

Multi-Level Interoperability in Heterogeneous Low Power Wide Area
Networks

Bart Moons

Doctoral dissertation submitted to obtain the academic degree of
Doctor of Information Engineering Technology

Prof. Jeroen Hoebeke, PhD - Prof. Eli De Poorter, PhD

Department of Information Technology
Faculty of Engineering and Architecture, Ghent University

Supervisors

April 2022

Wettelijk depot: D/2022/10.500/26
NUR 986
ISBN 978-94-6355-585-2

Members of the Examination Board

Chair

Prof. Patrick De Baets, PhD, Ghent University

Other members entitled to vote

Prof. Pieter Colpaert, PhD, Ghent University
Prof. Ingrid Moerman, PhD, Ghent University

Prof. Laurent Toutain, PhD, Institut Mines-Télécom Atlantique, France
Prof. Bruno Volckaert, PhD, Ghent University
Prof. Maarten Weyn, PhD, Universiteit Antwerpen

Supervisors

Prof. Jeroen Hoebeke, PhD, Ghent University
Prof. Eli De Poorter, PhD, Ghent University

“Patience is also a form of action.”

Auguste Rodin

When I remencise about the past four years, I realize how many people
were involved in shaping me and this dissertation into its current form.
Therefore I would like to dedicate a few words to those who supported me
throughout the years.

First and foremost, I would like to thank my supervisors Jeroen Hoebeke
and Eli De Poorter. They believed in me and gave me the opportunity to
start on an adventure I didn’t think I could complete. I had the opportunity
to work closely with Jeroen and want to thank him in particular for his
support. He advised me when I was stuck on a problem and enlightened me
during discussions. He showed me new ways of tackling problems, presenting
the solutions in a lightly digestible way and writing them down clearly and
concisely. He also gave me the opportunity to steer my way and work on
topics that were less related to the projects. Thank you Jeroen and Eli.

At this point I would also like to thank the examination board for taking
the time to read this dissertation, providing constructive feedback and being
part of the examination board. Thank you Laurent Toutain, Maarten Weyn,
Bruno Volckaert, Pieter Colpaert, Ingrid Moerman and Patrick De Baets.

A large part of the PhD work was done from my home office, however
before the unfortunate turn of events in early 2020 I was lucky enough
to share my office space on the 11th floor in the iGent tower with many
great colleagues. I can think of numerous lunches, coffee breaks and hallway
conversations that inspired me and/or made my day. Thank you Mathias,
Robbe, Jaron, Michael, Matteo, Jen, Adnan, Amina, Andy, Subho, Jetmir,
Abdulkadir, Vasilis, Nicola, Dries, Felipe, Merkebu, Ben, Jan, Pieter, Pablo,
Spilios, Irfan, Bart, Jono, Vincent, Muhammad, Xianjun, Wei. In particular,
I would like to thank my close colleagues Jetmir Haxhibeqiri and Abdulkadir
Karaagac. During our discussion they showed me how to have a critical mind
and find practical solutions to technical problems. They gave me advise on
the topics that were related to mine and provided priceless input. Thank
you guys.

Even before starting my PhD, people were important that lead me to
this opportunity. During my master’s thesis I had the opportunity to work
with Peter Hellinckx on the reprogramming of embedded systems. If he
hadn’t introduced me to Eli and Jeroen, I wouldn’t be sitting here writing
this book. Thank you Peter.

Not only did my colleagues contributed in getting this book of the press,
so did my f(r)amily. During my PhD studies I was surrounded at home by
three wonderful guys. They made sure, at appropriate and inappropriate

ii

moments, to distract my mind and showed that in addition to effort, there
is also pleasure. Thank you Cedric, Anthony and Willi.

Finally I would like to thank my parents, aunts and brothers for the
support they gave me throughout the years. Thank you papa for the
opportunities you have given me, they have shaped me in many ways. Thank
you Christel for the conversations and discussions, your look at the world
gives me a broader perspective. Thank you Tante Neeltje for supporting
my creativity and my interests in everything other than science. Thank you
mama for your love and endless support, you pulled me through at times I
thought about giving up. Thank you Dirk for your clarity, you can make
it easy for me to understand topics I know little about. Thank you Daan,
Cota, Tom and Yanne for being my brothers and sisters. Thank you Ella
for showing the sense of wonder at life that we sometimes tend to forget.

Ghent, March 2022
Bart Moons

Table of Contents

Samenvatting xxvii

Summary xxxi

1 Introduction 1
1.1 Background . 1

1.1.1 A Brief History of the Internet 1
1.1.2 The Web and the Internet of Things 3

1.2 The Future Web . 6
1.3 Research Challenges . 6
1.4 Outline . 7
1.5 Contributions . 9
1.6 List of Publications . 11

1.6.1 Publications in international journals
(listed in the Science Citation Index) 11

1.6.2 Publications in international conferences
(listed in the Science Citation Index) 12

1.6.3 Publications in other International Conferences 13
1.6.4 Publications in other International Journals 13

References . 14

2 Overview and implementation of the SCHC standard 17
2.1 Low Power Wide Area Networks 18

2.1.1 LoRa . 19
2.1.2 DASH-7 . 20
2.1.3 Sigfox . 21
2.1.4 Others . 21

2.2 IETF Protocols for Constrained Devices 23
2.2.1 CoAP . 23

2.2.1.1 Observe . 24
2.2.1.2 No-Response Option 24
2.2.1.3 CoAP block-wise transfer 24

2.2.2 6LoWPAN and 6lo . 24
2.3 Static Context Header Compression 25

2.3.1 Compression . 26

iv

2.3.2 Fragmentation . 29
2.4 Multi protocol analysis . 31

2.4.1 Overhead . 35
2.5 Implementation . 36

2.5.1 Network Memory Buffers 37
2.5.2 Connection State . 37
2.5.3 Timers and Retransmissions 37

2.6 Evaluation . 38
2.6.1 Connections . 38
2.6.2 Memory Footprint . 38

2.7 Conclusion . 39
References . 40

3 Device Discovery and Context Registration in SCHC Net-
works 43
3.1 Introduction . 44

3.1.1 Related Work . 46
3.2 Motivation . 47
3.3 Device Management and Registration 49

3.3.1 Basic Neighbor Discovery Protocol 49
3.3.2 Optimized Neighbor Discovery Protocol 50

3.3.2.1 Address Registration Option 51
3.3.2.2 Prefix and Context Information Distribution 51
3.3.2.3 Others . 52

3.3.3 NETCONF . 52
3.3.3.1 CORECONF 52

3.3.4 LwM2M . 53
3.3.5 Conclusion . 53

3.4 Device Registration . 53
3.4.1 SCHC Rule Registry 54
3.4.2 SCHC Registration . 54

3.4.2.1 Registration 55
3.4.3 SCHC Optimized Neighbor Discovery 56

3.5 Context Configuration . 58
3.5.1 SCHC Registration . 60

3.5.1.1 Extended Registration 60
3.5.1.2 Fragmentation 60
3.5.1.3 Application Layer Compression 60
3.5.1.4 Limitations 62

3.5.2 SCHC Control Messages 62
3.5.2.1 Context Advertisement Object and Context

Option . 62
3.5.2.2 Synchronization 64
3.5.2.3 SCHC Parameter Option 64

3.6 Evaluation . 65

v

3.6.1 Comparison . 66

3.6.2 Registration Overhead 66

3.6.2.1 Registration Time 67

3.6.3 SCHC ND: Context Configuration Overhead 71

3.6.3.1 Energy overhead 71

3.6.4 LwM2M Configuration 72

3.6.5 CoAP Compression 74

3.7 Discussion . 75

3.7.1 CORECONF . 77

3.8 Future Work . 77

3.8.1 SCHC . 77

3.8.2 ICMPv6 . 78

3.8.3 Security . 78

References . 80

4 Efficient Vertical Handover in Heterogeneous Low Power
Wide Area Networks 85

4.1 Introduction . 86

4.2 Case study: Construction and Logistics 88

4.3 Problem statement and research goals 88

4.4 Related Work . 90

4.5 Low Power WAN Discovery 91

4.5.1 Overall System Architecture 91

4.5.2 Network Discovery Method 93

4.5.2.1 End-device state machine 94

4.5.2.2 Network Drivers 96

4.5.2.3 Example . 97

4.5.3 Virtual Network Operator 97

4.6 Performance Evaluation . 98

4.6.1 Energy Overhead . 98

4.6.1.1 Energy Model 99

4.6.1.2 Simulation 101

4.6.2 Network Discovery Time and Reliability 104

4.6.2.1 Network Discovery Time 104

4.6.2.2 Reliability Latency 106

4.6.3 Configuration . 107

4.6.4 Reliability overhead 108

4.6.5 Implementation Overhead 108

4.7 Conclusion . 110

References . 111

vi

5 Linked Data in Constrained Wireless Sensor Networks 113
5.1 Motivation . 115

5.1.1 Open Standards . 115
5.1.1.1 RDF . 116
5.1.1.2 NGSI-LD . 116
5.1.1.3 LPG . 116

5.1.2 Responsible use of Data 117
5.1.3 SOLID . 117
5.1.4 Towards an (Open) Web of Things 118

5.1.4.1 Linked Open Data 119
5.1.4.2 Open Cities 119

5.2 Related Work . 120
5.3 Background Technologies . 121

5.3.1 SOLID . 121
5.3.1.1 IoT ontologies 122

5.3.2 LwM2M . 122
5.4 Architecture . 123

5.4.1 System Overview . 123
5.4.2 Implementation . 123

5.5 Evaluation . 126
5.5.1 CoAP CON request 126
5.5.2 CoAP response . 127

5.5.2.1 JSON-LD optimization 128
5.6 Conclusion . 131
References . 132

6 FLINT: Flows for the Internet of Things 135
6.1 Introduction . 136
6.2 Case Study—Port of the Future 137

6.2.1 Heterogeneous LPWAN 138
6.2.2 Localization . 139
6.2.3 Data Transformation 140

6.3 Related Work . 141
6.4 Flint Architecture . 146

6.4.1 Adapter Types . 147
6.4.2 Device Based Context 148
6.4.3 Packet Storage . 149
6.4.4 Device Configuration 149

6.5 Evaluation . 152
6.5.1 Levels of Interoperability 152

6.5.1.1 Syntactic Interoperability 153
6.5.1.2 Device and Network Interoperability 153
6.5.1.3 Semantic and Platform Interoperability . . . 154

6.5.2 Scalability . 156
6.5.3 Performance Evaluation 157

vii

6.5.3.1 Experimental Setup 157
6.5.3.2 Analysis of Platform Performance 157

6.5.4 Mapper Forwarding Rate 159
6.5.5 Resource Consumption 160

6.6 Discussion . 162
6.7 Conclusions . 162
References . 164

7 Conclusion 169
7.1 Future Work . 172

A Device Discovery and Context Registration in SCHC Net-
works 175
A.1 SCHC Neighbor Discovery . 175
A.2 SCHC Context Options . 178
A.3 SCHC Parameter Option . 179
References . 181

List of Figures

2.1 DASH-7 low power wake up and ad hoc synchronization.
Sleeping end-points can detect incoming requests by listening
to a sync train that contains the time of the upcoming request. 20

2.2 A typical No-Response Low Power Wide Area Network (LPWAN)
Constrained Application Protocol (CoAP) request from the
application. Note that No-Response sensor devices are typi-
cally clients that have a dedicated resource on a CoAP server. 25

2.3 Illustration of the Static Context Header Compression (SCHC)
operations on both the sending and receiving end. If the
compressed packet size still exceeds the Maximum Transfer
Unit (MTU), the packet will be fragmented. 26

2.4 Detailed header format for the All-1 SCHC Fragment. 29
2.5 Overview of the SCHC fragmentation packetization. A SCHC

packet is chopped in 10 fragments, with a WINDOW SIZE
equal to 7. The Window number and Fragment Count Number
(FCN) is given for each tile. 30

2.6 Format of the SCHC ACK Message. If C is set to 1, no
compressed bitmap is sent. 30

2.7 Illustration of the Ack-Always reliability mode; every window
must be acknowledged. Missing all-0 fragments are detected
using timers. Time moves rightward. 32

2.8 Multi protocol analysis to enable Internet Protocol Version
6 (IPv6) end-to-end connectivity on a LPWAN device. The
flow diagram supposes a MTU of 51 bytes and application
payload of 128 bytes. 34

2.9 Number of exchanged packets for different payload sizes and
MTUs . 35

2.10 Total header overhead for a packet of length 128 and MTU
51 for different protocol configurations, left: without retrans-
missions, right: 1 lost fragment 36

3.1 The current Low-Power Wide-Area Network landscape: cen-
tralized components deliver data to translation units. 48

3.2 The envisioned LPWAN landscape: end-to-end secured, de-
centralized IPv6 enabled networks. 48

x

3.3 IPv6 over Low-Power Wireless Personal Area Networks (LoWPANs)
(6LoWPAN) optimized neighbor discovery. Nodes regularly
cast re-registration requests in order to keep their Neighbor
Cache Entry (NCE) fresh. 51

3.4 A time diagram that shows incoming and outgoing IPv6
packets in both directions for the proposed SCHC Registration
mechanism. Note how the Context Manager is used as a
separate layer. 57

3.5 The proposed Internet Control Message Protocol (ICMP) for
IPv6 (ICMPv6)-based SCHC device and context registration. 59

3.6 SCHC-based device and context registration. The SCHC
gateway keeps track of the sensor IPv6 addresses that are
connected to the gateway. On a local network, it will respond
to Network Server (NS) requests with its own Medium Access
Control (MAC) address. 61

3.7 The proposed ICMPv6 header for SCHC control messages. . . 62

3.8 The proposed SCHC context advertisement object. 63

3.9 The proposed SCHC fixed size context option. 63

3.10 The proposed SCHC variable size context option. 64

3.11 The proposed ICMPv6 SCHC parameter option. 65

3.12 The proposed ICMPv6 SCHC fragmentation context option. . 65

3.13 The total packet overhead for a single registration attempt
using both registration mechanisms for different technologies,
compared with regular Optimized Neighbor Discovery. 69

3.14 The total registration time for different packet error ratios
(Packet Error Ratios (PERs)) for both proposed mechanisms. 70

3.15 SCHC Neighbor Discovery (ND) IPv6/User Datagram Proto-
col (UDP) context configuration. 71

3.16 Energy required to configure the SCHC context for different
PERs, for both proposed mechanisms. Note the different scale
of the Y-axis. 72

3.17 Light Weight Machine to Machine (LwM2M) bootstrap, reg-
istration, and observe request. 73

3.18 The cumulative bit and energy overhead for the static and
dynamic solutions for a LoRaWAN Spreading Factor (SF)12
device sending an observation notification of its temperature
value every hour. 74

3.19 The total packet overhead for the complete LwM2M registra-
tion flow and different number of observation notifications. . . 75

3.20 The cumulative bit and energy overhead for both solutions
for a LoRaWAN SF12 device. Note that the SCHC ND
mechanism will require less energy in uplink due to the double
compression of the SCHC registration mechanism. 76

xi

4.1 The asset tracking use case for a logistics and construction
company. Higher throughput, medium range indoor commu-
nication can be complemented with lower throughput, long
range outdoor communication. Adopted from [8] 89

4.2 The modular architecture of the Virtual Network Operator
(VNO) allows easy addition of technologies 92

4.3 The state machine for Low Power WAN detection of the
constrained device. 95

4.4 Switching example and signaling from the back-end to the
device . 95

4.5 The main loop in the back-end. Incoming SCHC packets
trigger transmission of queued compressed IPv6 packets. . . . 98

4.6 The energy overhead for each technology for 12 bytes in uplink
and 8 bytes in downlink conform the presented models 101

4.7 Heterogeneous devices using the vertical handover algorithm
vs homogeneous devices. Both sending 12 bytes every 10
minutes over a timespan of 24 hours. N represents the to-
tal consecutive messages over the same technology before
disconnection. 103

4.8 The energy consumption, network discovery time and reliabil-
ity latency are affected by varying the threshold parameters.
Requesting a downlink after every uplink will decrease the
network discovery time, however, with a drastic increase in
energy consumption. 105

4.9 Comparison between different configurations for the vertical
handover algorithm with N set to 5 for 24 hours 107

4.10 The maximum energy overhead while safeguarding reliability 109

5.1 Implemented system overview. Data from LPWAN devices is
captured and transmitted to the LwM2M server. A node.js
instance subscribes to the Leshan event stream in order to map
the LwM2M data to Resource Description Framework (RDF)
and publish it to the Solid pod. 124

5.2 Internal working of the translation mechanism running on the
node.js server. 125

5.3 GET request performed from client to server with different
ontologies and encodings . 128

5.4 Response to a GET request, containing two historical mea-
surements, performed from server to client with different
ontologies and encodings . 130

5.5 Battery drain of a LoRa SF12 communicating a single mea-
surement with the server every hour, without self-discharge . 130

xii

6.1 An abstract representation of the system. Wireless sensor
networks on the left are integrated using Application Pro-
gramming Interfaces (APIs). Their data are collected in a
central point that provides an abstraction for devices with
multiple network interfaces. From this central point, data are
distributed to processing nodes and other platforms. 141

6.2 The basic components of an adapter. Triangular ports connect
to the platform, filled rectangular ports connect the agent
and the sink. Open rectangular ports connect the agent to
non-FLINT sources. 147

6.3 The different types of adapters in a sample configuration. The
central adapter is the Mapper. This is a processing adapter
that forwards data from input adapters to processing adapters
and to output adapters. 147

6.4 A directed graph constructed using the different types of
adapters. Adapter io-1 is an Input/Output (I/O) adapter.
Adapter p-1 is a processing adapter and adapter io-2 is an-
other I/O adapter. The mapper adapter passes the messages
along the vertices. Adapter d-1 communicates directly with
io-2. 149

6.5 More complex system configuration. Every sink is connected
to others via the message bus. The Mapper adapter imple-
ments a queue. 152

6.6 Mobility and queue management in a FLINT system. This
diagram shows how packets travel through a FLINT system
configuration. Time moves downwards. The central element
is a Mapper adapter. Packets are distributed from transmit-
ting devices to the destination. Packets in the downward
direction are queued and dequeued according to the device’s
interfaceType. 154

6.7 FLINT configuration that provides semantic and platform
interoperability. Packets from the LPWANs are delivered
to the LwM2M server. Data from the LwM2M server are
mapped to an ontology that matches the semantics of the
Linked Data Platform (LDP). 155

6.8 An excerpt of a FLINT system in a Kubernetes environment.
Every Kubernetes deployment consists of (at least) two Docker
containers—the sink and the agent. Both containers can be
configured by mounting configuration files. Every deployment
is managed by the Kubernetes master. 156

xiii

6.9 The test setup. Every test consists of six Message Queu-
ing Telemetry Transport (MQTT) clients, subscribed to six
MQTT brokers. The clients forward their data to the Internet
of Things (IoT) platform that is being tested. A UDP client
fetches data from the platform and forwards the packet to a
UDP server. 157

6.10 The latency (in seconds) and goodput measured for six MQTT
adapters in different platforms. Multiple instances of Node-
RED perform best compared to Hono and FLINT. Node-RED
single had too large delays for the Figure, but can be retrieved
from Table 6.2. 158

6.11 The latency (in seconds) and goodput for six MQTT adapters
measured for different configurations in FLINT. 159

6.12 Comparison of a very simple load balancing method. The first
configuration runs every component on the same machine,
while in the second configuration the broker is moved to a
different machine. 160

A.1 SCHC compression action option. 179

List of Tables

1.1 LPWAN overview of data-rate, coverage and typical applica-
tion areas. Technologies with ranges up to 2 kilometer are
considered medium range technologies. Technologies beyond
2 kilometers, long range technologies. 5

1.2 An overview of the targeted challenges per chapter in this
dissertation. 9

2.1 Differences between Weightless-W/-N/-P 22

2.2 SCHC rule used to compress the request from Figure 2.2 . . . 28

2.3 Header overhead and number of exchanged packets for differ-
ent MTUs and 128 bytes of payload 33

2.4 Code space required for each SCHC component 39

3.1 SCHC registration request. 55

3.2 Comparison of the SCHC Registration and ICMPv6 SCHC
Control mechanisms. 67

3.3 Overhead in bits for the proposed specifications. The Non-
fragmented mode is used for a LoRa SF12 device, while the
Ack-on-Error mode is used for a Sigfox device. 68

4.1 Network driver thresholds. polling and downlink can ei-
ther be a time period or a number of transmitted messages.
retries is a regular counter. priority indicates the technol-
ogy capacity. A higher number means a higher throughput.
. 94

4.2 LPWAN overview of data-rate, average transmit and receive
power requirements, Physical layer header size, MAC layer
header size and MTU . 100

4.3 Network availability probability (p) 102

4.4 Median energy consumption (in Joule) for a heterogeneous
device for different cases over a 24 hour time span with N

being the total consecutive messages over the same technology
before disconnection. 102

4.5 Code space required for the different components 110

xvi

6.1 Non-exhaustive list of commercial and open source IoT plat-
forms. 145

6.2 The Latency (L) in seconds, the Goodput (G) and the Payload
size in bytes for every platform using different configurations. 161

A.1 SCHC neighbor discovery NS/Neighbor Advertisement (NA)
for Ack-on-Error and Ack-Always. 177

List of Acronyms

0-9

3GPP 3rd Generation Partnership Project

6LoWPAN IPv6 over LoWPANs

A

ADR Adaptive Data Rate

AI Artificial Intelligence

AMQP Advanced Message Queuing Protocol

AMS Administration Management Server

AoA Angle of Arrival

AP Anchor Point

API Application Programming Interface

ARO Address Registration Option

ARP Address Resolution Protocol

ARPANET Advanced Research Projects Agency Network

AVS Alexa Voice Service

AWS Amazon Web Service

B

BDS BeiDou Navigation Satellite System

BLE Bluetooth Low Energy

BPSK Binary Phase Shift Keying

xviii

BS Base Station

C

CAO Context Advertisement Object

CBOR Concise Binary Object Representation

CDA Compression Decompression Action

CGI Cell Global Identity

CoAP Constrained Application Protocol

CORECONF CoAP Management Interface

COST European Cooperation in Science and Technology

COTS Commercial Off The Shelf

CCN Content Centric Networking

CPU Central Processing Unit

CR Coding Rate

CRC Cyclic Redundancy Check

CRI Container Runtime Interface

CRUD Create, Read, Update, Delete

CSMA/CA Carrier-Sense Multiple Access with Collision Avoidance

CSS Chirp Spread Spectrum

CYBER Cyber Security for Consumer Internet of Things

D

D7A DASH-7 Alliance

DAD Duplicate Address Detection

DARPA Department of Defense’s Advanced Research Project’s
Agency

DNS Domain Name System

DRX Discontinuous Reception

DTag Datagram Tag

DTLS Datagram Transport Layer Security

xix

E

EC-GSM Extended Coverage Global System for Mobile Communica-
tion (GSM)

eDRX extended Discontinuous Reception (DRX)

EH Extended Header

eNB Evolved Node B

eMTC enhanced Machine Type Communication

ETSI European Telecommunications Standards Institute

EUI Extended Unique Identifiers

F

FCC Federal Communications Commission

FCN Fragment Count Number

FEC Forward Error Correction

FL Field Length

FP Field Position

FSM Finite State Machine

G

GB Gigabyte

GFSK Gaussian Frequency Shift Keying

GHz Gigahertz

GLONASS Global Navigation Satellite System

GNSS Global Navigation Satellite System

GPS Global Positioning System

GSM Global System for Mobile Communication

GUI Graphical User Interface

GW Gateway

xx

H

HTML Hyper Text Markup Language

HTTP Hyper Text Transfer Protocol

I

ICMP Internet Control Message Protocol

ICMPv6 ICMP for IPv6

ICN Information Centric Network

IEC International Electrotechnical Commission

IEEE Institute of Electrical and Electronics Engineers

IETF Internet Engineering Task Force

IGS International GNSS Service

IoT Internet of Things

I/O Input/Output

IP Internet Protocol

IPv4 Internet Protocol Version 4

IPv6 Internet Protocol Version 6

IPHC Internet Protocol Header Compression

IRNSS Indian Regional Navigation Satellite System

ISM Industrial, Scientific and Medical

ISO International Organization for Standardization

IT Information Technology

J

JSON JavaScript Object Notation

JSON-LD JavaScript Object Notation (JSON)-Linked Data (LD)

K

kB kilobyte

xxi

kbps kilobit per second

kNN k Nearest Neighbors

L

LAN Local Area Network

LBS Location-based Service

LD Linked Data

LDP Linked Data Platform

LOD Linked Open Data

LoS Line-of-Sight

LoRa Long Range

LoRaWAN Long Range Wide Area Network

LoWPAN Low-Power Wireless Personal Area Network

LPG Labeled Property Graph

LPWAN Low Power Wide Area Network

LTE Long Term Evolution

LTE-M Long Term Evolution (LTE)-Machine Type Communica-
tion (MTC)

LwM2M Light Weight Machine to Machine

M

MAC Medium Access Control

MCU Microcontroller Unit

MERIT Michigan Educational Research Information Triad

MHz Mega Hertz

MMU Memory Management Unit

MO Matching Operator

MQTT Message Queuing Telemetry Transport

MTC Machine Type Communication

MTU Maximum Transfer Unit

xxii

N

NA Neighbor Advertisement

NAT Network Address Translation

NB-IoT Narrowband IoT

NCE Neighbor Cache Entry

NCP Network Control Program

ND Neighbor Discovery

NDN Named Data Networking

NETCONF Network Configuration Protocol

NGSI Next Generation Service Interfaces

NGSI-LD Next Generation Service Interfaces-Linked Data

NHC Next Header Compression

NIC Network Interface Card

NLoS Non-Line-of-Sight

NS Network Server

ntpd Network Time Protocol daemon

NUD Neighbor Unreachability Detection

O

OMA Open Mobile Alliance

OOK On-Off Keying

OS Operating System

OSI Open Systems Interconnection

OTA Over The Air

OTAU Over The Air (OTA) Update

OTDoA Observed Time Difference of Arrival

OWL Web Ontology Language

P

PDU Protocol Data Unit

xxiii

PER Packet Error Ratio

PG Property Graph

PIO Prefix Information Option

PNT Positioning, Navigation and Timing

POD Personal Online Datastore

PPP Precise Point Positioning

PSM Power Saving Mode

Q

QoS Quality of Service

R

RA Router Advertisement

RAM Random Access Memory

RAT Radio-Access Technology

RCS Reassembly Check Sequence

RDF Resource Description Framework

REST Representational State Transfer

RFC Request For Comments

RFID Radio Frequency Identification

RML RDF Mapping Language

ROM Read Only Memory

RPC Remote Procedure Call

RPL IPv6 Routing Protocol for Low-power and Lossy Networks

RS Router Solicitation

RSS Received Signal Strength

RTS/CTS Request to Send and Clear to Send

S

SAREF Smart Applications REFerence

xxiv

SAVI Source Address Validation Improvement

SCHC Static Context Header Compression

SCM SCHC Context Manager

SF Spreading Factor

SID Schema Item Identifiers

SLLAO Source Link-Layer Address Option

SNMP Simple Network Management Protocol

SNR Signal-to-Noise Ratio

SoC System on Chip

SOTA State of the Art

SPARQL SPARQL Protocol and RDF Query Language

SPO SCHC Parameter Option

SRD Short Range Device

SRR SCHC Rule Registry

SSN Semantic Sensor Networks

SSH Secure Shell

SOSA Sensor, Observation, Sample and Actuator

T

TCP Transmission Control Protocol

TDoA Time Difference Of Arrival

TD Thing Description

TLS Transport Layer Security

TLV Type-Length Value

Turtle Terse RDF Triple Language

TV Target Value

U

UCL University College London

UDP User Datagram Protocol

UE User Equipment

xxv

UNB Ultra Narrowband

UWB Ultra Wideband

URI Uniform Resource Identifier

URN Uniform Resource Name

V

VDM Virtual Device Manager

VNO Virtual Network Operator

W

W3C World Wide Web Consortium

WG Working Group

WoT Web of Things

WPAN Wireless Personal Area Network

WS Web Sockets

WSN Wireless Sensor Network

WWW World Wide Web

X

XML eXtensible Markup Language

Y

YANG Yet Another Next Generation

Samenvatting

Sinds de mens begon met het uitvinden van motoren en machines, deed hij
dit steeds met het oog op het verbeteren van de kwaliteit van zijn leven, zijn
manier van werken en zijn welzijn in het algemeen. Aangezien veel taken die
de mens bezig houdt getypeerd worden door herhaling, is de mogelijkheid
van de computer om repetitieve taken over te nemen de drijvende kracht
achter hun ontwikkeling geweest. Het was al in 1820 toen Charles Babbage
de Differentiaal Machine bedacht om tabellen van veeltermen uit te rekenen.
80 jaar later was het Konrad Zuse die de eerste functionele mechanische
computer uitvond die zwevendekommagetallen kon optellen, aftrekken, ver-
menigvuldigen, delen en daarvan een vierkantswortel kon nemen. Sindsdien
zijn computers steeds kleiner geworden, is hun rekenkracht blijven toenemen
en zijn ze begonnen met elkaar te communiceren.

