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Abstract
Rotational‐XOR (RX) cryptanalysis is a cryptanalytic method aimed at finding distin-
guishable statistical properties in Addition‐Rotation‐XOR‐C ciphers, that is, ciphers that
can be described only by using modular addition, cyclic rotation, XOR and the injection
of constants. In this study, we extend RX‐cryptanalysis to AND‐RX ciphers, a similar
design paradigm where the modular addition is replaced by vectorial bitwise AND; such
ciphers include the block cipher families Simon and Simeck. We analyse the propagation
of RX‐differences through AND‐RX rounds and develop a closed form formula for their
expected probability. Inspired by the MILP verification model proposed by Sadeghi et al.,
we develop a SAT/SMTmodel for searching compatible RX‐characteristics in Simon‐like
ciphers, that is, that there is at least one right pair of messages/keys to satisfy the RK‐
characteristics. To the best of our knowledge, this is the first model that takes the RX‐
difference transitions and value transitions simultaneously into account in Simon‐like
ciphers. Meanwhile, we investigate how the choice of the round constants affects the
resistance of Simon‐like ciphers against RX‐cryptanalysis. Finally, we show how to use an
RX‐distinguisher for a key recovery attack. Evaluating our model we find compatible RX‐
characteristics of up to 20, 27 and 34 rounds with respective probabilities of 2−26, 2−44

and 2−56 for versions of Simeck with block sizes of 32, 48 and 64 bits, respectively, for
large classes of weak keys in the related‐key model. In most cases, these are the longest
published distinguishers for the respective variants of Simeck. In the case of Simon, we
present compatible RX‐characteristics for round‐reduced versions of all 10 instances. We
observe that for equal block and key sizes, the RX‐distinguishers cover fewer rounds in
Simon than in Simeck. Concluding the paper, we present a key recovery attack on Simeck
64 reduced to 28 rounds using a 23‐round RX‐characteristic.
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1 | INTRODUCTION

Rotational‐XOR cryptanalysis is a cryptanalytic technique for
Addition‐Rotation‐XOR (ARX) ciphers proposed by Ashur and
Liu [1]. RX‐cryptanalysis generalises rotational cryptanalysis by
investigating the influence of round constants on the probabi-
listic propagation of rotational pairs passing through the ARX
operations.

The successful application of RX‐cryptanalysis to Speck [2]
reveals that the round constants sometimes interact in a

constructive way between the rounds, that is, that a broken
symmetry caused by a round constant in round i may be
restored—either fully or partially—by another constant injec-
tion in round j > i. As a result, new designs such as [3] now
show resistance to RX‐cryptanalysis as part of their security
argument.

AND‐RX ciphers, defined as a counterpart of ARX ci-
phers where the modular addition is replaced by bitwise AND,
are of contemporary interest owing to the design of the block
cipher Simon [4] which was followed by other Simon‐like
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ciphers such as Simeck [5]. Since the AND‐RX operations in
Simon‐like ciphers are bitwise, the resulting statistical proper-
ties of individual bits remain independent of the bit‐position.
We say that such properties are rotation‐invariant.

To break rotation‐invariant properties, the round constants
are usually injected into the state. In the case of Simon and
Simeck, the constants are injected to the key schedule and
propagate into the round function via the round subkey.

Searching for (related key) differential characteristics in
most models based on MILP or SAT/SMT only involves dif-
ferential transitions and they are considered independent in
different rounds. Previous studies have reported exceptions
where such characteristics are incompatible [6]. Sadeghi et al.
[7] developed a MILP model to verify the existence of right
pairs with respect to a given characteristic. Observing that
sometimes this set is empty, they conclude that the concate-
nation of valid transitions may result in an incompatible
characteristic due to globally contradicting constraints.

Our contribution. In this study, we extend the idea of
RX‐cryptanalysis to AND‐RX ciphers with applications to
Simon and Simeck. The propagation of RX‐differences
through the AND‐RX operations is fully analysed and a
closed algebraic formula is derived for its expected proba-
bility. We show that an RX‐difference with translation α
passes through the vectorial AND operation with the same
probability as that of an α XOR‐difference. Due to the
different nature of RX‐differences and XOR‐differences,
characteristics of the former type would depend more on the
key schedule and choice of round constants than those of the
latter type.

Inspired by the MILP verification model proposed by
Sadeghi et al., we develop a SAT/SMT model to search
compatible RX‐characteristics, that is, that they are consis-
tent with at least one right pair of messages/keys. This
model can automatically avoid the incompatible problem
when searching RX‐characteristics. Using the automatic
search model we find compatible RX‐distinguishers for all
versions of Simeck and Simon; these results are summarised
in Tables 1 and 2.

The compatible RX‐characteristics we found for Simeck
variants with block sizes of 32‐, 48‐ and 64‐bit improve the
previously longest published results by 5, 8 and 9 rounds,
respectively, albeit sometimes in a weaker attack model. When
comparing for the same number of rounds, our results offer
different trade‐offs between the size of the affected key class
and the distinguisher's probability. For Simon2n/4n we present
compatible RX‐characteristics of up to 14, 15, 16, 18 and 22
rounds, respectively. These are not the longest distinguishers
for the respective versions of Simon.

Finally, we show how to exploit an RX‐characteristic in a
key recovery attack and apply it to reduced‐round versions of
Simeck64. We present an attack on 28 out of 44 rounds for
Simeck 64/128 with data complexity 236 and time complexity
279.5. To the best of our knowledge, this is the first extension of
RX‐cryptanalysis to key recovery.

This study is an extension of [6, 8]. The original paper
included the following contributions:

� An analysis of the propagation of RX‐characteristics in
AND‐RX algorithms;

� A SAT/SMT automatic search model for RX‐characteristics
in Simon‐like ciphers;

� Applications to Simeck and Simon32;
� A preliminary exploration of how different key schedules
affect the probability and automatic search of RX‐
characteristics.

The extended version includes the following additional
contributions:

� To the best of our knowledge, for the first time we
developed a SAT/SMT model capturing the RX‐
difference transitions and value transitions simultaneously
in Simon‐like ciphers. This model finds the compatible

TABLE 1 Comparison of RX‐characteristics for rotation offset γ = 1
with the longest published distinguishers for Simeck32, Simeck48 and
Simeck64a

Cipher
Attack
rounds

Data
complexity

Size of week
key class Type Reference

Simeck32 13 232 Full DC [9]

15 231 Full ID [10]

224 254 RKDC [11]

218 244 RX Section 5.1

19 224 230 RX Section 5.1

20 226 230 RX Section 5.1

Simeck48 16 224 280 RKDC [11]

218 268 RX Section 5.1

18 247 Full ID [10]

222 266 RX Section 5.1

19 248 Full DC [9]

224 262 RX Section 5.1

27 244 246 RX Section 5.1

Simeck64 21 263 Full ID [10]

25 264 Full DC [9]

234 280 RX Section 5.1

34 256 258 RX Section 5.1

aDifferential characteristics, ID, integral distinguishers; RKDC, related‐key differential
characteristics; RX, RX‐characteristics.

TABLE 2 RX‐distinguishers and their probabilities in round‐reduced
Simon instances

Simon
32/
64

48/
72

48/
96

64/
96

64/
128

96/
96

96/
144

128/
128

128/
192

128/
256

Rds. 14 14 15 16 16 15 18 16 20 22

Pr. 2−32 2−48 2−46 2−64 2−64 2−93 2−96 2−98 2−120 2−120

Note: The distinguishers work in a related‐key model for all keys.
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characteristics as well as the right pairs simultaneously,
moreover, it can be directly applied in the detection of
incompatible characteristics. In contrast, the method of
Sadeghi et al. is aimed at detecting the incompatibility dis-
tinguisher. In this paper, we consider more about how to
obtain compatible distinguishers directly. This model makes
the cryptanalyst get rid of the complex, tedious and time‐
consuming process from a large number of searches to
detection, making the analysis more concise and efficient.
Simultaneously, it plays a very important role for the dis-
tinguisher attack and the key recovery attack.

� Based on this model, we re‐evaluate Simeck32, Simeck48
and Simeck64. We see that previously published dis-
tinguishers cover up to 15, 19 and 25 rounds of Simeck32,
Simeck48 and Simeck64, respectively, whereas our RX‐
characteristics improve the number of distinguished
rounds by 5, 8 and 9 rounds, albeit for a smaller key class
than previous results. Benchmarking for the same number
of rounds, detecting our distinguishers requires fewer data.
At the same time, we also evaluated all the 10 versions of
Simon. For Simon32/64, we find longer RX‐characteristics
than previously presented.

� We evaluate a sequence of round constants and see how
different round constants reflect in the resistance of the
resulting cipher against RX‐cryptanalysis. We find that the
ability of the ciphers to resist RX‐cryptanalysis can be
affected by the hamming weight of the Δγc and the specific
choices of the round constants. To circumvent RX‐
differential attack, we give some suggestions to design the
round constants.

� Moreover, we show how an RX‐characteristic can be used to
mount a key recovery attack, and apply this method to the
reduced‐round version Simeck64.

Organisation: In Section 2, we recall RX‐cryptanalysis, the
structure of Simon‐like ciphers with emphasis on the key
schedule of Simon and Simeck, and relevant previous work. In
Section 3, we generalise RX‐cryptanalysis to AND‐RX algo-
rithms. We give a closed‐form algebraic formula for the
probabilistic propagation of an RX‐difference in AND‐RX
and for the special case of Simon‐like ciphers. In Section 4,
we devise an automated search model for finding good RX‐
characteristics in Simon‐like ciphers. This model is then eval-
uated in Section 5 on all versions of Simeck and Simon. In
Section 6, we investigate the effect of the round constants on
the resistance of Simon‐like ciphers against RX‐cryptanalysis.
In Section 7, we employ our distinguishers in key recovery
attacks on reduced‐round versions of Simeck64. The attacks
work in the related‐key chosen‐plaintext model. Section 8
concludes the paper.

