
1

Device-Free Pedestrian Tracking Using Low-Cost

Ultra-Wideband Devices
Chenglong Li, Emmeric Tanghe, Member, IEEE, Luc Martens, Member, IEEE,

Jac Romme, Gaurav Singh, Eli De Poorter, and Wout Joseph, Senior Member, IEEE

Abstract—Ultra-wideband (UWB) attracts extensive attention
for the Internet-of-Things applications, especially the fine-grained
location-based services. Rather than active tracking, this paper
explores the UWB-based device-free pedestrian tracking prob-
lem. Concerning the challenges of fine-grained passive tracking
for the low-cost commodity UWB devices, we propose a variance-
based temporary-spatial (VATS) mapping algorithm, which re-
lieves the background interference from the perspective of the
Bayesian framework. Moreover, a particle filter algorithm has
been designed to track the position likelihood changing and to
avoid likelihood ambiguity. Experimental results show that the
proposed VATS mapping algorithm achieves 50-th and 90-th
percentile errors 0.156 m and 0.272 m, respectively, which is
promising for practical applications.

Index Terms—Indoor localization, ultra-wideband (UWB), pas-
sive tracking, channel impulse response (CIR), radar.

I. INTRODUCTION

RADIO frequency-based device-free (passive) positioning

and sensing has attracted increasing interest in recent

years, especially when the physical-layer information (chan-

nel response) is available for the low-cost commercial radio

devices [1]–[3], such as WiFi, radio frequency identification

(RFID), ultra-wideband (UWB), etc. Without the requirement

of visibility or attaching sensors to the users, passive RF-based

sensing is appreciated for the various applications considering

the feasibility, security, and privacy issues. UWB technique,

resulting from its high time-domain resolution, is widely uti-

lized for accurate ranging and positioning, even in a cluttered

industrial environment [4], [5]. Besides active localization,

passive sensing is also popular in the field of smart Internet-

of-Things (IoT), such as person tracking [6], [7], through-the-

wall vital sign detection [8], [9], crowd counting [10], gesture

recognition [11], etc. However, most UWB passive sensing

researches utilize the vector network analyzer (VNA) setup or

other dedicated devices (quasi-perfect synchronization, high

sampling rate, etc.), which limits the extensive deployment

for the practical use cases. Recently, [3] proposed to adopt the

low-cost commercial off-the-shelf (COTS) UWB modules for

passive human tracking and achieved decimeter-level accuracy.
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In this paper, we also focus on device-free human track-

ing based on COTS UWB devices. For RF-based pedestrian

tracking, an intuitive idea is to estimate the reflected time-of-

flight (ToF) from the moving person first, then pinpoint the

person’s location via the intersection of the multiple ellipses

when the reflected ToFs of multiple pairs of transceivers are

available [3], [12]. However, in this case, it is not easy to

mitigate the impact of background for the COTS devices,

which will be explained in detail in Section II. Furthermore,

radio tomographic imaging (RTI) is another popular technique

for device-free localization by imaging the attenuation caused

by the pedestrian [13], [14]. However, the accuracy depends

on a large density of anchors (transmission links). Different

from the approaches mentioned above, we propose a novel

variance-based temporary-spatial (VATS) mapping algorithm

that converts the variances of channel impulse responses (CIR)

from the delay domain to the spatial domain (i.e., Cartesian

coordinates within the targeted area). The experimental val-

idation shows that the proposed method is advantageous to

background mitigation and achieves promising accuracy.

II. PRACTICAL CONCERNS FOR COTS UWB DEVICES

Due to the advantage of large bandwidth, UWB can depicts

the multipath components (MPCs) with fine granularity in the

delay domain. The CIR h(τ) in case of a single moving person

can be given by (in equivalent baseband notation),

h(τ)=
∑

i∈B

αiδ(τ − τi)+
∑

j∈P

αjδ(τ − τj) + n, (1)

where B and P represent the MPCs from the background

(including the direct link and reflection/scattering from sur-

roundings) and the moving person, respectively. α(·) denotes

the complex gain of the MPCs. Note that τ and τ(·) are not

defined as the real ToFs but the delays relative to the direct link

hereinafter. n is the measurement noise. To estimate the delay

from the target τj (j ∈ P), we need to mitigate the impact of

background. However, the background mitigation is not easy

for the COTS UWB devices, e.g., DecaWave DWM1000 [15].