Veel van de vooruitgang in de informatietechnologie is iets wat we te
danken hebben aan de mogelijkheid van computers om met elkaar te com-
municeren. Sterker nog, het is niet de communicatieverbinding van een
computer die hem krachtig maakt, het is zijn vermogen om andere systemen
te begrijpen in een ecosysteem van apparaten, diensten en technologieën.
Het door anderen volledig begrepen worden, wordt aangeduid met interope-
rabiliteit en is één van de concepten die de hoekstenen van het Internet en
het Wereld Wijde Web (WWW) hebben gelegd.

Eén van de zaken waar de afgelopen jaren veel aandacht aan interoperabi-
liteit is besteed, is het Internet der Dingen (IdD). Het IdD wordt gekenmerkt
door zeer kleine toestellen die overal gëınstalleerd kunnen worden om infor-
matie over hun omgeving te verstrekken. Hun vermogen om informatie over
de ether te sturen, met behulp van technologieën als Bluetooth en IEEE
802.15.4, laat hen toe om de mens bij te staan in zijn dagdagelijkse taken
zoals het regelen en opvolgen van mobiliteit, domotica en gezondheidszorg.

Het IdD vond niet alleen zijn toepassing in korte-afstandsscenario‘s.
Verschillende andere domeinen, zoals landbouw, milieumonitoring, slimme
steden en logistiek vereisten draadloze communicatie over lange afstanden
met een laag stroomverbruik en leidden tot de ontwikkeling van draadloze
langeafstands-technologieën zoals Long Range (LoRa), Sigfox, DASH-7 en
Narrowband IoT (NB-IoT). Veel van deze technologieën maken gebruik van
de niet-gelicentieerde sub-Gigahertz (GHz) frequentiebanden. Dit deel van
het radiofrequentiespectrum helpt om hun bereik te vergroten, maar beperkt
de bandbreedte voor gegevensdoorvoer. Hierdoor wordt de integratie met

xxviii Samenvatting

bestaande netwerken bemoeilijkt, aangezien bestaande protocollen werden
ontwikkeld voor machines die niet de beperkingen hadden die kenmerkend
zijn voor draadloze langeafstands-technologieën. Daarom zal dit doctoraat
interoperabiliteit van draadloze langeafstands-netwerken met het Internet
en het Web bekijken. Het zal dit doen door te focussen op 5 niveaus van
interoperabiliteit.

De netwerken die het IdD verbinden, zijn en zullen grotendeels heterogeen
blijven. Zelfs in het subdomein van draadloze langeafstands-netwerken
bestaat er een enorme variëteit. Het verbinden van heterogene netwerken
is iets waar het Internet van het begin af aan mee te kampen had. Om
dit op te lossen wordt gebruik gemaakt van een meerlagige aanpak, beter
bekend als het Open Systems Interconnection (OSI)-model. De smalle taille
van het Internet model gebruikt het Internet Protocol (IP) om apparaten
te adresseren en pakketten in een netwerk af te leveren. Daarbovenop kan
het verbindingsgeoriënteerde Transmission Control Protocol (TCP) gebruikt
worden om betrouwbaarheid te bieden of het User Datagram Protocol (UDP)
voor onbetrouwbare, snelle(re) transmissies. Deze protocollen zijn echter
ontworpen voor netwerken met hoge bandbreedte en zijn niet geschikt voor
de technologieën met lage bandbreedte die kenmerkend zijn voor draadloze
langeafstands-netwerken.

Het eerste niveau van interoperabiliteit - netwerk-interoperabiliteit - pro-
beert dergelijke heterogene netwerken op een uniforme manier met elkaar
te verbinden. Om dit te doen, richt dit doctoraat zich op apparaten die
meerdere draadloze communicatietechnologieën ondersteunen. De belang-
rijkste uitdaging die op dit niveau wordt aangepakt, is de herbruikbaarheid
van applicaties over deze verschillende draadloze technologieën. Met behulp
van het nieuwe Static Context Header Compression (SCHC) protocol van
het Internet Engineering Task Force (IETF), kunnen deze apparaten en
netwerken toch de bekende en wijdverbreide internettalen ondersteunen. Dit
wordt bereikt door compressie van de header-informatie van de protocollen
van de bovenste lagen en door fragmentatie van grote internetpakketten die
niet kunnen worden getransporteerd over technologieën die een maximale
pakketgrootte kunnen hebben tot amper 8 bytes.

De SCHC standaard gaat ervan uit dat een statische context werd gedis-
tribueerd voor het uitrollen van het netwerk. Deze context wordt aan beide
zijden van het netwerk gebruikt om de headers van de bovenste lagen te
comprimeren en te decomprimeren. De manier om dit te doen - aan de hand
van een middleware die zich tussen twee netwerken bevindt - is niet helemaal
in lijn met het idee van het Internet dat oppert om de intelligentie van het
netwerk aan de rand te houden. Daarom stelt dit doctoraat twee apparaat-
registratie- en context-configuratiemechanismen voor SCHC-netwerken voor.
Deze oplossingen kunnen worden gebruikt om middleware te vervangen
zodat eenvoudigere upgrades van het netwerk en de evolutie van applicaties
mogelijk worden. Bijgevolg kunnen complexe Application Programming
Interfaces (APIs) worden uitgesloten om tot echte netwerk- interoperabiliteit

Summary in Dutch xxix

in draadloze langeafstands-netwerken te komen. Beide mechanismen bieden
ook een dynamische oplossing die gebruikt kan worden om protocollen van
de hogere lagen te configureren om de zendtijd te beperken en zo energie te
besparen.

Een tweede niveau van interoperabiliteit dat werd onderzocht in dit
proefschrift, werd gedefinieerd als apparaat interoperabiliteit. Dit heeft tot
doel zowel hoogwaardige apparaten als laagwaardige apparaten met elkaar
te verbinden. Aangezien het IdD is samengesteld uit talloze apparaten
die verschillende mogelijkheden hebben op het vlak van verwerkingskracht,
opslagruimte, batterijcapaciteit en communicatietechnologie, wordt een op-
lossing voorgesteld om hoogwaardige systemen en kleine sensorapparaten,
met slechts 20 kilobytes (kBs) Random Access Memory (RAM) en 192 kBs
Read Only Memory (ROM), met elkaar te verbinden. Om dit op te lossen
stellen we een modulaire, schaalbare en flexibele architectuur voor. Met
de voorgestelde architectuur is het mogelijk om verkeer van hoogwaardige
netwerken naar heterogene, laagwaardige draadloze netwerken te routeren.
Bovendien zorgt de architectuur ervoor dat multimodale apparaten kunnen
overschakelen tussen verschillende netwerken zonder hun status te verliezen.
Aan de kant van het apparaat is daarvoor een netwerk-schakelalgoritme ont-
wikkeld, waardoor sensoren efficiënt meerdere langeafstands-technologieën
kunnen gebruiken om met de beperkingen van elkaar om te gaan.

Het derde interoperabiliteitsniveau dat behandeld wordt in dit onder-
zoek, is semantische interoperabiliteit, een trend die zich voornamelijk op
het WWW voordoet. Semantische interoperabiliteit wordt door het World
Wide Web Consortium (W3C) gedefinieerd als “verschillende services en
applicaties in staat stellen om informatie, gegevens en kennis op een zinvolle
manier uit te wisselen, zowel op als buiten het web”. De belangrijkste
drijfveer achter de fragmentatie op het huidige web, zoals aangegeven door
het W3C, is het blootleggen van gegevens met behulp van propriëtaire APIs.
De gegevens die worden gegenereerd en weergegeven door APIs zijn meestal
geformatteerd met behulp van bekende gegevensindelingen, zoals JavaScript
Object Notation (JSON), Concise Binary Object Representation (CBOR)
of eXtensible Markup Language (XML), maar de gegevensmodellen en -
schema‘s zijn meestal eigendomsmatig. Daarom is het voor machines vaak
niet mogelijk om gegevens uit deze APIs te lezen en te verwerken omdat
er geen betekenis aan is verbonden. Daarom bestudeerde dit onderzoek
de haalbaarheid van het gebruik van semantische webtechnologieën in he-
terogene langeafstands-technologieën. Zoals onze studie zal aantonen, is
het onpraktisch om Resource Description Framework (RDF)-gegevens te
gebruiken over dergelijke netwerken. Daarom wordt een lichter alternatief
gebruikt dat zowel voor apparaat-beheer als voor het ophalen van gegevens
kan worden gebruikt. Om uiteindelijk tot semantische interoperabiliteit te
komen, wordt een architectuur voorgesteld die gegevens tussen verschillende
ontologieën in kaart brengt.

Ten slotte is het voor applicatieontwikkelaars vaak ingewikkeld om plat-

xxx Samenvatting

formoverschrijdende en domeinoverschrijdende interoperabiliteit te realiseren
in het huidige IdD-ecosysteem vanwege de overvloed aan beschikbare bestu-
ringssystemen, programmeertalen, architecturen en toegangsmechanismen.
Om de integratie-inspanningen te beperken en tot dit niveau van interope-
rabiliteit te komen, presenteert dit doctoraat een modulaire, flexibele en
schaalbare netwerkarchitectuur. Dankzij het modulaire ontwerp kunnen
applicatieontwikkelaars stromen programmeren tussen componenten van
bestaande applicaties in eender welke programmeertaal. Door middel van
een berichtenkanaal kunnen componenten met elkaar worden verbonden,
wat de flexibiliteit en schaalbaarheid vergroot. Verder wordt een algemeen
berichten-patroon, volgens een zeer eenvoudig schema, in JSON gebruikt
om communicatie tussen componenten en syntactische interoperabiliteit te
bieden.

Samengevat stelt dit proefschrift een aantal oplossingen voor die in-
teroperabiliteit biedt van sensor netwerk tot data opslag voor heterogene
langeafstands-netwerken. Het onderzoek toont aan dat de huidige SCHC-
standaard netwerkinteroperabiliteit biedt tussen langeafstands-compatibele
componenten. Om netwerkinteroperabiliteit tussen de eigenlijke netwerken
en het Internet te bieden, blijkt dat de huidige specificatie moet worden
uitgebreid. Ten tweede wil dit doctoraat door middel van een middleware-
architectuur zowel laagwaardige als hoogwaardige apparaten verbinden,
waarbij het een manier biedt om te schakelen tussen heterogene langeafstands-
netwerken. Ten slotte wordt in een latere fase de middleware uitgebreid om
systemen van meerdere domeinen te koppelen. Hoewel volledig interopera-
bele langeafstands-systemen nog niet voor vandaag zijn, biedt dit proefschrift
een kleine stap in de richting van een Internet-compatibel Web of Things.

Summary

Ever since humans started crafting engines and machines, they have been
doing so to improve their way of living, working and being in general. Since
many tasks that keep humans occupied are characterized by repetition, the
driving force behind the development of computers has been their ability to
automate repetitive tasks. It was way back in 1820 when Charles Babbage
conceptualized the Difference Engine to calculate polynomials and 80 years
later, Konrad Zuse invented the first functional mechanical computer that
could add, subtract, multiply, divide and take a square root of floating point
numbers. Since then, computers have been decreasing in size, increasing in
processing power and started communicating with each other.

Many of the advancements in Information Technology (IT) are something
we owe to the ability of computers to communicate with each other. Even
more, it is not only a machine’s communication link that makes it powerful,
it is its ability to understand others in an ecosystem of devices, services and
technologies. The concept of interfaces that are completely understood by
others is referred to as interoperability and is one of the concepts that has
laid the cornerstones of the Internet and the World Wide Web (WWW).

One of the things that increasingly gained attention around interoperabil-
ity in recent years - due to its infancy - is the Internet of Things (IoT). The
IoT is characterized by very small devices that can be installed anywhere
to provide information about their environment. Their ability to distribute
information over the air, using technologies such as Bluetooth and IEEE
802.15.4, allows them to assist humans in their day-to-day tasks in several
domains such as mobility, home automation and healthcare among others.

However, not only did the IoT find its applications in short range scenar-
ios, several cases, such as agriculture, environmental monitoring, smart cities
and logistics required low power, wireless communication over long distances
and gave rise to Low Power Wide Area Network (LPWAN) technologies such
as Long Range (LoRa), Sigfox, DASH-7 and Narrowband IoT (NB-IoT).
Many of these technologies make use of the unlicensed sub-Gigahertz (GHz)
frequency bands. This part of the radio frequency spectrum helps to extend
their range, but limits the bandwidth for data throughput. This complicates
the integration with existing networks since existing protocols were initially
developed for machines that did not have the limitations that characterize
wireless long range technologies. Therefore this PhD will look at Internet
and semantic Web compliance in LPWANs and will do so by focusing on 5

xxxii Summary

levels of interoperability.
The networks that connect the IoT are, and will continue to be, largely

heterogeneous. Even in the sub-domain of LPWANs there is a great variety.
Since its inception, connecting heterogeneous networks has been an obstacle
for the Internet. In order to solve this, the Internet employs a multi-layered
approach, better known as the Open Systems Interconnection (OSI)-model.
The narrow waist of the Internet hourglass uses the Internet Protocol (IP)
to address devices and deliver packets in a network. On top of this, the
Transmission Control Protocol (TCP) can be used to provide reliability or
the User Datagram Protocol (UDP) for unreliable, fast(er) transmissions.
However, these protocols were designed for high-bandwidth networks and are
not suitable for the low bandwidth technologies that characterize LPWANs.

The first level of interoperability, called network interoperability, tries to
interconnect such heterogeneous networks. In order to do so, this PhD focuses
on devices that support multiple wireless communication technologies. The
main challenge that is targeted on this level is the re-usability of applications
over different wireless technologies. Using a new Internet Engineering Task
Force (IETF) protocol, Static Context Header Compression (SCHC), these
devices and networks can support the well-known and widespread Internet
languages. This is done by compressing the header information of the upper
layer protocols and fragmentation of large Internet packets that can not be
transported over technologies with a Maximum Transfer Unit (MTU) as
small as 8 bytes.

SCHC assumes that a static context is distributed before deployment.
This context is used on both sides of the network to compress and decompress
the headers of the upper layers. The middleware that sits between both net-
works is not completely in line with the mature idea of the Internet Protocol
Version 6 (IPv6) that suggests to keep the intelligence of the network at
the edge. Therefore this PhD proposes two device registration and context
configuration mechanisms for SCHC networks. These solutions can be used
to exclude middleware and allow for simpler upgrades of the network and the
evolution of applications. Consequently, complex Application Programming
Interfaces (APIs) can be excluded in order to achieve true network inter-
operability in LPWANs. Both mechanisms also provide a dynamic solution
for configurable upper layer protocols in order to save airtime, and hence
energy.

The second level of interoperability is defined as device interoperability
and aims to connect both high-end devices and low-end devices. Since the
IoT is composed out of numerous devices that have different capabilities in
terms of processing power, storage space, battery capacity and communi-
cation technology, a solution is proposed to interconnect high-end systems
and small sensor devices with as little as 20 kilobytes (kBs) of Random
Access Memory (RAM) and 192 kBs of Read Only Memory (ROM) avail-
able. In order to solve this, we propose a modular, scalable and flexible
architecture. With the proposed architecture it is possible to route traffic

Summary xxxiii

from high-end networks towards heterogeneous constrained wireless networks.
Moreover, the architecture allows multimodal devices to switch between
different networks while maintaining their state. On the device side, a
network switching algorithm was developed, enabling sensors to use multiple
LPWAN technologies in order to cope with the limitations of one another.

A third level of interoperability that this research covers is semantic
interoperability, a trend that is moving the WWW forward. It is defined
by the World Wide Web Consortium (W3C) as ”enabling different agents,
services, and applications to exchange information, data and knowledge
in a meaningful way, on and off the Web”. The main driver behind the
fragmentation on the current Web, as stated by the W3C, is the exposing of
things and data using proprietary APIs. The data generated and exposed
by APIs are typically formatted using well-known data formats, such as
JavaScript Object Notation (JSON), Concise Binary Object Representation
(CBOR) or eXtensible Markup Language (XML), but the data models and
schemes are usually proprietary. Hence, it is often not possible for machines
to read and process data from these APIs as no meaning is associated
with it. Therefore, this research studied the feasibility of using semantic
Web technologies in heterogeneous LPWANs. As our study will show, it is
impractical to use Resource Description Framework (RDF) data over such
constrained links. Therefore, a light weight alternative is employed that
can be used for both management and data retrieval. In order to to create
correspondences that will enable semantic interoperability, an architecture
is proposed that maps data between different vocabularies.

Finally, achieving cross-platform and cross-domain interoperability in
the current IoT ecosystem is complicated for application developers due to
the plethora of available Operating Systems (OSs), programming languages,
architectures and access mechanisms. In order to limit integration effort and
provide this level of interoperability, this PhD presents a modular, flexible
and scalable network architecture. The modular design allows application
developers to build flows between components from existing applications in
any programming language. Components can be interconnected by means
of a message bus, which increases the flexibility and ability to scale. Fur-
thermore, a common messaging pattern in JSON that follows a very basic
scheme is used for communication between components in order to provide
syntactical interoperability.

To conclude, this dissertation offers a solution that provides interoper-
ability from sensor network to data storage for heterogeneous LPWANs. The
research shows that the current SCHC standard provides network interoper-
ability between LPWAN-enabled components. However, to provide network
interoperability between LPWAN gateways and the Internet, it shows that
the current specification can be extended. Secondly, by means of a middle-
ware architecture, this PhD aims at connecting both low-end and high-end
devices, while providing a way of switching between heterogeneous LPWANs.
Finally, it presents an extended version of the middleware in order to connect

xxxiv Summary

systems from multiple domains. Although completely interoperable LPWAN
systems are still a long way from today, this dissertation provides a small
step towards an Internet compliant Web of Things.

1
Introduction

“The Web as I envisaged it, we have not seen it yet. The future is still so

much bigger than the past.”

Tim Berners-Lee

1.1 Background

1.1.1 A Brief History of the Internet

Without the cables that connect the machines on the Internet, electronic

devices wouldn’t be considered smart. Since the ability to communicate

with others is a prerequisite for these devices for being smart, they are tied -

be it wired or wireless - to the cables that spread across our globe. It was

as early as 1858 when vessels from both America and Britain laid a cable

between their respective countries to place a cornerstone of the Internet.

Even though the first Atlantic cable only remained in service a few days, the

first instantaneous communication across the ocean was imminent. It was

only in 1866 for a subsequent cable to endure the oceanic conditions and to

become a successful communication tool that remained in use for nearly 100

years [1].

2 Chapter 1

The first Atlantic cable had been in use as a telegraph wire system for ten

years before Alexander Graham Bell patented the telephone, but it wasn’t

until 1956 for the first wired transatlantic phone call to occur. It had taken

almost thirty years to develop technology that could boost voice signals to

ensure that the volume of someone’s voice did not diminish by the time it

got the other end [2].

These advancements in wired communications laid the foundation of

the Internet; a telecommunication system that allowed computers to com-

municate with one another over large distances. In 1969, AT&T and the

Department of Defense’s Advanced Research Project’s Agency (DARPA)

built a 50 kilobit per second (kbps) connection between mainframe comput-

ers at the University of Utah, the University of California - Los Angeles, the

University of California - Santa Barbara and Stanford Research Institute,

called Advanced Research Projects Agency Network (ARPANET). Hosts

could establish links using the Network Control Program (NCP), a middle

layer protocol stack that provided connections to other host computers and

flow control between two nodes [3, 4]. The Request For Comments (RFC)

concept was used to describe these protocols and has been in use ever since.

The following years, other, foreign networks, such as the University College

London (UCL), connected to the ARPANET and contributed to the first

international heterogeneous computer network [5].

During those years, several other networks came into being, such as

the Michigan Educational Research Information Triad (MERIT) network

and the French CYCLADES, that explored alternatives for these packet

switching networks. It soon became clear that a method was required

to unify the different networking methods in order to interconnect them.

Consequently, Kahn and Cerf published a protocol design that supported

the sharing of resources in different packet switching networks [6]. This

resulted in RFC 675 that solved many problems of interconnecting multiple

computer networks [7].

By 1981, the ARPANET consisted of more than 200 hosts and became

the technical core of what we know today as the Internet. By that time,

the initial Transmission Control Protocol (TCP) protocol was split into the

TCP and the Internet Protocol (IP) and replaced the obsolete NCP [8, 9].

These early standardization efforts were essential for the transition to-

wards a global internet. The hardware-agnostic approach in TCP/IP and

the interest in remote collaboration and exchange of data led to a spread of

these technologies throughout the world.

Introduction 3

1.1.2 The Web and the Internet of Things

Although collaboration and the sharing of information underlie the core

values of the Internet, multiple protocols and programs existed at the

application layer that were incompatible. The frustration of documentation

systems that were unable to interchange information directly and the vision

of an open information system led to the development of the World Wide

Web (WWW) by Tim Berners Lee in 1989 [10]. The idea was similar to that of

the internet: to provide a decentralized, interoperable communication system

based on a set of protocols. The Hyper Text Transfer Protocol (HTTP),

Hyper Text Markup Language (HTML) and Cascading Style Sheets (CSS)

provided tools to create a collaborative space where everyone was able to

participate in.

The rise of online services, such as YouTube, Facebook and eBay, shifted

the original idea of the Web towards centralized, non-standardized informa-

tion sharing. This is often referred to as the Web 2.0, describing websites

that mainly host user-generated content. However, according to Cisco, there

were already more connected devices than people somewhere between 2008

and 2009 [11]. This point, where the Web moved away from the Internet of

content to the Internet of data, can be marked as the theoretical start of

the Internet of Things (IoT).

The IoT is considered a collection of devices consisting of sensors and

actuators that can exchange data and exert an influence on their environment

due to their interconnectivity. The concept of connected, smart devices was

discussed as early as 1982, when a modified Coca-Cola vending machine was

connected to the ARPANET 1. However, since most objects we want to

connect do not have access to wired connectivity, wireless technologies are a

key enabler for the IoT.

In 1985, the Federal Communications Commission (FCC) already ad-

mitted the need for such wireless connectivity by allowing spread spectrum

systems to operate in parts of the Industrial, Scientific and Medical (ISM)

bands (at 902-928, 2400-2483.5 and 5725-5850 Mega Hertz (MHz)) [12]. This

laid the foundation for short range wireless technologies, such as Wi-Fi, Blue-

tooth, Radio Frequency Identification (RFID), ZigBee and IEEE 802.15.4.

The latter two, both standardized in 2003, were developed with a focus

on Wireless Personal Area Network (WPAN) devices that target low-cost,

low-speed communication. A consequence of these technologies that use low

bandwidth and low power communication to save energy, was that there was

no physical support for the widespread internet protocols.

Even though the IP had been around for a few years, with major im-

1https://www.cs.cmu.edu/∼coke/

4 Chapter 1

provements in version 6, getting it to such resource constrained devices was

out of the question. Due to the overhead of the network and transport layers,

the application layer was tied straight above the link layer. This contrasted

with the end-to-end Internet vision, that strives to keep networks simple and

generic by moving the intelligence (i.e. the protocol stack) to the edge. The

problem that Kahn and Cerf had solved in 1974 for wired networks, now

limited the integration of low throughput Wireless Sensor Networks (WSNs)

into the Internet.

As a consequence, the Internet Engineering Task Force (IETF) started the

development of the IPv6 over Low-Power Wireless Personal Area Networks

(LoWPANs) (6LoWPAN) standard, which brought Internet Protocol Version

6 (IPv6) and User Datagram Protocol (UDP) connectivity to these sensor

devices. This layer uses several optimizations, including header compression,

to adapt the low bandwidth of WPANs to the higher bandwidth demands

of the network layer. Yet, different application layer protocols made it again

- just like in 1989 - difficult to interchange information directly. Therefore,

a specialized protocol, the Constrained Application Protocol (CoAP), was

built around the same principles as the HTTP and solved many of these

interoperability issues which led to complete, integrable IoT solutions.

When these short range technologies climbed the Slope of Enlightenment

to the Plateau of Productivity 2, many cases exposed themselves where these

communication technologies did not suffice. Connecting monitoring tools to

existing infrastructure over a vast environment, for example, requires wireless

connectivity with transmission ranges of several kilometers. This led to the

development of Low Power Wide Area Network (LPWAN) technologies such

as Long Range (LoRa) and Sigfox that provide very long range communi-

cation, at the cost of a very low throughput (between 5 kbps and 0.1 kbps

respectively, which is lower than the bandwidth of the initial ARPANET).

These technologies have been optimized for battery-operated devices since

the availability of power sources is either limited or the replacement of the

battery is time consuming. Typical applications can therefore operate on a

battery for five to ten years without human intervention. This, along with

low hardware costs, significantly reduces the operation cost per unit and

has contributed to the commercial success of LPWAN technologies [13]. An

overview of popular LPWAN technologies and their applications is given in

Table 1.1.

Consequently, large companies started rolling out LPWAN solutions. A

subsidiary of the French company Veolia, for example, already operates

400.000 LoRa connected smart water meters and will roll out another 3

million. However, the worldwide installed number of 450 million LPWAN

2https://www.gartner.com/en/research/methodologies/gartner-hype-cycle

Introduction 5

Table 1.1: LPWAN overview of data-rate, coverage and typical application areas.
Technologies with ranges up to 2 kilometer are considered medium range
technologies. Technologies beyond 2 kilometers, long range technologies.

Technology Configuration Coverage Data-rate Application

Sigfox
Uplink 5 - 25 km 0.1 kbps Smart Grid,

LogisticsDownlink 5 - 25 km 0.6 kbps

LoRa
SF 7 5 km 5.5 kbps Agriculture,

Smart Grid,
Smart CitiesSF 12 5 - 25 km 0.3 kbps

DASH7

Lo-Rate 2 km 4.8 kbps Industrial
Automation,
Automotive

Normal 1 km 55.5 kbps

Hi-Rate 1 km 167 kbps

compatible devices does not come anywhere near the 3 billion unlicensed

LPWAN connections that were forecasted by the end of the year 2023 [14, 15].