2 | PRELIMINARIES

In this section, we give a brief overview of the structure of
Simon‐like ciphers and recall the general idea of rotational‐
XOR cryptanalysis. Table 3 presents the notation we use.

2.1 | Simon‐like ciphers

Simon is a family of block ciphers following the AND‐RX
design paradigm, that is, members of the family can be
described using only the bitwise operations AND (⊙), XOR
(⊕) and cyclic rotation by γ bits (Sγ). Simon‐like ciphers
generalise the structure of Simon's round function with pa-
rameters different from the original ones.

2.1.1 | The round function

Simon is a family of lightweight block ciphers designed by the
NSA in 2013. A member of the family is denoted by Simon2n/
mn, to specify a block size of 2n for n ∈ {16, 24, 32, 48, 64},
and key size of mn for m ∈ {2, 3, 4}. The round function of
Simon is defined as

f ðxÞ ¼ S8 xð Þ⊙ S1 xð Þ
� �

⊕ S2ðxÞ:

Simon‐like ciphers are ciphers that share the same round
structure as Simon, but generalise it to arbitrary rotation
amounts (a, b, c) such that the round function becomes

fa;b;cðxÞ ¼ Sa xð Þ⊙ Sb xð Þ
� �

⊕ ScðxÞ:

Of particular interest in this paper is the Simeck family
of lightweight block ciphers designed by Yang et al. [5],
aiming at improving the hardware implementation cost of
Simon. Simeck2n/4n denotes an instance with a 2n‐bit
block and a 4n‐bit key for n ∈ {16, 24, 32}. Since the
key length of Simeck is always 4n we use lazy writing in the
sequel and simply write Simeck2n throughout the study.
The rotation amounts for all Simeck versions are (a, b, c) =
(5, 0, 1).

TABLE 3 The notations used throughout the paper

Notation Description

x = (xn−1, …, x1, x0) Binary vector of n bits; xi is the bit in position
i with x0 the least significant one

x ⊙ y Vectorial bitwise AND between x and y

x ⊕ y Vectorial bitwise XOR between x and y

x‖y Concatenation of x and y

x|y Vectorial bitwise OR between x and y

wt(x) Hamming weight of x

x ⋘ γ, Sγ(x) Circular left shift of x by γ bits

x ⋙ γ, S−γ(x) Circular right shift of x by γ bits

(I ⊕ Sγ) (x) x ⊕ Sγ(x)

x Bitwise negation

x
⃖ x ⋘ 1
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2.1.2 | The key schedule

The non‐linear key schedule of Simeck reuses the cipher's
round function to generate the round keys. Let K = (t2, t1, t0,
k0) be the 4n‐bit master key for Simeck2n. The registers of the
key schedule are loaded with

K ¼ k3kk2kk1kk0

for K the master key, and the sequence of round keys (k0, …,
kT−1) is generated with

krþ1
¼ tr

where

trþ3 ¼ ki ⊕ f5;0;1 trð Þ⊕ cr;

and the round constants are cr ∈ f0xfffc;0xfffdg. A
single round of Simeck is depicted in Figure 1a.

Simon, conversely, uses a linear key schedule to generate
the round keys. Let K = (km−1, …, k1, k0) be a master key for
Simon2n, where ki ∈ Fn

2 . The sequence of round keys kr is
generated by

kiþm

¼

kr ⊕ I ⊕ S−1� �
S−3krþ1 ⊕ cr; if m¼ 2

kr ⊕ I ⊕ S−1� �
S−3krþ2 ⊕ cr; if m¼ 3

kr ⊕ I ⊕ S−1� �
S−3krþ3 ⊕ krþ1
� �

⊕ cr; if m¼ 4

8
><

>:

where cr ∈ f0xfffc;0xfffdg, and 0 ≤ r ≤ (T − 1). A
single round of Simon with m = 4 is depicted in Figure 1b.

2.1.3 | Previous work

The security of Simon‐like ciphers has been widely explored
over the last few years and a large number of cryptanalytic
techniques were applied to it. To name just a few: linear
cryptanalysis [12, 13], differential cryptanalysis [9, 12, 14],
impossible differential cryptanalysis [15], related‐key

differential cryptanalysis [11], integral cryptanalysis and the
division property [16–19]. For a comparison of our results with
relevant previous work see Table 1.

2.2 | Rotational‐XOR cryptanalysis

Rotational cryptanalysis [20, 21] is a related‐key chosen‐
plaintext attack investigating the propagation of rotational
pairs, that is, pairs of the form (x, x ⋘ γ). This attack is
thwarted when a constant that is not rotation‐invariant, that is,
a constant c such that c ≠ (c ⋘ γ) is injected into the rotational
pair.

Rotational‐XOR cryptanalysis [1] is a generalized attack
method which takes these constants into account. Whereas, the
original technique was thwarted by the injection of round
constants that are not rotational‐invariant, RX‐cryptanalysis
overcomes this problem by integrating their effect into the
analysis of the propagation probability. Rather than consid-
ering just a rotational pair as in the case of rotational crypt-
analysis, RX‐cryptanalysis considers an RX‐pair of the form
(x, Sγ(x) ⊕ α) where α is called the translation. The technique
was successfully applied to ARX‐based primitives, including
the block cipher Speck [2] and the PRF SipHash [22].

3 | ROTATIONAL‐XOR CRYPTANALYSIS
OF AND‐RX CONSTRUCTIONS

AND‐RX constructions are similar in concept to ARX
constructions where the non‐linear operation (i.e., modular
addition) is replaced with a vectorial bitwise AND. Since all
operations are now bit oriented, such constructions are al-
ways rotation‐invariant. More generally, they are structurally
invariant under any affine transformation of the bit‐indices as
was shown in [12]. Superficially, it is believed that this
invariance cannot be preserved over a large number of
rounds if non‐invariant constants are injected into the state
since they will break the symmetry between bits in different
positions. Despite their close relation to ARX constructions,
the security of AND‐RX ciphers against RX‐cryptanalysis has
not received much attention. Now we are set to rectify this
omission.

F I GURE 1 Illustration of the Simeck and Simon ciphers. (a) One round of Simeck. (b) One round of Simon with m = 4
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3.1 | The expected probability of an
RX‐transition

In [1], an RX‐pair was defined to be a rotational pair with
rotational offset γ under translations δ1 and δ2, that is, it is the
pair x ⊕ δ1; ðx ⋘ γÞ⊕ δ2ð Þ. We opt for a slightly different
notation with x and x0 = (x ⋘ γ) ⊕ δ, or x; ðx ⋘ γÞ⊕ δð Þ as
an RX‐pair.

Definition 3.1 ([1] (adapted)). The RX‐difference of x
and x0 = (x ⋘ γ) ⊕ δ is denoted by

Δγ x; x0ð Þ ¼ x0 ⊕ ðx ⋘ γÞ;

where δ ∈ Fn
2 is a constant and γ is the rotational offset with

0 < γ < n.
The propagation of an RX‐difference Δr(x, x0) through

linear operations of the AND‐RX structure is deterministic
and follows these rules:

� XOR. For two input RX‐pairs x; ðx ⋘ γÞ⊕ δ1ð Þ and
y; ðy ⋘ γÞ⊕ δ2ð Þ, their XOR is the RX‐pair
z; z0ð Þ ¼ x ⊕ y; ðx ⊕ yÞ⋘ γð Þ⊕ δ1 ⊕ δ2ð Þ;

� Cyclic rotation by η bits. The cyclic rotation of each of the
values in x; ðx ⋘ γÞ⊕ δð Þ by η bits is the RX‐pair
z; z0ð Þ ¼ x ⋘ η; x ⋘ ðγ þ ηÞð Þ⊕ ðδ ⋘ ηÞð Þ;

� XOR with a constant c. The XOR of a constant c to each
of the values in the RX‐pair x; ðx ⋘ γÞ⊕ δð Þ is the RX‐
pair z; z0ð Þ ¼ x ⊕ c; ðx ⋘ γÞ⊕ δ ⊕ cð Þ, the corresponding
RX‐difference is Δγc = c ⊕ (c ⋘ γ)

all with probability 1.
Intuitively, the bitwise nature of the AND operation re-

stricts the propagation of an RX‐difference compared to
modular addition. When two rotational pairs enter into the
vectorial AND operation, the rotational relation is preserved
with probability 1 due to the localised nature of bit‐oriented
operations. If the inputs form an RX‐pair with translation δ
≠ 0 the propagation of the RX‐difference through the vectorial
AND is probabilistic and its probability is given by the
following theorem.

Theorem 1 Let (x, (x ⋘ γ) ⊕ α) and (y, (y ⋘ γ) ⊕ β)
be two RX‐pairs where γ is the rotation offset and (α,
β) the translations, respectively. α; β ∈ Fn

2 are inde-
pendent constants, and 0 < γ < n. Then, for an output
translation Δ (Δ is a constant) it holds that:

Pr½ ðx ⊙ yÞ⋘ γð Þ⊕ Δ¼ ðx ⋘ γÞ⊕ αð Þ⊙ ðy ⋘ γÞ⊕ βð Þ�¼

ð1Þ

Pr ðx ⊙ yÞ⊕ Δ¼ ðx ⊕ αÞ⊙ ðy ⊕ βÞ½ �; ð2Þ

that is, the propagation probability of an RX‐difference
with translations (α, β) through ⊙ is the same as that of
a normal XOR‐difference through the same operation
when the translations are considered as input XOR‐
differences.