The chipping frequency of the DWM1000 is 499.2 MHz,

so the time resolution of the CIR sample is 1.0016 ns. As

shown in Fig. 1, the blue dots are a single CIR measurement

of which the 4-th sample represents the line-of-sight (LoS)

delay identified by DWM1000 via the leading edge (LDE)

algorithm [15]. Because the CIR resolution is about 1 ns (i.e.,

30 cm in the spatial domain), it does not always capture

the fine-grained spatial variation of the moving person. As

shown in Fig. 1, the CIR samples may step across the real
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delay of the path reflected off the moving person (vertical

red line). For DWM1000 modules, they are triggered by the

local clocks. The CIRs between any two UWB nodes were

sampled at slightly different times. We can accumulate the

CIRs within a short duration and align the CIRs around the

reported LoS CIR bin [3], [12], [16], as the grey dots presented

in Fig. 1 with 50 consecutive CIR measurements. We conduct

the same accumulation technique for both background (no

person moving) and dynamic scenarios. Two examples of

the accumulated CIRs are presented in Figs. 2 and 3. Three

conclusions can be drawn from these figures.

• When the delay relative to the LoS link is small, namely

the person close to the transceiver link, we can observe a

clear CIR peak caused by the human body reflection or

scattering. However, when the delay enlarges, this peak

becomes very small (close to the background CIR), which

challenges background mitigation from CIR directly.

• The pedestrian not only causes the CIR variations around

the real delay but also affects the CIR segment following,

which was observed in [16] as well.

• The LoS peak’s amplitude is unstable. Because the ac-

cumulated CIR is centered around the LoS bin identified

by the LDE algorithm, the LoS peak’s amplitude also

fluctuates as a result of LDE’s errors.

So (1) in case of COTS UWB devices can be adapted to

h(τ) =
∑

i∈B

αiδ(τ − τi)+
∑

j∈P

αjδ(τ − τj) + n

+
∑

k∈
⋃

0
⊆B

αkδ(τ − τk)+
∑

l∈S⊆B

αlδ(τ − τl),
(2)

where
⋃

0 and S represent the fluctuation errors around the

LoS bin and the following CIR segments with larger delays

than the moving person, respectively. According to the remarks

above, it is not easy to mitigate the background from the CIR

directly especially when the relative delay is large (namely,

the pedestrian moves far away from the transceiver link).

Fortunately, we observe that the CIR’s amplitude around

the real delay fluctuates greatly despite a large relative delay,

as shown in Fig. 3, which means it is possible to use the

variance within a short segment of the CIR series to identify

the delay. Fig. 4 shows the variance of CIR in Fig. 3, in which

a clear peak around the real delay has been observed. However,

at the same time, the fluctuations at
⋃

0 and S still exist as

the green and orange ellipses in Fig. 4 indicate. To mitigate

the impact of LoS fluctuations, [3] proposed to multiply a

scaling factor β (e.g., β = 1.3 as recommended in [3]) by

the background variance, and then use the dynamic variance

to subtract the scaled background variance. Then a variance-

based LDE algorithm was designed to find the first bin having

the variance difference larger than the threshold. In this case,

the impact of the later CIR segment has also been canceled.

But the scaling factor is related to the background environ-

ment, which needs refinement for different pairs of links or

new scenarios to achieve satisfying accuracy. A bad selection

of the factor will degrade the performance greatly. Instead of

mitigating based on empirical scaling parameter, in [12], we

proposed to input the background and dynamic variance series
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Fig. 1. Accumulated CIRs (50 mea-
surements) versus single CIR.
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Fig. 2. Background and dynamic
CIRs (real delay = 6.69 ns).
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Fig. 3. Background and dynamic
CIRs (real delay = 15.04 ns).
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Fig. 4. Background and dynamic
variances (real delay = 15.04 ns).

into a residual convolutional neural network (CNN) directly

and learn the difference between the background and dynamic

scenarios as a black box, which achieved better results than the

variance-based LDE algorithm. However, deep learning (DL)

model is expensive to implement on the low-cost hardware

considering the feasibility and energy consumption [4].