One of the reasons for this rather low global adoption is - again - the

lack of an open, standardized protocol stack. Currently, mainly proprietary

application layer protocols are deployed that are adapted to the underlying

technology, which limits the re-usability of applications. Apart from that,

different deployments must be managed, secured and operated individually,

which requires an engineered link towards every network. Even more, de-

veloping applications that are tied to the link layer cannot be easily ported

towards other (wireless) technologies. Furthermore, due to the low band-

width and duty cycle constraints of LPWANs, current solutions do not have

support for Over The Air (OTA) Updates (OTAUs) and are therefore prone

to runtime errors and security attacks. All these time consuming tasks make

it difficult for (smaller) companies to develop sustainable LPWAN solutions.

Therefore, novel mechanisms are required that support existing features

from the Internet protocol stack like flow control and mechanisms to resume

interrupted or corrupted transfers.

Out of these observations emerged the IETF LPWAN Working Group

(WG). Their mission includes enabling IPv6 connectivity over LPWAN

technologies and to optimize IPv6-based communications to the end devices.

A solution was standardized in 2020 under the name of Static Context Header

Compression (SCHC). The SCHC protocol is based on the assumption that

in LPWANs mostly a static context will be used. Following this assumption,

a shared context can be built between the LPWAN devices and the network

side [16]. This context can be used to compress and decompress redundant

6 Chapter 1

headers. In the best cases, only a single byte is required to represent the

application layer headers, transport layer headers and network layer headers

that can be used in the future to interconnect these technologies in a Web

of Things [17].

1.2 The Future Web

The main objective in developing Internet of Things (IoT) applications is

to integrate technology into our lives. Communication technologies such

as LPWAN are powerful tools that provide context information about our

environment. However, how this information is used in a human context,

leaves much room for improvement. People are very often forced to change

their context to fit the technological requirements, rather than technology

adapting to people’s context [18].

One of the main things that makes it difficult to integrate machines in

a human context is the impossibility for machines to understand data. No

common language is able to reveal the meaning of symbols to technology.

However, just like human languages, the study of semantics can provide

context information. Applying these concepts to the Web, will reveal the

Semantic Web. The integration of all kinds of IoT devices on top of that

will ultimately lead to our environment adapting to our needs.

Consequently, information about our living environment and our interac-

tions within will be exposed towards actuators and Web applications with

the intention to simplify our lives. However, as every Linux superuser knows,

with great power comes great responsibility. Concerning privacy, it will

be of great importance that users can control their data and the systems

that are part of their lives. Therefore, the future web should work towards

more fairness, where users are able to choose where to store their data,

independent of the applications they use. As users maintain their data

themselves, they are free to move to other “front-ends”. Such a solution

is currently being implemented by Solid, one of the largest personal data

storage ecosystems that focuses on decentralization of social data using

standardized vocabularies.

1.3 Research Challenges

This PhD dissertation addresses some of the challenges affecting the current

adoption of LPWAN technologies and how these technologies might be

incorporated in the Semantic Web. It will look in detail at different levels of

interoperability in order to make these technologies future proof. In short,

the main research challenges are:

Introduction 7

1. To what extent offer current standards the possibility to connect

LPWAN technologies to the Internet following the end-to-end princi-

ple?

2. Are newly developed solutions, such as SCHC, practically feasible

solutions that deliver tools to keep the intelligence of the network at

the edge?

3. How and to what extent can SCHC assist in the incorporation of

multiple LPWAN technologies on a single constrained device? What

are the necessary mechanisms to roam between heterogeneous networks

to assist the low bandwidth constraints?

4. Given the low bandwidth of LPWAN technologies, how can data

from these networks be enriched with semantics in order to fit the

requirements of the Semantic Web?

5. How can the above solutions and other, proprietary technologies that

do not support IPv6 be incorporated in the Semantic Web and other,

non-interoperable platforms?

1.4 Outline

This dissertation is composed out of a number of scientific papers. The

papers that are part of this book provide an overview of the work that

has been done during this PhD. The research contributions are provided in

Section 1.5 and a complete list of published papers can be found in Section

1.6. Except for Chapter 2, not much editing has been done to the original

manuscripts. Chapter 2.3 has been extended to match the nomenclature of

the current specification, Figure 2.3, 2.4, 2.5, and 2.6 were added to better

assist the text. Figure 2.7 was updated in order to provide a clearer example

of the fragmentation protocol. Future Work sections were removed from

Chapter 2, 4, 5 and 6, since they were summarized and rewritten in Chapter

7. The remainder of this Section provides an overview of the outline of this

book.

Chapter 2 serves as an introduction to the background technologies that

lay the foundation of this dissertation. This Chapter introduces the wireless

communication technologies and the available protocol stacks for constrained

devices. An analysis of these stacks demonstrates that a novel standard is

required to provide network interoperability in the area of LPWAN. The

remainder of the Chapter demonstrates that this can be provided efficiently

by the novel SCHC protocol. This adaptation layer, that sits between the

Medium Access Control (MAC) layer and network layer, is compared to

8 Chapter 1

other solutions and implemented on a constrained device in order to evaluate

the software footprint. Part of this Chapter was published in early 2019.

However, it was not until April 2020 that the LPWAN WG standardized

the specification. Therefore, this Chapter has been updated in order to

complement the original paper with a more in depth explanation about the

technical aspects of the specification. Secondly, the terminology changed

slightly and has been updated in order to match the nomenclature of the

published standard.

As Chapter 3 will point out, LPWANs should abolish their proprietary

Application Programming Interfaces (APIs) in order to truly provide net-

work interoperability. Therefore, this Chapter analyses the shortcomings

of current systems and proposes methods to decentralize LPWANs. Based

on a real world example, where the IPv6 of the destination is not known

before deployment, shortcomings of the specification are laid out. These

requirements led to the conclusion that a management protocol is needed in

these types of networks. After analysing current device management and

registration mechanisms, conclusions are drawn that there is a need for a

new registration and configuration protocol in SCHC networks. However,

none of the existing solutions can serve as a provisioning tool in such low

power networks and consequently, two provisioning protocols are proposed:

the SCHC Registration mechanism and the SCHC Optimized Neighbor Dis-

covery mechanism. Both mechanisms are evaluated in a simulation based

environment, where their success rate and registration time is measured to

draw conclusions about their feasibility.

The next Chapter will look at more complex settings and configurations.

Since many of the aforementioned wireless technologies fail to provide the

required bandwidth for e.g. OTAUs, some use cases require the combination

of multiple technologies. Such cases can deploy multiple LPWAN technologies

in order to cope with the limitations of one another. However, for such

requirements, a new architecture is needed. This architecture is able to deliver

device interoperability, by keeping track of the active network. Since devices

can now switch between networks, an energy efficient network discovery

algorithm is presented too, which was implemented in a real world use case

and evaluated in a simulation based environment. The energy consumption

for different configurations of the parameters are modeled using an energy

model for three different technologies: Sigfox, Long Range Wide Area

Network (LoRaWAN) and DASH-7.

Chapter 2 to 4 provide interoperable solutions to access the resources

of constrained IoT devices. However, as the future Web will move towards

a Semantic Web, data should be enriched with semantics in order to be

understandable by machines, accessible by different platforms and to link to

Introduction 9

Table 1.2: An overview of the targeted challenges per chapter in this dissertation.

Ch.2 Ch.3 Ch.4 Ch.5 Ch. 6

Analysis and implementation of
the SCHC protocol

• •

Analysis and design of SCHC con-
text provisioning

•

Analysis and optimization of mul-
timodal LPWAN solutions

• •

Analysis of semantic interoperabil-
ity in LPWANs

•

Design and evaluation of an inter-
operability platform for LPWANs

• •

other pieces of data. Therefore, Chapter 5 studies semantic interoperability

in LPWANs. First, an analysis is performed to determine the requirements

to incorporate constrained IoT devices into the future Web. The evaluation

demonstrates that their bandwidth constraints make it infeasible to use

semantic Web technologies, such as Resource Description Framework (RDF),

over a constrained wireless link. Therefore, this chapter analyses the imple-

mentation of a Light Weight Machine to Machine (LwM2M) based solution,

which resulted in an architecture that uses a middleware layer to convert

the LwM2M data to RDF.

Both Chapter 4 and 5 demonstrate that a middleware layer is required

to provide network interoperability, device interoperability and semantic

interoperability. These observations are leveraged upon in the final Chapter

to build a generic architecture that provides interoperability on the afore-

mentioned levels. It is extended in such a way that it can provide platform

interoperability, while maintaining syntactic interoperability. Furthermore,

it is demonstrated that the generic approach allows the addition of other

services, such as localization. This Chapter evaluates these concepts in

the scope of the Port of the Future based on five levels of interoperability,

platform scalability and performance.

Table 1.2 gives an overview of the targeted challenges per chapter. This,

together with the table of contents, may aid in navigating throughout this

dissertation.

1.5 Contributions

• Implementation and analysis of the SCHC protocol (Chapter 2)

10 Chapter 1

– Development of device agnostic open source SCHC library in C

∗ Implementation of the compressor and decompressor for the

IoT protocol stack: CoAP/LwM2M, UDP, IPv6

∗ Implementation of fragmenter and reassembler state machines

for the reliability modes: No-Ack, Ack-on-Error and Ack-

Always

∗ Implementation of low-footprint network memory buffer man-

ager

∗ Implementation of low-footprint connection manager

• Design of SCHC context provisioning protocols (Chapter 3)

– Analysis of existing network management protocols and trade-offs

in IPv6 networks

– Design of the SCHC Registration provisioning protocol and the

SCHC Optimized Neighbor Discovery provisioning protocol

∗ Comparison of both mechanisms in terms of flexibility

∗ Quantification of the packet overhead for both mechanisms

in the Ack-On-Error reliability mode

∗ Feasibility of both mechanisms in a simulation based environ-

ment in terms of energy overhead and required registration

time

• Design of an energy efficient handover protocol for LPWANs (Chapter

4

– Design and implementation of an architecture for devices in mul-

timodal LPWAN configurations

– Design and implementation of a low power network discovery

method

– Design of an energy model for LoRaWAN, SigFox and DASH-7

– Assessment of the algorithm in a simulation based environment,

based on the energy overhead, network discovery time and the

reliability latency

– Providing insights in the algorithm’s parameter configuration

trade-offs and implementation overhead

• Methods for LPWANs to support Linked Data and connect to the

Semantic Web (Chapter 5)

– Design and implementation of an architecture to connect LPWAN

devices to a Linked Data Platform (LDP)

Introduction 11

– Providing insights in the feasibility of transmitting RDF data

over a constrained link

– Mapping of LwM2M data to RDF in order to support semantic

interoperability in LPWANs

• Design and implementation of a generic architecture for multi-level

interoperability in the constrained Internet of Things (Chapter 6)

– Design and implementation of a scalable, open-source middleware

platform in the scope of the Port of the Future

– Evaluation and assessment of the shortcomings of existing IoT

platforms

– Implementation and evaluation of the platform in terms of inter-

operability, scalability, performance and resource consumption,

compared with existing platforms

1.6 List of Publications

The research results obtained during this PhD research have been published in

a number of scientific journals and were presented at a series of international

conferences. The following list presents an overview of the publications

during the PhD research.

1.6.1 Publications in international journals
(listed in the Science Citation Index 3)

1. Bart Moons, Michiel Aernouts, Vincent Bracke, Bruno Volckaert,

Jeroen Hoebeke. FLINT: Flows for the INTernet of Things Published

in MDPI Applied Sciences, 2021: 11(19). DOI: 10.3390/app11199303

IF: 2.679

2. Celia Garrido-Hidalgo, Jetmir Haxhibeqiri, Bart Moons, Jeroen

Hoebeke, Teresa Olivares, F. Javier Ramirez, Antonio Fernandez-

Caballero. LoRaWAN scheduling: from concept to implementation

Published in IEEE Internet of Things Journal, 2021: 8(16). p.12919-

12933. DOI: 10.1109/JIOT.2021.3064430 IF: 9.471

3The publications listed are recognized as ‘A1 publications’, according to the following
definition used by Ghent University: A1 publications are articles listed in the Science
Citation Index Expanded, the Social Science Citation Index or the Arts and Humanities
Citation Index of the ISI Web of Science, restricted to contributions listed as article,
review, letter, note or proceedings paper.

12 Chapter 1

3. Vincent Bracke, Merlijn Sebrechts, Bart Moons, Jeroen Hoebeke,

Filip de Turck, Bruno Volckaert. Design and evaluation of a scalable

Internet of Things backend for smart ports Published in Software:

Practice and Experience, 2021: 51(7). DOI: 10.1002/spe.2973 IF:

2.028

4. Michiel Aernouts, Filip Lemic, Bart Moons, Jeroen Famaey, Jeroen

Hoebeke, Maarten Weyn, Rafael Berkvens. A multimodal localization

framework design for IoT applications Published in MDPI Sensors,

2020: 20(16). DOI: 10.3390/s20164622 IF: 3.576

5. Subho Shankar Basu, Jetmir Haxhibeqiri, Mathias Baert,Bart Moons,

Abdulkadir Karaagac, Pieter Crombez, Pieterjan Camerlynck, Jeroen

Hoebeke. An end-to-end LwM2M-based communication architecture

for multimodal NB-IoT/BLE devices Published in MDPI Sensors, 2020:

20(8). DOI: 10.3390/s20082239 IF: 3.576

6. Bart Moons, Abdulkadir Karaagac, Eli De Poorter, Jeroen Hoe-

beke. Efficient vertical handover in hetreogeneous low-power wide area

networks Published in IEEE Internet of Things Journal, 2020: 7(3).

p.1960-1973. DOI: 10.1109/JIOT.2019.2961950 IF: 9.471

1.6.2 Publications in international conferences
(listed in the Science Citation Index 4)

1. Subho Shankar Basu, Jetmir Haxhibeqiri, Bart Moons, Jeroen Hoe-

beke. An energy-efficient multi-modal IoT system leveraging NB-IoT

and BLE. Published in the proceedings of the 2020 IEEE International

Conference on Internet of Things and Intelligence System (IOTAIS),

27-28 January 2021. p. 31-37. Online, Bali, Indonesia.

2. Bart Moons, Jetmir Haxhibeqiri, Abdulkadir Karaagac, Eli De

Poorter, Jeroen Hoebeke. Using SCHC for an optimized protocol

stack in multimodal LPWAN solutions. Published in the proceedings

of the 5th IEEE World Forum on Internet of Things (WF-IoT), 15-18

April 2019. p. 430-435. Limerick, Ireland.

4The publications listed are recognized as ‘P1 publications’, according to the following
definition used by Ghent University: P1 publications are proceedings listed in the Con-
ference Proceedings Citation Index - Science or Conference Proceedings Citation Index
- Social Science and Humanities of the ISI Web of Science, restricted to contributions
listed as article, review, letter, note or proceedings paper, except for publications that are
classified as A1.

Introduction 13

3. Abdulkadir Karaagac, Matthias Van Eeghem, Jen Rossey, Bart Moons,

Eli De Poorter, Jeroen Hoebeke. Extensions to LwM2M for intermit-

tent connectivity and imporved efficiency. Published in the proceedings

of the 4th IEEE Conference on Standards for Communications and

Networking (IEEE CSCN), 29-31 October 2018. p. 1-6. Paris, France.

4. Jeroen Hoebeke, Jetmir Haxhibeqiri, Bart Moons, Matthias Van

Eeghem, Jen Rossey, Abdulkadir Karaagac, Jeroen Famaey. A cloud-

based virtual network operator for managing multimodal LPWAN net-

works and devices. Published in the proceedings of the 3rd Cloudifi-

cation of the Internet of Things Conference (CIoT), 2-4 July 2018. p.

1-8. Paris, France.

5. Bart Moons, Jetmir Haxhibeqiri, Matthias Van Eeghem, Jen Rossey,

Abdulkadir Karaagac, Stefano Quattrocchi, Jeroen Famaey, Jeroen

Hoebeke. DEMO: A cloud-based virtual network operator for managing

multimodal LPWAN networks and devices. Published in the proceed-

ings of the 3rd Cloudification of the Internet of Things Conference

(CIoT), 2-4 July 2018. p. 1-2. Paris, France.

1.6.3 Publications in other International Conferences

1. Bart Moons, Jeroen Hoebeke. Towards an Open Web of Things.

Published in the proceedings of the 2020 IEEE International Sympo-

sium on Technology and Society (ISTAS), 12-15 November 2020. p.

176-179. Online.

2. Bart Moons, Flor Sanders, Thijs Paelman, Jeroen Hoebeke. De-

centralized linked open data in constrained wireless sensor networks

Published in the proceedings of the 7th International Conference on

Internet of Things: Systems, Management and Security (IOTSMS), 14

December 2020. Online.

1.6.4 Publications in other International Journals

1. Bart Moons, Eli De Poorter, Jeroen Hoebeke. Device discovery

and context registration in static context header compression networks

Published in MDPI Information, 2021: 12(2). p.1960-1973. DOI:

10.3390/info12020083.

14 Chapter 1

References

[1] G. R. Gromov. The Roads and Crossroads of Internet History. Online

Writings, 1995. Available from: http://www.netvalley.com/intval.html.

[2] B. Elmore. January 2017: From the Transatlantic Telephone to the

iPhone. Origins, January 2017. Available from: https://origins.osu.edu/

milestones/january-2017-transatlantic-telephone-iphone.

[3] S. Crocker, J. Postel, J. Newkirk, and M. Kraley. An Official Protocol

Proffering. Technical Report RFC57, RFC Editor, June 1970. Available

from: https://datatracker.ietf.org/doc/html/rfc54.

[4] R. Kalin. A Simplified NCP Protocol. Technical Report RFC60, RFC

Editor, July 1970. Available from: https://datatracker.ietf.org/doc/

html/rfc60.

[5] P. Kirstein. Early experiences with the Arpanet and Internet in the

United Kingdom. IEEE Annals of the History of Computing, 21(1):38–

44, January 1999. Conference Name: IEEE Annals of the History of

Computing. doi:10.1109/85.759368.

[6] V. G. Cerf and R. E. Kahn. A Protocol for Packet Network Intercom-

munication. IEEE Transactions on Communications, 22(5):637–648,

1974. doi:10.1109/TCOM.1974.1092259.

[7] V. Cerf, Y. Dalal, and C. Sunshine. Specification of Internet Transmis-

sion Control Program. Technical Report RFC675, RFC Editor, Decem-

ber 1974. Available from: https://datatracker.ietf.org/doc/html/rfc675.

[8] J. Postel. Transmission Control Protocol. Technical Report RFC793,

RFC Editor, September 1981. Available from: https://datatracker.ietf.

org/doc/html/rfc793.

[9] J. Postel. Internet Protocol. Technical Report RFC791, RFC Editor,

September 1981. Available from: https://datatracker.ietf.org/doc/html/

rfc793.

[10] T. Berners-Lee. Information Management: A Proposal. CERN, page 20,

1989.

[11] D. Evans. How the Next Evolution of the Internet Is Changing Every-

thing. Cisco Internet Business Solutions Group, page 11, 2011. Available

from: https://www.cisco.com/c/dam/en us/about/ac79/docs/innov/

IoT IBSG 0411FINAL.pdf.

http://www.netvalley.com/intval.html
https://origins.osu.edu/milestones/january-2017-transatlantic-telephone-iphone
https://origins.osu.edu/milestones/january-2017-transatlantic-telephone-iphone
https://datatracker.ietf.org/doc/html/rfc54
https://datatracker.ietf.org/doc/html/rfc60
https://datatracker.ietf.org/doc/html/rfc60
https://datatracker.ietf.org/doc/html/rfc675
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc793
https://www.cisco.com/c/dam/en_us/about/ac79/docs/innov/IoT_IBSG_0411FINAL.pdf
https://www.cisco.com/c/dam/en_us/about/ac79/docs/innov/IoT_IBSG_0411FINAL.pdf

Introduction 15

[12] Amendment of the rules to authorize spread spectrum and other wide-

band emissions in the Public Safety and Industrial, Scientific, Medical-

Bands., February 2016. Available from: https://www.fcc.gov/document/

amendment-rules-authorize-spread-spectrum-and-other-wideband.

[13] U. Raza, P. Kulkarni, and M. Sooriyabandara. Low Power Wide Area

Networks: An Overview. arXiv:1606.07360 [cs], June 2016. arXiv:

1606.07360. Available from: http://arxiv.org/abs/1606.07360.

[14] P. Eugenio. 5 things to know about the LPWAN market in 2020,

January 2020. Available from: https://iot-analytics.com/5-things-to-

know-about-the-lpwan-market-in-2020/.

[15] A. Strategy. Strategy Analytics: Unlicensed LPWA IoT Connections

Will Grow to 400 Million By 2025, December 2019. Available from:

https://www.businesswire.com/news/home/20191219005087/en/

Strategy-Analytics-Unlicensed-LPWA-IoT-Connections-Will-Grow-

to-400-Million-By-2025.

[16] A. Minaburo, L. Toutain, C. Gomez, D. Barthel, and J.-C. Zúñiga.

SCHC: Generic Framework for Static Context Header Compression and

Fragmentation. Request for Comments RFC 8724, Internet Engineering

Task Force, April 2020. Num Pages: 71. Available from: https://

datatracker.ietf.org/doc/rfc8724, doi:10.17487/RFC8724.

[17] D. Guinard, V. Trifa, F. Mattern, and E. Wilde. From the Internet

of Things to the Web of Things: Resource-oriented Architecture and

Best Practices. In D. Uckelmann, M. Harrison, and F. Michahelles,

editors, Architecting the Internet of Things, pages 97–129. Springer

Berlin Heidelberg, Berlin, Heidelberg, 2011. Available from: http:

//link.springer.com/10.1007/978-3-642-19157-2 5.

[18] J. Miranda, N. Mäkitalo, J. Garcia-Alonso, J. Berrocal, T. Mikkonen,

C. Canal, and J. M. Murillo. From the Internet of Things to the

Internet of People. IEEE Internet Computing, 19(2):40–47, March 2015.

Conference Name: IEEE Internet Computing. doi:10.1109/MIC.2015.24.

https://www.fcc.gov/document/amendment-rules-authorize-spread-spectrum-and-other-wideband
https://www.fcc.gov/document/amendment-rules-authorize-spread-spectrum-and-other-wideband
http://arxiv.org/abs/1606.07360
https://iot-analytics.com/5-things-to-know-about-the-lpwan-market-in-2020/
https://iot-analytics.com/5-things-to-know-about-the-lpwan-market-in-2020/
https://www.businesswire.com/news/home/20191219005087/en/Strategy-Analytics-Unlicensed-LPWA-IoT-Connections-Will-Grow-to-400-Million-By-2025
https://www.businesswire.com/news/home/20191219005087/en/Strategy-Analytics-Unlicensed-LPWA-IoT-Connections-Will-Grow-to-400-Million-By-2025
https://www.businesswire.com/news/home/20191219005087/en/Strategy-Analytics-Unlicensed-LPWA-IoT-Connections-Will-Grow-to-400-Million-By-2025
https://datatracker.ietf.org/doc/rfc8724
https://datatracker.ietf.org/doc/rfc8724
http://link.springer.com/10.1007/978-3-642-19157-2_5
http://link.springer.com/10.1007/978-3-642-19157-2_5

2
Overview and implementation of the

SCHC standard

This chapter gives an overview of the available standards and solutions that

can be used to provide network interoperability in Low Power Wide Area

Network (LPWAN) solutions. It presents a comparative study of the available

standards and an analysis of the Static Context Header Compression (SCHC)

standard as a common layer on top of a combination of three different long

range technologies. As will be shown, some LPWAN technologies do not

support the use of traditional protocols and adaptation layers. Therefore,

this Chapter presents an implementation and analysis of SCHC, which was

developed to fill this gap, and served as a basis for this dissertation.

⋆ ⋆ ⋆

Several problems arise when introducing the many embedded devices the

Internet of Things (IoT) is expected to bring. To move away from complex

gateways that translate between proprietary protocols and standardized

internet languages, a shift to internet standards is needed to address the huge

amount of devices. From an addressing point of view, the Internet Protocol

Version 6 (IPv6) protocol seems to suit this need. Combined with other

standardized protocols like the Constrained Application Protocol (CoAP)

and User Datagram Protocol (UDP), it may become one of the preferred ways

to communicate with constrained devices. However, considering the severe

18 Chapter 2

energy, memory, processing and communication constraints of LPWAN

devices and networks, this stack is not a viable solution. The overhead

brought by its headers (i.e. IPv6: 40 bytes, UDP: 8 bytes, CoAP: typically

around 20 bytes) is not in line with the few tens to hundreds of bytes

which can be transmitted over these low power communication technologies.

LPWANs are often limited by duty cycle regulations, as they operate in

unlicensed spectrum, which may limit the time on air and, consequently, the

size of packet transmissions when operating at low bit rates.

Apart from that, more demanding and diverse IoT applications could

require the devices to be equipped with multiple technologies. These devices

could benefit from long range outdoor communication combined with higher

data rate indoor communication. Also, the fact that LPWAN equipment may

be shared across different organizations makes the concept of multimodal

LPWAN solutions an interesting research topic. Moreover, when using a

single application across different technologies, a single common stack is

desirable. In order to pick the right stack, this Chapter evaluates different

protocol stacks for use in multimodal LPWAN solutions, considering Long

Range Wide Area Network (LoRaWAN), DASH-7 and SigFox.

This chapter is based on the following publications:

• Bart Moons, Jetmir Haxhibeqiri, Abdulkadir Karaagac, Eli De Poorter,

Jeroen Hoebeke. Using SCHC for an optimized protocol stack in

multimodal LPWAN solutions. Published in the proceedings of the 5th

IEEE World Forum on Internet of Things (WF-IoT), 15-18 April 2019.

p. 430-435. Limerick, Ireland.

• Bart Moons, Abdulkadir Karaagac, Eli De Poorter, Jeroen Hoebeke.

Efficient vertical handover in hetreogeneous low-power wide area net-

works Published in IEEE Internet of Things Journal, 2020: 7(3).

p.1960-1973. DOI: 10.1109/JIOT.2019.2961950

2.1 Low Power Wide Area Networks

Low Power Wide Area Networks (LPWANs) are formed out of cheap sensors

running applications that require low bandwidth communications over a long

range. Currently, several technologies are emerging in this domain, providing

low cost and low power by using mainly bands in the sub-Gigahertz (GHz)

spectrum.

Depending on the region, certain restrictions may apply in order to share

the spectrum. For example, in the European 868 Mega Hertz (MHz) band,

Overview and implementation of the SCHC standard 19

duty cycle restrictions apply between 0.1% and 10% over a period of 60

minutes, where the highest throughput channel is often used for downlink

communication. Also in India do duty cycle restrictions apply to the entire

band [1]. Contrarily, in the United States (US), a duty cycle of 2 to 4%

applies over a period of 20 to 10 seconds to the channel and bandwidth

that are being used in the 915 MHz band. Similar regulations apply in

Brazil and Canada. Finally, parameters for polite spectrum access can be

dictated by governments. In Japan, a minimum time window is given during

which the sensor device must listen to detect if other devices are currently

transmitting.

2.1.1 LoRa

Long Range (LoRa) is a Radio Access Technology in the unlicensed sub-

GHz band using Chirp Spread Spectrum (CSS) modulation, patented by

Semtech in 2014. CSS spreads out a narrow band signal over a wider channel

bandwidth, making it more robust to noise and interference. Multiple

Spreading Factors (SFs) are supported by LoRa, i.e. SF7 - SF12, offering a

trade-off between a higher data rate and a longer range respectively [2]. By

using Forward Error Correction (FEC) with Coding Rates (CRs) ranging

from 4/5 to 4/8, even more robustness can be provided [3]. The data rate

and range are affected by a combination of SF, CR and chosen bandwidth.

On top of the LoRa physical layer, the open LoRaWAN Medium Ac-

cess Control (MAC) layer standard has been defined by the LoRa Alliance.