Proof To prove the theorem, we distribute the right
hand side of (1) as

ðx ⋘ γÞ⊕ αð Þ⊙ ðy ⋘ γÞ⊕ βð Þ

¼ ðx ⊙ yÞ⋘ γð Þ⊕ ðx ⋘ γÞ⊙ βð Þ⊕
ðy ⋘ γÞ⊙ αð Þ⊕ ðα ⊙ βÞ:

Similarly, distributing the right hand side of (2) we get

x ⊕ αð Þ⊙ y ⊕ βð Þ ¼ x ⊙ yð Þ⊕ x ⊙ βð Þ⊕ y ⊙ αð Þ⊕ α ⊙ βð Þ:

Rewriting Theorem 1 as

Pr ðx ⊙ yÞ⋘ γð Þ⊕ Δ¼ ðx ⊙ yÞ⋘ γð Þ⊕ ðx ⋘ γÞ⊙ βð Þ½

⊕ ðy ⋘ γÞ⊙ αð Þ⊕ α ⊙ βð Þ�¼

ð3Þ

Pr ðx ⊙ yÞ⊕ Δ¼ ðx ⊙ yÞ⊕ ðx ⊙ βÞ⊕ ðy ⊙ αÞ⊕ ðα ⊙ βÞ½ �;

ð4Þ

the proof is completed by observing that (x ⊙ y) ⋘ γ, x ⋘ γ,
and y ⋘ γ have the same probability distribution as x ⊙ y, x,
and y, respectively, due to the rotation‐invariance of bit‐
oriented operations. □

Kölbl et al. showed in [12] that in the special case of
Simon‐like ciphers (e.g., Simon and Simeck) where y = Sa−b(x),
the difference propagation distribution (and thus, the RX‐
propagation distribution) is given by the following
proposition.

Proposition 1 For Sa(x)⊙ Sb(x) where gcd(n, a− b)= 1,
n is even, a > b and x¼ xn−1;…; x1; x0ð Þ ∈ Fn

2 , the
difference propagation distribution table and RX‐
propagation distribution are given by

Pðα → βÞ ¼

2−nþ1 if α¼ 0xf⋯f; wtðβÞ ≡ 0 mod 2;

2−ω if α ≠ 0xf⋯f; β ⊙ SaðαÞ ∣ SbðαÞ
� �

¼ 0;

β ⊕ Sa−bðβÞ
� �

⊙ SaðαÞ⊙ S2a−bðαÞ⊙ SbðαÞ
� �

¼ 0;
0 otherwise

8
>>><

>>>:
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where
ω¼ wt SaðαÞ ∣ SbðαÞ

� �
⊕ SaðαÞ⊙ S2a−bðαÞ⊙ SbðαÞ
� �� �

.

Proof The proof for the difference propagation dis-
tribution was given in [12]. The case for RX‐
propagation follows then from Theorem 1. □

3.2 | Discussion

Based on Theorem 1, it can be seen that the RX‐difference
passes through the vectorial AND component of a cipher
with the same probability as an XOR‐difference. However, the
resulting RX‐characteristics are in general different from the
corresponding (related‐key) differential characteristics, due to
the XOR of constants in the round function which affects the
propagation.

It is interesting to see that in ARX ciphers, the proba-
bility for the rotational‐transition part of the RX‐transition is
maximised with 2−1.415 when γ ∈ {1, n − 1} and decreases
for other γ. Conversely, the same transition passes with
probability 1 through the vectorial AND in AND‐RX ci-
phers. In other words, a rotational pair would propagate with
probability 1 through all AND‐RX operations, but only with
some probability p < 1 through the ARX operations. We
conclude that in general, round constants are more critical in
AND‐RX constructions compared to ARX ones, and hence
that the former are more susceptible to RX‐cryptanalysis than
the latter.

4 | AUTOMATED SEARCH OF RX‐
CHARACTERISTICS IN SIMON‐LIKE
CIPHERS

Similar to other statistical attacks, RX‐cryptanalysis works in
two phases: offline and online. In the offline phase, the ad-
versary is searching for a distinguishable property with respect
to the algorithm's structure. Having found such a property, the
adversary tries to detect it from data collected in the online
phase.

Automated search methods are a common way to assist
finding such a property (i.e., Phase 1). The idea behind these
tools is to model the search problem as a set of constraints and
solve it using one of the available constraint solvers. For ciphers
using Boolean and arithmetic operations, the search problem can
be converted into a Boolean Satisfiability Problem (SAT) or a
satisfiability module problem (SMT). The respective solver then
returns an answer on whether all constraints can be satisfied
simultaneously, and if the answer is positive it also returns a valid
assignment. A number of ARX and AND‐RX ciphers were
studied using automatic search tools, in the context of differ-
ential cryptanalysis, linear cryptanalysis, division property and
RX‐cryptanalysis [2, 23–27].

In this section, we give a detailed description of an auto-
matic search model for RX‐characteristics in Simon‐like
ciphers.

4.1 | The common round function

From Theorem 1, we learn that the propagation of RX‐
differences through the AND operation follows a probabi-
listic rule, with a probability distribution as in Proposition 1.
We use Δ1a

r and Δ1b
r to denote the two n‐bit vectors repre-

senting RX‐differences at the beginning of round r, and Δ1dr

the n‐bit vector representing the RX‐difference at the output
of the vectorial AND at the same round. A schematic view of
this notation is depicted in Figure 2.

Then, the following two Boolean equations should be
satisfied simultaneously for the propagation of RX‐differences
through the vectorial AND to be valid

0¼ Δ1d
r ⊙ Sa Δ1arð Þ ∣ Sb Δ1arð Þ
� �

; ð5Þ

0¼ Δ1d
r ⊕ Sa−b Δ1d

r
ð Þ

� �
⊙

Sa Δ1arð Þ⊙ S2a−b Δ1arð Þ⊙ Sb Δ1arð Þ
� �

:

ð6Þ

In simple words, (5) ensures that any active bit in Δ1dr

results from at least one active bit in the corresponding posi-
tion of Δ1ar. If a bit Δ1dr was activated by exactly one bit from
Δ1ar, (6) ensures that either a second bit in Δ1dr is active, or
that another active bit in Δ1ar had deactivated the said bit. This
encodes the implicit expansion function, that is, the de-
pendency between the bit in position i and that in position
i + a − b before they enter the vectorial AND.

If the propagation is valid, the transition probability in
round r is given by 2−wr

d , where

wr
d ¼ wt

�
Sa Δ1arð Þ ∣ Sb Δ1arð Þ
� �

⊕

Sa Δ1arð Þ⊙ S2a−b Δ1arð Þ⊙ Sb Δ1arð Þ
� ��

;

ð7Þ

is said to be the weight of the non‐linear transition in round r.
In addition, the propagation of an RX‐difference through

the linear operations is described by the following constraints:

Δ1b
rþ1
¼ Δ1ar; ð8Þ

Δ1arþ1 ¼ Δ1d
r ⊕ Δ1b

r ⊕ Sc Δ1arð Þ⊕ Δ1k
r
: ð9Þ

4.2 | The key schedule of Simeck

The key schedule of Simeck is modelled analogously to the
round function. Let Δ1kar, Δ1kbr and Δ1kdr be n‐bit variables
in round r which denote the left input RX‐difference, the right
input RX‐difference, and the output RX‐difference of the
vectorial AND (see Figure 3a). As before, the following two
Boolean equations should be satisfied simultaneously for the
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propagation of RX‐differences through the non‐linear part of
Simeck's key schedule to be valid:

0¼ Δ1kd
r ⊙ Sa Δ1karð Þ ∣ Sb Δ1karð Þ
� �

; ð10Þ

0¼ Δ1kd
r ⊕ Sa−b Δ1kd

r
ð Þ

� �
⊙

Sa Δ1karð Þ⊙ S2a−b Δ1karð Þ⊙ Sb Δ1karð Þ
� �

;
ð11Þ

with weight wr
k set as

wr
k ¼ wt

�
Sa Δ1karð Þ ∣ Sb Δ1karð Þ
� �

⊕

Sa Δ1karð Þ⊙ S2a−b Δ1karð Þ⊙ Sb Δ1karð Þ
� ��

:

ð12Þ

The propagation of RX‐difference through the linear op-
erations of the key schedule is modelled by the following
constraints:

Δ1kb
rþ1
¼ Δ1kar; ð13Þ

Δ1karþ3 ¼ Δ1kd
r ⊕ Δ1kb

r ⊕ Sc Δ1karð Þ⊕ Δ1cr: ð14Þ

Finally, the key schedule and the round function are linked
via the following constraint:

Δ1k
r
¼ Δ1kb

r
: ð15Þ

4.3 | The key schedule of Simon

The key schedule of Simon is different. For brevity, we only
describe the model for Simon2n/4n; translating this model to
other variants is straightforward. Let Δ1kar, Δ1kar+1, Δ1kar+2

and Δ1kar+3 be n‐bit variables denoting the RX‐differences in
the state of the key expansion function at the beginning of
round r, and let Δ1kar+4 denote the RX‐difference fed back to
the leftmost register at the end of the round (see Figure 3b);
then, the propagation of the key RX‐differences is given by

Δ1karþ4 ¼ S−3 Δ1karþ3
� �

⊕ Δ1karþ1

⊕ S−1 S−3 Δ1karþ3
� �

⊕ Δ1karþ1
� �

⊕ Δ1kar ⊕ Δ1cr;
ð16Þ

and the injection of the subkey into the state in round r by

Δ1k
r
¼ Δ1kar: ð17Þ

4.4 | The objective function

To evaluate the model, we define an objective function, that is,
a quantity that the model is trying to optimise and which can
be used to compare the 'quality’ of different solutions. The
original model in [2], which was the first model to search for
RX‐differences in ciphers with a non‐linear key schedule,
operated in two steps. First, a good key RX‐characteristic was
sought. Then, a good RX‐characteristic was sought for the
state with respect to the selected key RX‐characteristic.