III. ALGORITHM DESIGN FOR DEVICE-FREE TRACKING

A. Variance-based Temporary-Spatial Mapping

As mentioned in Section II, the variance is a more robust

metric than the CIR for passive tracking. However, it still

suffers from the impact of fluctuations around LoS (
⋃

0)

and the following CIR segment (S). To handle this issue,

we propose the VATS mapping algorithm, which converts

the variance differences between background and dynamic

CIR variances from delay domain to spatial domain (i.e.,

Cartesian coordinates within the targeted area). Define σB(τij)
and σD(τij) as the variance series of the (i, j)-th pair of

link for the background and dynamic scenarios, respectively,

as shown in Fig. 4. The variance difference is given by

∆σ(τij) = σD(τij) − σB(τij), where τij represents the set

of possible delays of the variance profile, i.e., the x-axis in

Fig. 4. So the VATS mapping M can be expressed as,

∆σ (PP)
M
←− ∆σ

(

τ
(P)
ij

)

=∆σ
(

d
(P)
ij /c

)

, (i 6= j), (3)

where c is the speed of light. d
(P)
ij represents the reflected path

length difference relative to the (i, j)-th direct link, given by,

d
(P)
ij =

∥

∥

∥
PP−P

(i)
Tx

∥

∥

∥
+
∥

∥

∥
PP−P

(j)
Rx

∥

∥

∥
−
∥

∥

∥
P

(i)
Tx−P

(j)
Rx

∥

∥

∥
,

where PP, PTx, and PRx are the Cartesian coordinates of the

pedestrian, transmitter, and receiver, respectively. ‖ · ‖ denote

the l2-norm operator. In this way, we build a mapping be-

tween the variance and pedestrian’s location. For the variance

calculation, we refer to the variance filtering method proposed
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by [3], which is easily-implemented and efficient. We omit the

detailed description in this paper due to the limited space. The

details can be found in [3].

Remark. After operating VATS mapping, the candidate loca-

tions of the moving person are a set of ellipses focusing on

the UWB transceiver, as shown in Fig. 5(a). When increasing

the number of UWB node N , only the variance around the

pedestrian’s position will be enhanced by the most times, i.e.,
(

N
2

)

. Note that we assume that each UWB node acts as both

the transmitter and receiver. To this end, we can pinpoint

the pedestrian’s position via identifying the maximum of the

augmented variance hologram, as shown in Figs. 5(b)-(c).

The above pedestrian passive tracking problem can be

explained from the perspective of Bayesian framework. We can

normalize ∆σ(τ) via dividing
∫

∆σ(τ)dτ . The normalized

variance difference can be regarded as the likelihood at a cer-

tain delay, labeled as f(∆σ |τ). So the goal of positioning is to

obtain the posterior distribution of PP given the variance dif-

ference ofN UWB nodes, namely f
(

PP |∆σ1, · · · ,∆σ(N2 )

)

.

With the help of (3), the posterior distribution becomes

f
(

PP |∆σ1, · · · ,∆σ(N2 )

)

∝ f(PP)

(N2 )
∏

i=1

f (∆σi |τ) , (4)

where f(PP) is the prior distribution of PP. So, the position of

the pedestrian can be estimated via, e.g., maximum a posterior

(MAP) estimator. We assume f(PP) follows an uniform

distribution, so the MAP becomes a maximum likelihood (ML)

estimator, given by,

P̂P = argmax
PP

(N2 )
∏

i=1

f (∆σi |τ) , argmax
PP

(N2 )
∏

i=1

∆σi(τ). (5)

B. Particle Filter-based Pedestrian Tracking

According to (5), the pedestrian’s location is pinpointed

via the maximal likelihood. However, we also observe that

there may exist some ambiguity locations with local maximal

likelihood (the yellow regions), even larger than the likelihood

around the the pedestrian’s position, as shown in Fig. 5(d). To

tackle this ambiguity problem, instead of simply searching for

the location with the maximal likelihood, we design a particle

filter (PF) algorithm to track the likelihood changing. The state

of the PF is the 2-D coordinates PP and velocity vP of the

moving person, which is updated via the movement model

given as follows,
[

P
(t+1)
P

v
(t+1)
P

]

=

[

I2 ∆t · I2

0 I2

][

P
(t)
P

v
(t)
P

]

+

[

∆t · 12×1

12×1

]

nv, (6)

where ∆t is the time difference between timestamps t and

t + 1. nv is the Gaussian error of velocity, of which the

standard deviation is set as 0.3m/s. The updated particles

are weighted via the likelihood difference compared with the

maximal likelihood. The weight is calculated via

P̂ (i)
w =exp

(

1

2σ2
w

(

min
1≤i≤K

{

P (i)
w

}

− P (i)
w

))

,

P (i)
w =

(

Pmax −∆σ
(

P
(i)
P

)

)2

,

(7)

(a) Two anchors (b) Three anchors

(c) Four anchors (d) Likelihood ambiguity

Fig. 5. (a)-(c) Holograms of the normalized positioning likelihood with
different numbers of anchors. (d) Positioning likelihood ambiguity.

where K is the number of particles. Because we normalize

∆σ (PP) to [0, 1], as the colorbar shown in Fig. 5, the maximal

likelihood Pmax = 1. The standard deviation σw is set as 0.1.

