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Abstract—Satellite communication (SATCOM) on-the-move
applications require low-cost compact antenna arrays to enable
mobile users to track the satellites. Full-duplex operation re-
quires efficient diplexers that satisfy stringent requirements in a
compact footprint to enable tight integration within the antenna
system. In this contribution, substrate-integrated-waveguide tech-
nology is leveraged to design a single-layer third-order diplexer
filter based on a dual-mode cavity. Simulations and measurements
demonstrate that the diplexer enables full-duplex operation for
Ku-band SATCOM on-the-move systems, effectively separating
the [11.7–12.75] GHz downlink (Rx) band from the [13.75–
14.50] GHz uplink (Tx) band, yielding an isolation larger than
20 dB and an insertion loss below 3.7 dB over a fractional
bandwidth (FBW) of 8.6% in Rx and 5.3% in Tx.

Index Terms—Dual-mode cavity filter, Ku-band Diplexer,
SATCOM-on-the-move, Substrate integrated waveguide.

I. INTRODUCTION

Satellite communication (SATCOM)-on-the-move (SOTM)
enables 5G wireless communication in the most remote loca-
tions on the planet as in the air. To exploit the full capacity
of the data link with the satellites, full-duplex operation,
with simultaneous uplink and downlink communication, is
preferred. For easy deployment in mobile user equipment,
a digitally controllable [1] shared-aperture phased antenna
array that covers both uplink and downlink bands should
be compact, lightweight and integrable. Within a footprint
that is limited by the maximally allowed antenna element
spacing, highly specialized components must be fitted, such as
dual-band antennas, integrated circuits, feed lines, transitions
and diplexers [2]–[7]. The latter are of utmost importance
to implement full-duplex communication in a shared aperture
system with minimal interference between transmit and receive
chains. To further limit undesired interaction with the environ-
ment or other system components, the diplexer should also be
self-packaged, while being tightly and compactly integrated
with the antenna and the active beamforming electronics.

Most existing diplexer designs, which combine two filters
by a T-junction [8]–[14], exhibit excellent performance, but
are bulky and non scalable. Other diplexer types rely on mode
perturbation [10]–[12], negative coupling and modal cross-
coupling [9], [13]. The latter also plays a role in common dual-
mode cavity-based designs, which is the topology exploited in
this contribution. Other solutions take advantage of special
transitions with diplexer functionality [6] or implement a self-
diplexing antenna [15]. However, these designs yield limited
bandwidths and their geometry does not allow scalability. Also
more specialized and complex designs exist [16]–[21]. How-

ever, they lack scalability and introduce too much complexity
for the application of interest. The scalable diplexers in [22]
make use of technologies that are too expensive. An interesting
approach to reduce the diplexer’s size in a more flexible way
consists in exploiting a common cavity that replaces the T-
junction [23]–[28].

This contribution presents a novel very compact and cost-
effective Substrate-Integrated-Waveguide (SIW) diplexer ar-
chitecture, targeting SOTM applications in the Ku-band.
Therefore, the designed single-layer diplexer separates the
[11.7–12.75] GHz downlink (Rx) band from the [13.75–
14.50] GHz (Tx) uplink band, with an isolation larger than
20 dB and an insertion loss lower than 3.7 dB. The fractional
bandwidths (FBWs) in which this performance is obtained
correspond to 8.6% for Rx and 5.3% for Tx, respectively. In
particular, the FBW along the Rx path is large in comparison
to existing diplexer designs. This response is achieved by first
dimensioning three substrate integrated rectangular cavities
(SIRC) as to achieve a third-order Chebyshev filter charac-
teristic, for both separate Tx and Rx filters. Next, a common
dual-mode cavity is exploited to integrate both circuits into a
single-layer diplexer.

II. KU-BAND SIW DIPLEXER DESIGN
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Fig. 1. Topology of single-layer third-order direct-coupled SIW diplexer.