In this study, we take a different approach. Rather than
considering the two search problems separately, we generate
good RX‐characteristics 'on‐the‐fly’ without a priori fixing the
key characteristic. We start by searching for RX‐characteristicsF I GURE 2 Notation of the RX‐differences in the encryption function

F I GURE 3 Notations of the RX‐differences. (a) Notation of the RX‐differences with a non‐linear key schedule. (b) Notation of the RX‐differences with a
linear key schedule
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minimising the total weight in both the data and key parts,
namely wd + wk. Then, conditioned on the total weight
wd + wk fixed to the minimum found, we further minimise the
weight in the data part wd in order to improve the data
complexity of the attack.

For Simon, this strategy would yield the same results as the
strategy in [2] since wr

k ¼ 0 for all r due to the linear key
schedule. The objective function for the R‐round Simon model
is expressed as

minðwÞs:t:

maxðRÞ s:t:

wð ¼
XR

r¼1
wr

d

 !
�

∧ ðw ≤ 2nÞ:

ð18Þ

For Simeck, we first observe that the key difference
injected in round r is actually generated in round r − 4 where
its cost is 'paid’. As a result, the total probability of an R‐round
characteristic in the key schedule part only needs to take into
account the cost of rounds 1 to R − 4. Hence, we set the
objective function as follows:

min wdð Þ s:t:

minðwÞ s:t:

max ðRÞ s:t:

wð ¼
PR

r¼1
wr

d þ
PR−4

r¼1
wr

k

� ��

∧ ðw ≤ 4nÞ

∧ wd ¼
PR

r¼1
wr

d

� �

∧ wd ≤ 2nð Þ:

ð19Þ

4.5 | Compatibility

In [7], Sadeghi et al. presented a MILP model for outputting a
solution with respect to a given RX‐characteristic, that is, a pair
of related keys and a right pair satisfying the said characteristic.
They observed that some of the RX‐characteristics in [6, 8]
cannot produce right pairs with respect to any key due to
global contradictions; such RX‐characteristics are said to be
incompatible.

In this study, we try to construct a model which can
describe the RX‐difference transitions and value transitions
simultaneously. The basic idea is straightforward, the models to
describe the RX‐difference transitions and value transitions
will be independently constructed. Then, construct a model of
the difference‐value relations in each round and use it to
connect the RX‐difference transitions and value transitions.
Once such a model is constructed, the found characteristics are
guaranteed to be valid.

Let krþ1
¼fks tr2; t

r
1; t

r
0; k

r
; cr

� �
, where fks tr2; t

r
1; t

r
0; k

r
; cr

� �

denotes the function deriving the sub‐key kr+1 from the

state of the key schedule in round r and the round constant
cr. Further, let kr and kr

ð Þ0 denote the n‐bits sub‐keys to
round r, with respect to the master keys K and K0. Then,
the following constraints should be satisfied for the value
transitions of keys:

krþ1
¼ fks trþ2; trþ1; tr; kr

; cr
� �

; ð20Þ

krþ1
� �

0 ¼ fks trþ2
� �

0; trþ1
� �

0; trð Þ0; kr
ð Þ0; cr

� �
: ð21Þ

In order to describe the difference‐value relations in key
schedule we added the following constraints:

Δ1k
r
¼ kr

←
⊕ kr
ð Þ0; ð22Þ

Δ1k
rþ1
¼ krþ1

⟵
⊕ krþ1
� �

0: ð23Þ

Once the RX‐characteristic for the key schedule is deter-
mined to be compatible, let xrþ1; yrþ1ð Þ b¼ R xr; yr; kr

ð Þ¼

fa;b;c xrð Þ⊕ yr ⊕ kr
; xr

� �
denote the encryption function for

round r taking the pair (xr, yr) as left and right inputs,
respectively, kr the sub‐key; and returning (xr+1, yr+1) as the
left and right outputs, respectively.

Then, the following constraints should be satisfied for the
value transitions of messages:

xrþ1; yrþ1
� �

¼ ha;b;c xr; yr; kr
ð Þ; ð24Þ

xrþ1
� �

0; yrþ1
� �

0
� �

¼ ha;b;c xrð Þ0; yrð Þ0; kr
ð Þ0ð Þ: ð25Þ

Finally, the following constraints should be satisfied for the
RX‐characteristic to be compatible:

Δ1xr ¼ xr
←

⊕ xrð Þ0; ð26Þ

Δ1yr ¼ yr
←

⊕ yrð Þ0; ð27Þ

Δ1xrþ1 ¼ krþ1
⟵

⊕ xrþ1
� �

0; ð28Þ

Δ1yrþ1 ¼ yrþ1
⟵

⊕ yrþ1
� �

0: ð29Þ

5 | RX‐DIFFERENTIAL
CHARACTERISTICS IN Simeck AND
SIMON

Now that we have a model for finding compatible RX‐
characteristics in AND‐RX constructions, we can use an
SMT solver to evaluate it. We describe the model using the
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SMT‐LIB language and apply the Boolector solver with several
parameter settings. Our experiments were carried out on a
laptop having an Intel Core i7‐7700HQ CPU running at
2.80 GHz with an 8 GB RAM and a server with Intel Xeon(R)
Core E5‐2609 v2 CPU running at 2.50 GHz. The source code
can be found in [28].

5.1 | Simeck

Using the above model, we found RX‐characteristics that cover
up to 20, 27 and 34 rounds for variants of Simeck with block
size of 32, 48 and 64 bits, respectively. These results are pre-
sented in Table 4. Whereas distinguishers of similar length were
presented in [6, 8], this section replaces some of them with
compatible ones (for a discussion on compatibility, see Sec-
tion 4.5). We further prove that there exists no RX‐
characteristic with wd + wk ≤ 64 for more than 20 rounds
of Simeck32; therefore, our 20‐round RX‐characteristic gives a
tight bound on the number of rounds that can be distinguished
using RX‐cryptanalysis.

Recalling the previous results in Table 1 we see that pre-
viously published distinguishers cover up to 15, 19 and 25
rounds of Simeck32, Simeck48 and Simeck64, respectively,
whereas our RX‐characteristics improve the number of
distinguished rounds by 5, 8 and 9 rounds, albeit for a smaller
key class than the previous results. Benchmarking for the same
number of rounds, detecting our distinguishers requires fewer
data.

5.1.1 | Experimental verification

To empirically validate our results, we implemented the 15‐
round RX‐characteristic presented in Table 5. We first sam-
ple a random 64‐bit master key K = (k3‖k2‖k1‖k0) and
obtain its respective matching key K0 = S1(K) ⊕
(0001‖0004‖0008‖0014). We then check if the resulting sub‐
keys satisfy the required RX‐difference. If not, a new K is
picked and the above process is repeated until a good pair (K,
K0) is found. This pair of related keys is used to encrypt 232

plaintext pairs. For each encrypted plaintext pair, we check if
the intermediate RX‐differences match those of the RX‐
characteristic.

We sampled about 233.6 = 226.6+7 keys, out of which 27

satisfied the requested key RX‐difference. For these keys, the
average probability that a randomly selected plaintext satisfies
the RX‐characteristic was around 2−18.005. These figures
confirm our claims.

5.2 | Simon

Interestingly, despite their similar structure, finding good RX‐
characteristics for Simon seems to be harder than for Simeck.
The average run‐time for finding solutions or proving

unsatisfiability appears to be much longer in the former than
the latter for the same number of rounds and block size. For
the 10 instances of Simon, we found RX‐distinguishers
covering a range of 14–22 rounds; these results are pre-
sented in Table 6.

TABLE 4 Weights of the best found RX‐characteristics for round‐
reduced Simeck32, Simeck48 and Simeck64 with γ = 1a

SIMECK32

Rounds 10 11 12 13 14 15 16 17 18 19 20

Data 6 10 12 12 16 18 18 18 22 24 26

Key 8 12 12 18 18 20 28 32 30 34 34

SIMECK48

Rounds 15 16 17 18 19 20 21 22 23 24 25 26 27

Data 18 18 18 22 24 26 30 30 32 36 38 40 44

Key 20 28 32 30 34 34 36 40 44 46 46 48 50

SIMECK64

Rounds 22 23 24 25 26 27 28 29 30 31 32 33 34

Data 28 30 32 34 40 40 42 42 46 48 50 50 56

Key 40 44 46 48 50 54 58 60 64 66 70 72 70

aFor each of the ciphers we report the results in three rows: number of distinguished
rounds, weights of the round function part, and weights of the key schedule part. For
instance, the best found RX‐characteristic covering 20‐round Simeck32 have a data
probability of 2−26 and a key probability of 2−34.

TABLE 5 A 15‐round RX‐characteristics in Simeck32/64

Round RX‐difference in key RX‐difference in data

0 0014 (0000‖0010)

1 0008 (0004‖0000)

2 0004 (0000‖0004)

3 0001 (0000‖0000)

4 0002 (0001‖0000)

5 0002 (0001‖0001)

6 0000 (0000‖0001)

7 0003 (0001‖0000)

8 0002 (0000‖0001)

9 0007 (0003‖0000)

10 0001 (0000‖0003)

11 0002 (0002‖0000)

12 0008 (0004‖0002)

13 0002 (0002‖0004)

14 0000 (0000‖0002)

15 (0002‖0000)

Prob. 2−26 2−18
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6 | ON THE EFFECT OF THE ROUND
CONSTANTS

Lightweight block ciphers often use a simple or even trivial key
expansion algorithm to present a trade‐off between suitable
security and small implementations for resource‐constrained
devices. Using round constants to break the similarities be-
tween round functions is a typical countermeasure to protect
block ciphers against self‐similarity cryptanalysis. For instance,
the key schedule of Simon and Simeck employ round constants
specifically to eliminate slide properties and rotational attacks,
different round constants in the key schedule of rectangle [29]
prevent slide attacks and so on. Since the values of round
constants do not affect the propagation of differences in dif-
ferential cryptanalysis of ciphers, however, in RX‐differential
the XOR of round constants introduce RX‐differences into
the propagation. This implies that the effect of round con-
stants cannot be ignored in RX‐cryptanalysis, as opposed to
differential cryptanalysis.