IV. EXPERIMENT AND RESULTS

A. Experiment

In this section, the proposed VATS mapping algorithm for

the device-free pedestrian tracking will be evaluated through

the experiment using COTS UWB devices. The corresponding

measurement data is open-access in [17]. The explanation of

the dataset will be briefly introduced below. The details can be

found in [3], [17]. Four DWM1000 UWB anchors (about 1.2 m

in height) were deployed in an indoor laboratory environment.

The size of the targeted area is about 8m × 6m. The UWB

anchors sent messages to each other with an average frequency

of 188 Hz. The adopted frequency is 3993.6 MHz, bandwidth

900 MHz, and pulse repetition frequency 16 MHz. The ground

truth of the moving trajectory was obtained via the motion

capture (MoCap) system with millimeter-level accuracy.

Note that the experiment only considered single-person

tracking, but the proposed VATS mapping algorithm can be

easily adapted to multi-person tracking via regarding the

posterior distribution in (4) as a joint distribution for multiple

targets and adopting a multi-target particle filter algorithm.

B. Performance Evaluation

Figs. 6(a)-(b) show the tracking trajectory based on the

proposed VATS mapping algorithm using three anchors and

four anchors, respectively. The tracking errors are defined

as the distance between the estimated position and ground

truth, which has been presented along the estimated trajectory.

We can see that the proposed algorithm achieves very high

tracking precision even with only three anchors (with mean

errors 0.238 m). For the four anchors case, the mean tracking

accuracy reaches an excellent result of 0.169 m despite a very
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(a) (b) 

(c) (d) 

Fig. 6. (a) Tracking accuracy of three anchors. (b) Tracking accuracy of
four anchors. (c) CDF of the tracking errors (with three or four anchors): the
effectiveness of PF. (d) Comparison with SOTA methods under four anchors.

TABLE I
COMPARISON OF THE STATISTICAL TRACKING ERRORS WITH FOUR

ANCHORS IN METER.

Methods 50-th 90-th Improvement DL

CNN (CIR) [12] 0.194 0.465 19.6%-41.5% Yes

CNN (variance) [12] 0.209 0.440 25.4%-38.2% Yes

Variance-based LDE [3] 0.312 0.588 50.0%-53.7% No

VATS mapping 0.156 0.272 / No

limited number of outliers (with distance errors larger than

0.5 m). In Fig. 6(c), we investigate the impact of with (solid

lines) or without (wo, dash lines) PF tracker under the VATS

mapping algorithm via the cumulative distribution functions

(CDF) of tracking errors. The results validate the effectiveness

of PF tracking which avoids the large errors resulting from

likelihood ambiguity.

Furthermore, we compare the proposed VATS mapping

algorithm with different state-of-the-art (SOTA) methods pro-

posed recently [3], [12] in case of four UWB anchors. Because

the methods (CIR and variance) in [12] are based on CNN

training. For the comparison, we have used the first 66.7% tra-

jectory data as the training set and regarded the prediction per-

formance on the remaining trajectory as the tracking accuracy

of the models. As shown in Fig. 6(d), the proposed method

(no DL needed) has achieved the best tracking accuracy, while

the variance-based LDE is worse than the CIR- and variance-

based CNN models. We summarize the percentile errors (i.e.,

50-th and 90-th) in Table I. The proposed method outperforms

the others achieving 50-th percentile errors 0.156 m and 90-th

percentile errors 0.272 m (more than 19.6% improvement).

V. CONCLUSION

In this paper, we have investigated device-free human

tracking based on low-cost UWB devices. A novel VATS

mapping method, together with a particle filter algorithm,

has been proposed for background mitigation and fine-grained

pedestrian tracking. According to the experimental evaluation,

the proposed method achieves excellent results with 50-th and

90-th percentile errors 0.156 m and 0.272 m, respectively,

which has more than 19.6% improvement compared with the

available SOTA methods. In a nutshell, the proposed algorithm

is advantageous to high accuracy and feasible implementation

(no machine/deep learning involved) and promising for prac-

tical applications. Future works will consist of quantifying the

impact of anchors’ number on the likelihood ambiguity and ac-

curacy, multi-target tracking in a more cluttered environment,

and distinguishing pedestrian and moving robots.
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