

on the drone has a signi�cantly higher CPU usage at 75% of a core, keeping

in mind that the whole VM only has two cores available. Likewise, it

received data at a speed of 150 kB/s and only transmitted 0,75 kB/s.

High-resource benchmark test resource usage: The Mandelbrot
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Figure 6.11 Bandwidth usage on Raspberry Pi by the Mavlink-router and
Mavsdk containers

application is used to showcase the possibility of splitting application loads

between the drone and the cloud, and to evaluate how the system responds

to high loads. When deploying the application, the main application is

deployed to the cloud �rst. This application could then start worker nodes

when demanded via an API call. Con�guration can be set to only deploy

workers to the drone, only workers to the cloud, or to let the system decide.

In both cases where the workers are speci�cally deployed to the drone or

the cloud, all the containers keep running without crashing. On top of that,

the containers tried to claim as many resources as possible to �nish the task

as quickly as possible. When the containers increased their resource usage,

this did not get out of control since the other pods are still using some parts

of the total resources for their applications. Moreover, both the drone and

the cloud remained responsive.

6.5.1.4 Scalability

Kubernetes, and therefore K3S, are built to be highly scalable. The

limitations towards scalability in terms of how many drones can join the

cluster and how many applications are allowed are therefore dictated by

K3S.

Kubernetes provides the following guidelines regarding scalability [34]:

� No more than 100 pods per node
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� No more than 5000 nodes

� No more than 150000 total pods

� No more than 300000 total containers

The above guidelines are unlikely to be reached in a cluster with drones,

even for a whole �eet of drones. If, in extraordinary circumstances, the

cluster would come close to these guidelines, the tasks can be split up into

multiple clusters.

6.5.1.5 Resource overload

To evaluate how the system responds when deployed applications are too

heavy for the given drone, multiple factors need to be taken into account

as it highly depends on the situation. Given a new application in a single

pod that is not pinned to the cloud or a drone, the system chooses where to

deploy the application based on the available resources. It is possible to �ll in

the required resources for the application in a deployment �le, as the system

will take these into account. However, once the K3S container orchestrator

has deployed the container, the container will typically keep running on that

machine, even if the resource usage increases. If the resource needs become

unsatis�able, the performance of the application will go down since it does

not have enough resources available to keep up with the demand.

If the application needs to be switched, this can happen via the platform,

and the container orchestrator will start a new container. By default, the old

container is not removed until the new container is running. This behavior

can be tweaked in the deployment �le, if necessary.

When dealing with applications that come with multiple replicas of the same

pods, these replicas might appear on di�erent nodes if the desired nodes are

not speci�ed. This way, the system will try to schedule new pods smartly.

In conclusion, it is important to notice that deployed applications will

typically not crash if their resource usage increases but require manual

intervention to move them from drone to cloud or vice versa.

6.5.1.6 Platform deployment times

To evaluate deployment times for applications to the cluster via the plat-

form, tests are conducted for which the results are shown in Table 6.1.

Each test is executed three times. For every test, all container images are

pre-pulled, so the size of the images does not a�ect the test.

A �rst test, referred to as tele-cloud in the table, is conducted by deploying

the telemetry application to the cloud. On average, this took 4 seconds, with

a maximum of 7 seconds before the container starts running. Deploying the
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Table 6.1: Deployment times for the platform

tele-cloud tele-drone deploy MCS switch drone-cloud
min 00:00:02 00:00:03 00:00:02 00:00:02
avg 00:00:04 00:00:04 00:00:03 00:00:02
max 00:00:07 00:00:06 00:00:05 00:00:03

telemetry application to the drone, referred to as tele-drone in the table,

similarly takes 4 seconds on average and a maximum of 6 seconds. As a

third test, the Raspberry Pi is indicated as a drone on the platform, which

triggers the Mavlink-router and MavSDK applications to be deployed to

the drone. The deployment of the Mavlink communication system, referred

to as deploy MCS (Mavlink Communication System) in the table, takes

3 seconds on average and a maximum of 5 seconds. Finally, switching

applications from drone to cloud or from cloud to drone is evaluated. Both

cases have the same test results so they are grouped in the same column

(switch drone-cloud). Moving a deployment from the drone to the cloud

or vice versa takes 2 seconds on average and 3 seconds maximum for the

container to be running.

6.5.1.7 Node disconnection

During this research, a stable internet connection is assumed for the drone.

However, when this is not guaranteed, all applications on the drone will keep

running but without functionalities that require connectivity. Reconnecting

the drone results in the node automatically rejoining the cluster and resum-

ing its activities. It does however require applications to be developed to

be resistant against network failures. The cluster's behavior is tested by

manually disconnecting the Raspberry Pi 4 from the network.

In case a drone chrased or is unable to reconnect at all, an extra solution

must be added to the platform in order to tag these drones so that all

the running applications on these drones can be transferred automatically

to another drone or the the cloud. This can be done with e.g. using

deployments within Kubernetes.

6.5.2 Emergency use case evaluation

In this section, the emergency use case setup is evaluated in terms of

Quality-of-Service on network level, allowing to use the emergency network

slicing concepts. A schematic overview of this setup is illustrated in Figure

6.12. For this evaluation, 3 drones are emulated using 3 Raspberry Pi's 4
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Figure 6.12 Setup for the evaluation of the created platform. The left
side shows the cloud which is simulated by one Ubuntu Server VM and the
right side shows the drone simulated by a Raspberry Pi 4 connected to a
PixHawk 4 Autopilot.

connected over a WiFi connection to the cloud which are 2 laptops (nodes)

running Ubuntu Server 20.04 LTS as operating system. The WiFi con-

nection is established using a Zodiac WX switch (sw3 in the Figure 6.12),

which is an SDN enabled switch, allowing us to simulate network slices. The

Zodiac WX is connected with two Zodiac FX SDN switches (sw1 and sw2)

and each switch is connected to a node (laptop) of our k3s cluster. The

total available bandwidth is 100 MBit/s and the OpenFlow management

of the SDN switches is done through the control plane of the k3s cluster,

containing the ILP algorithm together with the online approach.