As shown in Section 3, it can be seen that the RX‐
difference Δγ(x, x0) passes through the 'XOR with a constant
c’ operation is deterministic with probability 1 and the corre-
sponding RX‐difference is Δγc = c ⊕ (c ⋘ γ). There are two

components in Δγc : (1) the rotational offset γ; and (2) the value
of c. To understand how each of these two components affects
the resistance of the resulting cipher to RX‐cryptanalysis, we
define additional variants:

� (A) The Simon‐like ciphers. We consider ciphers with the
same specification as Simon and Simeck except that the
round constants vary.

� (B) The round constants used in the key expansion algo-
rithm. Here we consider six types of constants, where the
Alzette‐like and Prince‐like round constants are provided in
Appendices A and B, respectively. The last type of round
constants is 0�5555/0�aaaa, where we replace the alter-
natively round constants 0�fffc/0�fffd in Simeck by
0�5555/0�aaaa.

As shown in Table 7, a variant is denoted by Sim(A, B)
where Sim means that the Simon‐like ciphers and the tuple (A,
B) define the controlled variables such that (A) defines the type
of the cipher algorithm and (B) the round constants. For
example, Simeck32 can be denoted by Sim(1, 1), Simon32 can
be denoted by Sim(2, 2).

6.1 | The rotation offset γ

We begin by investigating the effect of rotation offset γ on the
resistance against RX‐cryptanalysis. When the round constant
is given, the value of Δγc with different rotation offset γ
(0 < γ < n) can be calculated. To study the influence of the
rotation offset, we first fix the parameters such that (A) = {1},
(B) = {1} and evaluate for γ ∈ {1, 2, …, 15}, that is evaluate
Simeck32 for γ ∈ {1, 2, …, 15}.

The results are shown in Table 8. It can be seen that the
length of the RX‐characteristics is maximised with 20 rounds

TABLE 6 The weights of the optimal and best‐found RX‐characteristic in round‐reduced variants of all Simon versions with γ = 1a

Rounds 6 7 8 9 10 11 12 13 14 15 16 17 18

Simon32/64 0 4 6 10 14 20* 24* 30* 32* ‐ ‐ ‐ ‐

Simon48/72 2 4 8 12 16 26* 36* 40* 48* ‐ ‐ ‐ ‐

Simon48/96 0 4 6 10 14 24* 32* 32* 38* 46* ‐ ‐ ‐

Simon64/96 4 8 10 16 18 24* 36* 40* 52* 54* 64* ‐ ‐

Simon64/128 0 4 6 10 14 22* 34* 36* 40* 48* 64* ‐ ‐

Rounds 10 11 12 13 14 15 16 17 18 19 20 21 22

Simon96/96 28* 40* 48* 64* 80* 93* ‐ ‐ ‐ ‐ ‐ ‐ ‐

Simon96/144 16 26* 32* 40* 50* 66* 76* 84* 96* ‐ ‐ ‐ ‐

Simon128/128 30* 40* 50* 60* 76* 92* 98* ‐ ‐ ‐ ‐ ‐ ‐

Simon128/192 16* 30* 36* 40* 50* 66* 76* 84* 96* 108* 120* ‐ ‐

Simon128/256 12* 24* 32* 40* 44* 56* 66* 70* 82* 90* 94* 104* 120*

aWhen an optimal solution is out‐of‐reach after a reasonable amount of time, we provide the best‐found RX‐characteristics labelled with *. For instance, the best found RX‐characteristic
covering 14‐round Simon32/64 has a data probability of 2−32 for all key pairs with a specified difference.

TABLE 7 The full parameter set for Sim(A,B)

Parameter (A) Cipher (B) Round constants

1 Simeck32 RCSimeck32

2 Simon32 RCSimon32

3 Round counter

4 Alzette‐like

5 Prince‐like

6 0�5555/0�aaaa
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when γ ∈ {1, 15}. For simplicity, we choose γ = 1 in this paper.
As shown in Table 9, the hamming weight of Δ1c and Δ15c is
lower than the other case and we conjecture that the RX‐
characteristics penetrate more rounds when the hamming
weight of the RX‐difference Δγc is lower. In fact, compared
with differential cryptanalysis, the round constants generate
RX‐differences Δγc with a large hamming weight will make the
hamming weight of the input difference of the next round

become larger, which makes the propagation probability
become lower, as predicted by Proposition 1.

To further verify the conjecture, we choose round con-
stants such that the resulting RX‐difference Δγc has hamming
weight of either 16 or 0, for instance the constants 0�5555/
0�aaaa. The result is shown in Table 10 and we can clearly see
that the significant difference for Sim(1, 6) with odd γ and Sim
(1, 6) with even γ.

Meanwhile, note that for an algorithm to resist against RX‐
cryptanalysis, it needs to resist all possible options of γ. In
other words, the new variant Sim(1, 6) is more vulnerable to
RX‐cryptanalysis than Simeck32 under some rotational
amounts. This means that the ability of the ciphers to resist
RX‐cryptanalysis can be affected by the hamming weight of
the Δγc.

6.2 | The constant value c

From Section 6.1, we can see that the ability of the ciphers to
resist RX‐cryptanalysis can be affected by the hamming weight
of the Δγc when c is fixed. In this section, we fix the rotation
offset γ = 1 to determine the effect of specific round constants
in Simon‐like ciphers. We first consider a sequence of variants
Sim(1, 2), Sim(1, 3), Sim(1, 4) and Sim(1, 5). These variants
differ from Simeck32 in the round constants where the con-
stants are RCSimon32, the round counter, Alzette‐like and
Prince‐like round constants, respectively. Similarly, we consider
the variants Sim(2, 1), Sim(2, 3), Sim(2, 4) and Sim(2, 5).

The results are presented in Tables 11 and 12. When the
parameter (B) takes a value from {1, 2, 3}, the optimal RX‐
distinguishers have similar strength in the number of covered
rounds. However, there is a significant difference for
(B) ∈ {4, 5} when using Alzette‐like and Prince‐like con-
stants instead of the round constants of Simeck, Simon and
Speck which provide stronger resistance against RX‐
cryptanalysis. This means that the resistance of the ciphers
against RX‐cryptanalysis can be also affected by the specific
choices of the round constants.

Since the propagation of an RX‐difference through the
round constant in round r is modelled by injecting a difference
Δγcr, where Δγcr = cr ⊕ (cr ⋘ γ). To circumvent RX‐
differential attack, we suggest to design the round constants
that satisfy the following conditions. (1) The hamming weights
of cr and Δγcr are as large as possible; (2) zeroes and ones in cr

and Δγcr are distributed more evenly; (3) the round constants
are independent of each other. Under such conditions, the
cipher is more likely to have a stronger resistance against RX‐
cryptanalysis.

7 | A KEY RECOVERY ATTACK FROM
AN RX‐CHARACTERISTIC

In this section, we use a 23‐round RX‐characteristic in a 28‐
round key recovery attack on Simeck64. This key recovery
algorithm is similar to that of other statistical attacks. First, a

TABLE 8 The effect of different rotation offset γ on the resistance of
the Sim(1, 1) (Simeck32) against RX‐cryptanalysisa

Rounds 10 11 12 13 14 15 16 17 18 19 20

γ = 1 Data 6 10 12 12 16 18 18 18 22 24 26

Key 8 12 12 18 18 20 28 32 30 34 34

γ = 2 Data 8 12 12 12 16 20 22 26 28 28

Key 8 10 16 20 24 28 28 28 32 36

γ = 3 Data 10 12 14 16 20 22 24 22 24

Key 10 12 16 22 22 26 30 36 38

γ = 4 Data 8 12 12 16 20 22 22 26 24

Key 10 10 14 18 22 24 28 30 36

γ = 5 Data 10 12 14 18 20 22 28

Key 6 14 18 20 26 30 30

γ = 6 Data 10 14 16 20 22 24 26

Key 12 14 20 22 28 36 38

γ = 7 Data 10 14 16 20 24 26*

Key 14 16 20 24 30 38*

γ = 8 Data 8 14 16 18 18 24

Key 16 16 22 28 36 38

γ = 9 Data 12 14 16 20 24 26*

Key 8 16 20 24 30 38*

γ = 10 Data 10 14 14 20 18 22 26*

Key 12 14 20 22 34 38 38*

γ = 11 Data 8 12 14 18 20 22 26

Key 12 14 18 20 26 30 32

γ = 12 Data 10 12 12 16 20 22 22 24 24

Key 6 10 14 18 22 24 28 34 36

γ = 13 Data 10 12 14 16 20 20 20 22 26

Key 10 12 16 22 22 28 34 36 38

γ = 14 Data 8 12 12 16 20 24 22 20 24

Key 8 10 16 18 22 24 28 36 38

γ = 15 Data 6 10 12 12 16 18 16 18 22 24 26

Key 8 12 12 18 18 20 30 32 30 34 34

aFor each of the γ we report the results in two rows: probability of the round function
part, and probability of the key schedule part. When an optimal solution is out‐of‐reach
after a reasonable amount of time, we provide the best‐found RX‐characteristics
labelled with *. For instance, the best found RX‐characteristic covering 16‐round
Simγ = 10(1, 1) have a data probability of 2

−26 and a key probability of 2−38.
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set of plaintexts is encrypted to cover all the distinguisher
rounds plus a few extra ones. Then, enough key bits are
guessed to excavate the distinguisher under the assumption
that only right guesses will allow to detect it, whereas wrong
guesses will bury it deeper in. In the context of linear
cryptanalysis this is called the wrong‐key‐randomisation hy-
pothesis due to Harper et al. [30] and we believe that it is
reasonable to extend the term also to differential‐ and RX‐
cryptanalysis.