LoRaWAN also defines how the network operates and how devices com-

municate with each other. This layer provides a medium access control

mechanism and defines three types of end-devices: Classes A - C, mainly

providing different ways of bidirectional communication. For a LoRaWAN

Class A device, each uplink transmission is followed by two downlink receive

windows of 1 and 2 seconds respectively, during which the end-device will

listen for a preamble, indicating downlink communication. Class B devices

will listen for downlink traffic at predefined times after synchronization to

the network server using network beacons. Devices continuously listening

for downlink packets are of type Class C.

Each LoRa packet starts with a programmable preamble part, ranging

from 6 to 65.532 symbols, followed by 2 sync words and 2 downchirp symbols,

used to synchronize traffic between sender and receiver. Therefore, header

overhead of the physical layer can be very limited. When the length of the

payload is known in advance and configured on both sides, the Extended

Header (EH) can also be removed, which otherwise contains the payload

length and a Cyclic Redundancy Check (CRC) encoded with a code rate of

4/8 [4].

20 Chapter 2

2.1.2 DASH-7

The DASH-7 Alliance (D7A) specifies a full vertical network stack, covering

the complete Open Systems Interconnection (OSI) model, focusing on mid-

range communication. It was initially developed for 433 MHz wireless

communication, based on the International Organization for Standardization

(ISO)/International Electrotechnical Commission (IEC) 18000-7 standard,

which now also includes the 868 MHz Short Range Device (SRD) and 915

MHz Industrial, Scientific and Medical (ISM) bands [5, 6]. The presentation

layer contains D7AP files, consisting of configurations and user data, which

can be executed as scripts. DASH-7 applications are intended to be built

using those files. The downside of this full vertical stack is that it introduces

a lot of overhead when using an IPv6 based standardized approach. In fact,

when using the DASH-7 specification, a CoAP/UDP/IPv6 packet must be

encapsulated on top of the DASH-7 application layer protocol.

In a DASH-7 network two types of communication models can be used.

The first one is based on low power wake up, where a sleeping end device

will discover a requesting signal by regularly waking up and detecting an

advertising frame containing the time of the upcoming request, as shown in

Figure 2.1.

End devices Gateway

rx

tx

ad hoc synchronization

Figure 2.1: DASH-7 low power wake up and ad hoc synchronization. Sleeping
end-points can detect incoming requests by listening to a sync train that contains

the time of the upcoming request.

The second approach, i.e. Dormant Sessions, is used in a push-based

model where sensor devices send unsolicited requests to the gateway when a

(pre-)configured criteria is met. Using this model, it is not possible for the

device to receive requests from the gateway to update e.g. a configuration.

In this case, the gateway can queue a command and wait for a message from

the device within a certain timeout. If the addressed endpoint happens to

start a dialog with the gateway before the timeout has elapsed, the gateway

can return a flag in its response to the endpoint, signalling a pending request.

From this moment on the dialog is extended and the gateway becomes the

requester and the endpoint the responder. The request is then transmitted

Overview and implementation of the SCHC standard 21

as part of this extended dialog. If a sensor node does not send a notification

within this timeout, the gateway will try to wake up the sensor device using

the low power wake up mechanism with a message saying that a query is

ready.

Data rates, modulation types, pass-and stopband requirements are speci-

fied by Channel Classes. Data is encoded using PN9 encoding, which might

be used in combination with a FEC scheme. As the FEC encoder is a 1/2

rate convolutional code, the data rate will decrease accordingly. Each packet

is preceded by a ramp-up period and a preamble to synchronize the clock

of the receiver followed by a sync word to align the packet payload. As all

these parameters are configurable, more or less robustness, and consequently

overhead, can be provided [6].

2.1.3 Sigfox

Sigfox is a proprietary technology, patented by the French company of

the same name. Sigfox itself or in partnership with others offer an already

deployed end-to-end 0G network, which already covers more than 60 countries.

Their technology is based on Binary Phase Shift Keying (BPSK) in the 868

and 915 MHz ultra narrow SRD band (depending on the region) [2]. Narrow-

band modulation techniques are able to obtain a higher link budget because

the noise level in a single narrow band is minimal [7]. The benefit of

such a robust radio signal decreases the data rate, whereas the time-on-air

increases. Another drawback of the Ultra Narrowband (UNB) modulation is

the significant link asymmetry. Downlink communication is limited to four

8-byte messages every day.

2.1.4 Others

The previous paragraphs aim to provide information about technologies that

will be used throughout this dissertation. However, for completeness, other

relevant technologies are discussed below.

• Cellular technologies: Narrowband IoT (NB-IoT) and Long Term

Evolution (LTE)-Machine Type Communication (MTC) (LTE-M) are

both cellular technologies proposed by the 3rd Generation Partnership

Project (3GPP). Both aiming to provide low power, low cost and long

range with improved in- and outdoor coverage. LTE-M provides low

latency and higher bandwidth, whereas NB-IoT targets devices with

ultra-low device cost and power consumption, at the expense of up to 10

seconds latency. The most important distinction between cellular and

other LPWAN technologies is their operation in the licensed spectrum

22 Chapter 2

Table 2.1: Differences between Weightless-W/-N/-P

Weightless-N Weightless-P Weightless-W

Directionality 1-way 2-way 2-way

Feature set Simple Full Extensive

Range 5km+ 2km+ 5km+

Battery life 10 years 3-8 years 3-5 years

Feature set Very low Low Low-medium

and hence, their ability to communicate without a duty cycle limitation

[8]. Although NB-IoT reuses many of the mechanisms defined in LTE,

two extensions have been defined in order to save power. The first one

being the extended Discontinuous Reception (DRX) (eDRX), which

is used to check the paging channel periodically for incoming data

and has been extended from 2.56s in LTE to 175 minutes in NB-IoT.

Even more power can be saved by entering Power Saving Mode (PSM),

which allows the constrained device to remain registered to the network,

without monitoring the paging channel. The duration of the PSM cycle

can last up to approximately 413 days. Downlink traffic is therefore

limited by the periodicity of the PSM or DRX cycle [9].

• Weightless: three different standards have been proposed by the Weight-

less Special Interest Group: Weightless-W, deployable in TV whites-

pace, Weightless-P, providing high performance and the uplink-only

Weightless-N protocol, focusing on ultra-low cost. The main differences

are listed in Table 2.1

In Weightless-P, every channel comprises 12.5 kHz of the spectrum

and can be assigned an adaptive data rate, ranging from 200 bps to

100 kbps, organized by the time-synchronized gateways. Weightless-P

is a downlink oriented protocol, whereas Weightless-N only allows

uplink traffic. On the other hand, Weightless-W must be deployed in

the unused spectrum of TV transmissions (400 - 800 MHz) and must

adhere to the local regulations. Weightless-W spreads out its signal

with variable factors from 1 to 1024. Increasing the spreading factor

will increase the range, without increasing output power, however, at

the cost of data throughput.

Overview and implementation of the SCHC standard 23

2.2 IETF Protocols for Constrained Devices

This Section discusses other Internet Engineering Task Force (IETF) initia-

tives that have tried to bring interoperability and IPv6 connectivity among

constrained devices.

2.2.1 CoAP

The Constrained Application Protocol (CoAP) can be seen as the Hyper

Text Transfer Protocol (HTTP) for constrained devices, as it uses a stateless

client-server architecture. The light weight nature of CoAP makes it the

perfect candidate for a LPWAN protocol stack. Every object contains a list

of resources, representing data available from sensors or actions available

to actuators. Every resource is accessible through a Uniform Resource

Identifier (URI) and can be interacted with using protocol specific methods

such as GET, PUT, POST and DELETE [10].

The original Request For Comments (RFC) was updated after a few

years and introduced the FETCH, PATCH and iPATCH methods, since the

existing methods only allowed access to complete resources and not parts

of a resource. Compared to the non-safe, non-idempotent PATCH method,

the iPATCH method is a CoAP specific method that is not safe, but is

idempotent.

Four HTTP methods were not added to the CoAP specification.

• CONNECT is not yet supported in CoAP. Since CoAP works over

UDP and Transport Layer Security (TLS) to Datagram Transport

Layer Security (DTLS) tunneling has not yet been specified, an HTTP

to CoAP proxy cannot satisfy this.

• the OPTIONS method, which requests the permitted communication

for the target resource in HTTP is not supported in CoAP. This is

very similar to the built-in resource discovery in CoAP and as such

did not require such method.

• the HTTP HEAD method is not supported in CoAP. However, an

HTTP-CoAP proxy might perform a CoAP GET request and respond

with the HTTP headers and without a message-body.

• HTTP TRACE is not supported; since CoAP end points might be

asleep, the TRACE method is not a reliable way to test if a server is

up and supports the requested resource.

In LPWAN use cases, many sensor nodes will send frequent updates

about their usage and acknowledging every message will add a significant

24 Chapter 2

cumulative load on the network and is no necessity. Therefore, the following

CoAP mechanisms were considered in this dissertation.

2.2.1.1 Observe

The CoAP Observe extension is a simple mechanism to retrieve a represen-

tation of a resource and keep this updated by the subject as long as the

observer is interested. The extension uses a best-effort approach for sending

updates to the observer.

In a CoAP Observe scenario, the data collection is always initiated by

the observer, who also has to maintain all relationships for each subject.

This requires a lot of bookkeeping and the back-end to know all its data

sources beforehand [11].

2.2.1.2 No-Response Option

While CoAP implements a Non-Confirmable (NON) mechanism to omit the

acknowledgment of a particular message, the server will still reply with a

response code, due to the request/response nature of the protocol. Therefore,

the working group published an amendment to the protocol specification

introducing the No-Response option in order to get rid of any kind of reverse

traffic [12].

In many LPWAN use cases, where downlink traffic is scarce, the No-

Response option makes classic updates consume even less resources than

Observe and was therefore considered a better fit. A typical CoAP request

from the application can be seen in Figure 2.2. Note that in this example

sensor devices are clients that have a dedicated resource on a CoAP server.

2.2.1.3 CoAP block-wise transfer

CoAP block-wise transfer can be used on top of IPv6 over Low-Power

Wireless Personal Area Networks (LoWPANs) (6LoWPAN) in order to

avoid 6LoWPAN fragmentation and to provide reliability. As the transfer

of one fragment corresponds to a normal CoAP request, each block must

be acknowledged. The failure of a single request will therefore trigger the

retransmission of a single block. Each block can only have a size that is a

multiple of 16 bytes. The device must ensure to use a block size smaller

than the underlying layer 2 Protocol Data Unit (PDU) [13].

2.2.2 6LoWPAN and 6lo

In late 2004, the 6LoWPAN Working Group (WG) was formed to enable

IPv6 over IEEE 802.15.4 networks. A few years later, the 6lo working group

Overview and implementation of the SCHC standard 25

Client Server

PUT /usage
0x2B, 0xFF, 0xFF

NON, No-Response

msg id 0x23BB

token 0x21FA01FB

Figure 2.2: A typical No-Response LPWAN CoAP request from the application.
Note that No-Response sensor devices are typically clients that have a dedicated

resource on a CoAP server.

was added to bring IPv6 connectivity over several other technologies, such as

Bluetooth Low Energy (BLE). [14] The IEEE 802.15.4 standard defines the

maximum layer 2 PDU to be 127 bytes. 25 bytes MAC header, 40 bytes IPv6

header and 8 bytes UDP header would only leave 54 bytes for the payload,

without security headers. Therefore the 6LoWPAN working group defined

LOWPAN_HC1 and LOWPAN_HC2 in order to compress the internet protocol

header and the transport layer respectively. However, these compression

schemes can only be applied to link local addresses. As a consequence,

the working group published an amendment, developed under the name

LOWPAN_IPHC and LOWPAN_NHC. Communication using UDP and global IPv6

addresses now impacts the link layer frame with a minimum of 10 bytes

overhead [15]. In order to support the IPv6 Maximum Transfer Unit (MTU)

requirement of 1280 bytes, the 6LoWPAN adaptation layer also defines a

simple fragmentation mechanism, which does not provide any reliability.

Furthermore, new IETF initiatives arose in order to compress a multiple

of protocols using Pages and a Paging Dispatch to switch contexts. [16] In

addition to this, the 6LoRH compression technique has been developed to

compress IPv6 routing information. [17]

2.3 Static Context Header Compression

Even after the above standardization efforts, some technologies still do not

support the use of (adapted) internet protocols and may not benefit from

26 Chapter 2

A packet

(e.g. an IPv6 packet)

SCHC Compression SCHC Decompression

SCHC Fragmentation SCHC Reassembly

SCHC Packet
If no fragmentation

Sender Receiver

SCHC Fragments

SCHC ACK

Figure 2.3: Illustration of the SCHC operations on both the sending and receiving
end. If the compressed packet size still exceeds the MTU, the packet will be

fragmented.

the advantages introduced by a standardized communication approach. As a

consequence, the LPWAN IETF working group was formed and published the

Static Context Header Compression (SCHC) mechanism as a new standard

[18]. This protocol makes use of a shared, static context between two

communication endpoints that contains regularly used protocol headers.

The selected context is represented by an identifier in order to inform the

other side about the original headers of the packet. As will be demonstrated

in this Chapter, it is possible to shrink the headers down to 95% of the

original size using this technique. Furthermore, the specification prescribes

how large packets that don’t fit in a single Layer 2 PDU should be fragmented.

An overview of the SCHC operations that will be further discussed in the

following subsections is given in Figure 2.3.

2.3.1 Compression

In order to perform compression, both sides of the LPWAN network share

the same context, i.e. a set of rules to compress or decompress the headers.

The context consists of one or more rules that are distinguished by a unique

identifier. A rule describes the compression/decompression behavior for

each header field and what possible compression residue (i.e. a part of the

Overview and implementation of the SCHC standard 27

header field that could not be compressed) to send. Each header field is

matched against corresponding entries in a rule (such as the one in Table 2.2).

The Fields in the SCHC context appear in the same order as in the header

they represent. Every Field is labeled using a protocol parser and points

to a header field of a particular protocol header. The Field Length (FL)

indicates the amount of bits that are used to represent the header field.

Some protocols have variable length fields, which must be indicated using a

special value. Next, the Field Position (FP) is used to distinguish between

fields that are used multiple times, such as the CoAP URI Path Option.

The request/response nature of CoAP also requires the use of a Direction

(DI) indicator, so that a rule can be used for both requests and responses.

The Matching Operator (MO) is used to compare the original header field

with the Target Value (TV) in the rule and can take one of the following

values:

• equal looks for an exact match of the field value in the packet and the

TV

• ignore ignores the field, the result is always True

• MSB(x) compares the first x bits of the packet header field and the TV

• match-mapping compares the packet header to a list of entries. The

matching value can by identified by an index

When performing compression, every header value is matched against the

corresponding rule field of every rule in the context. Once all of these Field

Descriptors have an exact match with the original header that rule is selected

for compression. Next, the Compression Decompression Action (CDA) can

be used for every field to build the compressed header and can take one of

the following actions:

• not-sent will not add the field to the compressed header

• value-sent will send the original header value to the other side

• mapping-sent will add the index of the matched value

• LSB will send the x last bits from the original value

• compute-* can be used to calculate, for example, the length or checksum

• DevIID can be used to build the device layer 2 address

• AppIID can be used to build another layer 2 address required by the

technology

28 Chapter 2

Table 2.2: SCHC rule used to compress the request from Figure 2.2

Field FL FP DI Target Value MO CDA

Version 2 1 BI 0x01 &equal not-sent

Type 2 1 BI 0x01 (NON) &equal not-sent

Token Length 4 1 BI 0x04 &equal not-sent

Code 8 1 UP 0x03 (PUT) &equal not-sent

Message ID 16 1 BI 0x0000 &ignore not-sent

Token 32 1 BI 0x21FA01F0 &MSB(28) LSB(4)

URI-Path 40 1 UP ‘‘usage" &equal not-sent

No-Response 8 1 UP 0x1A &equal not-sent

The rule ID and possibly compressed values (i.e. residue) are send to the

other side of the network. The decompressor will use the Target Value and

the residue to reconstruct the original value.

Table 2.2 shows an example SCHC context that can be used to compress

typical requests from LPWAN applications, such as the one from Figure 2.2.

Since SCHC is responsible for reliability, the application does not require

acknowledgments from the CoAP layer. Therefore, the message ID may

be ignored. Nevertheless, CoAP may require the use of separate tokens to

intertwine a number of packet exchanges, which explains the use of the Most

Significant Bit (MSB) MO on this header field. The MO will only match the

most significant bits to the original value as indicated in the field length (28

in this case). The least significant bits are added to the compressed header.

Our example shows a variation on the last 4 bits of the token, allowing 16

simultaneous requests and responses.

Listing 2.1 shows that after adding the rule ID, a matching rule will

compress the 18 bytes long CoAP header down to 1 byte (4 bits Token + 4

bits padding), followed by the application data. IPv6 and UDP headers can

be compressed in the same way.

Listing 2.1: extract of the CoAP layer compression

[001] network_layer_send (): sending 22 bytes of

application layer data

[002] CoAP header (18 B):

[003] 54 03 23 BB 21 FA 01 FB B5 75 73 61 67 65 D1

EA 1A FF

[004] Application data (4 B):

Overview and implementation of the SCHC standard 29

Rule ID DTag W FCN RCS Fragment Payload P

Figure 2.4: Detailed header format for the All-1 SCHC Fragment.

[005] 00 00 00 07

[006] schc_compress (): compressing 18 bytes of CoAP

header

[007] Rule id: 21 (0x15)

[008] 15 B0 00 00 00 70

2.3.2 Fragmentation

Once a packet has been compressed or remained uncompressed, the size of the

resulting SCHC packet is matched to the underlying layer 2 MTU. A packet

exceeding the L2 data unit, may be fragmented by the SCHC Fragmenter.

This operation will chop the SCHC packet into fragments, called tiles. A

number of tiles can belong to a window with a pre-defined size. All tiles

belonging to the same window carry the same window bit. The reception of a

window may or may not be acknowledged, depending on the reliability mode.

The order of fragments is indicated with the Fragment Count Number (FCN).

All FCN bits set to 1, called an all-1 window, indicates the last fragment of

a packet. Such tile contains a Reassembly Check Sequence (RCS) in order

to validate the integrity of the message. This is computed over the original,

compressed SCHC packet that has been concatenated with possible padding

bits. The header format is given in Figure 2.4.

A tile with an FCN set to 0, on the contrary, is called an All-0 window

and denotes the last fragment of a window. These and all other tiles have

the same structure as the All-1 tile, except for the RCS field. Every tile

carries a Rule ID to identify the fragmentation parameters and can be used

simultaneously by multiple SCHC packets. In order to differentiate between

these packets, a Datagram Tag (DTag) can be used. Each window consists

of a number of fragments, defined by N, which will trigger the receiver to

send an acknowledgment. For some technologies, such as SigFox, it will be

more interesting to use a larger window size, since only a limited number of

downlink messages are possible each day. An overview of the fragmentation

packetization is given in Figure 2.5.

Once a complete window is received, one of the three reliability modes

can be used to ensure a correct reassembly and to offer optional reliability:

30 Chapter 2

SCHC Packet P

6 5 4 3 2 1 0 6 5 7

Fragmentation

Tiles/

FCN

Window 0 1

WINDOW_SIZE

Figure 2.5: Overview of the SCHC fragmentation packetization. A SCHC packet
is chopped in 10 fragments, with a WINDOW SIZE equal to 7. The Window

number and FCN is given for each tile.

Rule ID DTag W C Compressed Bitmap P

Figure 2.6: Format of the SCHC ACK Message. If C is set to 1, no compressed
bitmap is sent.

• ACK-Always: each window is acknowledged, regardless of any missing

fragments

• ACK-on-Error: only windows are acknowledged when a fragment

belonging to that window was lost

• No-ACK: no reliability is offered beyond that of the underlying com-

munication technology

An ACK consists of the rule ID, the DTag, the window number and the

encoded bitmap. The sender will check the window bit to verify that the

ACK belongs to the correct window. The bitmap that is included in the

ACK indicates whether any fragments have been lost or not by toggling a

bit at the position corresponding to the tile number of that window. The

header format is given in Figure 2.6.

Figure 2.7 illustrates how a packet is sent using reliability mode Ack-

Always. Since WINDOW SIZE equals 7, a window can consist of up to 7

fragments. Therefore, the original SCHC packet is chopped into 10 fragments.

Overview and implementation of the SCHC standard 31

The example illustrates that during the transmission of the first window,

the 4th (with FCN 3) and last (FCN 0) fragments are lost. Since the last

fragment is used to trigger an ACK from the receiver, no acknowledgement

will be sent by the receiver. Therefore, the sender sets a retransmission timer

to identify any lost all-x fragments or acknowledgments. In order to request

an acknowledgement, the sender will send an SCHC ACK REQ fragment after

an invocation of the retransmission timer. This message format is used

to trigger the receiving side to resend an acknowledgment. The receiver

answers the SCHC ACK REQ with an acknowledgement that contains the

bitmap. Every bit that has been set to zero indicates a missing fragment

which must be retransmitted in the next retransmission phase.

In the example, the retransmission is acknowledged with a full bitmap.

This triggers the sender to move to the next window, which uses the same

transmission method. However, since this is the last window, the final

fragment, the all-1 fragment with FCN 7, will trigger the receiving end

to calculate the RCS. Since the fragment with FCN 5 was lost, the final

ACK has the C bit set to 0, meaning that the RCS, over the entire SCHC

packet, was unsuccessful. Therefore, the receiving side will request any lost

fragments by sending the bitmap to the sender. The sender will again reply

with the requested fragments that must be acknowledged by the receiver. In

the final stage of the example, it is shown how a lost ACK can be detected

by the receiver using a timeout and can be requested again using the SCHC

ACK REQ format.

2.4 Multi protocol analysis

Choosing the correct protocol for an LPWAN application is not an easy

task. Therefore, before having made the decision to continue with SCHC

for any of the selected LPWAN networks, we have evaluated the different

protocols described in section 2.2 for a device which is able to switch between

multiple technologies: Sigfox, LoRaWAN and DASH-7. Sigfox may be used

for cross-country tracking, while LoRaWAN or DASH-7 may be used when

a higher throughput is required.

Figure 2.8 shows how every protocol will handle header compression,

packet fragmentation and packet loss. In this example we consider the best

case only for the different protocol stacks. This means that the IPv6 headers

may be compressed down to 10 bytes using LOWPAN_IPHC and LOWPAN_NHC

for 6LoWPAN, the CoAP header is limited to 7 bytes, since the CoAP client

issues a simple GET request to the shortest URI possible (/1), making use

of a token with length 2.

We will consider the following scenarios in our analysis:

32 Chapter 2

S
C

H
C

 A
C

K

S
C

H
C

 A
C

K
 R

E
Q

A
ll

-1
 S

C
H

C
 F

ra
g

m
e
n

t

A
ll

-0
 S

C
H

C
 F

ra
g

m
e
n

t

R
e
g
u

la
r

S
C

H
C

 F
ra

g
m

en
t

6
5

4
2

1
ti

m
e
r

e
x
p

ir
e
d

0

A
C

K

fc
n

 x
, w

 0
w

 0
,

b
m

 1
1

1
0
1

1
0

3

0

A
C

K

6
5

w
 0

fc
n

 x
, w

 1

A
C

K

fc
n

 5
,

w
 1

w
 1

,

c
 0

,

b
m

 1
0
0
0

0
0
0

1

w
 0

,

b
m

 1
1

1
1
1

1
1

5
ti

m
e
r

e
x
p

ir
e
d

at
te

m
p
ts

+
+

0

A
C

K

w
 1

,

c
 1

3

0

7

A
C

K

w
 0

S
e
n

d
e
r

d
e
li

v
e
re

d
 S

C
H

C
 F

ra
g

m
e
n

t
L

o
st

 S
C

H
C

 M
e
ss

a
g

e
R

e
c
e
iv

e
r

d
e
li

v
e
re

d
 S

C
H

C
 A

C
K

Figure 2.7: Illustration of the Ack-Always reliability mode; every window must be
acknowledged. Missing all-0 fragments are detected using timers. Time moves

rightward.

Overview and implementation of the SCHC standard 33

Table 2.3: Header overhead and number of exchanged packets for different MTUs
and 128 bytes of payload

6LoWPAN CoAP block-wise SCHC

(0) (1) (0) (1) (0) (1)

MTU 12 bytes

packets X X X X 16 18

overhead UL X X X X 7 B 10 B

overhead DL X X X X 24 B 25 B

MTU 51 bytes

packets 5 10 8 10 5 7

overhead UL 36 B 72 B 72 B 90 B 9 B 10 B

overhead DL 23 B 46 B 95 B 115 B 4 B 7 B

MTU 242 bytes

packets 2 4 4 6 2 4

overhead UL 23 B 47 B 47 B 54 B 1 B 2 B

overhead DL 17 B 34 B 36 B 71 B 1 B 2 B

1. CoAP with 6LoWPAN compression and fragmentation

2. CoAP blockwise transfer and 6LoWPAN compression

3. SCHC compressed CoAP, IPv6 and UDP with SCHC fragmentation

In order to achieve reliable communication in all three cases, a confirmable

CoAP message is sent in the first case, since no reliability is guaranteed by

the lower layers. CoAP block-wise transfer will confirm each block for the

second case and as for the SCHC case, the ACK-Always reliability mode is

used.

Table 2.3 compares the behavior of the different protocols over different

technologies. The first column (0) represents the case where no packets

were lost, the second (1) where 1 packet was lost.

As the 6LoWPAN fragment offset can only express a multiple of eight

bytes [19], the first packet minimally contains 12 bytes, i.e. 4 bytes header

and 8 bytes payload. All consecutive packets carry 5 bytes header and

therefore contain at least 13 bytes. Since SigFox has a MTU of 12 bytes

and LoRaWAN a global minimum of 11 bytes, 6LoWPAN fragmentation

is not suitable for this technology. CoAP block-wise transfer could be

used to prevent 6LoWPAN fragmentation. Nevertheless, the smallest block

size CoAP supports is 16 bytes and will therefore not be transferable over

Sigfox. SCHC only requires 12 bits header, which leaves room for another

34 Chapter 2

Figure 2.8: Multi protocol analysis to enable IPv6 end-to-end connectivity on a
LPWAN device. The flow diagram supposes a MTU of 51 bytes and application

payload of 128 bytes.

Overview and implementation of the SCHC standard 35

Figure 2.9: Number of exchanged packets for different payload sizes and MTUs

84 bits of payload and seems the only suitable protocol which supports IPv6

connectivity for all LPWAN technologies.

An MTU of 242 bytes will leave the packet unfragmented for the SCHC

and the 6LoWPAN case. We suppose that no fragmentation means that the

packet over SCHC gets acknowledged when using a CoAP CON request.

From this table we can conclude that SCHC imposes a lot less overhead

than the other protocols and requires a lot less packet exchanges for a highly

fragmented packet where one or more fragments were lost.

In Figure 2.9, the number of exchanged packets is illustrated for varying

payloads. This figure clearly shows that packet retransmissions are much

more efficient when using SCHC. If no packets are lost, 6LoWPAN may be

more efficient, as SCHC in Ack-Always mode requires a separate ACK for

the last fragment, on top of the CoAP ACK in the response.

2.4.1 Overhead

Figure 2.10 shows the header overhead of each protocol stack for zero

retransmissions and the retransmission of 1 packet, following the diagram of

figure 2.8. For the first case, the overhead quickly increases, as all fragments

require a retransmission and each fragment requires the 10 byte 6LoWPAN

header. CoAP block-wise transfer with 6LoWPAN compression will quickly

36 Chapter 2

Figure 2.10: Total header overhead for a packet of length 128 and MTU 51 for
different protocol configurations, left: without retransmissions, right: 1 lost

fragment

perform better than the first case, as only the missing fragment is sent.