6.5.2.1 Evaluation at network level

Each drone in the evaluation setup runs the IPerf command as a client,

where two drones connect to a Pod on node 1 and the third drone connects to

a Pod on node 2. Three tra�c classes are de�ned and shown in Table 6.2, the

results of the experiment are illustrated in Figure 6.13 and further explained.

From time 1 until 24, the three drones requested the normal priority tra�c

class with 10 MBit/s and they were allocated accordingly by the OpenFlow

management. At time 25, an emergency �ow, going from drone 1 to a

Pod on node 1, is requested and allocated by the online approach with a

bandwidth of 90 MBit/s. The online evaluation also downgrades the other
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Table 6.2: Tra�c classes (all in MBit/s)

Id Name Minimum Rate Maximum Rate

1 High Priority 0 90

2 Normal Priority 0 10

3 Low Priority 0 5

Figure 6.13 Network speed between the drones, running the IPerf client,
and the nodes, running the IPerf server. Between time 1 and 24, the three
drones are using tra�c class 2 and as from time 25, the communication from
drone 1 to node 1 has become emergency tra�c with a requested speed of
90 MBit/s. This results in the reduction of the tra�c class to 5 MBit/s of
the two remaining best e�ort �ows.

�ows to tra�c class 3 so the total bandwidth of 100 MBit/s is not exceeded.

At time 40, the ILP had completed a new calculation cycle and came with

the same outcome as the online approach.

It is clear that the emergency �ow received all the requested bandwidth and

the other best-e�ort �ows, drone 2 to node 2 and drone 3 to node 1, were

downgraded to a lower priority in order to not exceeded to total bandwidth.

6.6 Conclusion and Future Work

This chapter aims to design and implement a container-based deployment

system that allows for container orchestration and aids in scheduling appli-

cations to the cloud or drones whilst keeping in mind that resources on the

drone are rather limited. This in combination with NFV network slicing

concepts resulted in a emergency use case whereas a drone can have the

highest priority in the network while the other network �ows are allocated
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on the remaining available bandwidth.

After research is conducted about the current state-of-the-art, a system is

developed to allow applications to communicate with a drone from the cloud

and the drone itself with no extra con�guration. This system is incorporated

in a cloud platform to manage drones and their applications. Finally, three

demo applications are developed to evaluate the platform. As discussed

during the evaluation, this system and platform proved promising, showing

that it is possible to use drones and a cloud both as part of a single cluster.

Moreover, this system provides tremendous scaling possibilities, along with

the potential to manage a �eet of drones with a resource usage overhead

of about 4 % CPU and 12O MiB RAM that is acceptable for a drone.

In creating this system, a step is taken in the right direction to facilitate

even higher resource-demanding applications for drones to be made as they

can now be more conveniently managed. On top of that, the possibility

to manage drone �eets could translate into industrial applications such as

warehouse operations, cooperating drones, or package deliveries.

This chapter shows an implementation of using a container orchestrator

to manage drones with resource o�oading capabilities to the cloud. How-

ever, some aspects could use further research in this �eld that relate to

this chapter. A logical continuation is further development of the platform.

As it is a Proof-of-Concept, the platform can be made more stable, and

production-ready by adding authorization and authentication so it can sup-

port multiple clusters simultaneously. The platform can also be evaluated

using di�erent hardware than the Raspberry Pi 4 that was used. The con-

tainer runtime used in this chapter is containerd [35], as it is the default in

K3S. Other container runtimes such as Kata [36], CRI-O [37], crun [38] or

gvisor [39] could be subject of future research as they might provide even

less resource overhead. Further, KubeEdge [11], or other container orche-

strators can be evaluated as to how suitable they are for drones. Finally,

bringing edge computing to drones for deep learning or AI tasks or AI based

UAV-network are promising venues for future studies [40, 41].
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7
Conclusions and Future Research

Directions

Drone technology choices are increasing every year, and even though it is still

a relatively new technology, the research is already spreading its wings. [1]

Today, drones are used in industry for di�erent purposes such as inspections

and surveillance, but also used in private (recreational) space for e.g. aerial

photography and in the public sector as support for emergency services.

Therefore, many drone applications already exist but the management of

these applications together with the management of the network is still a

fundamental shortcoming. This dissertation investigates several challenges

concerning the improvement of managing containerized drone applications

together with ameliorating the network management based on SDN tech-

nologies, resulting in the creation of a new UAVaaS platform, handling the

tasks of container and network orchestrator. Four hypotheses shape the

direction and outcome of the research conducted in this dissertation, as

listed below:

RH1: Managing heterogeneous SDN networks while maintaining QoS con-

straints should be feasible with a negligible overhead on the perfor-

mance of the network.

RH2: Ensure high-priority network tra�c and optimize the remaining net-

work tra�c over the remaining resources.
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RH3: Design and develop a UAV-aware cloud solution with minimal re-

source impact on the drones. This solution must be able to migrate

containerised application components from the drone to the cloud and

vice versa from an easy-to-use web platform.

RH4: Design and development an unobtrusive monitoring solution that

has a negligble impact on the monitored services.

This dissertation introduces a number of solutions that contribute to addres-

sing the formulated questions and hypotheses in various application domains

including cloud computing, network management, smart cities, and drone

development. The sections below summarize these contributions.

7.1 Ensure high-priority network tra�c in

managed heterogeneous SDN networks

In line with the �rst two research questions and hypotheses, the �rst step

towards the new UAVaaS platform was to design and implement a network

management system. Based on the recent mobile trends in terms of 5G,

SDN was chosen where a controller or controllers deployed in the cloud can

handle and manage the whole network. With SDN, it is possible to create

network �ows and apply QoS constraints in terms of bandwidth, delay and

jitter. Managing homogeneous SDN networks with multiple SDN controllers

is already possible, but in Chapter 2, this dissertation proposed a plugin-

based microservice framework called Domino to manage heterogeneous SDN

networks with multiple SDN controllers. The architecture allows developers

to design and implement new algorithms to manage the whole network

without taking into account which type of SDN controllers are used, because

this is handled by Domino itself. When new SDN controllers are released,

these can be also be added to Domino as a plugin. A prototyped framework

is evaluated in terms of performance, interoperability and modi�ability and

shows that:

1. The frequently used commands are executed with an average response

time of 0.26 seconds.