We begin by describing the attack algorithm then continues
to apply it to Simeck64.

7.1 | Attack procedure

Let EncrkðPÞ be an r‐round encryption of a plaintext p under a
key k and let Dd be an RX‐characteristic with probability p
covering r1< r rounds of the cipher;Dk is its corresponding RX‐
characteristic for the key part. The attack procedure is as follows:
for a small constant q we encrypt q ⋅ p−1 plaintext pairs

C ¼ Encr1þr2K ðPÞ;
C0 ¼ Encr1þr2K 0 P0ð Þ:

TABLE 10 The effect of different rotation offset γ on the resistance
of the Sim(1, 6) against RX‐cryptanalysis

Rounds 10 11 12 13 14 15 16 17 18 19 20 21

γ = 1

Data 22* 20* 24*

Key 22* 34* 38*

γ = 2

Data 8 8 10 12 14 16 18 20 20 22 24 26

Key 8 12 14 14 16 18 22 24 30 32 36 38

TABLE 12 : Fix the parameter (A) = 2, and evaluate the effect of
different round constants [Parameter (B)] on the resistance of the cipher
against RX‐cryptanalysis with γ = 1

Rounds 6 7 8 9 10 11 12 13 14

Sim(2, 1) 0 4 6 10 14 22* 26* 28*

Sim(2, 2) 0 4 6 10 14 20* 24* 30* 32*

Sim(2, 3) 0 4 6 10 15 24* 26* 30*

Sim(2, 4) 0 5 9 13 18* 25* 31*

Sim(2, 5) 0 4 8 13 19* 24* 30*

*Indicates when an optimal solution is out‐of‐reach after a reasonable amount of time,
we provide the best‐found RX‐characteristics.TABLE 11 Fix the parameter (A) = 1, and evaluate the effect of

different round constants [Parameter (B)] on the resistance of the cipher
against RX‐cryptanalysis with γ = 1

Rounds 10 11 12 13 14 15 16 17 18 19 20

Sim(1, 1)

Data 6 10 12 12 16 18 18 18 22 24 26

Key 8 12 12 18 18 20 28 32 30 34 34

Sim(1, 2)

Data 6 10 12 14 16 18 20 18 22 24 26

Key 8 12 12 18 18 22 22 30 30 34 36

Sim(1, 3)

Data 6 10 12 12 16 18 18 22 22 26

Key 8 12 12 18 18 22 28 30 36 34

Sim(1, 4)

Data 18 18 26*

Key 20 28 30*

Sim(1, 5)

Data 16 22* 22*

Key 22 24* 32*

*Indicates when an optimal solution is out‐of‐reach after a reasonable amount of time,
we provide the best‐found RX‐characteristics.

TABLE 9 The value of Δγc corresponding to different round constants 0�fffc, 0�fffd, 0�5555, 0�aaaa

cnγ 1 2 3 4 5 6 7 8

0�fffc 0�0005 0�000f 0�001b 0�0033 0�0063 0�00c3 0�0183 0�0303

0�fffd 0�0006 0�000a 0�0012 0�0022 0�0042 0�0082 0�0102 0�0202

0�aaaa 0�ffff 0�0000 0�ffff 0�0000 0�ffff 0�0000 0�ffff 0�0000

0�5555 0�ffff 0�0000 0�ffff 0�0000 0�ffff 0�0000 0�ffff 0�0000

cnγ 9 10 11 12 13 14 15

0�fffc 0�0603 0�0c03 0�1803 0�3003 0�6003 0�c003 0�8002

0�fffd 0�0402 0�0802 0�1002 0�2002 0�4002 0�8002 0�0003

0�aaaa 0�ffff 0�0000 0�ffff 0�0000 0�ffff 0�0000 0�ffff

0�5555 0�ffff 0�0000 0�ffff 0�0000 0�ffff 0�0000 0�ffff
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such that (p, p0) are chosen plaintexts satisfying the input RX‐
difference of Dd, and (C, C0) their corresponding ciphertexts
after being encrypted over r1 + r2 rounds under the related keys
(K, K0) following the RX‐characteristic Dk. Then, to detect the
distinguisher, the key bits of (k, k0) involved in the r2 rounds are
guessed, and the ciphertexts are partially decrypted to expose the
bits involved in the output RX‐difference of Dd. If indeed the
RX‐difference of the partially decrypted ciphertexts matches
that of Dd, the guessed bits are put forward as candidates to be
the right guess. Adjusting the small constant c allows controlling
the number of candidate keys at the end of the attack.

Since k and k0 are related keys, a guess for a bit‐value in one
fully determines the corresponding bit in the other. However, in
non‐linear key schedules some bit‐relations are masked by the
non‐linear operations; thus a second guess is required.

The data complexity of the attack isO(q ⋅ p−1), and the time
complexity is r2

r1þr2
⋅ 2h ⋅ 2κ þ 2mn−κ where q is a small constant, p

is the probability of the RX‐characteristic, 2h is the number of
plaintext pairs remaining after the filtering phase, κ is the number
of guessed bits, and mn is the size of the master key.

7.2 | Testing the attack procedure

To demonstrate the effectiveness of the attack, we implement a
key recovery attack on 12‐round Simeck32 using a 9‐round
RX‐distinguisher:

Dd : ð0020;0464Þ→
9
ð0000;0000Þ;

Dk : ð0000;0006;0008;0014Þ→
5

ð0000;0000;0000;0002Þ:

The probabilities in the encryption part and the key schedule
part are 2−12 and 2−10, respectively. Note that they are not the
optimal RX‐characteristics for 9‐round Simeck32.

The characteristic is extended by three rounds to obtain the
difference pattern shown in Table 13. According to Appen-
dix C, the process of key guessing is shown in Table 14, that is,
the required key bits are k11 = {4, 5, 6, 10, 11, 12} to verify the
RX‐difference at the beginning of round 9.

Using 215 plaintext pairs with input RX‐difference
(0020,0464), we collect the encrypted pairs after 12 rounds
under a pair of keys

K ¼ ðE56F;221F;4E01;9C61Þ
K 0¼ ðCADF;4438;9C0A;38D7Þ

which satisfies the RX‐distinguisher Dk. On guessing the six
key bits in Table 14 and setting arbitrary values in the other key
bits of k11, k10 and k9, we decrypt the last three rounds and
count the number of right pairs for the output difference
(0000,0000).

In 16 experiments, we observe that the number of right pairs
is 8, which matches the attack hypothesis: 215 � 2−12 = 23. We
further observe that in all 16 experiments, wrong keys always
result in an insignificant number of right pairs.

7.3 | Attacking 28‐round Simeck64

We now present a key recovery attack on round‐reduced
Simeck64. When the choice of the key of the cryptosystem is
restricted to a weak key class, the attack succeeds if it is faster
than the exhaustive search over this restricted key‐class. And
the larger the weak key class, the better the attack would be.
Thus, our starting point is RX‐characteristic for Simeck64
covering 23 rounds with probability 2−34, for a weak key class
of size 284. The characteristic in the data part is

Dd :ð00000000;00000113Þ→23

ð00000001;00000002Þ

and in the key schedule it is

Dk : ð00000000;00000004;00000008;00000117Þ

→
19
ð00000007;00000002;00000000;00000000Þ:

TABLE 14 The process of key guessing for the key recovery attack
on the 12‐round Simeck32 using the 9‐round RX‐distinguisher

Δ1R11
j

0000 0000 0000 0111 Guessing k1110; k1111; k1112

Δ1R11
j−5

0000 0000 1110 0000 Guessing k114 ; k115 ; k116

Δ1R10
j

0000 0000 0000 0000 No guessing required

Δ1R10
j−5

0000 0000 0000 0000 No guessing required

Δ1k
11
j

0000 0000 0000 0101 No guessing required

Δ1k
10
j

0000 0000 0000 0101 No guessing required

Δ1k
9
j

0000 0000 0000 0111 No guessing required

TABLE 13 Truncated RX‐differential of bits obtained by extending
the path of 9‐round Simeck32 ð0020;0464Þ→9 ð0000;0000Þ in the
bottom direction

0 Δ1L0 0000 0000 0010 0000

Δ1R0 0000 0100 0110 0100

Δ1k0 0000 0000 0001 0100

9 rounds

9 Δ1L9 0000 0000 0000 0000

Δ1R9 0000 0000 0000 0000

Δ1k9 0000 0000 0000 0111

10 Δ1L10 0000 0000 0000 0111

Δ1R10 0000 0000 0000 0000

Δ1k10 0000 0000 0000 0101

11 Δ1L11 0000 0000 ***0 1***

Δ1R11 0000 0000 0000 0111

Δ1k11 0000 0000 0000 0101

12 Δ1L12 000* **0* ***1 ****

Δ1R12 0000 0000 ***0 1***
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A full description of this characteristic can be found in
Table E3 of Appendix E.

Recall from Figures 1b and 2 that kr is the round
key in round r (0 ≤ r ≤ r1 + r2), Δ1Kr is the RX‐
difference of the round key, Δ1ar (Δ1br) is the input
RX‐difference in the left (right) part of the state.
Extending Dd in the bottom direction as described in
Table 15 we obtain the 28‐round RX‐differential which
will be used in the attack.

Collection Phase We use a set ρ of 236 plaintext pairs (p,
p0), such that their RX‐difference is (00000000, 00000113). We
ask for the 28‐round encryption of all the pairs in ρ, under the
related‐key pair (K, K0) in the weak key class to obtain their
respective ciphertexts

C ¼ Enc28K ðPÞ;
C0 ¼ Enc28K 0 P

0ð Þ:

Filtering Phase Observing that the truncated output
RX‐difference after 28 rounds is preserved in 23 of the
ciphertext bits, we directly filter some of the wrong pairs,

leaving 236−23 = 213 pairs to be used in the key guessing
phase.