However, CoAP block-wise transfer limits the size of the fragments and will

therefore require 1 extra fragment in order to send the complete packet. The

efficiency of the SCHC fragmentation scheme can clearly be seen from the

left graph. A retransmission of 1 packet will trigger a new acknowledgment,

which results in a higher response overhead, as seen in the figure on the

right.

2.5 Implementation

Our second part of the evaluation evaluates our implementation of the SCHC

protocol. The goal of our implementation was to have a generic library,

which can be used both on top of a constrained device, as well as on a

powerful server device. At the LPWAN side, the OSS-7 operating system is

used [20], the application server uses the Click modular router [21] for packet

processing and IPv6 forwarding. OSS-7 is designed for constrained devices,

whereas Click can forward up to 333,000 64-byte packets/second [21]. The

constrained nodes will mostly have one connection and will often not have

a Memory Management Unit (MMU) on board. In order not to load the

Central Processing Unit (CPU) with memory allocation and deallocation,

preferably a fixed block of memory is used. Since Click is designed on top

of a Linux kernel, memory allocation is not an issue. Apart from that, the

constrained node will mostly have one connection, whereas the server will

have to support simultaneous packet reassembly from multiple senders. These

constraints were taken into account while designing the library, nevertheless

making it as generic as possible.

Overview and implementation of the SCHC standard 37

2.5.1 Network Memory Buffers

Upon reception of a new fragment, the receiver will allocate a chunk of

memory for that fragment. The constrained node will take a chunk of a

fixed memory block, the server will allocate a chunk of memory from the

heap. As none of the fragments contains the total packet length, a Network

Memory Buffer (mbuf) chain is utilized, derived from the FreeBSD operating

system [22], which allows trimming network headers and concatenating

fragments with very little overhead. The fragment is added to the end of the

linked list. Each fragment selects a slot from the mbuf pool, sets the data

pointer and attaches this mbuf as the last one in the chain for this connection.

In order to return a byte aligned mbuf chain to the application, with the

bytes concatenated as before transmission, thus without the fragmentation

headers and using the same memory buffer, the headers of each mbuf are

removed and the payload of the next mbuf in the chain is shifted in.

2.5.2 Connection State

Each SCHC connection requires a certain amount of state information. The

state information is kept to a minimum, in order to reduce the amount

of Random Access Memory (RAM) required for each connection. Two

connections are required: a TX and an RX connection. Both connections

require 72 bytes of data. Connection state information is changed by the

state machine, but may also be changed by the application. This can be

useful when the underlying communication technology changes, which may

result in a larger or smaller MTU. The library must acquire this information

in order to send fragments of a correct size.

2.5.3 Timers and Retransmissions

The main loop is driven by the duty cycle timer. Once the first fragment is

sent, the duty cycle timer is set, depending on the local regulations. Since

the connection struct keeps track of the duty cycle time, this can be changed

by the application at run-time, allowing the device to respond to dynamic

requirements of the application. After an invocation of the timer, the timer

calls the fragmentation state machine, in order to continue the transmission

of the fragments. The implementation does not keep track of packet contents

after they have been sent by the underlying LPWAN technology. Once an

acknowledgment arrives, the bitmap included in the acknowledgment is used

to re-generate the corresponding fragment. From an application’s point of

view, retransmitting data is performed the same way as the data was sent

originally. Hence, the same code can be used for sending and retransmitting

38 Chapter 2

data.

2.6 Evaluation

2.6.1 Connections

In order to test the implementation, we created a python script, which

generates fragments for a number of devices. The fragments are sent to a

Message Queuing Telemetry Transport (MQTT) broker which will forward

them to the server. The experimental setup consists of a computer running

Ubuntu 16.04 with 16 GB of RAM and a 2.8 GHz Intel Core i5-7440HQ

CPU. We successfully evaluated the server to keep track of 100.000 device

connections, including fragments and timer callback information.

2.6.2 Memory Footprint

Table 2.4 shows the memory required to implement the full standard including

all reliability modes and the use of variable window sizes. Some optimization

can be done, mostly for the compressor. The RAM used for the fragmenter

depends upon the configuration and does not include cumulative RAM usage.

The fragmenter implements the three reliability modes, padding management

and the mbuf manager. The compressor implements the generic compression

mechanism and a protocol parser for IPv6, UDP and CoAP. The following

calculations illustrate the required memory for a constrained device. Each

RX connection will add 72 bytes of RAM. Each mbuf requires 16 bytes

of memory. The current MBUF_POOL consists of 8 mbuf’s, resulting in 128

bytes of RAM. Currently, the rules are implemented in human-readable

fashion, which requires 180 bytes for each IPv6 rule, 48 bytes for a UDP

rule and 400 bytes for each CoAP rule. An obvious scenario would require 2

UDP rules and 2 IPv6 rules: one rule to handle the default configuration

and one to handle less frequent traffic. The number of CoAP rules are very

application dependent. In order to achieve a higher compression ratio, more

rules are required. For this example, 7 CoAP rules are considered. An

extra 3.256 bytes are thus required for this scenario. Ludovici et. al report

that their 6LoWPAN implementation requires 22.584 bytes of Read Only

Memory (ROM) and 3.421 bytes of RAM. [23] The compressor currently

requires recursive allocated RAM which is not considered best practice,

which is not included in the calculations and can sometimes cause memory

overflows.

Overview and implementation of the SCHC standard 39

Table 2.4: Code space required for each SCHC component

Compressor Fragmenter Rules Total

RAM 1061 B 528 B 0 B 1589 B

ROM 6082 B 6692 B 3256 B 16030 B

2.7 Conclusion

We presented SCHC compression and its accompanying fragmentation mech-

anism and compared its overhead and number of packet exchanges to CoAP

block-wise transfer and 6LoWPAN compression and fragmentation. Our

analysis shows that SCHC is the only protocol which is able to support

end-to-end IPv6 connectivity for a multimodal device, supporting SigFox,

LoRaWAN and DASH-7 and therefore requires a new compression technique

as proposed by the LPWAN WG. We showed that SCHC is a more suitable

compression and fragmentation mechanism for LPWAN devices in terms of

header overhead, reliability and total number of packets exchanged than

6LoWPAN. Our analysis can therefore be used to justify SCHC’s right of

existence.

Apart from that, we evaluated our SCHC implementation, which is

designed in a generic fashion with a relative small footprint for an embedded

device and is suited to handle a growing number of devices at the server

side, nevertheless able to suit the low-memory needs of a constrained device.

Compared to a 6LoWPAN implementation, SCHC also requires a lot less

memory. The implementation is available as free software on https://github.

com/imec-idlab/libschc.

https://github.com/imec-idlab/libschc
https://github.com/imec-idlab/libschc

40 Chapter 2

References

[1] D. Castells-Rufas, A. Galin-Pons, and J. Carrabina. The Regulation

of Unlicensed Sub-GHz bands: Are Stronger Restrictions Required for

LPWAN-based IoT Success? page 17.

[2] U. Raza, P. Kulkarni, and M. Sooriyabandara. Low Power Wide Area

Networks: An Overview. arXiv:1606.07360 [cs], June 2016. arXiv:

1606.07360. Available from: http://arxiv.org/abs/1606.07360.

[3] J. Haxhibeqiri, E. De Poorter, I. Moerman, and J. Hoebeke. A Sur-

vey of LoRaWAN for IoT: From Technology to Application. Sensors,

18(11):3995, November 2018. Available from: http://www.mdpi.com/

1424-8220/18/11/3995, doi:10.3390/s18113995.

[4] L. Alliance. LoRaWAN™ 1.1 Specification, 2017. Available

from: https://lora-alliance.org/sites/default/files/2018-04/lorawantm

specification -v1.1.pdf.

[5] M. Weyn, G. Ergeerts, R. Berkvens, B. Wojciechowski, and Y. Tabakov.

DASH7 alliance protocol 1.0: Low-power, mid-range sensor and ac-

tuator communication. In 2015 IEEE Conference on Standards for

Communications and Networking (CSCN), pages 54–59, October 2015.

doi:10.1109/CSCN.2015.7390420.

[6] D. Alliance. DASH7 Alliance Specification v 1.1, 2017.

[7] P. Ruckebusch, S. Giannoulis, I. Moerman, J. Hoebeke, and

E. De Poorter. Modelling the energy consumption for over-the-air

software updates in LPWAN networks: SigFox, LoRa and IEEE

802.15.4g. Internet of Things, 3-4:104–119, October 2018. Available

from: https://linkinghub.elsevier.com/retrieve/pii/S2542660518300362,

doi:10.1016/j.iot.2018.09.010.

[8] J. Finnegan and S. Brown. A Comparative Survey of LPWA Networking.

arXiv:1802.04222, February 2018. Available from: http://arxiv.org/

abs/1802.04222.

[9] L. Feltrin, G. Tsoukaneri, M. Condoluci, C. Buratti, T. Mahmoodi,

M. Dohler, and R. Verdone. Narrowband IoT: A Survey on Downlink

and Uplink Perspectives. IEEE Wireless Communications, 26(1):78–86,

February 2019. Available from: https://ieeexplore.ieee.org/document/

8641430/, doi:10.1109/MWC.2019.1800020.

http://arxiv.org/abs/1606.07360
http://www.mdpi.com/1424-8220/18/11/3995
http://www.mdpi.com/1424-8220/18/11/3995
https://lora-alliance.org/sites/default/files/2018-04/lorawantm_specification_-v1.1.pdf
https://lora-alliance.org/sites/default/files/2018-04/lorawantm_specification_-v1.1.pdf
https://linkinghub.elsevier.com/retrieve/pii/S2542660518300362
http://arxiv.org/abs/1802.04222
http://arxiv.org/abs/1802.04222
https://ieeexplore.ieee.org/document/8641430/
https://ieeexplore.ieee.org/document/8641430/

Overview and implementation of the SCHC standard 41

[10] Z. Shelby, K. Hartke, and C. Bormann. The Constrained Appli-

cation Protocol (CoAP). Technical Report RFC7252, RFC Editor,

June 2014. Available from: https://www.rfc-editor.org/info/rfc7252,

doi:10.17487/rfc7252.

[11] K. Hartke. Observing Resources in the Constrained Application Pro-

tocol (CoAP). Technical Report RFC7641, RFC Editor, Septem-

ber 2015. Available from: https://www.rfc-editor.org/info/rfc7641,

doi:10.17487/RFC7641.

[12] A. Bhattacharyya, S. Bandyopadhyay, A. Pal, and T. Bose. Constrained

Application Protocol (CoAP) Option for No Server Response. Technical

Report RFC7967, RFC Editor, August 2016. Available from: https:

//www.rfc-editor.org/info/rfc7967, doi:10.17487/RFC7967.

[13] C. Bormann and Z. Shelby. Block-Wise Transfers in the Constrained

Application Protocol (CoAP). Technical Report RFC7959, RFC Editor,

August 2016. Available from: https://www.rfc-editor.org/info/rfc7959,

doi:10.17487/RFC7959.

[14] C. Gomez, J. Paradells, C. Bormann, and J. Crowcroft. From 6LoWPAN

to 6Lo: Expanding the Universe of IPv6-Supported Technologies for the

Internet of Things. IEEE Communications Magazine, 55(12):148–155,

December 2017. Available from: http://ieeexplore.ieee.org/document/

8198820/, doi:10.1109/MCOM.2017.1600534.

[15] I. Ishaq, D. Carels, G. Teklemariam, J. Hoebeke, F. Abeele, E. Poorter,

I. Moerman, and P. Demeester. IETF Standardization in the Field

of the Internet of Things (IoT): A Survey. Journal of Sensor and

Actuator Networks, 2(2):235–287, April 2013. Available from: http:

//www.mdpi.com/2224-2708/2/2/235, doi:10.3390/jsan2020235.

[16] P. Thubert and R. Cragie. IPv6 over Low-Power Wireless Personal Area

Network (6LoWPAN) Paging Dispatch. Technical Report RFC8025,

RFC Editor, November 2016. Available from: https://www.rfc-editor.

org/info/rfc8025, doi:10.17487/RFC8025.

[17] P. Thubert, C. Bormann, L. Toutain, and R. Cragie. IPv6 over Low-

Power Wireless Personal Area Network (6LoWPAN) Routing Header.

Technical Report RFC8138, RFC Editor, April 2017. Available from:

https://www.rfc-editor.org/info/rfc8138, doi:10.17487/RFC8138.

[18] A. Minaburo, L. Toutain, C. Gomez, D. Barthel, and J.-C. Zúñiga.

SCHC: Generic Framework for Static Context Header Compression and

Fragmentation. Request for Comments RFC 8724, Internet Engineering

https://www.rfc-editor.org/info/rfc7252
https://www.rfc-editor.org/info/rfc7641
https://www.rfc-editor.org/info/rfc7967
https://www.rfc-editor.org/info/rfc7967
https://www.rfc-editor.org/info/rfc7959
http://ieeexplore.ieee.org/document/8198820/
http://ieeexplore.ieee.org/document/8198820/
http://www.mdpi.com/2224-2708/2/2/235
http://www.mdpi.com/2224-2708/2/2/235
https://www.rfc-editor.org/info/rfc8025
https://www.rfc-editor.org/info/rfc8025
https://www.rfc-editor.org/info/rfc8138

42 Chapter 2

Task Force, April 2020. Num Pages: 71. Available from: https://

datatracker.ietf.org/doc/rfc8724, doi:10.17487/RFC8724.

[19] G. Montenegro, N. Kushalnagar, J. Hui, and D. Culler. Transmission

of IPv6 Packets over IEEE 802.15.4 Networks. Request for Comments

RFC4944, RFC Editor, November 2016. Available from: https://www.

rfc-editor.org/info/rfc4944, doi:10.17487/RFC4944.

[20] A. University and Aloxy. Sub-IoT: Open Source Stack for Dash7 Al-

liance Protocol, September 2021. original-date: 2013-10-09T10:35:28Z.

Available from: https://github.com/Sub-IoT/Sub-IoT-Stack.

[21] E. Kohler, R. Morris, B. Chen, J. Jannotie, and F. Kaashoek. The

Click Modular Router. page 34.

[22] B. Milekic. Network Buffer Allocation in the FreeBSD Operating System.

page 13.

[23] A. Ludovici, A. Calveras, M. Catalan, C. Gómez, and J. Paradells.

Implementation and Evaluation of the Enhanced Header Compression

(IPHC) for 6LoWPAN. In The Internet of the Future, volume 5733,

pages 168–177. Springer Berlin Heidelberg, Berlin, Heidelberg, 2009.

Available from: http://link.springer.com/10.1007/978-3-642-03700-9

18, doi:10.1007/978-3-642-03700-9 18.

https://datatracker.ietf.org/doc/rfc8724
https://datatracker.ietf.org/doc/rfc8724
https://www.rfc-editor.org/info/rfc4944
https://www.rfc-editor.org/info/rfc4944
https://github.com/Sub-IoT/Sub-IoT-Stack
http://link.springer.com/10.1007/978-3-642-03700-9_18
http://link.springer.com/10.1007/978-3-642-03700-9_18

3
Device Discovery and Context

Registration in SCHC Networks

The previous Chapter presented the novel Static Context Header Compres-

sion (SCHC) standard and its promise to bring Internet Protocol Version

6 (IPv6) connectivity to long range networks with very high bandwidth

limitations. In order to achieve this, the specification assumes that both

the sensor device and the network gateway have access to the same static

context. However, it is not specified how the contexts are provisioned, which

limits the usability. Furthermore, in order to pave the way towards LPWA

networks that can cooperate without the need to translate their Application

Programming Interfaces (APIs), this chapter analyses the limitations of an

offline pre-provisioning approach and presents two provisioning protocols as

a solution. Both approaches provide true network interoperability between

heterogeneous Low Power Wide Area Networks (LPWANs). Finally, the

solutions are evaluated in a Light Weight Machine to Machine (LwM2M)

environment, which shows the relevance of the developed solutions in a

dynamic environment.

⋆ ⋆ ⋆

This chapter is based on the homonymous article by

B. Moons, E. De Poorter, and J. Hoebeke

44 Chapter 3

Published in MDPI Information Journal 12(2), 16th of February 2021

Abstract Due to the limited bandwidth of LPWANs, the application layer

is currently often tied straight above the link layer, limiting the evolution of

sensor networks distributed over a large area. Consequently, the highly effi-

cient SCHC standard was introduced, where devices can compress the IPv6

and upper layer protocols down to a single byte. This approach, however,

assumes that every compression context is distributed before deployment,

again limiting the evolution of such networks. Therefore, this paper presents

two context registration mechanisms leveraging on the SCHC adaptation

layer. This is done by analyzing current registration solutions in order to

find limitations and optimizations with regard to very constrained networks.

Both solutions and the current State of the Art (SOTA) are evaluated in a

LwM2M environment. In such situation, both developed solutions decrease

the energy consumption already after 25 transmissions, compared with the

current SOTA. Furthermore, simulations show that Long Range Wide Area

Network (LoRaWAN) devices still have a 80% chance to successfully com-

plete the registration flow in a network with a 50% Packet Error Ratio (PER).

Briefly, the work presented in this paper delivers bootstrapping tools to

constrained, SCHC-enabled networks while still being able to reduce energy

consumption.

3.1 Introduction

The success of the internet introduced the Transmission Control Protocol

(TCP)/Internet Protocol (IP) suite as a global standard for reliable internet

communication. Web page requests, file transfers, and e-mail exchanges

are all built on top of this protocol suite. For applications that require less

reliable, but faster, communication, such as audio and video streaming, the

User Datagram Protocol (UDP)/IP pair is the perfect alternative. However,

with the increasing popularity of the internet in the early 1990s, it soon

became clear that the limited number of addresses the Internet Protocol

Version 4 (IPv4) protocol offered would eventually run out. Network Address

Translation (NAT) was created to allow the expansion of the number of

internet nodes beyond the theoretical limit. However, as this was just

postponing the necessity to converge to a protocol with a wider range of

addresses, the Internet Engineering Task Force (IETF) started drafting the

IPv6 protocol in 1998.

Apart from the almost inexhaustible range of addresses, IPv6 also aims

to simplify the header format, improve support for extensions with the

Internet Control Message Protocol (ICMP) for IPv6 (ICMPv6), network

Device Discovery and Context Registration in SCHC Networks 45

configuration, and privacy [1].

The success of the internet was largely determined by the end-to-end

principle, which moves the complexity of the network to the edge to allow

simpler upgrades of networks and applications. The internet protocols how-

ever, were developed for high throughput Ethernet networks with multicast

support at the link layer. These mechanisms are often not available in

Internet of Things (IoT) networks, as sensor devices tend to be sleeping

as much as possible and are often constrained in terms of bandwidth and

duty cycle. Nevertheless, in order to facilitate the emergence of the IoT,

where any thing is envisioned to be connected over the internet, a move

towards distributed, IPv6-enabled networks is indispensable. However, for

constrained devices being able to run the TCP/IP or UDP/IP suite, novel

approaches are required, as the overhead brought by the current internet

protocols is often too large for the available bandwidth. A first attempt

in order to form IPv6 networks over IEEE 802.15.4, resulted in updated

frame formats and novel network formation methods, developed by the IPv6

over Low-Power Wireless Personal Area Networks (LoWPANs) (6LoWPAN)

Working Group (WG) [2].

However, the lack of bandwidth in long range communication technologies

started the formation of the LPWAN WG, as there is often no room for

the 6LoWPAN protocol overhead [3]. The effort of this WG resulted in the

SCHC standard, which defines a generic framework for header compression.

The static nature of the proposed standard, however, requires config-

uration on both sides of the network, which is not in line with the auto-

configuration mechanisms provided by the IPv6 protocol. Being able to

autoconfigure the smallest devices to the internet will result in easier roll-out

of LPWANs and might facilitate the growth of a global LPWA network,

where Commercial Off The Shelf (COTS) electronics may connect to any

available LPWA network. Moreover, as the European Telecommunications

Standards Institute (ETSI) recently drafted Cyber Security for Consumer

Internet of Things (CYBER), endorsing security by design [4], calls for

standardized connectivity, leveraging on well known protocols, which has

the benefit of providing end-to-end security.

Therefore, in this paper, two solutions for IPv6 configuration and Neigh-

bor Discovery (ND) for SCHC-enabled devices are presented and evaluated

in order to provide a dynamic interface to the internet for the smallest devices

available. The remainder of this paper is organized as follows. Section 3.2

gives an overview of a dynamic IPv6 configuration in long range networks.

Next, the different registration mechanisms that are available today are

discussed in Section 3.3. Possible solutions build upon this and are presented

in Sections 3.4 and 3.5. Finally, both solutions are evaluated in Section 3.6

46 Chapter 3

and the advantages and disadvantages for both solutions are discussed in

Section 3.7.

3.1.1 Related Work

Static Context Header Compression started receiving increasing attention

from the research community. In both [3] and [5], the compression mech-

anism is implemented and evaluated, in C and NS-3, respectively. The

authors of [3] also implemented the fragmentation mechanism and made the

library publicly available [6]. Both authors conclude that a novel adaptation

standard is needed, as 6LoWPAN does not provide enough flexibility for

LPWAN communication technologies. The authors of [5] continue their

work in [7], where a central Administration Management Server (AMS)

manages the context in order to support roaming of devices between dif-

ferent LoRaWAN operators. While this approach allows devices to roam

between multiple networks of different operators, the AMS, and consequently

complex architectural components, are still required to keep track of the

device rules. Bernard et al. [8] argue that the AMS scenario is only possible

when operators have a link between each other to retrieve the location of

the AMS and propose the use of Domain Name System (DNS) in order to

download the rules from an Hyper Text Transfer Protocol (HTTP) server.

This way, the rules can be managed remotely and do not require storage at

the Network Gateway side. However, no solution is given to synchronize the

updated rule context between end devices and the Network Gateway, and

therefore there does not exist a solution to dynamically install the context

at the end-device.

The limitations of a context that was distributed before deployment

is something which was also quoted in [9]. The authors proposed a novel

matching operator, i.e., the dummy-mapping Matching Operator (MO),

which allows the target value in the rule to remain unknown for the sensor

device and editable on the network gateway side. Values that are not

important for the device, but that are required to match requests and

responses, could make use of this matching operator, e.g., IPv6 source

address and UDP source port. However, in order to completely manage such

networks, a more advanced solution is required. Furthermore, to manage

bidirectional IPv6 communication, the SCHC gateway should be aware of

the connected devices, which is currently not defined in the standard.

Device Discovery and Context Registration in SCHC Networks 47

3.2 Motivation

Due to their ability to offer low-power connectivity for devices distributed

over a large area, Low-Power Wide-Area Networks are increasingly gain-

ing attention. Engineering companies are in the attempt of developing a

communication technology to serve as many use cases as possible. Con-

sequently, many communication technologies are currently available, such

as IEEE 802.15.4, SigFox, LoRaWAN, Weightless, NB-Fi, Narrowband

IoT (NB-IoT), enhanced Machine Type Communication (eMTC), Extended

Coverage Global System for Mobile Communication (GSM) (EC-GSM), and

DASH7, among others [10]. This plethora of things and technologies will

enable, for example, ports, logistics, cities, and agriculture to become smart.

Therefore, a multitude of heterogeneous devices and technologies will have

to be integrated in the overarching Information System using proprietary

APIs. Maintenance to catch changes to the APIs and to integrate them in

a single back-end platform becomes a burden to the application developer

and leads to scalability issues. This also happened in early Wireless Sensor

Networks (WSNs), where the application layer was tied straight above the

data link layer [11]. However, due to the efforts of the 6LoWPAN WG,

middle-boxes of service providers could be decoupled, which led to easier

deployment of applications and emergence of new businesses.

Figure 3.1 illustrates two LPWAN technologies that make use of a star

topology, in which one or more gateways are forwarding Layer 2 packets to a

central entity. The delivery of the data in a proprietary way results in vertical

silos, which is in sheer contrast with the open vision of the internet, where

a device can address any other host directly. By deploying SCHC at the

gateway (or network server), these architectures can evolve to more scalable

networks, as depicted in Figure 3.2. This, however requires a bootstrapping

protocol in order to perform context and device discovery.

Secondly, promising uses for LPWAN technologies can include remote

monitoring of assets in the logistics industry in order to build a resilient

supply chain. As logistics are characterized by international shipments,

infrastructure will most probably be delivered by multiple LPWAN providers.

Recent advancements in the LoRaWAN landscape, for example, launched

a secure pre-provisioning platform, which offers a network agnostic Join

Server. This approach allows for secure end-devices to become decoupled

from the network they are using [12]. This way, LoRaWAN devices could

securely roam between different LoRaWAN networks. In the architecture

of Figure 3.2, such gateways will manage an IPv6 subnet in which sensor

devices can obtain a unique global IPv6 address. This, however, requires

every component in the network to be aware of the SCHC configuration. The

48 Chapter 3

LoRaWAN

Network Server

LoRaWAN

LoRaWAN

MQTT

brokerLoRaWAN

Network Server

SigFoxSigFox

Gateway

SigFox

cloud

MQTT

broker

MQTT

Client

MQTT

Client

HTTP

Server

Data Service
MQTT API

MQTT API HTTP API

Figure 3.1: The current Low-Power Wide-Area Network landscape: centralized
components deliver data to translation units.

Internet

SCHC

LoRa NS

2001:db8:1:1::

SCHC

LoRa NS

2001:db8:1:2::

SCHC

SigFox NW

2001:db8:1:3::

LoRa JS

SCHC

LoRaWAN

SCHC

LoRaWAN

SCHC

SigFox

CoAP

client

LwM2M

server

NB-IoT

SCHC

NB-IoT/Non-IP

PGW

SCEF

SCHC GW

2001:db8:1:4::

IPv6

IPv6

IPv6

IPv6

MQTT

broker

CoAP

MQTT

LwM2M

MQTT

Figure 3.2: The envisioned LPWAN landscape: end-to-end secured, decentralized
IPv6 enabled networks.

current SCHC standard does not allow such dynamic configuration, which

would result in a per-packet header overhead, due to (partially) uncompressed

headers.

Thirdly, despite the fact that the task of these sensor devices can often be

reduced to the sensing and reporting of their environment, these rather static

configurations can benefit from dynamic context configuration. LwM2M

devices, for example, can be pre-provisioned with the IPv6 address of the

Bootstrap Server. Only after a bootstrap request to the LwM2M bootstrap

server, the endpoint will be provisioned with the LwM2M Server object(s).

Device Discovery and Context Registration in SCHC Networks 49

This reply contains their IPv6 address(es), requiring configuration of the

lower layers and consequently the SCHC context. Furthermore, the address

of any given end-point may change, which requires dynamic configuration of

devices and intermediaries, and their context.

In order to solve the above issues, SCHC devices should be able to register

themselves and their compression context to the corresponding Network

Gateway, which is currently not included in the standard. Therefore, the

current SOTA regarding device registration and management in IPv6-enabled

networks is analysed in the next section in order to determine possible gaps

of these protocols in SCHC enabled networks.

3.3 Device Management and Registration

Today, several solutions exist to manage devices on a network. In traditional

IPv6 networks, the ICMPv6 protocol is the main source of control. Apart

from error messages and informational messages, several extensions exist

in order to control such networks. The ND, for example, allows devices to

discover routers on the network and register their link-layer address and

IPv6 address so routers know where to forward their packets to. Extensions

are used in LoWPANs to optimize these protocols for networks that have

a limited amount of bandwidth available and are often restricted by a

regulatory duty cycle. For other purposes, several network management

protocols exist, such as the Network Configuration Protocol (NETCONF)

protocol, which can be used to monitor networks and manage devices and

their interfaces.

3.3.1 Basic Neighbor Discovery Protocol

In IPv4, the Address Resolution Protocol (ARP) and ICMP Router Discovery

and Redirect were introduced in order to register a node to a Local Area

Network (LAN). The IPv6 WG reused parts of these functionalities and

combined them with new mechanisms to detect neighbor unavailability and

the presence of duplicate IP addresses to form the ND specification [13].