2. The size of the core components of the framework is small with an

average size of 105 MB per image.

3. The framework can handle at least 73 plugins simultaneously without

any performance downgrade on a server with 4GB of RAM.

4. The interoperability requirements are all met by the framework with

most exchanges having a 100% successful exchange ratio.
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5. The modi�ability requirements regarding the plugins and the deploy-

ment options are met by the framework.

The next step, explained in Chapter 3, was to ensure bandwidth allocation

for emergency �ows while other best-e�ort �ows are allocated over the

remaining bandwidth. An o�ine approach is designed based on a LP and an

ILP model, which take into account the current state of the network toge-

ther with the available network tra�c classes, and calculate the bandwidth

allocation for the emergency and best-e�ort �ows. These two models are

�rst evaluated by means of a simulation where 500 best-e�ort �ows and 50

emergency �ows have to be allocated. The LP model works faster than the

ILP model (500ms and 17.000ms respectively), but the technologies used

in the LP model are not compatible with our available hardware. There-

fore, the ILP model is used, but new incoming �ows have to be handled

in between calculations of the ILP model. An online approach based on

a greedy heuristic solves this issue and prototype evaluations show that

the online problem e�ciently handles new incoming �ows while guarantee-

ing the bandwidth for all the emergency �ows and providing a sub-optimal

temporary solution for the best-e�ort �ows. In case of very large networks,

or when a SDN controller has a lack of memory, the management can be

distributed over multiple heterogeneous SDN controllers.

7.2 Design and development of a UAVaaS

platform

Research Hypothesis 3 (RH3) states that a UAV-aware cloud solution can

be developed with a minimal resource impact on the drones. In Chapter 5,

the UG-One platform is proposed, allowing to deploy containerized applica-

tions on a drone or in the cloud allowing developers with no drone experience

to design, develop and deploy applications on a drone. With UG-one, the

required containers to control the drone with software is automatically

deployed when a drone is connected to the platform. This allows appli-

cations on the drone itself, in the cloud or even ground control stations

to control a speci�c drone. A video streaming, stress testing and drone

control application are developed and deployed on the prototyped platform

to validate and demonstrate its capabilities.

One of shortcomings of the UG-one platform was the container orchestrator

itself, adding extra features such as allowing to automatically redeploy

running containers in case of fatal errors. Therefore, in Chapter 6, K3S

is used as container orchestrator for the UAVaaS platform. K3S is based

on the industry de-facto standard Kubernetes, but optimized for use on
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edge devices, such as drones. An extra management layer, consisting of a

backend, a frontend and a database to store user con�guration, is developed

and deployed in the same K3S cluster for ease of management. Every node

in the cluster, either in the cloud or as a drone, is visualised through the

management application, together with the resource usage of each node.

Evaluation of the new platform shows that it is possible to use drones and

in combination with a cloud backend as part of a single cluster. Moreover,

the system provides good scaling possibilities, along with the potential to

manage a �eet of drones with a resource usage overhead of about 4 % CPU

and 12O MiB RAM, which is acceptable for a drone. Also, managerial

control over the network resources within the cluster is possible with the

framework. The outcome of Chapter 2, Chapter 3 and Appendix A are used

to show that the SDN network slicing concepts can be used for con�guring

emergency network slices. On top of that, the possibility to manage drone

�eets could translate into industrial applications such as warehouse opera-

tions, cooperating drones, or package deliveries.

7.3 Monitoring of complex microservice o�e-

rings in an unobtrusive manner

The last Research Hypothesis 4 (RH4) states that an unobtrusive monitor-

ing solution can be developed to observe containerized services in the cloud.

Chapter 4 describes such a system based on the sidecar container pattern.

When applications are deployed to the cloud, these applications can have a

complex microservice architecture relying on third-party services, making

it di�cult to keep the system error free. Typical problems are for example

undocumented changes or undocumented architectural speci�cations of

third-party services and bugs in the applications itself. Service monitor-

ing at application and network level can quickly detect such errors and

anomalies, resulting in faster and more reliable �xes for these problems. The

proposed agent-based system consists of multiple agents, one per service

container that needs to be observed, and an agent management system to

orchestrate the agents. The main goal of the agents is to provide insights in

the behavior of each service in a non-intrusive way and evaluations of the

prototyped system shows that this is done with a minimal overhead of 0.02

% in terms of CPU usage, proving that the agents have a negligible impact

on the monitored system. The agent management system collects all the

monitored data which can be used to visualize the results afterwards.
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7.4 Future Perspectives

This dissertation presented several contributions in the domain of cloud

computing and drone application development. Of course, it would not

be feasible to exhaust the subject matter within the scope of the research

conducted, and therefore some challenges remain open, and promising

venues for future studies have emerged as a result of the work documented

herein. Below, these future research directions are brie�y discussed.

Secure container runtimes

With the creation of the UAVaaS platform, Docker containers are commonly

used to deploy and manage the containers in the cloud or on the drone

through the Docker CLI or via Kubernetes. Containers are the way to go

because they use the kernel of the host, resulting in a small footprint. How-

ever, one single vulnerability could jeopardize the isolation of the containers,

meaning that one could escape from the container into to host and possibly

into other containers. In case the UAVaaS platform will be used by many

users (e.g. as a multi tenancy environment), the container approach is less

desirable and a more secure solution needs to be investigated [2].

Secure container runtimes can solve this problem as stated by the Open

Container Interface (OCI) and come with two implementations [3]. The

sandboxed secure containers provide increased isolation between the con-

tainerized process and the host, as they do not share a kernel. The process

runs on a unikernel or kernel proxy layer, which interacts with the host

kernel, thus reducing the attack surface. Examples include gVisor1 and

nabla-containers2. The other implementation is through a virtualized run-

time, providing increased host isolation by running the containerized process

in a (lightweight) virtual machine (through a VM interface) rather than a

host kernel. This can make the process slower compared to a native runtime.

Examples include kata-containers3 and the now deprecated clearcontainers4

and runV5 which are both migrated to kata-containers.

These secure containers can be easily used afterwards in a cloud orchestrator

platform, such as Kubernetes or K3S, because they all rely on the standard

Container Runtime Interface (CRI).