Key Guessing Phase We guess the necessary round key
bits for partial decryption and verify the RX‐difference at the
end of round 23. A total 50 bits in k24, k25, k26, k27 must be
guessed along with 19 additional bits of
ðk24Þ; ðk25Þ0; ðk26Þ0; ðk27Þ0. The guessed key bits of k and k0 are
(A detailed deduction on the guessed key bits in RX‐attacks is
shown in Appendix C)

k24 ¼ f0; 4; 5; 26g;
k25 ¼ f0; 1; 4; 5; 6; 9; 26; 28; 31g;
k26 ¼ f0; 1; 4; 5; 6; 7; 9; 10; 11; 14; 26; 27; 28; 29; 31g;
k27 ¼ f0; 1; 2; 4; 5; 6; 7; 8; 9; 10; 11; 12; 14; 15; 16; 19; 26; 27;

28; 29; 30; 31g;

and

�
k24
�
0 ¼ f1; 6g;

�
k25
�
0 ¼ f0; 1; 2; 5; 6; 7g;

�
k26
�
0 ¼ f0; 2; 5; 7g;

�
k27
�
0 ¼ f0; 1; 2; 5; 6; 7; 11g:

Attack Complexity The time complexity of this attack is
5
28 ⋅ 213 ⋅ 2ð50þ19Þ þ 2128−50 ≈ 279:5, with data complexity O(236)
and the attack covers 28 rounds of Simeck64.

8 | CONCLUSION

This study generalised the idea of rotational‐XOR crypt-
analysis to AND‐RX ciphers by showing that an RX‐
difference has the same propagation probability as a cor-
responding XOR‐difference going through the same func-
tion. Especially, we present a novel model capturing
compatible distinguishers directly. As far as we know, this is
the first SAT/SMT model to search for an RX‐
characteristic involving the value transitions in Simon‐like
ciphers. We found RX‐characteristics for the Simeck fam-
ily covering up to 20, 27 and 34 rounds for block sizes 32,
48, 64, respectively. These are the longest distinguishers for
this cipher family. For the Simon family we found RX‐
characteristics for 14 rounds of Simon32/64; 14 and 15
for Simon48 with key sizes 72 and 96, respectively; 16
rounds for all versions of Simon64, 15 and 18 rounds for
Simon96 with key sizes 96 and 144, respectively; and 16,
20 and 22, for Simon128 with key sizes 128, 192 and 256,
respectively. We then studied how different round constants
affect the resistance of Simon‐like ciphers against RX‐
cryptanalysis. Moreover, we presented for the first time a
procedure for using an RX‐characteristic in a key recovery
attack and applied it to 28‐round Simeck64.

TABLE 15 Truncated RX‐differential of bits obtained by extending
the path of 23‐round Simeck64 ð00000000;00000113Þ→23
ð00000001;00000002Þ in the bottom directions

0 Δ1L
0 0000 0000 0000 0000 0000 0000 0000 0000

Δ1R
0 0000 0000 0000 0000 0000 0001 0001 0011

Δ1k0 0000 0000 0000 0000 0000 0001 0001 0111

23 rounds

23 Δ1L
23 0000 0000 0000 0000 0000 0000 0000 0001

Δ1R23 0000 0000 0000 0000 0000 0000 0000 0010

Δ1k
23 0000 0000 0000 0000 0000 0000 0000 0101

24 Δ1L
24 0000 0000 0000 0000 0000 0000 00*0 010*

Δ1R24 0000 0000 0000 0000 0000 0000 0000 0001

Δ1k24 0000 0000 0000 0000 0000 0000 0*00 00*1

25 Δ1L
25 0000 0000 0000 0000 0000 0*00 ***0 1***

Δ1R25 0000 0000 0000 0000 0000 0000 00*0 010*

Δ1k
25 0000 0000 0000 0000 0000 0000 ***0 1***

26 Δ1L26 0000 0000 0000 0000 *00* **0* ***1 ****

Δ1R26 0000 0000 0000 0000 0000 0*00 ***0 1***

Δ1k
26 0000 0000 0000 0000 0000 0000 *0*0 1*0*

27 Δ1L
27 0000 0000 000* 00** *0** **** **** ****

Δ1R27 0000 0000 0000 0000 *00* **0* ***1 ****

Δ1k
27 0000 0000 0000 0000 0000 *000 ***0 0***

28 Δ1L
28 0000 00*0 0*** 0*** **** **** **** ****

Δ1R28 0000 0000 000* 00** *0** **** **** ****
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As future work, since both RX‐cryptanalysis and related‐
key differential cryptanalysis are suitable for weak key envi-
ronments and they are the variant of differential cryptanalysis,
we recommend future work to further explore the differences
between them. Also, we consider the search for longer dis-
tinguishers on all versions of Simon.
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APPENDICES

A ALZETTE ‐LIKE ROUND CONSTANTS
Alzette is a 64‐bit ARX‐based S‐box designed by Beierle
et al. [31] at CRYPTO 2020. It is also used as a crucial non‐
linear component of Sparkle permutation family which
submitted to the NIST lightweight cryptography stand-
ardisation process [32]. Alzette has eight variants, and the
parameters are as follows:

c0 = b7e15162, c1 = bf715880,
c2 = 38b4da56, c3 = 324e7738,
c4 = bb1185eb, c5 = 4f7c7b57,
c6 = cfbfa1c8, c7 = c2b3293d.

In this study, we truncated these 32‐bit constants into two
16‐bits to fit our test parameters and cycle every 16 rounds (In
fact, no more than 16 rounds of RX‐characteristics are pro-
duced in the algorithm we test.), that is, the Alzette‐like round
constants used in this study are:

c0 = c16 = b7e1, c1 = c17 = 5162,
c2 = c18 = bf71, c3= c19 = 5880,
c4 = c20 = 38b4, c5= c21 = da56,
c6 = c22 = 324e, c7 = c23 = 7738,
c8 = c24 = bb11, c9 = c25 = 85eb,
c10= c26= 4f7c, c11 = c27 = 7b57,
c12= c28= cfbf, c13 = c29 = a1c8,
c14= c30= c2b3, c15 = c31 = 293d.

B PRINCE ‐LIKE ROUND CONSTANTS
Prince [33] is a block cipher that is optimised with respect to
latency when implemented in hardware, which is introduced by
Borghoff et al. at ASIACRYPT 2012. It is a 64‐bit block cipher
which is symmetric around the middle round. The special
choice of round constants is as follows:

c0 = 0000000000000000, c1 = 13198a2e03707344,
c2 = a4093822299f31d0, c3 = 082efa98ec4e6c89,
c4 = 452821e638d01377, c5 = be5466cf34e90c6c,
c6 = 7ef84f78fd955cb1, c7 = 85840851f1ac43aa,
c8 = c882d32f25323c54, c9 = 64a51195e0e3610d,
c10 = d3b5a399ca0c2399, c11 = c0ac29b7c97c50dd.

For all 0 ≤ i ≤ 11, ci ⊕ c11−i is the constant
α¼ c0ac29b7c97c50dd, and that c1, c2, …, c5 and α are
derived from the fraction part of π = 3.14159….

In this study, we truncated c1, c2, …, c8 constants into
8 � 4 16‐bits to fit our test parameters, that is, the Prince‐like
round constants used in this study are:

c0 = 7344, c1 = 0370, c2 = 8a2e, c3 = 1319,
c4 = 31d0, c5 = 299f, c6 = 3822, c7 = a409,
c8 = 6c89, c9 = ec4e, c10 = fa98, c11 = 082e,
c12 = 1377, c13 = 38d0, c14 = 21e6, c15 = 4528,
c16 = 0c6c, c17 = 34e9, c18 = 66cf, c19 = be54,

c20 = 5cb1, c21 = fd95, c22 = 4f78, c23 = 7ef8,
c24 = 43aa, c25 = f1ac, c26 = 0851, c27 = 8584,
c28 = 3c54, c29 = 2532, c30 = d32f, c31 = c882.

C KEY RECOVERY ATTACK OF SIMECK
WITH RX ‐DISTINGUISHERS
Consider a Simeck cipher with 2n block size and 4n‐bit key,
assume that it has a round function f5,0,1 and a key schedule
that reuses the round function structure to produce the round
keys. Assume that a d‐round RX‐distinguisher is available for
Simeck2n/4n with input difference (Δ1L0, Δ1R0) and output
difference (Δ1Ld, Δ1Rd). Extending the distinguisher forward
to attack (d + 2)‐round cipher, we denote the RX‐differences
and values according to the following figure (Figure C1). The
input RX‐difference to the ith round is denoted by (Δ1Li−1,
Δ1Ri−1) and the round key difference by Δ1ki−1; the corre-
sponding intermediate values are (Li−1, Ri−1, ki−1) and
ððLi−1Þ0; ðRi−1Þ0; ðki−1

Þ0Þ, the RX‐differences between the

values are computed by ððLi−1
⟵

⊕ Li−1� �
0
�
, ððRi−1

⟵
⊕ Ri−1� �

0
�

and ððki−1
⟵

⊕ ðki−1
Þ0Þ.

Given the encryption of plaintext pairs with the input
difference (Δ1L0, Δ1R0) under a pair of related keys following
the RX‐characteristic in the key schedule, the encrypted values
after the (d + 2)‐round are accessible to the attacker, that is,
(Ld+2, Rd+2) and ððLdþ2Þ0; ðRdþ2Þ0Þ are known.

To partially decrypt, the RX‐difference
Δ1Rd

j ¼ Rd
j−1 ⊕ Rd

j

� �
0 can be obtained by the ciphertexts

with some key guesses.