These standardization efforts are used by IPv6 nodes for

• neighbor detection: determination of the layer 2 address of nodes on

the same link,

• router discovery: discovering neighboring routers that can forward

their packets, and

• neighbor unreachability detection: actively keeping track of changing

neighbors.

50 Chapter 3

In traditional IPv6 ND, a wireless device will transmit a Router Solicita-

tion (RS) as a multicast to request the network prefix from the network it

moved to. The routers on the network will reply to the all nodes multicast

address with a Router Advertisement (RA), containing several ICMPv6

options, such as the Maximum Transfer Unit (MTU) of the link, the default

route and the network prefix for subnet information. The device will then

autoconfigure its link-local and global address(es) if the Managed address

configuration (M) flag is set. It will perform Duplicate Address Detec-

tion (DAD) for each address it assigned itself, by multi-casting a Network

Server (NS) including the DAD option for each address. Once a node wants

to reach a different node on the network, it will also send out a NS message

to determine its link-layer address or to verify its reachability state. This

is called Neighbor Unreachability Detection (NUD) and is answered with a

Neighbor Advertisement (NA) message.

This set of mechanisms could be reused for address registration in

LPWANs. However, the overhead and the heavy use of multicast in IPv6

networks is impractical for LPWANs that are composed out of constrained

and sleepy end-devices, connected over a constrained wireless link. Previous

evolutions in WSNs had to cope with similar issues and adapted the tradi-

tional model to the needs of low-power networks. Consequently interesting

features were added in the 6LoWPAN standard [14].

3.3.2 Optimized Neighbor Discovery Protocol

The basic IPv6 Neighbor Discovery (ND) mechanism has been optimized

for 6LoWPAN networks, which resulted in Request For Comments (RFC)

6775: Neighbor Discovery Optimization for IPv6 over Low-Power Wireless

Personal Area Networks, which is, however, not limited to LoWPANs. A

more generic approach was presented in [15], where Neighbor Discovery

was applied to MultiLink IoT subnets and a backbone was incorporated

to perform neighbor discovery on behalf of these low-power devices from

multiple mesh networks. This optimization mainly consists of eliminating

NS multicast messages to all other nodes in the network and periodic RA

messages from routers. The RS/RA message pair in optimized ND is now

used to request prefix and context information from the router. Every RS

message creates or updates a Neighbor Cache Entry (NCE) with a certain

lifetime, which should be updated by the hosts themselves with a RS message.

On the other hand, the NS/NA message pair is used to perform address

registration, DAD and NUD by a central IPv6 ND Registrar on behalf of

the host [16]. The Neighbor Registration and Periodic Updates section of

Figure 3.3 give an overview of the optimized ND protocol.

Optimized ND inherits all functions defined in the ND specification,

Device Discovery and Context Registration in SCHC Networks 51

[IPv6]

ServerIPv6 hostsServerIPv6 hostsServer6L(B)RServer6L(B)RServer6L NodeServer6L Node

[IEEE802.15.4]

Multicast RS
SLLAO

Unicast RA
SLLAO/6CO/PIO/ABRO

Unicast NS
SLLAO/ARO

Unicast NA
ARO

Data

Data

N
e
igh

bo
r R

egistra
tio

n

Prefix and context distribution

DAD, NUD and address registration

Stateless address

configuration

Pe
riod

ic up
d
a
tes

Unicast RS
SLLAO

RA
SLLAO/6CO/PIO/ABRO

NS
SLLAO/ARO

NA
ARO

Maintain NCE and check reachabili ty

Maintain prefix

table

Figure 3.3: 6LoWPAN optimized neighbor discovery. Nodes regularly cast
re-registration requests in order to keep their NCE fresh.

however, introduced several optimizations in order to cope with the low

power nature of LoWPANs.

3.3.2.1 Address Registration Option

The registration specified in 6LoWPAN-ND is a unicast message between

the device and the 6LoWPAN router with the use of the new Address

Registration Option (ARO). Upon reception of a RS message, the router

may create a tentative NCE with a specific timeout for the requested Source

Link-Layer Address Option (SLLAO). It will respond with an NA message

indicating if a duplicate address was detected or if the address registration

process was successful.

3.3.2.2 Prefix and Context Information Distribution

A 6LoWPAN host joining a network will send out a Router Solicitation

message to solicit information about the network from active routers on the

network. The host will extract the received context and subnet information

from the border router, which can later be used for the decompression

process.

52 Chapter 3

3.3.2.3 Others

Network Parameter Discovery is not used in Optimized ND, as network

information is distributed in response to a RS message sent by the host while

requesting prefix and context information about the network. Furthermore,

DAD and Address Resolution is not performed separately, as this is part of

the address registration process. Finally, in order to keep track of changes in

the network, hosts periodically multicast NS messages to confirm other nodes

their reachability state. In optimized ND however, hosts are prevented from

sending multicast NS messages, this information is now taken care of by the

ARO in the NS messages they send. Before the NCE expires, a RS message

is sent to detect if one of the default routers have become unavailable.

3.3.3 NETCONF

Apart from the ICMPv6 protocol to distribute information in IPv6 networks,

other management protocols to manage routers, switches, and modems came

into being. In 1988, the Simple Network Management Protocol (SNMP) was

standardized as a protocol for managing IP networks. Due to its relatively

simple architecture, it could be deployed on different kinds of networks and

became one of the most widespread network management protocols [17].

However, as SNMP was not developed with programmability in mind, the

IETF started the development of NETCONF in order to ease configuration

of devices on a network. NETCONF makes use of Remote Procedure

Call (RPC) encoded in eXtensible Markup Language (XML) to retrieve or

edit a configuration datastore. The data are validated using Yet Another

Next Generation (YANG). YANG defines a data model, which formats like

XML must adhere to. NETCONF then defines a set of operations (Create,

Read, Update, Delete (CRUD)), used to access and update the datastores

of devices connected to the network. As NETCONF runs over a Secure

Shell (SSH), the IETF developed RESTCONF to access datastores and

manage network equipment over HTTP by means of web applications. The

HTTP POST, PUT, GET, and DELETE methods can be mapped easily to

NETCONF’s CRUD operations.

3.3.3.1 CORECONF

Similarly, the IETF started the development of the CoAP Management Inter-

face (CORECONF), mapping the various CRUD operations of NETCONF

to the methods available in the Constrained Application Protocol (CoAP)

to manage constrained devices [18]. In order to limit the protocol overhead,

YANG structured messages are encoded using the Concise Binary Object

Device Discovery and Context Registration in SCHC Networks 53

Representation (CBOR). Recently, a YANG data model for the SCHC com-

pression and fragmentation rules has been submitted as an Internet-Draft.

The goal of this document consists of formalizing the description of the rules

to offer interoperability among implementations and a manner to update

specific values on either end [19].

3.3.4 LwM2M

Another IoT management protocol has been developed by the Open Mobile

Alliance (OMA) and goes under the name of Light Weight Machine to

Machine (LwM2M) [20]. The LwM2M protocol defines objects, resources,

and instances on top of CoAP in order to limit the protocol overhead when

querying well-known resources from a sensor device. Apart from information

reporting, also bootstrapping, device registration and ways to perform device

management are present in the specification.

3.3.5 Conclusion

As outlined in this Section, several solutions exist today to manage low-

power networks in IPv6 environments. However, current solutions available

in ICMPv6 for configuration of a context are insufficient to realize what

SCHC is trying to achieve; optimal efficiency in terms of protocol overhead.

The IETF has therefore set up initiatives in order to manage the context

of SCHC enabled devices. CORECONF, however, forces SCHC devices to

implement CoAP as an application layer protocol to manage the lower layer

protocol(s), whereas SCHC, as a generic framework, targets any kind of

protocol. Therefore, this paper presents two alternative solutions that can

be used with any protocol; one purely built on SCHC and the other based

on the ICMPv6 protocol.

3.4 Device Registration

The first problem that arises when connecting LPWAN devices to the internet

using the SCHC protocol, is the inability of such devices to dynamically

create an IPv6 address. Consequently, the SCHC router is not able to

capture downlink packets destined for the sensor node until an entry is

created in its Neighbor Discovery Cache. Routers need to know the host IP

addresses of the sensor nodes and their corresponding link-layer addresses.

This also has to be maintained as their reachability might change. Regular

IPv6 routers use the NS/NA message pair to map link-layer addresses to

IPv6 addresses. 6LoWPAN routers maintain a NCE for the duration of a

lifetime included in the ARO. Others, such as Source Address Validation

54 Chapter 3

Improvement (SAVI) tables, build a binding table to proxy ND on behalf

of the device in order to dampen multicast usage in wireless networks [15].

SCHC could also benefit from a mechanism where the SCHC router takes

care of common IPv6 actions on behalf of the sensor nodes. Therefore, two

solutions to keep track of device registrations and queued downlink traffic are

proposed in the next Sections. The first one, called SCHC Registration, is

an extension to the SCHC protocol. The second one is an entirely standards

based solution that makes use of the ICMPv6 Neighbor Discovery protocol.

Both mechanisms make use of a new SCHC component in order to limit the

protocol overhead: the SCHC Rule Registry (SRR).

3.4.1 SCHC Rule Registry

The SRR is a well-known repository, which defines the most common actions

to perform different management operations. All SRR compliant components

must be pre-provisioned with this standardized context. Consequently, these

SCHC identifier values are forbidden for application specific rules. Depending

on the employed solution, the implementation of the context differs and will

be further explained in the next sections. Every compression action in the

SRR consists of four entries, as each reliability mode requires a separate rule

id. However, as some implementations might prefer a static solution, not

too many SCHC ids should be reserved. Furthermore, RFC 8724 suggests

a variable sized identifier and lets an application or technology fix it. Very

constrained technologies, such as Sigfox, recommend a 3- or 4-bit rule id for

regular packets [21]. Therefore, higher order identifier values, i.e., ids 32 up

to 63, are reserved for the SRR. This way, devices with limited space for

extra overhead can still make use of the smallest rule ids possible and further

extend their id range to support device registration. As a consequence, this

extension requires a minimum overhead of 6-bit rule id.

3.4.2 SCHC Registration

The first solution consists of an extension to the SCHC protocol, which we

called SCHC Registration. In order for the already standardized SCHC com-

ponents (i.e. the compressor/decompressor and the fragmenter/reassembler)

to work independently from the registration mechanism, a third abstraction

layer is added to the architecture: the SCHC Context Manager (SCM). The

SCM takes care of device and context registrations and does so by inspecting

every incoming SCHC packet in order to determine the action to perform,

based on the employed rule id. These actions are stored in the SRR and are

defined as follows.

Device Discovery and Context Registration in SCHC Networks 55

Table 3.1: SCHC registration request.

Field FL DI TV MO CDA

...

IPv6 Next Header 8 BI 17 equal not-sent

IPv6 Src Prefix 64 UP :: equal not-sent

IPv6 Src IID 64 UP :: equal not-sent

IPv6 Src Prefix 64 DO :: ignore value-sent

IPv6 Src IID 64 DO :: ignore value-sent

IPv6 Dst Prefix 64 UP :: ignore value-sent

IPv6 Dst IID 64 UP :: ignore value-sent

UDP Src Port 16 BI - ignore value-sent

UDP Dst Port 16 BI - ignore value-sent

UDP Length 16 BI - ignore compute-*

UDP Checksum 16 BI - ignore compute-*

1. Registration: identifiers (32–35) used to register a device and the

IPv6/UDP endpoint it wishes to communicate with.

2. Extended registration: identifiers (36–39) can be used to provide more

flexibility during registration.

3. Re-registration: identifier (40) used to keep the device and SCHC

gateway synchronized.

4. Bindings: set of identifiers (48–51) used as an updatable IPv6/UDP

pair for context registration.

3.4.2.1 Registration

A sensor device can send a registration message by setting the source

IPv6 address to an unspecified one. As Table 3.1 indicates, the reserved

registration rule from the SRR will be employed by the compressor and the

values of the IPv6 Destination, UDP Source Port, and UDP Destination

Port are sent to the receiving gateway. This information can be used on the

other side to configure the context, as will be explained in Section 3.5.

56 Chapter 3

As depicted in Figure 3.4, every SCHC packet arriving at the Network

Gateway, is decompressed first. The return value of the decompressor is

then passed to the SCM, where either

1. a re-registration is sent if desynchronization occurred;

2. the values sent by the sensor device are saved in a context, an IPv6

address is generated on behalf of the client and distributed back if the

device was not registered yet; or

3. the decompressed packet is forwarded to the IPv6 internet if the device

was registered.

If a device was not registered yet, an IPv6 address, based on the device’s

EUI-64 address, is generated and binding rules are created. Binding rules

are reserved rules that keep track of the IPv6/UDP context. Furthermore,

a NCE is added for the device in order to answer ND messages on behalf

of the device, queue downward packets and keep track of the registration

process. In order to inform the sensor device about the network’s prefix and

given IPv6 address, the message is replied to using the same rule id.

Figure 3.4 shows the Finite State Machine (FSM) for traffic flowing in

the downward direction. If a device, such as a Sigfox or LoRaWAN Class A

device, only has uplink-triggered downlink opportunities, a state indicates if

the device is reachable or not. Once a packet arrives from the IPv6 network,

this state determines if a packet is queued or immediately forwarded. The

device state is updated every time a packet from the sensor device arrives

and is removed if no packet was received in time. The registration time is

technology or application specific. This way, the SCHC gateway will notice

disconnection from the device. If no device state is present on the server, a

(re-)registration request is sufficient to cope with desynchronization.

If an error occurred during registration, no prefix information will be

delivered in downlink, as the packet got discarded or went missing. Er-

roneous transmissions in downlink will force end devices to remain in the

unregistered state. This way, the SCM will keep transmitting registra-

tion packets until it has successfully registered to the network. A safety

mechanism can be used in order to limit the amount of registration messages.

3.4.3 SCHC Optimized Neighbor Discovery

The other proposed solution builds entirely on existing standards and uses

SCHC to compress Optimized Neighbor Discovery messages. In order to

perform ND, the SCHC router implements a Neighbor Cache—similar to

Device Discovery and Context Registration in SCHC Networks 57

L
o

R
a

 C
li

e
n

t
L
o

R
a

 C
li

e
n

t
G

a
te

w
a

y
G

a
te

w
a

y

IP
v

6

p
a

ck
e

t

D
e

v
ic

e

R
E
G
I
S
T
E
R
E
D

?

S
C

H
C

 C
M

S
C

H
C

 C
M

S
C

H
C

S
C

H
C

S
C

H
C

S
C

H
C

S
C

H
C

 C
M

S
C

H
C

 C
M

Y
E

S
N

O
S

et
 u

n
sp

e
ci

fi
e

d

IP
v

6
 (

::
)

C
o

m
p

re
ss

S
C

H
C

 P
A

C
K

E
T

D
e

co
m

p
re

ss

D
e

co
m

p
 r

e
su

lt
R

u
le

 id

a
va

ila
b

le
?

R
e

-r
e

g
is

tr
a

ti
o

n
 r

e
q

u
e

st
N

O

Y
E

S

D
e

v
ic

e

R
E
G
I
S
T
E
R
E
D

?

IP
v

6
 P

re
fi

x
N

O

Y
E

S
IP

v
6

 o
u

t

R
eg

is
te

r
c

o
n

te
xt

S
et

 s
ta

te

R
E
G
I
S
T
E
R
E
D

S
et

 s
ta

te

U
N
R
E
G
I
S
T
E
R
E
D

R
eg

is
te

r
c

o
n

te
xt

IP
v

6

p
a

ck
e

t
D

e
v

ic
e

 s
ta

te
?

A
d

d
 p

ak
ce

t
to

q
u

e
u

e

D
I
S
C
O
N
N
E
C
T
E
D

R
E
A
C
H
A
B
L
E

S
C

H
C

 P
A

C
K

E
T

IP
v
6

 p
a

ck
e

t

D
e

co
m

p
re

ss

C
o

m
p

re
ss

Figure 3.4: A time diagram that shows incoming and outgoing IPv6 packets in
both directions for the proposed SCHC Registration mechanism. Note how the

Context Manager is used as a separate layer.

58 Chapter 3

6LoWPAN routers—which behaves as a registry for all host addresses at-

tached to the router. In order to request IPv6 prefix information of the

network, a sensor device configures a link-local IPv6 address and broadcasts

a RS. The RA response from the gateway contains a SLLAO, MTU, and

Prefix Information Option (PIO). The PIO can be used to perform stateless

address autoconfiguration. Next, a NS carrying the ARO option is sent

to the SCHC gateway in order to register an IPv6 address and a lifetime.

The lifetime should be chosen reflecting the behavior of the node, i.e., the

registration should be maintained even while the host is sleeping. This

method therefore assumes that sensor devices repeat the ARO before their

lifetime runs out. The complete flow for performing Neighbor Discovery and

updating the SCHC context (which will be explained in the next Section)

is given in Figure 3.5. Once a sensor device starts the Neighbor Discovery

process by sending a RS, its state machine behaves such as regular Optimized

ND. A timeout lets the device notice a lost or erroneous Router/Neighbor

Solicitation or Router/Neighbor Advertisement. The responsibility for a

retransmission strategy lies on the device.

In order to limit the protocol overhead of the Neighbor Discovery, the

following actions should be incorporated in the SRR:

1. Router Solicitation/Router Advertisement: identifiers (32–35) used to

probe for the network’s prefix and parameter information.

2. Neighbor Solicitation/Neighbor Advertisement: identifiers (36–39) used

to maintain an entry in the router’s Neighbor Cache.

3. SCHC Control: identifiers (40–43) used to configure the context of a

device.

4. Default IPv6/UDP rule: identifiers (44–47) used to minimize the

context configuration overhead.

A detailed explanation of the SCHC-Optimized Neighbor Discovery

requirements is given in Appendix A.1.

3.5 Context Configuration

The second problem that arises during the lifetime of SCHC devices, is the

inability to configure their context. Therefore, both solutions incorporate a

mechanism to configure the device context.

Device Discovery and Context Registration in SCHC Networks 59

LoRa ClientLoRa Client Server
SCHC

gateway
Server
SCHC

gateway
[LoRa] [IPv6]

ServerIPv6 hostsServerIPv6 hosts

ID 32 + RS
[10 BYTES]

ID 32 + RA
PIO/SLLAO/SPO

[35 BYTES]

ID 36 + NS
ARO/SLLAO

[10 BYTES]

ID 36 + NA
ARO

[4 BYTES]

Stateless address

configuration

ID 40 + SCHC Control
CAO(R0/R2)/Context Opt ion(s)

[60 BYTES]

Rule configuration

R
e
gi

st
ra

ti
on

ID 44 + data

Data

NS

NA

L2 SRC = SCHC GW

L2 DST = IPv6 host

L3 SRC = LoRa client

L3 DST = IPv6 host

Response
ID 44 + data

D
a
ta

 e
xc

ha
n
ge

Prefix (and parameter)

distribution

Figure 3.5: The proposed ICMPv6-based SCHC device and context registration.

60 Chapter 3

3.5.1 SCHC Registration

Using SCHC Registration, a device sends a registration message to create

a NCE at the corresponding SCHC router. This message also carries the

values of the IPv6 Destination, UDP Source Port and UDP Destination

Port. These values are used on the receiving side to update the binding rules

of that particular device. Binding rules are part of the SRR and can be

updated every time the device employs the registration rules. Once a device

has registered its context, it can use the binding rules to send compressed

packets to the SCHC router.

3.5.1.1 Extended Registration

In order to have more control over the configuration of the registration,

a set of identifiers is dedicated to inform the SCHC gateway about every

IPv6 and UDP field. This has a higher overhead, but improves flexibility.

The Compression Decompression Action (CDA) for every IPv6 and UDP

header value, except for the Version and upward Source IPv6 fields, is set

to value-sent. This way, all header values will be communicated once and

remain completely compressed afterwards.

3.5.1.2 Fragmentation

As the link towards LPWAN devices is often very constrained in terms of

bandwidth, the SCHC standard also defines a fragmentation mechanism to

cope with large packets. The fragmentation and reassembly procedure relies

on a range of parameters, known a priori to both sides of the network. This

method assumes a static configuration of these parameters, available in the

profile of the underlying technology. Future work might include a proper

negotiation mechanism, where the first message of the registration procedure

could initialize the different fragmentation parameters.

3.5.1.3 Application Layer Compression

In order to compress application layer messages, we propose to perform

double compression. Therefore, the IPv6/UDP layer and the application

layer are compressed independently from each other. The SCHC gateway

performs outer (de-)compression, while the receiving SCHC application

performs inner (de-)compression. This way the application layer protocol

can remain implementation and use case specific.

A visualization of a LoRaWAN Class A device performing the different

steps in the SCHC registration process is given in Figure 3.6.

Device Discovery and Context Registration in SCHC Networks 61

LoRa Class A
Client

LoRa Class A
Client

Server
SCHC

gateway
Server
SCHC

gateway
[LoRa]

Create NCE

Binding state REACHABLE

[SCHC - IPv6]

ServerIPv6 hostsServerIPv6 hosts

NS

ID 35
 IPv6.dst = xx::x

UDP.src = 5683

UDP.dst = 5683

[21 BYTES]

ID 48 + (ID 5 + Request)

ID 5 +

Request

R
e
gi

st
ra

ti
on

NA

L2 SRC = SCHC GW

L2 DST = SCHC application

L3 SRC = LoRa client

L3 DST = SCHC application

ID 35
IPv6.src = xx::xx

[17 BYTES]

Binding state REACHABLE

Binding state DISCONNECTED

ID 48 + (ID 5 + Response)

D
a
ta

 e
xc

ha
n
ge

Server
SCHC

application
Server

SCHC
application

ID 5 +

Request

[SCHC - IPv6]

Prefix distribution

NS

NA

ID 5 +

Response
ID 5 +

Response

Figure 3.6: SCHC-based device and context registration. The SCHC gateway keeps
track of the sensor IPv6 addresses that are connected to the gateway. On a local

network, it will respond to NS requests with its own Medium Access
Control (MAC) address.

62 Chapter 3

Type = 162

160 328 24

ChecksumCode

Figure 3.7: The proposed ICMPv6 header for SCHC control messages.

3.5.1.4 Limitations

The proposed SCHC registration mechanism currently forces the device to

use IPv6 in combination with UDP. As RFC 8724 was baptized a Generic

Framework for Static Context Header Compression and Fragmentation, this

is not completely in line with its vision, i.e., the registration mechanism

cannot be expanded towards the TCP. Furthermore, the specification of a

Matching Operator or a CDA for a Target Field is not possible. Therefore,

the ignore MO is always used in combination with not-sent CDA. This,

however, achieves the highest compression rate. Furthermore, the proposed

solution does not provide a proper way of configuring the application layer

protocol and forces the device to perform double compression and the end-

point to implement an SCHC layer between the transport- and application

layer.

3.5.2 SCHC Control Messages

A second way of dealing with SCHC context configuration is by means of

ICMPv6 control messages. The SCHC Control Message is proposed as a new

ICMPv6 message in order to be able to configure rules in both directions.

Figure 3.7 illustrates the structure of the SCHC Control Message.

The code field from the ICMPv6 header can be used to indicate different

modes of operation:

• 0x00 indicates the creation of a new SCHC rule

• 0x01 indicates an update request of one or more fields from an existing

rule

• 0x02 indicates the removal of one or more fields from an existing rule

3.5.2.1 Context Advertisement Object and Context Option

In order to indicate which rule is targeted, the Context Advertisement

Object (CAO), illustrated in Figure 3.8, can be attached to a SCHC Control

Message.

Currently, rule ids up to 12 bits, or a total of 4.096 rules, are supported.

The length field is used to indicate the number of Context Options, which

Device Discovery and Context Registration in SCHC Networks 63

Rule ID

160 328 24

R3R2R1R0

12 13 14 15

Options...Length

Figure 3.8: The proposed SCHC context advertisement object.

F Layer DI Type MO CDA

0 1 3 5 9 11 14

Target Value

...

Figure 3.9: The proposed SCHC fixed size context option.

can be up to 256. This is required to know when Fragmentation Context

Options will follow, which will be introduced in Section 3.5.2.3. Furthermore,

the following flags are present to indicate for which reliability mode(s) a rule

must be created:

1. R0: No Fragmentation

2. R1: No-Ack

3. R2: Ack-on-Error

4. R3: Ack-Always

In order to remain efficient while assigning rule ids, the rule id is increased

by 1 for every R-flag. An example is given in Listing 3.1.

Listing 3.1: Usage of reliability mode flags

Rule ID = 25; R0 = 1; R1 = 0; R2 = 1; R3 = 1;

Compression Rule ID = 25;

Ack -on -Error Rule ID = 26;

Ack -Always Rule ID = 27;

CAOs that will create or update must be followed by one or more SCHC

Context Options, used to represent a rule entry. In general, headers can

be either variable or fixed sized. CoAP, for example, can use variable sized

option fields of which the size is sent with the Compression Residue [22].

Therefore, the SCHC Context Options are divided in Fixed Size Context

Options and Variable Size Context Options, providing more flexibility and

efficiency in terms of header overhead. Their structure is given in Figures

3.9 and 3.10.

64 Chapter 3

F Layer DI Type MO CDA

0 1 3 5 9 13

Field Length

2915 18

FP

21

Target Value

...

Figure 3.10: The proposed SCHC variable size context option.

Both message structures have a Fixed flag field, indicating either the fixed

(0) or variable (1) type. The Layer field indicates which layer is targeted; (0)

the network layer, (1) transport layer, or (2) application layer. This generic

approach leaves room for inclusion of other protocols in the future. Next,

every option contains the different SCHC rule columns, such as Direction,

MO, CDA, and Target Value (TV). The Variable Size Context Option uses

the Field Position (FP) and Field Length in order to represent multiple fields

of the same type with a variable length. Finally, a specific row (field) in a

SCHC rule can be targeted using the Type field. A more in depth overview

of the structure is given in Appendix A.2.

In order to cope with non-byte aligned set of options, padding bits are

added at the end. Furthermore, to limit the total overhead, the ICMPv6

Control Message can be compressed using rules from the rule registry.

3.5.2.2 Synchronization

Once a device resets, it will automatically re-register itself using Neighbor

Discovery and reconfigure its context. In case of a router reset however, the

router will reply with an ICMPv6 Type 1 error: Destination Unreachable.

The code field must be set to 0x07, indicating an Error in Source Routing

Header. This way, devices are informed that their contexts are desynchro-

nized. Furthermore, once a node is de-registered from the network, i.e., the

lifetime expired, its context is removed.

3.5.2.3 SCHC Parameter Option

So far, only the configuration of compression parameters were discussed. In

order to configure the fragmentation layer of either the device or the network

gateway, two ICMPv6 extensions are proposed in this section. Currently,

devices are grouped in profiles based on a technology or a product in

order to configure similar fragmentation parameters. However, to overcome

the limitations imposed by this static approach, we introduce a new IPv6

Neighbor Discovery Option Format. The SCHC Parameter Option (SPO)

(type 41) can be included in a Router Advertisement if the network supports

the SCHC fragmentation mechanism. The structure of the SPO is given

in Figure 3.11. The different fields carry several parameters that must be

defined in a SCHC profile. A more detailed explanation of the different fields

Device Discovery and Context Registration in SCHC Networks 65

Type

0 8

RULE_ID_SIZE

12

WINDOW_SIZE (M)

18

MAX_ACK_REQ

22

RETRANSMISSION_TIMER INACTIVITY_TIMER

16 3228

RCS_SIZE DTAG (T) P

31

Figure 3.11: The proposed ICMPv6 SCHC parameter option.

0 8

Option Type Option Data

16 ...

Option Length

Figure 3.12: The proposed ICMPv6 SCHC fragmentation context option.

is given in Appendix A.3.