1https://gvisor.dev
2https://nabla-containers.github.io
3https://katacontainers.io
4https://github.com/clearcontainers
5https://github.com/hyperhq/runv

https://gvisor.dev
https://nabla-containers.github.io
https://katacontainers.io
https://github.com/clearcontainers
https://github.com/hyperhq/runv
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Drone wireless mesh networking

When talking about drones and autonomous �ights, the assumption is made

that a network connection is available. However, in some regions or places,

there are areas where the cellular network is not available or cannot be used.

This absence of communication can cause fatal implications [4]. A Wireless

Mesh Network (WMN) can solve this problem as the communication can

be done over radio nodes (in this case the drones) which are organized in a

mesh topology. The main bene�ts of using a wireless mesh network are:

� All drones are able to communicate with each other without external

network dependencies.

� Self-organization and con�guration of the network.

� Fault tolerance: the mesh network will continue operating when a

node fails.

� Use one or more nodes that are in range of public network connectivity

as a gateway for meshed nodes.

However, there are also some downsides of using a mesh network for drones

because in a traditional WMN mobility of the nodes is expected to be rather

infrequent or otherwise, the network will spend most of its time updating

routes. When using drones, mobility will change a lot and have a huge

impact on the system. Therefore, a solution must be found in order to

successfully integrate mesh networking in a drone context where a trade-o�

between �nding the optimal path with LP and ILP solutions or with online

optimizers which could work faster but are less optimal.

Enabling heavy computing tasks on edge devices

Drones are often used for capturing live video feeds which are analysed

afterwards by e.g. a deep learning model or AI. This requires high compu-

tational and memory requirements for both training and inference phases.

Training a deep learning model is space and computationally expensive due

to millions of parameters that need to be iteratively re�ned over multiple

time periods. Inference is computationally expensive due to potentially

high dimensionality of the input data (e.g., a high-resolution image), and

millions of computations that need to be performed on the input data. To

meet the computational requirements of deep learning, a common approach

is to leverage cloud computing. To use these cloud resources, the data must

be moved from the drone at the network edge to a centralized location

in the cloud, introducing several challenges such as latency, scalability
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and privacy [5]. To overcome these challenges edge computing can be

introduced by providing computational abilities close to the drones or on

the drones itself. A possible solution is to equip drones with Nvidia Jetson

hardware6, bringing supercomputer performance to the edge in a compact

System-On-Module (SOM) with energy e�ciency in mind, optimal for

installation on drones [6]. Drone movements can also require the dynamic

migration or handover to/between edge cloud components on di�erent edge

infrastructures. Learning-based algorithms can be designed to facilitate

these dynamic migration or handovers.
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Abstract Emergency services must be able to transfer data with high

priority over di�erent networks. With 5G, slicing concepts at mobile net-

work connections are introduced, allowing operators to divide portions

of their network for speci�c use cases. In addition, Software-De�ned

Networking (SDN) principles allow to assign di�erent Quality-of-Service

(QoS) levels to di�erent network slices.

This paper proposes an SDN-based solution, executable both o�ine and

online, that guarantees the required bandwidth for the emergency �ows

and maximizes the best-e�ort �ows over the remaining bandwidth based on

their priority. The o�ine model allows to optimize the problem for a batch

of �ow requests, but is computationally expensive, especially the variant

where �ows can be split up over parallel paths. For practical, dynamic

situations, an online approach is proposed that periodically recalculates the

optimal solution for all requested �ows, while using shortest path routing
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and a greedy heuristic for bandwidth allocation for the intermediate �ows.

Afterwards, the o�ine approaches are evaluated through simulations while

the online approach is validated through physical experiments with SDN

switches, both in a scenario with 500 best-e�ort and 50 emergency �ows.

The results show that the o�ine algorithm is able to guarantee the resource

allocation for the emergency �ows while optimizing the best-e�ort �ows with

a sub-second execution time. As a proof-of-concept, a physical setup with

Zodiac switches e�ectively validates the feasibility of the online approach in

a realistic setup.

A.1 Introduction

With the expected release of 5G by the end of 2019 [1], slicing concepts at

network level will be introduced [2, 3], to allow network operators to provide

portions of their networks for speci�c use cases such as IoT, streaming videos

and smart energy grids.

Network slicing is a virtual networking mechanism that is part of the same

family as SDN and Network Function Virtualization (NFV), two closely

related network virtualization technologies that are moving networks

towards automation through software. SDN is an important technology

to implement dynamic and �exible network management by separating

the data plane from the control plane in networks [4]. Every SDN switch

(further called switch) within an SDN network acts like a simple packet

forwarding device that is controlled by a logically centralized software

program, the SDN controller. NFV on the other hand separates network

functions from the underlying proprietary hardware appliances [5]. The

network functions running on dedicated hardware are thus transferred to

software-based applications running in datacenters, network nodes, end-

user premises etc. Complementary to SDN and NFV, network slicing

allows the creation of multiple virtual networks atop of a shared physical

infrastructure whereby each virtual network has its own speci�c features

depending on the use case. An example of di�erent possible network slices

together is illustrated in Figure A.1.

The network slicing concept introduces the possibility to enable new features

such as more �ne-grained QoS. In this paper we therefore propose an o�ine

and online SDN-based solution to guarantee and optimize �ows based on

their priority by creating bandwidth meters who are responsible for limiting

the maximum allowed bandwidth per �ow.

Di�erent emergency events are taken as use cases. During such an event,

it is required to prioritize the network tra�c that is coming from and

going to the emergency services in the presence of large civilian crowds
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Figure A.1 5G network slices running on a common underlying multi-
vendor and multi-access network. Each slice is independently managed and
addresses a particular use case [3].

in order to coordinate the relief and response. Every emergency event is

di�erent, and needs di�erent types of network tra�c as some situations

require high bandwidth for streaming high resolution video feeds and other

situations only require a low amount of bandwidth to enable communication

or streaming low resolution video feeds. The bandwidth for the emergency

tra�c should be guaranteed while the network tra�c coming from (non-

prior) users should be optimized over the remaining available bandwidth.