Δ1Rd
j ¼Rd

j−1 ⊕ Rd
j

� �
0

¼ Rdþ1
j−1 ⋅ Rdþ1

j−6

� �
⊕ Rdþ1

j−2 ⊕ Rdþ2
j−1 ⊕ kd

j−1

⊕ Rdþ1
j

� �
0 ⋅ Rdþ1

j−5

� �
0

� �
⊕ Rdþ1

j−1

� �
0 ⊕

Rdþ2
j

� �
0 ⊕ kd

j

� �
0

¼ Rdþ1
j−1 ⋅ Rdþ1

j−6

� �
⊕ Rdþ1

j−2 ⊕ Rdþ2
j−1 ⊕ kd

j−1

⊕ Δ1Rdþ1
j ⊕ Rdþ1

j−1

� �
⋅ Δ1Rdþ1

j−5 ⊕ Rdþ1
j−6

� �� �

⊕ Δ1Rdþ1
j−1 ⊕ Rdþ1

j−2

� �
⊕ Δ1Rdþ2

j ⊕ Rdþ2
j−1

� �
⊕

Δ1k
d
j ⊕ kd

j−1

� �

¼ Δ1Rdþ1
j ⋅ Rdþ1

j−6 ⊕ Δ1Rdþ1
j−5 ⋅ Rdþ1

j−1 ⊕ Δ1Rdþ1
j ⋅ Δ1Rdþ1

j−5

⊕Δ1Rdþ1
j−1 ⊕ Δ1Rdþ2

j ⊕ Δ1k
d
j :

ð30Þ

As Equation (30) shows, when the values of Δ1Rdþ1
j and

Δ1Rdþ1
j−5 are 1 or *, it is necessary to get the values of R

dþ1
j−6 and

Rdþ1
j−1 for the computation of Δ1Rd

j . In order to get the values

of Rdþ1
j−6 and Rdþ1

j−1 , we should guess bit of kd+1 according to
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Table C1. Besides, when the value of Δ1k
dþ1
j is * in the RX‐

difference, it is necessary to guess the corresponding bits

kdþ1
j−1 and kdþ1

j

� �
0; when the value of Δ1k

d
j is * in the RX‐

difference, it is also necessary to guess the corresponding

bits kd
j−1 and kd

j

� �
0.

The two‐round attack can be further extended to partially
decryptmore rounds, and the key guessing conditions are similar.

D TESTING THE ATTACK PROCEDURE
USING A 10 ‐ROUND RX ‐DISTINGUISHER
To demonstrate the effectiveness of the attack, we also
implement a key recovery attack on 12‐round Simeck32 using a
10‐round RX‐distinguisher

Dd : ð0000;0004Þ→
10
ð0011;0008Þ

Dk : ð0003;0001;0000;0004Þ→
6

ð0001;0008;0001;0000Þ

The probabilities in the encryption part and the key
schedule part are 2−10 and 2−10, respectively.

The characteristic is extended by two rounds to obtain the
difference pattern shown in Table D1. According to Appen-
dix C, the required 12 key bits are k11 = {2, 4, 7, 8, 10, 14},
ðk11Þ0 ¼ f3; 8g, k10 = {4, 15} and ðk10Þ0 ¼ f0; 5g to verify the
RX‐difference at the beginning of round 10 (Table E1).

Using 215 plaintext pairs with input RX‐difference
(0000,0004), we collect the encrypted pairs after 12 rounds
under a pair of keys

K¼ ðF54A;99C7;2B88;EAB8Þ
K 0¼ ðEA96;338E;5710;D575Þ

which satisfies the RX‐distinguisher Dk. By guessing the 12 key
bits and setting arbitrary values in the other key bits of k11 and
k10, we decrypt the last two rounds and count the number of right
pairs for the output difference (0011,0008). In 16 experiments,
we observe that the number of right pairs is 32.1875, which
matches the attack hypothesis: 215 � 2−10 = 25.

E REPORTED RX ‐CHARACTERISTICS FOR
Simeck32/48/64
(Tables E2 and E3)

F I GURE C 1 Notations in a 2‐round key recovery of Simeck

TABLE C1 Condition of guessed bits in kd+1

Δ1Rdþ1
j Δ1Rdþ1

j−5 Rdþ1
j−1 Rdþ1

j−6 Guessed bit of kd+1

0 0 ‐ ‐ ‐

0 1/* Need ‐ j − 1

1/* 0 ‐ Need j − 6

1/* 1/* Need Need j − 1, j − 6

TABLE D1 Truncated RX‐differential of bits obtained by extending
the path of 10‐round Simeck32 ð0000;0004Þ→10 ð0011;0008Þ in the
bottom directions

0 Δ1L0 0000 0000 0000 0000

Δ1R0 0000 0000 0000 0100

Δ1k0 0000 0000 0000 0100

10 rounds

10 Δ1L10 0000 0000 0001 0001

Δ1R10 0000 0000 0000 1000

Δ1k10 0000 0000 00*0 011*

11 Δ1L11 0000 00*0 00** 110*

Δ1R11 0000 0000 0001 0001

Δ1k11 0000 000* 0001 *100

12 Δ1L12 0*00 0*** **** ****

Δ1R12 0000 00*0 00** 110*
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TABLE E1 A 20‐round RX‐
characteristic for Simeck32/64 and a 27‐round
RX‐characteristic for Simeck48/96

Simeck32/64 Simeck48/96

Round Key Data Key Data
RX‐difference RX‐difference RX‐difference RX‐difference

0 0004 (0000‖0004) 000004 (000000‖000004)

1 0000 (0000‖0000) 000000 (000000‖000000)

2 0001 (0000‖0000) 000001 (000000‖000000)

3 0002 (0001‖0000) 000002 (000001‖000000)

4 0002 (0000‖0001) 000002 (000000‖000001)

5 0005 (0003‖0000) 000005 (000003‖000000)

6 0001 (0000‖0003) 000001 (000000‖ 000003)

7 0002 (0002‖0000) 000002 (000002‖000000)

8 000a (0004‖0002) 00000a (000004‖000002)

9 0002 (0000‖0004) 000002 (000000‖000004)

10 0000 (0006‖0000) 000000 (000006‖000000)

11 0013 (000a‖0006) 000013 (00000a‖000006)

12 000a (0001‖000a) 00000a (000001‖00000a)

13 0004 (0002‖0001) 000004 (000002‖000001)

14 0000 (0001‖0002) 000000 (000001‖000002)

15 0001 (0000‖0001) 000003 (000001‖000001)

16 0000 (0000‖0000) 000000 (000000‖000001)

17 0002 (0000‖0000) 000002 (000001‖000000)

18 0006 (0002‖0000) 000002 (000000‖000001)

19 0007 (0000‖0002) 000005 (000003‖000000)

20 (0005‖0000) 000001 (000000‖000003)

21 000000 (000002‖000000)

22 000008 (000006‖000002)

23 000002 (000000‖000006)

24 000004 (000004‖000000)

25 00011d (000008‖000004)

26 000048 (000001‖000008)

27 (000062‖000001)

Prob. 2−34 2−26 2−50 2−44
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TABLE E2 A 34‐round RX‐characteristic for Simeck64/128

Key Data
Round RX‐difference RX‐difference

0 00000004 (00000000‖00000004)

1 00000000 (00000000‖00000000)

2 00000001 (00000000‖00000000)

3 00000002 (00000001‖00000000)

4 00000002 (00000000‖00000001)

5 00000004 (00000003‖00000000)

6 00000001 (00000000‖00000003)

7 00000002 (00000002‖00000000)

8 0000000c (00000004‖00000002)

9 00000001 (00000002‖00000004)

10 00000000 (00000001‖00000002)

11 00000013 (00000001‖00000001)

12 0000000b (00000011‖00000001)

13 00000004 (00000009‖00000011)

14 00000001 (00000006‖00000009)

15 00000000 (00000002‖00000006)

16 00000002 (00000000‖00000002)

17 00000002 (00000000‖00000000)

18 00000004 (00000002‖00000000)

19 00000001 (00000000‖00000002)

20 00000002 (00000003‖00000000)

21 00000008 (00000005‖00000003)

22 00000003 (00000000‖00000005)

23 00000000 (00000006‖00000000)

24 0000001f (00000008‖00000006)

25 00000008 (00000001‖00000008)

26 00000006 (00000002‖00000001)

27 00000000 (00000001‖00000002)

28 00000002 (00000001‖00000001)

29 00000001 (00000000‖00000001)

30 00000000 (00000000‖00000000)

31 00000002 (00000000‖00000000)

32 00000006 (00000002‖00000000)

33 00000007 (00000000‖00000002)

34 (00000005‖00000000)

Prob. 2−70 2−56

TABLE E3 The 23‐round RX‐characteristic used for the key
recovery attack on the 28‐round Simeck64/128

Key Data
Round RX‐difference RX‐difference

0 00000117 (00000000‖00000113)

1 00000008 (00000004‖00000000)

2 00000004 (00000000‖00000004)

3 00000000 (00000000‖00000000)

4 00000001 (00000000‖00000000)

5 00000002 (00000001‖00000000)

6 00000002 (00000000‖00000001)

7 00000005 (00000003‖00000000)

8 00000001 (00000000‖00000003)

9 00000002 (00000002‖00000000)

10 0000000c (00000004‖00000002)

11 00000003 (00000002‖00000004)

12 00000000 (00000001‖00000002)

13 00000013 (00000001‖00000001)

14 0000000c (00000011‖00000001)

15 00000005 (0000000e‖00000011)

16 00000000 (00000004‖0000000e)

17 00000002 (00000002‖00000004)

18 00000002 (00000000‖00000002)

19 00000000 (00000000‖00000000)

20 00000000 (00000000‖00000000)

21 00000002 (00000000‖00000000)

22 00000007 (00000002‖00000000)

23 (00000001‖00000002)

Prob. 2−44 2−34
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