Not all parameters can be configured using the SPO. Therefore, several

parameters use default values. The MAX PACKET SIZE, for example, defaults

to 1500. The FCN (N) value defaults to 1 for the No-Ack reliability mode,

and for other reliability modes it is set to the number of bits required

to represent the WINDOW SIZE. However, if a device desires to change the

fragmentation parameters of a rule individually, the SCHC Fragmentation

Context Option can be used together with a CAO and use Type-Length

Value (TLV) encoding, as shown in Figure 3.12.

These options affect every targeted reliability mode by the CAO and

contain the following fields:

• Option Type: 8-bit identifier of the type of option.

• Option Length: 8-bit unsigned integer representing the length of the

Option Data field.

• Option Data: a variable length field that contains data specific to the

option.

These types are, however, out of the scope of this paper and may be

looked at in future work.

3.6 Evaluation

In this Section, a set of experiments and simulations are given in order to

evaluate the performance of the protocol and to demonstrate how a real-

world situation can benefit from the developed solution. All experiments

where implemented in Matlab, using a rule id of 6 bits and a window size of 7

with a Fragment Count Number (FCN) of 3 bits. No Datagram Tag (DTag)

was used and a Reassembly Check Sequence (RCS) of 32 bits was used

during fragmentation sequences.

66 Chapter 3

3.6.1 Comparison

To start with, a comparison of both solutions is given in Table 3.2. The

overview clearly indicates the flexibility of the SCHC ICMPv6 Control

Messages, where up to 4.096 rules can be configured. Every rule can contain

at least 2.048 entries (256 types, 8 field positions per type), which can be

added, updated, and removed. The proposed SCHC Registration mechanism,

on the contrary, only has 16 editable fields for a single IPv6/UDP rule.

Furthermore, the SCHC Registration requires 16 reserved rule id’s, while

this is optional for the ICMPv6 Control Messages. Furthermore, every

field present in a rule can be added, updated, or deleted using the ICMPv6

method, while the SCHC Registration mechanism can only update the Target

Value of the IPv6/UDP binding rule. Furthermore, the extensibility of the

ICMPv6 Control Messages to any protocol makes it future-proof and robust

to changes and evolution of networks. This control, however, comes with a

larger transmission and energy overhead, which will be shown in the next

Section.

3.6.2 Registration Overhead

In order to show the difference between the different registration mechanisms,

we calculated the total overhead for uplink and downlink communication,

illustrated in Table 3.3. The impact of the fragmentation overhead is also

illustrated for devices (e.g., Sigfox with an MTU of 12 bytes) using the

ack-on-error reliability mode. For the SCHC Registration mechanisms

(Registration and Extended Registration), the total overhead ranges from

17 bytes up to 34 bytes. This is mainly due to the fact that the IPv6

source and destination are sent to the receiving gateway. The ack-on-error

mode increases the overhead mainly due to the presence of the RCS, which

was set to 32 bits. Both mechanisms, however, still fit the MTU of an

Long Range (LoRa) Spreading Factor (SF) 12 device, without the need for

fragmentation.

Depending on the request/response sequence and possible fragmentation,

a higher number of packets is exchanged. This is illustrated in Figure

3.13. SCHC Registration only requires two packets (1 up and 1 down) for

devices with a higher order bandwidth, such as LoRaWAN and DASH7.

Sigfox devices, on the contrary, require 7 packets (3 up, 4 down). The

other solution, SCHC compressed Neighbor Discovery, can be seen to be

very efficient in terms of uplink communication; only 2 packets, 1 for the

RA and 1 for the NA, are required for any type of device. However, 7

packets are required in downlink over a Sigfox Ultra Narrow-Band (UNB)

link. This, however, could be reduced to 5 if the fragmentation parameters

Device Discovery and Context Registration in SCHC Networks 67

Table 3.2: Comparison of the SCHC Registration and ICMPv6 SCHC Control
mechanisms.

SCHC
Registration

SCHC ICMPv6
Control Messages

IPv6 standards com-
pliant

No Yes

Prefix dissemination Yes Yes
Compression rule
registry

Mandatory Optional

Fragmentation rule
registry

Mandatory Optional

Fragmentation
parameter
distribution

No Yes

Configurable rules 1 4.096
Configurable entries
per rule

16 2.048

Supported editable
fields

Target value Rule Id, Direction,
Field Length, Target
Value, MO, CDA,
Field Position

Network layer
support

Yes, up to 1 rule Yes, up to 4.096 rules

Transport layer
support

Yes, up to 1 UDP
rule, not expandable
without modification

Yes, up to 4.096 rules,
expandable to TCP
without modification

Application layer
support

No, perform double
compression

Yes, expandable to
any protocol

are distributed a priori, and therefore no SPO must be distributed. The

packet overhead for regular Optimized Neighbor Discovery is also given for

reference. It can be seen that using the proposed compression mechanism,

this becomes a lot more efficient.

3.6.2.1 Registration Time

As transmission errors and the impact of the regulatory limitations on

duty cycle limited technologies will affect the time required to perform a

registration attempt, we present a simulation model based on the PER. The

PER of a network depends, among others, on the amount of gateways, the

interference of other technologies, the number of devices in a network, and

the back-off time between transmissions [23]. Highly dense networks have

68 Chapter 3

Table 3.3: Overhead in bits for the proposed specifications. The Non-fragmented
mode is used for a LoRa SF12 device, while the Ack-on-Error mode is used for a

Sigfox device.

Mode Direction Overhead (B)

Registration

Non-fragmented
Up 21

Down 17

Ack-on-Error
Up 28

Down 25

Extended R.

Non-fragmented
Up 26

Down 17

Ack-on-Error
Up 34

Down 25

SCHC RA/RS
with PIO/S-
LLAO/SPO

Non-fragmented
RS 10

RA 35

Ack-on-Error
RS 14

RA 44

SCHC NA/NS
with
ARO/SLLAO

Non-fragmented
NS 10

NA 8

Ack-on-Error
NS 10

NA 5

a higher PER, while in other situations the device may benefit from the

capture effect when it moves closer to a gateway.

For every PER, the simulation was run 25 times, during which a device

will try up to 10 times before stopping the registration process. MAX ACK -

REQUESTS is set to 3, therefore a device may try up to 30 times to deliver a

fragmented registration message.

The results for a EU LoRaWAN SF12 device and a Sigfox device are

given in Figure 3.14. It can be seen that, due to its longer time on air

and smaller payload size, registering a Sigfox device using ND can take in

some situations nearly 100 times the time required to register a LoRaWAN

device. In such situations, it might be beneficial to use a higher registration

back-off period to decrease the network’s PER and consequently lower the

Device Discovery and Context Registration in SCHC Networks 69

DASH7 LoRa SF12 SigFox
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

P
ac

k
et

s
tr

an
sm

it
te

d

Tx

Rx

(a) SCHC Registration

DASH7 LoRa SF12 SigFox
0

1

2

3

4

5

6

7

8

P
ac

k
et

s
tr

an
sm

it
te

d

Tx

Rx

(b) SCHC Neighbor Discovery

DASH7 LoRa SF12 SigFox
0

5

10

15

20

25

P
ac

k
et

s
tr

an
sm

it
te

d

Tx

Rx

(c) Optimized Neighbor Discovery

Figure 3.13: The total packet overhead for a single registration attempt using both
registration mechanisms for different technologies, compared with regular

Optimized Neighbor Discovery.

registration time. The graph shows that at least 92 minutes are required to

register a Sigfox device to the network using SCHC Registration and 160

minutes are required for SCHC ND in a best case scenario. However, only

4 to 7 minutes are required over a LoRaWAN network. Every registration

attempt incorporates the time on air and a 1% duty cycle restriction, which

applies in Europe.

Both protocols will impact—and be impacted by—the point at which

the network will collapse. We define this point when less than 50% of the

registrations succeed. In order to visualize this, the success ratio is given for

both protocols and wireless technologies. For the SCHC Neighbor Discovery

method, less than 50% of the registrations will succeed for a LoRaWAN

SF12 device at a PER of 60%. For a Sigfox device, the capsizing point lies at

a PER of 40%. This is again due to the lower available payload size, which

requires fragmentation. The SCHC Registration method is impacted less

by a higher PER due to the fact that less messages are required, and can

therefore cope better with a higher PER than ND. However, in networks

70 Chapter 3

0 10 20 30 40 50 60 70 80 90 100

Packet Error Ratio [%]

0

500

1000

1500

2000

2500

T
im

e
[m

in
u
te

s]

SCHC Neighbor Discovery

SCHC Registration

(a) Sigfox Registration time

0 10 20 30 40 50 60 70 80 90 100

Packet Error Ratio [%]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
u
cc

es
s

R
at

io

SCHC Neighbor Discovery

SCHC Registration

(b) Sigfox Registration success ratio

0 10 20 30 40 50 60 70 80 90 100

Packet Error Ratio [%]

0

5

10

15

20

25

30

T
im

e
[m

in
u
te

s]

SCHC Neighbor Discovery

SCHC Registration

(c) LoRaWAN SF12 Registration time

0 10 20 30 40 50 60 70 80 90 100

Packet Error Ratio [%]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
u
cc

es
s

R
at

io
SCHC Neighbor Discovery

SCHC Registration

(d) LoRaWAN SF12 Registration success
ratio

Figure 3.14: The total registration time for different packet error ratios (PERs)
for both proposed mechanisms.

with a particularly high PER, the registration time for ND is lower than the

SCHC Registration method. Devices have a very low chance of receiving

a RA in response to a RS (which has a very low binary overhead) and

consequently will not start the NS/NA sequence. This way, the RS can act

as a PER indicator and can be used as such to increase the back-off period.

In a fragmented environment, the SCHC Registration time decreases after

the point at which the network collapses. This is due to the fact that a

failed fragmentation sequence will stop the registration; the next fragments

are discarded by the device.

However, a device employing the SCHC Neighbor Discovery mechanism,

will not be able to communicate over a compressed link without configuring

its context. Therefore, the next section evaluates the overhead of the SCHC

Control Option.

Device Discovery and Context Registration in SCHC Networks 71

DASH7 LoRa SF12 SigFox
0

1

2

3

4

5

6

P
ac

k
et

s
tr

an
sm

it
te

d

Tx

Rx

(a) SCHC IPv6/UDP source and
destination (IPv6 and port) context

configuration overhead in ack-on-error

mode

DASH7 LoRa SF12 SigFox
0

1

2

3

4

5

6

7

8

9

P
ac

k
et

s
tr

an
sm

it
te

d

Tx

Rx

(b) SCHC complete IPv6/UDP rule
context configuration overhead in

ack-on-error mode

Figure 3.15: SCHC ND IPv6/UDP context configuration.

3.6.3 SCHC ND: Context Configuration Overhead

Once a SCHC ND-enabled device has registered to the gateway, it should

register its context to optimize the communication flow in terms of header

overhead. In order to provide a fair comparison with the SCHC Registration

mechanism, the overhead is calculated in a scenario where it is assumed

that a rule is installed in the registry that can be updated using the SCHC

Control mechanism.

A first example updates the IPv6 source and destination and the UDP

source port and destination port. In order to do so, a CAO contained 6 Fixed

Size Context Options (IPv6 SRC PRE, IPv6 SRC IID, IPv6 DST PRE, IPv6

DST IID, UDP SRC, and UDP DST). The total overhead boils down to 60

bytes (480 bits), resulting in two packets for a LoRa SF12 device. However,

lower MTU-technologies will fragment the context registration request over

more packets, illustrated in Figure 3.15a. A single acknowledgment suffices

to acknowledge the fragmentation window in case no packet was lost.

For further reference, we also conducted a test what the overhead would

be for the configuration of a complete IPv6/UDP rule. Therefore, a complete

CAO contained 14 Fixed Size Context Options. Configuring a complete

IPv6/UDP context, results in 89 bytes (712 bits) overhead for Sigfox and

83 bytes (664 bits) overhead for a LoRa SF12 device, resulting in 8 and 2

uplink packets, respectively, illustrated in Figure 3.15b.

3.6.3.1 Energy overhead

In exchange for the provided flexibility using the context configuration

protocols, a higher energy consumption can be expected. We take the PER

72 Chapter 3

0 10 20 30 40 50 60 70 80 90 100

Packet Error Ratio [%]

0

10

20

30

40

50

60

70

E
n

er
g

y
 [

Jo
u

le
]

SCHC Neighbor Discovery

SCHC Registration

(a) Sigfox context registration overhead

0 10 20 30 40 50 60 70 80 90 100

Packet Error Ratio [%]

0

1

2

3

4

5

6

7

8

9

10

E
n

er
g

y
 [

Jo
u

le
]

SCHC Neighbor Discovery

SCHC Registration

(b) LoRaWAN context registration
overhead

Figure 3.16: Energy required to configure the SCHC context for different PERs,
for both proposed mechanisms. Note the different scale of the Y-axis.

to measure the extra energy consumption in the situation described in Figure

3.15a, compared to a static context. The results are presented in Figure

3.16. Configuring a context using the ICMPv6 method, will at least require

5 Joules for a Sigfox device while in the best case it will only consume

approximately 0.9 Joules on a LoRa SF12 device. Once the PER starts to

increase, fragmentation will have a large impact on the energy consumption

of both protocols.

From these graphs we can conclude that devices should increase their

back-off period or limit the number of attempts to configure a context once

the delivery ratio starts to decrease.

3.6.4 LwM2M Configuration

In order to show the relevance of the developed solutions, an example of a

device using the widespread LwM2M protocol is evaluated. An overview of

the bootstrapping and registration process is given in Figure 3.17. A client

is configured with the credentials of the LwM2M bootstrap server, to which

it can request the information of the LwM2M server.

The bootstrapping and registration of a device using a static configuration

is compared against both proposed solutions. We assume that the address of

the LwM2M bootstrap server is configured a priori at the SCHC adaptation

layer on both sides of the network. For every test a 6-bit SCHC rule id

was used. A 1-byte CoAP token and 2-byte CoAP message id are sent with

every message. Some CoAP option fields, such as the LwM2M endpoint

name, were left uncompressed in order to provide more flexibility to the

upper layer protocols. Figure 3.18 shows the cumulative bit overhead for

Device Discovery and Context Registration in SCHC Networks 73

LwM2M
Client

LwM2M
Client

Server
LwM2M
Boostrap

Server
Server

LwM2M
Boostrap

Server

Server
LwM2M
Server

Server
LwM2M
Server

BOOTSTRAP-PACK REQUEST

POST /bs?ep=node3415846

B
o
ot
st
ra
p

BOOTSTRAP-PACK RESPONSE

</0/1>, /1/1>

REGISTRATION REQUEST
POST /rd?ep=node3415846?lt=300

</1/1>, </2/1>, </3/1>, </4/1>, <3303/0>

2.01 Created, Location: /rd/E46XsBtFpO

R
e
gi
st
ra
ti
on

OBSERVE REQUEST
GET /3303/0/5700, OBSERVE

2.05 Content

18.5

2.04 Changed

19.4

O
b
se
rv
e

Figure 3.17: LwM2M bootstrap, registration, and observe request.

all configurations for a LoRa SF12 device. While the other configurations

wait, SCHC ND will first send the RS/RA and NS/NA before configuring

its context. At this point, the SCHC Registration mechanism will also start

the registration and context configuration of the bootstrap server. The fifth

transmission initiates the LwM2M bootstrap-pack sequence. Until this point,

the static configuration clearly outperforms both solutions. After receiving

the LwM2M server objects (the 6th transmission in downlink, which explains

the large spike), both registration mechanisms again register their context

to the SCHC gateway, this time provisioning the location of the LwM2M

server. All configurations now register their objects and instances to the

LwM2M server. Again, the static configuration outperforms both solutions.

However, from this point on, the static configuration will have to transmit

the IPv6 address of the LwM2M server as part of the SCHC residue in every

message. Once the server starts observing the temperature value of the

sensor device, every notification event will also contain this IPv6 address

and both registration mechanisms will outperform the static solution after

only 20 and 25 transmissions. The inability to configure the IPv6 address of

the destination therefore has a large impact on the energy consumption of

the device, which can be seen in part (c) of the figure.

The above shows the relevance of the ability to configure the SCHC

adaptation layer: the registration overhead will eventually result in less

overhead, more flexibility and consequently less energy consumption. Figure

74 Chapter 3

0 5 10 15 20 25 30 35

Time [hours]

0

1000

2000

3000

4000

5000

6000

7000

8000

B
it

s
T

ra
n

sm
it

te
d

B
o
o
ts

tr
a
p

L
w

M
2
M

 R
e
g
is

tr
a
ti
o
n

O
b
s
e
rv

a
ti
o
n

SCHC ND

SCHC Registration

SCHC Static

(a) Cumulative bit overhead in uplink

0 5 10 15 20 25 30 35

Time [hours]

0

500

1000

1500

B
it

s
T

ra
n

sm
it

te
d

B
o
o
ts

tr
a
p

L
w

M
2
M

 R
e
g
is

tr
a
ti
o
n

O
b
s
e
rv

a
ti
o
n

SCHC ND

SCHC Registration

SCHC Static

(b) Cumulative bit overhead in downlink

0 5 10 15 20 25 30 35

Time [hours]

0

1

2

3

4

5

6

E
n

er
g

y
 c

o
n

su
m

p
ti

o
n

 [
J]

SCHC ND

SCHC Registration

SCHC Static

(c) Cumulative energy consumption

Figure 3.18: The cumulative bit and energy overhead for the static and dynamic
solutions for a LoRaWAN SF12 device sending an observation notification of its

temperature value every hour.

3.19 leverages on this by comparing the total packet overhead for different

MTU sizes. Again, an uncompressed LwM2M server address is used for the

exchanged packets. Figure 3.19a shows the complete SCHC and LwM2M

registration, after which a single observation notification is sent from the

device. It can be seen that both registration mechanisms exchange more

packets than the static solution. However, the second part of the figure shows

the total packet overhead after the registration sequence and 48 observation

notifications from the device. It becomes clear that for devices with a low

MTU—as they will have to fragment large SCHC residues—it is very useful

to configure a header value which has changed during their lifetime.

3.6.5 CoAP Compression

The previous sections showed the significance of both registration mechanisms

compared to the current static solution. However, as the SCHC Registration

mechanism requires double compression, this will also impact the total bit

Device Discovery and Context Registration in SCHC Networks 75

10 15 20 25 30 35 40 45

MTU

10

15

20

25

30

35

40

45

50

55

60

T
o

ta
l

P
ac

k
et

 O
v

er
h

ea
d

SCHC ND

SCHC Registration

SCHC Static

(a) Total packet overhead per MTU for
1 notification

10 15 20 25 30 35 40 45

MTU

50

100

150

200

250

300

350

T
o

ta
l

P
ac

k
et

 O
v

er
h

ea
d

SCHC ND

SCHC Registration

SCHC Static

(b) Total packet overhead per MTU for
48 notifications

Figure 3.19: The total packet overhead for the complete LwM2M registration flow
and different number of observation notifications.

overhead. In this evaluation, we suppose that a CoAP context is deployed

a priori at the LwM2M server for the SCHC Registration mechanism. The

SCHC ND method, on the other hand, will configure the CoAP context

after the LwM2M registration to the SCHC gateway, with an overhead of

488 bits. However, as can be seen from Figure 3.20, after approximately

150 transmissions, the SCHC Registration mechanism will have a higher

cumulative bit overhead than the SCHC ND method, due to the double

compression, which adds another byte rule id to every packet. We define bit

overhead as protocol overhead; bits that the user is not interested in.

3.7 Discussion

SCHC has been proven to be a valuable tool to bring IPv6 to constrained

wide-area networks. However, the static nature of the compression context

can have a large impact on the energy consumption. Constrained sensor

devices unable to configure the IPv6 address of the server in a LwM2M

environment will have to include this value in every packet. After only

25 transmissions, both developed solutions already surpass the energy con-

sumption of the current SOTA. The first solution—the SCHC Registration

mechanism—can be used to reduce the protocol overhead to a minimum in

changing environments. However, due to the simplicity of the protocol, only

four configurable bindings are available per device. We showed that more

flexibility can be provided by using an ICMPv6 based mechanism, which

however increases the packet overhead, energy overhead, and registration

time. Moreover, the ICMPv6 solution can be used in both directions: a

device is able to configure the context at the network gateway side and vice

76 Chapter 3

0 50 100 150 200 250

Time [hours]

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

B
it

s
T

ra
n

sm
it

te
d

104

SCHC ND

SCHC Registration

(a) Cumulative bit overhead in uplink

0 50 100 150 200 250

Time [hours]

0

200

400

600

800

1000

1200

1400

1600

B
it

s
T

ra
n

sm
it

te
d

SCHC ND

SCHC Registration

(b) Cumulative bit overhead in downlink

0 50 100 150 200 250

Time [hours]

0

5

10

15

20

25

30

E
n

er
g

y
 c

o
n

su
m

p
ti

o
n

 [
J]

SCHC ND

SCHC Registration

(c) Cumulative energy consumption

Figure 3.20: The cumulative bit and energy overhead for both solutions for a
LoRaWAN SF12 device. Note that the SCHC ND mechanism will require less

energy in uplink due to the double compression of the SCHC registration
mechanism.

versa. This is something that is not supported by the current DNS-based

solution from Bernard et al. [8].

Furthermore, the SCHC Registration mechanism does not allow much

flexibility and will mainly be used to configure or update a number of generic

rules and to register the device to the IPv6 network. For example, employing

the more advanced matching operators is only possible if they were set up a

priori in the Rule Registry. The ICMPv6-based solution however, can add,

update, or remove a rule entry of any kind. In order to keep the SCHC

Registration mechanism as simple as possible, and not to interfere with

the current specification, it cannot be used to configure the application

layer. This forces the end-point and intermediary to implement a SCHC

(de-)compression mechanism, which again increases implementation and

integration complexity. This, however, is required by the SCHC-CoAP

specification to provide end-to-end security and might therefore be used in

conjunction with the developed solution. The double compression, however,

Device Discovery and Context Registration in SCHC Networks 77

adds an overhead to every packet with the size of the rule id, which eventually

will result in a higher cumulative bit overhead than the SCHC ND method.

Furthermore, the static application layer context, implemented on both end-

points, cannot benefit from the presented context registration mechanism.

Finally, the simulations showed that for both protocols, a mechanism

should be incorporated in order to limit the number of registration attempts

in networks with a high PER.

3.7.1 CORECONF

A possible alternative for the work presented in this paper could make use

of other management solutions such as CORECONF. In such architecture,

novel mechanisms to register devices and generate their IPv6 addresses

would be required. On top of that, every device must implement CoAP and

CORECONF, whereas the SCHC standard defines a generic framework that

can be used to compress any kind of protocol. For those reasons, the protocols

presented in this paper rather build on the SCHC framework than on an

application layer protocol. Nevertheless, the YANG data model, presented

by the LPWAN WG, might be used in the future to provide interoperability

among SCHC contexts. Once Schema Item Identifierss (SIDs) are defined,

the management of contexts using the CBOR representation can be compared

with other techniques and management protocols, such as LwM2M and the

ones presented in this work.

3.8 Future Work

3.8.1 SCHC

Currently, the SCHC standard does not provide a way of piggybacking

acknowledgments with data. Both mechanisms, however (and the specifi-

cation in general), could benefit from such approach. For example, when

a device registers to the SCHC gateway using the ack-on-error mode, an

acknowledgment will be sent in order to complete the transmission window.

Therefore, a downlink packet, containing the IPv6 address of the device

is queued for LPWAN technologies that make use of an “uplink-triggered”

downlink mode, which opens a receive window only after an uplink. The

final packet of the registration will only arrive at the device after another

uplink is fired. In request–response scenarios, such as a LwM2M bootstrap

request, the bootstrap response will only arrive after another uplink of the

device, messing with the LwM2M flow.

78 Chapter 3

3.8.2 ICMPv6

This paper presented the compression of ICMPv6 packets using the SCHC

framework, which could be used in the future to make LPWAN devices

completely IPv6 compliant. However, in order to be fully compliant with

RFC 4443 [24], ICMPv6 traffic should propagate to the end device to ensure

proper connectivity for IPv6 devices. However, as LPWANs are characterized

by high delays and sleepy end-devices, downlink traffic cannot reach the

end-devices directly as it would on the internet and will often get queued.

Furthermore, the fact that LPWAN devices and gateways in the unlicensed

spectrum have to comply with regulatory limitations and therefore as much

airtime as possible should be preserved, the network gateway should respond

as much as possible on behalf of the device to handle unwanted ICMP

traffic [25]. For example, ICMP informational messages initiated by the

sensor device should be compressed and forwarded to the corresponding host

on the IPv6 network. The Echo Reply should propagate over the LPWAN

to the sensor node. However, an Echo Request intended for the sensor device

should be intercepted and replied to by the network gateway.

3.8.3 Security

As the SCHC Control Messages contain sensitive information, security should

be looked at into more detail. This can be done similarly to IPv6 Routing

Protocol for Low-power and Lossy Networks (RPL), where the higher order

bit of the Code field (0x80) can be used to denote whether the message has

security enabled [26]. Next, a security field should be added between the

base object and the ICMPv6 header to support confidentiality and integrity.

Furthermore, the IETF has identified four types of attacks against Insti-

tute of Electrical and Electronics Engineers (IEEE)-identifier-based Interface

IDs [27]. The following are of concern in LPWANs:

• Correlation of activities over time: an IPv6 address can be used to

correlate the activities of a host for as long as the lifetime of the

address.

• Location tracking: since the interface identifier portion of the IPv6

address remains constant, it does provide a way for observers to track

the movements of a host

• Device-specific vulnerability exploitation: the embedded IEEE identi-

fier can leak information about the device, which could be used by an

attacker to detect and exploit well-known hardware or software issues.

Device Discovery and Context Registration in SCHC Networks 79

In 6LoWPAN, these issues were solved in an extension to the original

RFC, entitled Address-Protected Neighbor Discovery for Low-Power and

Lossy Networks [28]. Nodes supporting this extension compute a crypto-

graphic identifier (Crypto-ID), and use it with one or more of their Registered

Addresses. The Crypto-ID is a replacement for the MAC address of which

the ownership can be demonstrated using cryptographic mechanisms (using

a public key). This however, requires either a key exchange mechanism or

symmetric keys that have been distributed before deployment. Furthermore,

in order to proof its identity, a lot of messaging overhead is introduced and

requires a more in-depth study for LPWANs to cope with security issues.

80 Chapter 3

References

[1] S. Deering and R. Hinden. Internet Protocol, Version 6 (IPv6) Specifi-

cation, 1998. Available from: https://tools.ietf.org/pdf/rfc2460.pdf.

[2] G. Montenegro, N. Kushalnagar, J. Hui, and D. Culler. Transmission

of IPv6 Packets over IEEE 802.15.4 Networks, 2007. Available from:

https://www.rfc-editor.org/rfc/pdfrfc/rfc4944.txt.pdf.

[3] B. Moons, A. Karaagac, J. Haxhibeqiri, E. De Poorter, and J. Hoebeke.

Using SCHC for an optimized protocol stack in multimodal LPWAN

solutions. In WF-IoT2019, the IEEE World Forum on Internet of Things,

pages 1–6, 2019. Available from: http://hdl.handle.net/1854/LU-

8613162.

[4] ETSI. Cyber Security for Consumer Internet of Things, 2019. Available

from: https://www.etsi.org/deliver/etsi en/303600 303699/303645/02.

00.00 20/en 303645v020000a.pdf.

[5] W. Ayoub, F. Nouvel, S. Hmede, A. E. Samhat, M. Mroue, and

J.-C. Prevotet. Implementation of SCHC in NS-3 and Compar-

ison with 6LoWPAN. In 2019 26th International Conference on

Telecommunications (ICT), pages 432–436, Hanoi, Vietnam, April 2019.