The proposed solution in this paper guarantees the bandwidth of emer-

gency network tra�c by generating SDN high-priority �ows while other non-

priority tra�c will receive best-e�ort resources based on their priority within

the network. To evaluate the solution, a topology is simulated whereby

the routing of di�erent best-e�ort �ows and emergency �ows is optimized.

Afterwards, a tree topology is built with Zodiac switches [6] and used for

the practical evaluation of the algorithm on a smaller and real topology,

controlled by the Ryu SDN controller software [7].

This paper contributes to three main topics: (i) design of models for guar-

anteeing bandwidth for emergency �ows while optimizing best-e�ort �ows

over the remaining network resources, (ii) design of a joint online-o�ine

approach to practically implement the model and (iii) the validation of the

model through both simulation and practical evaluation. The remainder of

this paper is organized as follows: Section A.2 presents related work. In

Section A.3, the problem description is given followed by the problem for-

mulation for both splittable and unsplittable �ows. Section A.4 presents

the evaluation methods and the corresponding results. Finally, Section A.5
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discusses conclusions and future avenues of research.

A.2 Related Work

There has been a great deal of research on providing QoS in SDN over

the past few years [8]. The authors in [9, 10] presented algorithms to

provide QoS, but without considering bandwidth guarantees. In [9] authors

proposed a QoS solution based on SDN technology. The authors �rst

de�ned a cost function which assigns a positive value to each link based

on the length, bandwidth and the weight of the link. Then, they utilized

the Dijkstra algorithm [11] to �nd multiple paths for each source and

destination pair in the network. When a �ow arrives, the path with the

lowest congestion is selected as the routing path for the �ow. Zhang et

al. [10] proposed a QoS framework based on the OpenFlow protocol which

dynamically calculates a path for each �ow. If the �ow is a QoS-required

�ow, an algorithm based on Dijkstra is used to �nd a path with the

minimum delay and cost values.

An approach to allocate bandwidth and satisfy QoS requirements is

presented in [12]. The authors categorized �ows into QoS and best

e�ort �ows and de�ned a metric, used in path selection, that considers

the requested rates. Shaohua et al. [13] categorized cloud applications

into three levels based on the sensitivity to delay and bandwidth. The

�ow-based adaptive routing algorithm is presented in [14] which utilizes

Dijkstra and K-shortest path [8] algorithms with the aim of maximizing

the utilization of network resources. The authors evaluated the proposed

algorithm through simulation. Pinto et al. [15] de�ned four service classes

including best e�ort and bandwidth guaranteed classes. Each new �ow

is �rst assigned to the probing class and its behavior is monitored. After

some time, if the network can support its bandwidth along the path it

will be reassigned to the bandwidth guaranteed class or otherwise the best

e�ort class. The authors in [16] designed a method to provide bandwidth

guarantees by using OpenFlow meters and queues. The authors categorized

�ows into QoS �ows which have minimum guaranteed bandwidth and best

e�ort �ows with no requirements. For each QoS �ow, �rst, an admission

control process checks whether there is a path that can accommodate the

�ow rate. After that, by using a meter at the ingress switch, the input

rate of the �ow is monitored and if it exceeds the de�ned rate, the packets

will be marked. Using three di�erent queues at the egress port of each

switch along the path for marked and unmarked QoS and best e�ort �ows,

tra�c prioritization is made possible. MPLS tunnels are used in [17] to

provide end-to-end bandwidth guarantees. Similar to [16] the authors used
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OpenFlow meters at the ingress switches. For each �ow the input rate

of the �ow is monitored and based on that, a priority value is set in the

header of each packet. Then, an MPLS tunnel is used to route the packets

toward the egress switch and the priority of each packet speci�es its output

queue. Lu et al. [18] utilized preplanned network slices to both satisfy

QoS requirements and maximize the overall throughput of the network.

The authors used the tra�c history to create network slices which have

�xed con�gurations during the network lifetime. When a �ow arrives, it

is assigned to a slice by using the VLAN ID of the slice. The MaxStream

framework is proposed in [19] to maximize the number of streaming sessions

and bandwidth provisioning. The authors formulated two ILP problems.

The �rst problem maximizes the number of accepted �ows by considering

the requested rate of the �ows. Then, the set of accepted �ows is used in

the second problem to maximize the total rate of the accepted �ows. Since

the authors focused on multimedia streams, they ignored best e�ort �ows

with no QoS requirements.

The most important studies are summarized in Table A.1. In this paper, we

utilize both online and o�ine approaches to provide bandwidth guarantees

for emergency �ows and maximize the total rate of best e�ort �ows. The

o�ine approach optimizes all existing emergency and best-e�ort �ows while

the online approach routes and allocates new incoming �ows sub-optimally

in between o�ine batches. The o�ine approach is de�ned as two models, a

LP and an ILP model and the online approach is based on Dijkstra to route

new incoming �ows along with a greedy heuristic for bandwidth allocation.

We also use OpenFlow meters to implement our method and evaluate it

using Zodiac switches [20]. Only drop meter policies are used in this paper

because the current OpenFlow versions [21] do not support other policies

such as 2-color-marking [22] and 3-color-marking [23].

A.3 Problem Description and Formulation

In this section, the problem described in Section A.1 is �rst analyzed in

detail. Afterwards the o�ine approach consisting of two formulations is

presented, able to guarantee emergency �ows while the best-e�ort �ows are

optimized over the remaining bandwidth in the network. Finally, the online

approach is described which is able to run in practical environments. It

combines the o�ine approach with a sub-optimal solution to handle new

incoming �ows in between the calculations of the o�ine approach.
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A.3.1 Problem Description

Within an SDN network, there are di�erent OpenFlow-enabled switches

connected to one or more SDN controllers and a set of best-e�ort �ows res-

ponsible for the correct routing of the network tra�c. Each �ow is described

using a tuple <source, destination, class> whereby the class describes

the tra�c class of the �ow. Each tra�c class has a priority value and

enforces the lower and upper bound bandwidth rates of the �ows assigned to

it. At a certain moment, emergency �ows are requested for prioritizing net-

work tra�c coming from and going to di�erent emergency services. These

emergency �ows need to be satis�ed by guaranteeing the requested band-

width while the remaining network bandwidth should be allocated to the

best-e�ort �ows. The optimization of the best-e�ort �ows depends on the

priority of the tra�c classes where a higher priority requires a larger share

of the available network bandwidth.