The topology of the diplexer is schematically shown in
Fig. 1. The Rx and Tx channel, annotated by I and II
superscripts, respectively, both consist of three SIRC res-
onators, implemented in a 0.508 mm-thick Rogers RO4350B
(εr = 3.66, tan δ = 0.0037) high-frequency laminate. Two
cavities operate with their TE101 resonance at the center
frequency (CF) of the corresponding channel, being f I or
f II . The third cavity is shared between both channels and
is designed such that its TE101 resonance corresponds to f I
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Fig. 2. Geometric configuration of single-layer third-order direct-coupled SIW
diplexer. Optimized dimensions in millimeters: DV ia = 0.5, GAnt = 0.6,
GRx = 0.51, GTx = 0.53, L2I = 7.49, L2II = 7.77, L3I = 7.54,
L3II = 6.92, LAnt = 3.45, LI = 6.5, LRx = 1.93, LTx = 2.75,
PV ia = 1, tAnt = 5.77, tiRx

= 3, tiTx
= 1.93, W2I = 10.47, W2II =

7.76, W3I = 10.47, W3II = 8.78, WAnt = 1.4, Wc2I = 4.74, Wc2II =
3.9, Wc3I = 4.48, Wc3II = 4.05, WcAnt = 5.74, WcRx = 4.6, WcTx =
3.46, WI = 18.97, WRx = 1.4, WTx = 1.4, hdielectric = 0.508. Single-
layer dielectric implemented in Rogers 4350B (εr= 3.66, tanδ= 0.0037).

and the TE201 resonance to f II , thus operating as a dual-
mode cavity. The coupling to adjacent resonators and the
feed of the common cavity is optimized through modal cross
(bypass) coupling [29] to generate an additional transmission
zero between the Tx and Rx channel, allowing to achieve
the requirements with a third-order Chebyshev-like diplexer
design.

Fig. 3. Electric field magnitude distributions at 12.2 GHz when port 1
(antenna) is excited. Signal propagating to port 3 (Rx, receiver).

Fig. 2 shows the final diplexer design, featuring a footprint
of 22.1 mm by 19.7 mm. All relevant dimensions, obtained
by computer-aided optimization in CST Microwave Studio,
are listed in the figure’s caption. The operating principle of
the realized diplexer is illustrated in Fig. 3, showing the
signal at 12.2 GHz, propagating from the antenna to the
receiver port and being blocked by the dual-mode cavity to
suppress potential reception at the transmitter port, and in
Fig. 4, visualizing the signal at 14.4 GHz, propagating from

Fig. 4. Electric field magnitude distributions at 14.1 GHz when port 2 (Tx,
transmitter) is excited. Signal propagating to port 1 (antenna).

the transmitter port to the antenna and suppressing potential
reception at the receiver port by the dual-mode cavity and the
transmission zero implemented by modal cross-coupling.

III. PROTOTYPE AND MEASUREMENTS
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Fig. 5. Fabricated prototype of the single-layer third-order direct-coupled
diplexer.

To validate its operation, a prototype of the diplexer, shown
in Fig. 5, was manufactured and characterized. Fig. 6 shows
the transmission and reflection coefficients (S31 and S33) along
the Rx path, demonstrating that the [11.7–12.75] GHz band
is covered with a maximum insertion loss of 3.69 dB, and
with more than 20.47 dB suppression in the Tx band. Fig. 7
confirms that the transmission coefficient S12 along the Tx
path exhibits an insertion loss lower than 3.59 dB over the
complete [13.75–14.5] GHz band, with more than 25.18 dB
suppression in the Rx band. Moreover, the isolation between
Rx and Tx channel was measured to be better than 20.57 dB.

IV. CONCLUSION

A single-layer third-order direct-coupled SIW diplexer is
proposed, with a minimum isolation of 20 dB and an insertion
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Fig. 6. Simulated (full line) versus measured (dashed line) transmission (S31)
and reflection (S33) coefficients along the Rx path.
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Fig. 7. Simulated (full line) versus measured (dashed line) transmission (S12)
and reflection (S22) coefficients along the Tx path.

loss below 3.7 dB, paving the way for low-cost shared-
aperture full-duplex antenna arrays for next-generation Ku-
band SATCOM-on-the-move applications.
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