This paper answers to the question about how to maximize the total input

rate of the best-e�ort �ows in the network while the requested rates of the

emergency �ows are satis�ed and the bandwidth capacity constraints of the

network are respected. We assume that the requested rate for the emergency

�ows is not higher than the total available rate in the network. To solve

this problem, two o�ine models are de�ned and evaluated.

In the �rst model, de�ned by means of an ILP formulation, we assume

that �ows cannot be split up and each �ow needs to be assigned to a

single path from source to destination. In the second model, de�ned by

means of an LP formulation, we assume that �ows can be split up, allowing

tra�c to be separated over di�erent links, optimizing the bandwidth re-

source allocation [28]. The packet reordering e�ect that can occur when

using �ow splitting can be mitigated using hash-bashed splitting and packet

tagging [29].

The formulations of these two o�ine models are provided in Section A.3.2

and Section A.3.3. Notations used in the formulations are summarized

in Table A.2. Some described constraints contain a multiplication of a

continuous and a binary variable and because this cannot be directly solved

by state-of-the-art solvers, they need to be linearized �rst. These formula-

tions will optimize the best-e�ort �ows over the remaining bandwidth that

is not used by emergency �ows. In case the o�ine models are not able to run

in real-time, the online approach manages new incoming �ows in between

o�ine batches, providing the shortest (but possible sub-optimal) path with

a greedy-based solution to allocate bandwidth to these new �ows.
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Table A.2: Notations Summary

Variables

yiu,v
Equals 1 if the tra�c for �ow i passes

through link (u, v)

Ri The rate assigned to best e�ort �ow i

Parameters

F ≡M ∪B Set of all �ows

M Set of all emergency �ows

B Set of all best e�ort �ows

G = (V,E)

The graph of the network.
V is the set of nodes and E is the set of
physical links. All links are bidirectional
with di�erent capacity in each direction

Zi
u,v The rate of �ow i on link (u, v)

Cap(u,v)
The bandwidth of the link between u and v,

in the direction from u to v

Wi
The weight assigned to �ow i based on the

tra�c class it belongs to

τi The requested rate for emergency �ow i

minRatei

maxRatei

The lower bound and upper bound for the
rate of �ow i based on the
tra�c class it belongs to.

Source (i)
Destination (i)

The source and the destination of �ow i
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A.3.2 The ILP formulation

max
∑

i∈B|{u=Source(i),(u,v)∈E}

Wi × Zi
u,v (A.1)

Subject to:

∑
(u,v)∈E

yiu,v −
∑

(v,u)∈E

yiv,u =


1 u = Source (i)

0 otherwise

-1 u = Destination (i)

∀u ∈ V, i ∈ F

(A.2)

∑
i∈B

yiu,v ×Ri +
∑
i∈M

yiu,v × τi ⩽ Cap(u,v) (A.3)

∑
(u,v)∈E

yiu,v ⩽ 1 ∀u ∈ V, i ∈ F (A.4)

∑
(v,u)∈E

yiv,u ⩽ 1 ∀u ∈ V, i ∈ F (A.5)

Ri ∈
[
minRatei, maxRatei

]
(A.6)

yiu,v ∈ {0, 1} (A.7)

Cap (u, v) ⩾ τi ∀i ∈M (A.8)

The objective of the ILP formulation is to maximize the sum of tra�c rates

of best-e�ort �ows multiplied by their assigned weights, illustrated in (A.1),

subjected to constraints [(A.2) - (A.5)]. (A.2) is the �ow conservation

constraint which guarantees a path from source to destination. (A.3)

enforces the capacity limit of each physical link and (A.4) and (A.5) are

used to prevent loops as much as possible. (A.6) and (A.7) specify the

bounds for the assigned rate and whether or not tra�c is passing through

link (u, v). Finally in (A.8), the assumption is made that the network is

at least able to handle all requested emergency �ows.

The second constraint contains a multiplication of a continuous and a binary

variable as in
∑
i∈B

yiu,v ×Ri. The constraint can be linearized as follows:

Zi
u,v ⩽ Cap(u,v) × yiu,v (A.9)

Zi
u,v ⩽ Ri (A.10)

Ri + Cap (u, v)× yiu,v − Zi
u,v ⩽ Cap(u,v) (A.11)

Zi
u,v ∈

[
0, maxRatei

]
(A.12)
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A.3.3 The LP formulation

max
∑
i∈B

Wi ×Ri (A.13)

Subject to:

∑
(u,v)∈E

yiu,v −
∑

(v,u)∈E

yiv,u =


−Ri u = Source (i)

0 otherwise

−Ri u = Destination (i)

∀u ∈ V, i ∈ B

(A.14)

∑
(u,v)∈E

yiu,v −
∑

(v,u)∈E

yiv,u =


τ u = Source (i)

0 otherwise

−τi u = Destination (i)

∀u ∈ V, i ∈M

(A.15)

∑
i∈F

yiu,v ⩽ Cap(u,v) (A.16)

Ri ∈
[
minRatei, maxRatei

]
(A.17)

yiu,v ∈ R⩾0 (A.18)

Cap (u, v) ⩾ τi ∀i ∈M (A.19)

The LP formulation uses the principles of �ow splitting to solve the

described problem. The objective is again to maximize the sum of the

tra�c rates of the best-e�ort �ows multiplied by their assigned weights,

illustrated in (A.13), subjected to constraints [(A.14) - (A.16)]. (A.14) and

(A.15) are the �ow conservation constraints for the best e�ort and emer-

gency �ows respectively. (A.16) enforces the bandwidth capacity limits of

physical links. The LP formulation is solvable in polynomial time [30, 31].

A.3.4 Online approach

As shown later in Section A.4, the LP model is much faster than the ILP

model and could be used in a near-real-time scenario. However, the use

of the slower ILP model is obliged if the network does not support �ow

splitting, which is for example the case when it is built with SDN switches

from Northbound Networks [6]. In this case, an alternate online approach

is necessary for handling new incoming �ows in between calculations of the

ILP model.

The o�ine batches are responsible for guaranteeing the emergency �ows

and optimizing the remaining best-e�ort �ows. In case a new �ow arrives
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during the calculation of the o�ine batches, the shortest path between the

source and destination is determined by using Dijkstra's algorithm [32]. New

incoming emergency �ows obtain their requested bandwidth while newly

arriving best-e�ort �ows are assigned to the average best-e�ort tra�c class.

In case there is no bandwidth available for the new �ow, the greedy heuristic

calculates the bandwidth and decreases the other best-e�ort �ows band-

width based on their priority, as illustrated in Algorithm 3. The complete

online approach, following a greedy approach, is described in Algorithm 4.

Algorithm 3 Greedy heuristic

τ ← requested bandwidth
C ← tra�c classes sorted by priority (low to high)
for i in count(C)− 1 do

a← τ/2
τ ← τ/2
band[i]← a

end for
band[count(C)− 1]← τ
for each tra�c_class in C do

i← index
s← number of meters in tra�c_class
for each meter in tra�c_class do

meter ← meter − band[i]/s
end for

end for

A.4 Implementation, Simulation and evaluation

In this section, the solution described in Section A.3.1 is implemented based

on the two o�ine formulations summarized in Section A.3.2 and A.3.3 and

evaluated in a simulation environment. Afterwards, the online approach

described in Section A.3.4 is implemented and evaluated on a practical

environment consisting of Zodiac SDN switches [6].

A.4.1 Simulation Environment

The proposed o�ine models are �rst validated using simulations. The

evaluated topology, as shown in Figure A.2, consists of 16 ingress/egress

points of tra�c and 32 switches. Switches 16-30 are backbone switches and

the backbone network has the same topology as the Internet2 network [33].

This topology is used to simulate a provider network catering to about
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Algorithm 4 Online approach

R← average best-e�ort tra�c rate
B ← best-e�ort �ows
while batch is running do

X ← new incoming �ow
if X is emergency then

τ ← requested bandwidth by X
else

τ ← R
end if
if τ is not available then

apply_greedy_heuristic()
end if
apply_�ows()

end while
run_batch()

Table A.3: Speci�cation of the network scenario

Source/Destination of All Flows 0 - 15

Backbone Network (40 Gbps) 16 - 30

Source/Destination Emergency Flows {0, 2, 3, 5, 7, 8, 11, 13, 14}

DSL Network 39 - 46

Mobile Network 31 - 38

2050 �ows. Switches 31-38 are mobile base stations and the ingress/egress

points attached to them represent mobile users. Switches 39-46 are DSL

switches and the ingress/egress points attached to them represent DSL

users. The bandwidth of each the backbone network link is 40 Gbps

bidirectional. The speci�cations of the network scenario are summarized in

Table A.3. IBM ILOG CPLEX [34] v12.7 is used to implement the models

and the simulations are executed on a server with 2 Xeon E5-2690 v4 CPUs

operating at 2.6GHz with 16GB of memory.

We de�ned 3 tra�c classes with ranges [0, 25000], [0, 10000] and [0, 5000]

Kbps with priorities of 100, 50 and 10, respectively for best e�ort �ows.

Moreover, the requested rate of each emergency �ow was randomly chosen

from set {25000, 10000, 5000} Kbps because of the variation in types of

emergency network tra�c. Each best e�ort �ow was randomly assigned to

a class. Each evaluation result is the average of 30 simulation runs.
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Figure A.2 The simulation topology based on the Internet2 network.

Table A.4: Comparison of the LP and ILP model simulation results

LP Model ILP Model

Solving Time-Before(ms) 484 18408

Solving Time-After(ms) 484 15210

A.4.2 Simulation Evaluation - Results

The performance of the two models is compared in Figure A.3. By increasing

the number of best e�ort �ows, the solving time increases in both models.

However, the increase rate of the ILP model is exponentially higher than for

the LP model. For 2000 best e�ort �ows along with 50 emergency �ows, the

ILP model solves the problem in almost two minutes. It is worthwhile to

mention that the solving time of the ILP model can further be decreased by

up to one order of magnitude when using acceleration methods such as the

novel algorithm based on the Benders decomposition method as described

in [35].

To investigate the operational details of the models, we �rst generated 500

best e�ort �ows and solved both the ILP and LP models. After that, we

added 50 emergency �ows and solved the problems again. Both models

reported the same optimal values before and after adding the emergency

�ows which means that the same result is achieved by both models and the

LP model solved the problem 30 times faster than the ILP model. After

adding the emergency �ows, the models decreased the rate of best e�ort

�ows to allocate the requested bandwidth of the emergency �ows which

resulted in a lower optimal values. A summary of the results is shown in
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Figure A.3 The solving time of the ILP and LP models. Standard
deviations are shown in the form of error bars
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A.4.3 Prototype Implementation

To implement the proposed solution, a network consisting of Zodiac SDN

switches and a Ryu [7] SDN controller with 4 Intel Core i5-7440HQ running

at 2.80GHz and 16 GB of memory is used. As discussed in Section A.3.4,

the Zodiac SDN switches do currently not support �ow splitting and thus

the use of the slower ILP model is obliged in this environment. A database

using the schema presented in Figure A.4 is used to store the current active

�ows and the information about the topology. The topology used for the

evaluation is visualized in Figure A.5 and built with 1 Zodiac GX switch

(sw1), 8 Zodiac FX switches (sw2 - sw9) and 10 raspberry pi's (d1 - d10).

The Zodiac GX has an uplink of 1 gbps while the Zodiax FX switches have

an uplink of 100 mbps. The used tra�c classes are illustrated in Table A.5

and the requested bandwidth rates based on destination are summarized in

Table A.6. OpenFlow v1.3 meters were used to specify the upper bound and

lower bound rates of each tra�c class and the ILP model is implemented

with IBM ILOG CPLEX v12.7. Note that with the provided meters in this

prototype, the ILP will rather assign the meter with 0 kbps bandwidth to

�ows with a lower priority in case there is a shortage. When more meters
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Figure A.4 Topology of the database used by the prototype implementa-
tion. The tables devices, device_ports, meters, topology and tra�c_classes
are �lled based on the practical environment. The tables �ows, �ow_rates
and �ow_routings contain the optimized best-e�ort and emergency �ows
after solving the ILP formulation.

per tra�c class are allocated, a downgrade is possible, but this is currently

not implemented.

Assume { m1,m2, . . . ,mn} are n de�ned meter rates and mi ⩽ mi+1 ∀i.
The weight of best e�ort �ow i is calculated by

⌈
Pi × mn

m1+1

⌉
in which Pi

is the priority of the class that the �ow belongs to and ⌈x⌉ is the ceiling
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Figure A.5 Topology of the prototype environment. Sw1 is a Zodiac GX
switch, sw2 - sw9 are Zodiac FX switches and d1 - d10 are raspberry pi's.
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Table A.5: Tra�c classes (all in kbps)

Id Name Minimum Rate Maximum Rate

1 High Priority 0 25000

2 Normal Priority 0 10000

3 Low Priority 0 5000

function.

When a new �ow arrives, it is added to the database. When the previous

batch of the o�ine calculations is �nished, the controller runs the ILP

solver. The implementation reads the database information, solves the

ILP problem and stores the results in the database. The output of the

ILP is the assignment of each �ow to one meter and the routing of �ows

over the network. To assign a �ow to a meter, whether it be best e�ort

�ows or emergency �ows, the implementation rounds down the calculated

rate to the nearest de�ned meter rate. Based on the simulation results

summarized in Section A.4.2, the ILP model provides optimal results with

a high number of �ows but not in real-time. To combat this, we run the

o�ine model consecutively while the online approach is used to route and

to apply the corresponding meter to new incoming �ows. Best-e�ort �ows

will be assigned to the average meter with 10000 kpbs while emergency

tra�c will be assigned to their requested rate. To decrease the impact on

the current best-e�ort and emergency �ows, a greedy heuristic is applied

to reassign available bandwidth from other best-e�ort �ows, based on their
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Table A.6: Requested rates per �ow based on the destination. Rates between 0
and 4999 kbps are part of tra�c class 3, rates between 5000 and 9999
kpbs are part of tra�c class 2 and rates higher dan 10000kpbs are part
of tra�c class 1.

Destination Tra�c class

d1 3

d2 3

d3 3

d4 3

d5 3

d6 2

d7 2

d8 2

d9 2

d10 1

priority.

A.4.4 Prototype Evaluation - Example scenario

The prototype is evaluated to study the behavior of the online approach

and the �ndings are illustrated in Figure A.6. When the batch calculation

is running, the online approach will handle the new incoming �ows. The

�ow responsible for the tra�c going from d1 to d5, which is part of tra�c

class 3, is already allocated together with 87 other �ows. Next at time

t1, a new incoming emergency �ow going from d1 to d10 is added to the

network, with a requested bandwidth of 25,000 kbps. Because of its priority,

the requested bandwidth is allocated and the greedy heuristic reduced the

bandwidth from the other best-e�ort �ows. The �ows part of tra�c class 3

have an average decrease of 284 kbps. Afterwards at time t2, a �ow going

from d8 to d10 is added, which is part of tra�c class 1. As this is a best-

e�ort �ow, the average best-e�ort meter with a bandwidth of 10,000 kbps

is allocated. The greedy heuristic again determines the bandwidth for each

best-e�ort �ow without impacting the current emergency �ows. Finally,

the batch calculations (visualized by the gray vertical line at time t3 in

Figure A.6) optimizes the �ows of the whole network again.

It is clear that the online approach is guaranteeing the bandwidth of the

emergency �ows and creates a sub-optimal solution for the new incoming
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Figure A.6 Throughput of 2 best-e�ort �ows and 1 one emergency �ow. At
time t1, the emergency �ow is added and assigned by the online approach.
At time t2, another best-e�ort �ow is added and assigned by the online
approach. At time t3, the o�ine batch has calculated and applied the
optimal solution.
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Table A.7: The ILP model results

Before After

Solving Time (ms) 20520.234 17489.531

best-e�ort �ows. The sub-optimal solution has 2.76% di�erence per �ow

compared to the result of the o�ine batches in the whole example scenario.

In some cases, this di�erence is 100% because the online approach does not

drop any new incoming �ows, while the o�ine batches can decide to drop

a �ow much faster as explained in Section A.4.3. Afterwards, the batch

calculations optimizes the best-e�ort �ows over the remaining available

bandwidth not used by emergency �ows. The solving time of the batch

calculations before and after adding 50 emergency �ows is illustrated in

Table A.7 and shows that the proposed o�ine model can solve small-sized

networks e�ciently.

A.5 Conclusion

Emergency network tra�c needs to have priority over best-e�ort tra�c

during emergency situations. With the expected release of 5G, slicing
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concepts at network level will enable prioritization of the emergency net-

work tra�c over mobile connections. In addition, SDN principles allow to

assign di�erent QoS levels to di�erent network slices.

In this paper, we therefore propose an SDN-based solution whereby both

LP and ILP theoretical mathematical models guarantee the requested rate

of emergency �ows and maximize the best-e�ort �ows over the remaining

available bandwidth. Due to the calculation time of these models, an online

approach handles new incoming �ows in between these calculations. The

shortest path, based on Dijkstra's algorithm, is calculated and a greedy

heuristic is applied to obtain bandwidth from the other best-e�ort �ows.

When the new incoming �ow is an emergency �ow, the requested bandwidth

will be allocated by any means, a new incoming best e�ort �ow will be

allocated with the average bandwidth of all the active best-e�ort �ows.

The two o�ine models are �rst evaluated by simulations and the results

show that both with the ILP and LP mathematical problems can be used

whereby the ILP model exhibiting plus-second execution time while the LP

model works 30 times faster for 500 best-e�ort �ows and 50 emergency �ows.

Afterwards, the batch calculations together with the online solution are

prototyped and evaluated on an SDN network consisting of Zodiac Switches

and Raspberry pi's. The Zodiac switches do not support �ow splitting,

so the use of the slower ILP model is obliged. The practical evaluation

shows that the online problem e�ciently handles new incoming �ows while

guaranteeing the bandwidth for all the emergency �ows and providing a

sub-optimal temporary solution for the best-e�ort �ows.

Practical evaluation of the faster LP model together with an extended

evaluation of the proposed models is envisaged as future work.
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