IEEE. Available from: https://ieeexplore.ieee.org/document/8798782/,

doi:10.1109/ICT.2019.8798782.

[6] libschc: A C implementation of the Static Context Header Compression,

September 2021. original-date: 2019-12-18T12:11:32Z. Available from:

https://github.com/imec-idlab/libschc.

[7] W. Ayoub, M. Mroue, A. E. Samhat, F. Nouvel, and J.-C. Prévotet.

SCHC-Based Solution for Roaming in LoRaWAN. In L. Barolli,

P. Hellinckx, and T. Enokido, editors, Advances on Broad-Band

Wireless Computing, Communication and Applications, volume 97,

pages 162–172. Springer International Publishing, Cham, 2020. Avail-

able from: http://link.springer.com/10.1007/978-3-030-33506-9 15,

doi:10.1007/978-3-030-33506-9 15.

[8] A. Bernard, S. Balakrichenan, M. Marot, and B. Ampeau. DNS-

based dynamic context resolution for SCHC. In ICC 2020 - 2020 IEEE

International Conference on Communications (ICC), pages 1–6, Dublin,

Ireland, June 2020. IEEE. Available from: https://ieeexplore.ieee.org/

document/9148910/, doi:10.1109/ICC40277.2020.9148910.

https://tools.ietf.org/pdf/rfc2460.pdf
https://www.rfc-editor.org/rfc/pdfrfc/rfc4944.txt.pdf
http://hdl.handle.net/1854/LU-8613162
http://hdl.handle.net/1854/LU-8613162
https://www.etsi.org/deliver/etsi_en/303600_303699/303645/02.00.00_20/en_303645v020000a.pdf
https://www.etsi.org/deliver/etsi_en/303600_303699/303645/02.00.00_20/en_303645v020000a.pdf
https://ieeexplore.ieee.org/document/8798782/
https://github.com/imec-idlab/libschc
http://link.springer.com/10.1007/978-3-030-33506-9_15
https://ieeexplore.ieee.org/document/9148910/
https://ieeexplore.ieee.org/document/9148910/

Device Discovery and Context Registration in SCHC Networks 81

[9] K. Q. Abdelfadeel, V. Cionca, and D. Pesch. Dynamic Con-

text for Static Context Header compression in LPWANs. In 2018

14th International Conference on Distributed Computing in Sen-

sor Systems (DCOSS), pages 35–42, June 2018. ISSN: 2325-2944.

doi:10.1109/DCOSS.2018.00013.

[10] U. Raza, P. Kulkarni, and M. Sooriyabandara. Low Power Wide Area

Networks: An Overview. arXiv:1606.07360 [cs], June 2016. arXiv:

1606.07360. Available from: http://arxiv.org/abs/1606.07360.

[11] S. Laboratories. The Evolution of Wireless Sensor Networks, 2013.

Available from: https://www.silabs.com/documents/public/white-

papers/evolution-of-wireless-sensor-networks.pdf.

[12] The Things Industries launches Global Join Server with a series of

device makers to simplify LoRaWAN device provisioning, January 2020.

Library Catalog: thethingsindustries.pr.co. Available from: https:

//thethingsindustries.pr.co/185845-the- things- industries- launches-

global-join-server-with-a-series-of-device-makers-to-simplify-lorawan-

device-provisioning.

[13] T. Narten, E. Nordmark, W. Simpson, and H. Soliman. Neighbor

Discovery for IP version 6 (IPv6), 2007. Available from: https://tools.

ietf.org/pdf/rfc4861.pdf.

[14] Z. Shelby, S. Chakrabarti, E. Nordmark, and C. Bormann. Neighbor

Discovery Optimization for IPv6 over Low-Power Wireless Personal

Area Networks (6LoWPANs). Technical Report RFC6775, RFC Editor,

November 2012. Available from: https://www.rfc-editor.org/info/

rfc6775, doi:10.17487/rfc6775.

[15] T. Watteyne and P. Thubert. Efficient 6LoWPAN Neighbor Discovery

applied to Multilink IoT subnets. In 2015 IEEE International Confer-

ence on Communications (ICC), pages 642–647, London, June 2015.

IEEE. Available from: http://ieeexplore.ieee.org/document/7248394/,

doi:10.1109/ICC.2015.7248394.

[16] M. A. Seliem, K. M. Elsayed, and A. Khattab. Optimized neighbor

discovery for 6LoWPANs: Implementation and performance evaluation.

Computer Communications, 112:73–92, November 2017. Available

from: https://linkinghub.elsevier.com/retrieve/pii/S0140366417308988,

doi:10.1016/j.comcom.2017.08.013.

http://arxiv.org/abs/1606.07360
https://www.silabs.com/documents/public/white-papers/evolution-of-wireless-sensor-networks.pdf
https://www.silabs.com/documents/public/white-papers/evolution-of-wireless-sensor-networks.pdf
https://thethingsindustries.pr.co/185845-the-things-industries-launches-global-join-server-with-a-series-of-device-makers-to-simplify-lorawan-device-provisioning
https://thethingsindustries.pr.co/185845-the-things-industries-launches-global-join-server-with-a-series-of-device-makers-to-simplify-lorawan-device-provisioning
https://thethingsindustries.pr.co/185845-the-things-industries-launches-global-join-server-with-a-series-of-device-makers-to-simplify-lorawan-device-provisioning
https://thethingsindustries.pr.co/185845-the-things-industries-launches-global-join-server-with-a-series-of-device-makers-to-simplify-lorawan-device-provisioning
https://tools.ietf.org/pdf/rfc4861.pdf
https://tools.ietf.org/pdf/rfc4861.pdf
https://www.rfc-editor.org/info/rfc6775
https://www.rfc-editor.org/info/rfc6775
http://ieeexplore.ieee.org/document/7248394/
https://linkinghub.elsevier.com/retrieve/pii/S0140366417308988

82 Chapter 3

[17] S. Sinche, D. Raposo, N. Armando, A. Rodrigues, F. Boavida, V. Pereira,

and J. S. Silva. A Survey of IoT Management Protocols and Frame-

works. IEEE Communications Surveys Tutorials, 22(2):1168–1190,

2020. Conference Name: IEEE Communications Surveys Tutorials.

doi:10.1109/COMST.2019.2943087.

[18] M. Veillette, P. van der Stok, A. Pelov, A. Bierman, and I. Petrov.

CoAP Management Interface (CORECONF), April 2020. Available

from: https://tools.ietf.org/pdf/draft-ietf-core-comi-10.pdf.

[19] A. Minaburo and L. Toutain. Data Model for Static Context Header

Compression (SCHC), October 2020. Available from: https://tools.ietf.

org/pdf/draft-ietf-lpwan-schc-yang-data-model-03.pdf.

[20] O. LwM2M. Lightweight Machine to Machine Technical Speci-

fication: Core, November 2020. Available from: http://www.

openmobilealliance.org/release/LightweightM2M/V1 2-20201110-A/

OMA-TS-LightweightM2M Core-V1 2-20201110-A.pdf.

[21] J. Zuniga, C. Gomez, and L. Toutain. SCHC over Sigfox LPWAN.

October 2020. Available from: https://tools.ietf.org/pdf/draft-ietf-

lpwan-schc-over-sigfox-04.pdf.

[22] A. Minaburo, L. Toutain, and R. Andreasen. LPWAN Static Context

Header Compression (SCHC) for CoAP, December 2019. Available

from: https://tools.ietf.org/pdf/draft-ietf-lpwan-coap-static-context-

hc-12.pdf.

[23] B. Reynders, Q. Wang, and S. Pollin. A LoRaWAN module for ns-3:

implementation and evaluation. In Proceedings of the 10th Workshop

on ns-3 - WNS3 ’18, pages 61–68, Surathkal, India, 2018. ACM Press.

Available from: http://dl.acm.org/citation.cfm?doid=3199902.3199913,

doi:10.1145/3199902.3199913.

[24] A. Conta, S. Deering, and E. M. Gupta. Internet Control Message Pro-

tocol (ICMPv6) for the Internet Protocol Version 6 (IPv6) Specification,

2006. Available from: https://tools.ietf.org/pdf/rfc4443.pdf.

[25] L. Toutain, D. Dujovne, D. Barthel, J.-C. Zúñiga, and A. Kandasamy.

OAM for LPWAN using Static Context Header Compression (SCHC).

draft-barthel-oam-schc-00, 2019. Available from: https://tools.ietf.org/

html/draft-barthel-oam-schc-00.

[26] T. Winter, P. Thubert, A. Brandt, J. Hui, R. Kelsey, P. Levis, K. Pister,

R. Struik, JP. Vasseur, and R. Alexander. RPL: IPv6 Routing Protocol

https://tools.ietf.org/pdf/draft-ietf-core-comi-10.pdf
https://tools.ietf.org/pdf/draft-ietf-lpwan-schc-yang-data-model-03.pdf
https://tools.ietf.org/pdf/draft-ietf-lpwan-schc-yang-data-model-03.pdf
http://www.openmobilealliance.org/release/LightweightM2M/V1_2-20201110-A/OMA-TS-LightweightM2M_Core-V1_2-20201110-A.pdf
http://www.openmobilealliance.org/release/LightweightM2M/V1_2-20201110-A/OMA-TS-LightweightM2M_Core-V1_2-20201110-A.pdf
http://www.openmobilealliance.org/release/LightweightM2M/V1_2-20201110-A/OMA-TS-LightweightM2M_Core-V1_2-20201110-A.pdf
https://tools.ietf.org/pdf/draft-ietf-lpwan-schc-over-sigfox-04.pdf
https://tools.ietf.org/pdf/draft-ietf-lpwan-schc-over-sigfox-04.pdf
https://tools.ietf.org/pdf/draft-ietf-lpwan-coap-static-context-hc-12.pdf
https://tools.ietf.org/pdf/draft-ietf-lpwan-coap-static-context-hc-12.pdf
http://dl.acm.org/citation.cfm?doid=3199902.3199913
https://tools.ietf.org/pdf/rfc4443.pdf
https://tools.ietf.org/html/draft-barthel-oam-schc-00
https://tools.ietf.org/html/draft-barthel-oam-schc-00

Device Discovery and Context Registration in SCHC Networks 83

for Low-Power and Lossy Networks. Technical Report RFC6550, RFC

Editor, March 2012. Available from: https://www.rfc-editor.org/info/

rfc6550, doi:10.17487/rfc6550.

[27] A. Cooper, F. Gont, and D. Thaler. Security and Privacy Consider-

ations for IPv6 Address Generation Mechanisms. Request for Com-

ments RFC 7721, Internet Engineering Task Force, March 2016. Num

Pages: 18. Available from: https://datatracker.ietf.org/doc/rfc7721,

doi:10.17487/RFC7721.

[28] P. Thubert, B. Sarikaya, M. Sethi, and R. Struik. Address-Protected

Neighbor Discovery for Low-Power and Lossy Networks. Request for

Comments RFC 8928, Internet Engineering Task Force, November 2020.

Num Pages: 29. Available from: https://datatracker.ietf.org/doc/

rfc8928, doi:10.17487/RFC8928.

https://www.rfc-editor.org/info/rfc6550
https://www.rfc-editor.org/info/rfc6550
https://datatracker.ietf.org/doc/rfc7721
https://datatracker.ietf.org/doc/rfc8928
https://datatracker.ietf.org/doc/rfc8928

4
Efficient Vertical Handover in

Heterogeneous Low Power Wide Area

Networks

In the previous Chapters, the relevance and limitations of Static Context

Header Compression (SCHC) were discussed. It was shown that a registra-

tion solution is required in a wireless low power network that truly follows the

spirit of the Internet Protocol (IP). This Chapter will look at more complex

settings and configurations of Low Power Wide Area Networks (LPWANs).

Multiple technologies will be combined to cope with the limitations of one

another. This Chapter will propose an architecture to combine these net-

works, since it is not possible to provide network- and device interoperability

in heterogeneous LPWANs without a new middleware. Furthermore, an

algorithm for vertical handovers in LPWANs is proposed and evaluated.

This allows devices to switch between networks that match their needs at a

given point in time.

⋆ ⋆ ⋆

This chapter is based on the homonymous article by

B. Moons, A. Karaagac, E. De Poorter, and J. Hoebeke

Published in IEEE Internet of Things Journal 7(3), February 2020

86 Chapter 4

Abstract As the Internet of Things (IoT) continues to expand, the need

to combine communication technologies to cope with the limitations of one

another and to support more diverse requirements, will proceed to increase.

Consequently, we started to see IoT devices being equipped with multiple

radio technologies to connect to different networks over time. However,

the detection of the available radio technologies in an energy efficient way

for devices with limited battery capacity and processing power has not yet

been investigated. As this is not a straightforward task, a novel approach

in such heterogeneous networks is required. This article analyses different

LPWAN technologies and how they can be integrated in such a heterogeneous

system. Our contributions are threefold: first an optimal protocol stack for

a constrained device with access to multiple communication technologies

is put forward to hide the underlying complexity for the application layer.

Next the architecture to hide the complexity of a heterogeneous network is

presented. Finally, it is demonstrated how devices with limited processing

power and battery capacity can have access to higher bandwidth networks

combined with longer range networks and on top are able to save energy

compared to their homogeneous counterparts, by measuring the impact of

the novel vertical handover algorithm.

4.1 Introduction

As the IoT continues to grow and, apart from the research community, starts

to gain interest for new business use cases, the need for more diverse settings

arises. To meet these demands, new LPWAN technologies, such as DASH7,

Sigfox and Long Range (LoRa), have entered the market. Many of these

communication technologies make use of the unlicensed Industrial, Scientific

and Medical (ISM) 915 MHz band (Region 2) or the license-free European

Short Range Device (SRD) 863 to 870 MHz band. Due to their unlicensed

character, long range and low (energy) cost, they are the perfect candidate

for massive low cost sensor deployment.

However, as these technologies are targeting different use cases, their

characteristics differ drastically. LoRa and Sigfox, for example, have a

throughput of a few hundreds of bits per second but offer in return a range

up to 50 kilometers [1]. DASH7, on the other hand, offers a shorter range,

but provides throughputs of hundreds of kilobits per second [2]. Also a lot of

research has been conducted around DASH7 localization, which can be used

to locate an object with a median location error down to 3.9 meters using a

single message [3]. Consequently, some technologies are a better choice for

low latency and higher bandwidth requirements, while others may be better

suited for long range, periodic sensor updates.

Efficient Vertical Handover in Heterogeneous Low Power Wide Area

Networks 87

Nevertheless, by combining these technologies several issues obstructing

large scale IoT adoption may be solved such as Over The Air (OTA) updates

and more accurate Global Positioning System (GPS)-less localization for

constrained devices. Although not much research has been conducted around

this topic, the electronics company Murata recently brought dual mode

LoRa/Sigfox modules to the market, supporting other modulation types too

(e.g. Gaussian Frequency Shift Keying (GFSK) and On-Off Keying (OOK))

[4]. A single chip is therefore able to switch between different networks with

the use of a single antenna.

Such devices however, require to move away from homogeneous to hetero-

geneous networks where a device can, depending on its current requirements,

search for “Always the Best Connectivity” (ABC) [5]. As these technologies

currently coexist as vertical silos next to each other, a higher complexity is

involved in managing and communicating with such devices and networks.

Therefore, multiple problems must be tackled in such configurations, the first

and foremost problem being an efficient approach in detecting the presence

of and switching to a more capable network. This has been put forward

as vertical handover, i.e. the handover between base stations of different

wireless technologies, and the handover decision; the selection of the most

appropriate wireless network [6].

In this article, the focus relies merely on network detection as this has

the largest impact on the energy consumption, which has been determined

as the main targeted efficiency.

The first contribution of this paper is consequently a handover algorithm

with configurable parameters to provide resilience and to serve a multitude

of use cases. The impact of several configurations and the trade-offs amongst

these parameters are studied on the basis of simulations. The obtained

results indicate that correctly configured devices will consume substantially

less energy compared to their homogeneous counterparts as they can take

advantage of the complementary characteristics of the different wireless

communication technologies they are equipped with. The trade-off between

latency, discovery time and reliability becomes clear when the effect of the

different parameters is studied. Furthermore, a single protocol stack is

presented where the application layer is unaware of the underlying commu-

nication technology and a single packet payload structure can be used. The

last contribution of this paper is the further elaboration on the architecture

of such heterogeneous networks, as presented in previous work [7], to take

away the complexity towards application developers.

The remainder of this paper is structured as follows. First, a case study

is presented to emphasize the need for heterogeneous LPWA networks. This

is followed by the problem statement and research goals, which highlight

88 Chapter 4

the issues faced when developing a low-power network detection algorithm.

After Section 4.4 about related work, the network detection algorithm, the

architecture and the proposed protocol stack are presented in Section 4.5.

Finally, the energy efficiency of the presented algorithm is evaluated to show

its flexibility, resilience and how possible extension towards other technologies

was taken into account.

4.2 Case study: Construction and Logistics

In order to highlight some of the issues faced when developing applications

in heterogeneous LPWANs, a case study is presented in this section. The

use case covers a construction and logistics company, where cranes and other

material are transported between the construction site and their warehouse.

All equipment is used extensively and requires regular maintenance to avoid

high damage costs. Currently, such a company might depend on the discipline

of their employees to measure the actual usage. This however, is an error

prone task which is better solved by measuring the actual usage by equipping

the material with accelerometer-enabled devices. Due to the assets’ mobility,

the trackers are battery powered and must drain as little energy as possible.

In order to track the location of the construction tools, the trackers could

be equipped with a Global Navigation Satellite System (GNSS). However,

such receivers generally consume a lot of power and are therefore not suited

for this use case. In order to track the assets, state of the art LPWAN

localization techniques can be used by sending regular updates, including

accelerometer data, to the back-end over the best available network. Once

the asset’s usage has reached a certain threshold, maintenance should be

notified over one of the available LPWAN technologies. At the construction

site and at the warehouse a DASH7 or private Long Range Wide Area

Network (LoRaWAN) network is deployed, which allows for OTA updates

and accurate low power localization. Since Sigfox ought to provide global

coverage the parts in between both sites are covered by this communication

technology. An overview of the presented use case is given in Figure 4.1.

4.3 Problem statement and research goals

While some case studies will have devices with a highly predictable trajectory,

other cases might encounter objects moving around more randomly without

any prior knowledge about the available networks. This requires a resilient

algorithm, which incorporates easy, automated configuration for each device

and use case. The algorithm should also be able to adapt itself depending on

Efficient Vertical Handover in Heterogeneous Low Power Wide Area

Networks 89

site-wide device

communication

long-distance

asset tracking

local device

coordination
outdoor asset

monitoring

long-distance backup

communication

indoor localization

and over-the-air updating

Sigfox LoRa

DASH7 802.15.4g

Figure 4.1: The asset tracking use case for a logistics and construction company.
Higher throughput, medium range indoor communication can be complemented
with lower throughput, long range outdoor communication. Adopted from [8]

any form of input, i.e. the parameters of the algorithm should be modifiable

by input from the device itself as well as the back-end.

A second consideration made was that, once a device is connected to a

network, it should check at regular intervals whether it is still connected to

the network. However, some technologies will impose a lot of restrictions

to the device in terms of downlink communication (e.g. Sigfox allows 4

downlink slots of 8 bytes every day). Another reason not to have many

downlink slots might be the duty cycle of the gateway (i.e. 0.1%, 1% or

10% [9]). In dense networks, requesting an acknowledgment for each uplink

is impractical. Signaling from the back-end to inform the device about future

availability of other networks is therefore limited.

A third observation is the capability of the available technologies. Some

are more powerful in terms of bandwidth and Maximum Transfer Unit

(MTU), whereas others are more focused on long range and limit the other

characteristics. It is desirable for the device to switch to a better network

once available, since the total time on air and energy consumption should be

reduced to a minimum and the reception of large OTA updates made possible.

Polling for a better network, however, introduces duty-cycle and energy costs,

which imposes restrictions on the polling frequency. The implementation

should also not limit the algorithm to the hereafter presented technologies,

hence the possibility to integrate new communication technologies should be

made easy.

90 Chapter 4

Lastly, a single protocol stack is desirable as the application layer should

be unaware of the current underlying technology. A Constrained Application

Protocol (CoAP)/User Datagram Protocol (UDP)/Internet Protocol Version

6 (IPv6) approach has been put forward to comply with the internet protocol

standards, e.g. IP, UDP, Transmission Control Protocol (TCP), which form

the global language spoken on the internet for over 40 years. The major

strength of these languages being their maturity and the interoperability

between all internet inhabitants. Another benefit is the portability, where

different applications can be used independent of the underlying technology.

However, some of the available technologies in LPWANs might not be able

to transport certain internet protocols and might have to follow a different

approach. Sigfox, for example, allows each uplink transmission to use a

maximum of 12 bytes, which does not cope with the 40 bytes header overhead

of the IPv6 standard.

The goal of this paper is to tackle the heterogeneity of use cases in a

multi-modal environment by focusing on a system that can integrate with a

multitude of communication technologies for constrained IoT devices. Our

research aims to answer the following questions:

1. How can a multi-modal constrained IoT device connect to the best

available network for a variety of use cases and still offer enough

flexibility?

2. How can low-resource IoT devices use a single stack across a multitude

of communication technologies, unaware of the current technology?

3. What is the impact of the presented approach on the energy budget of

the device?

4.4 Related Work

Not much research has been conducted around the topic of low power wide

area network detection and switching. Though in [10], the authors propose a

very high level system architecture of a heterogeneous network consisting of

SCHC enabled Narrowband IoT (NB-IoT)/LoRaWAN devices. A machine

learning algorithm is proposed at the back-end, which will determine the best

communication technology for downlink traffic after sending simultaneously

over both networks, resulting in a lot of energy overhead. The architecture

however is restricted to LoRaWAN/NB-IoT and neither did the authors

perform any form of evaluation.

In [11], the authors propose a central management system for heteroge-

neous LPWA Networks, where different communication technologies can be

Efficient Vertical Handover in Heterogeneous Low Power Wide Area

Networks 91

incorporated in a single back-end application. However, heterogeneous de-

vices are not being taken into account, hence no vertical handover algorithm

is present. Lastly, the authors in [12] propose a mathematical model for

location-based network discovery. The proposed method requires the device

to know the location of base stations and an accurate estimate of its own

location, which is not always feasible.

4.5 Low Power WAN Discovery

This section will leverage on previous work [7] to enable seamless handovers

in LPWANs. After the network architecture is presented, the algorithm is

explained, both on back-end side and constrained node side.

4.5.1 Overall System Architecture

In order to take away the complexity of a heterogeneous network, a novel

system architecture is required. As proposed in [7] a modular Virtual Network

Operator (VNO) is used, where any type of network can be plugged in by

using adapters. In Figure 4.2, a high-level overview of the adapter-based

architecture is shown.

Once a new network is deployed or being used, a suitable adapter will be

installed by the VNO in order to interface with the network infrastructure,

e.g. the SigFox cloud, a LoRaWAN Network Server, etc. Towards the right,

all adapters have a unified data format, removing the complexity of the

underlying network architecture.

The low resource multi-modal IoT devices, shown on the left, use a

uniform CoAP/IPv6/SCHC stack across multiple technologies. For each

of these devices, the VNO employs an entry in the dictionary where its

SCHC rules are exposed. In uplink, end-devices will send compressed SCHC

packets, which eventually end up at the LPWAN operator component that

will perform decompression. A localization engine is informed about incoming

data in order to perform low power localization, based on the received wireless

signal. In downlink, clients can generate CoAP/IPv6 packets, which will

end up at the VNO that will compress the CoAP/IPv6 packets and forward

them to the correct physical device. The compressed packet is forwarded to

the corresponding adapter and sent over the active technology.

To realize a working network selection algorithm, able to adapt to the

current technology and conditions of the network (e.g. dense networks where

the back-end can provide information about less occupied channels) and

providing enough flexibility, both the end-devices and VNO are extended

with extra intelligence. These extensions and the design vertical handover

92 Chapter 4

–

L
P

W
A

N

O
P

E
R

A
T

O
R

D
ev

ic
e

d
ic

ti
o
n

a
ry

S
ig

fo
x

cl
o
u

d

C
o

n
st

ra
in

ed
 d

ev
ic

es
L

P
W

A
N

 i
n

fr
a

st
ru

ct
u

re

MQTT BROKER

V
ir

tu
a

l
N

et
w

o
rk

 O
p

er
a

to
r

S
IG

F
O

X
 a

d
ap

te
r

D
A

S
H

-7
 a

d
ap

te
r

L
O

R
A

 a
d
ap

te
r

…
S

C
H

C

C
o

A
P

C
o

A
P

U
D

P

IP
v
6

S
C

H
C

C
o

A
P

/I
P

v
6

S
C

H
C

/M
Q

T
T

S
C

H
C

D
ev

ic
e

m
ap

p
in

g
 a

n
d

 r
u

le
 c

o
n

su
lt

at
io

n

C
o

A
P

/I
P

v
6

In
st

al
le

d
 r

u
le

s

S
C

H
C

/U
D

P

S
h

a
re

d
 c

o
n

te
xt

U
D

P

IP
v
6

W
ir

ed
 l

in
k

W
ir

el
es

s
li

n
k

O
th

er

L
o
ca

li
za

ti
o
n

en
g

in
e

S
C

H
C

/M
Q

T
T

S
C

H
C

/

M
Q

T
T

S
C

H
C

/U
D

P

Figure 4.2: The modular architecture of the Virtual Network Operator (VNO)
allows easy addition of technologies

Efficient Vertical Handover in Heterogeneous Low Power Wide Area

Networks 93

algorithm are presented in the following two subsections.

4.5.2 Network Discovery Method

The easiest method for a wireless device to discover reachable wireless

networks is by keeping all interfaces on all the time. Another way of

discovering a wireless network might happen by actively scanning a channel

by sending Probe Requests and waiting for responses, such as used in the

IEEE 802.11 scanning phase [13]. Also, as proposed in [6] the position

information of the device and a Location-Service Server can assist the device

to efficiently discover and connect to the best available network.

These methods, however, are very energy consuming and are impractical

for some LPWAN technologies as they also have to take duty cycle restrictions

into account. Therefore, an LPWAN tailored algorithm is required which

makes a trade-off between power efficiency and network discovery time. Since

some use cases require more or less power efficiency and/or network discovery

time than others, these requirements should be adjustable by taste. The

core of the algorithm is therefore built up around 4 configurable parameters

per technology which directly affect these requirements:

• polling threshold: this threshold is used to check if a better network

is available

• downlink threshold: this threshold is used to check if the current

network is still available

• max downlink retries: this parameter is used to indicate the number

of retries once a downlink is requested

• priority: this parameter is used to indicate which technology gets

priority when 2 or more technologies overlap in time

The unit of the first two thresholds can be either a time period or number

of messages transmitted by the end device (e.g. for end-devices with periodic

uplink transmissions). The latter unit will be used in the remainder of the

paper. An example configuration is given in Table 4.1.

This configuration means that when the constrained node is not connected

to LoRaWAN it will check every 10 messages if such a network is available.

If the device is currently connected to a LoRaWAN network, it will expect

an acknowledgment every 4 messages. This logic is realized by means of a

state machine, as is explained in the following subsection.

94 Chapter 4

Table 4.1: Network driver thresholds. polling and downlink can either be a time
period or a number of transmitted messages. retries is a regular counter.

priority indicates the technology capacity. A higher number means a higher
throughput.

Technology polling downlink retries priority

Sigfox - 35 0 0

LoRaWAN 10 4 1 1

DASH7 6 2 2 2

4.5.2.1 End-device state machine

Figure 4.3 depicts how the logic for the constrained device is separated in 2

layers: the application layer and the communication layer.

The application layer takes care of CoAP requests and responses and

processes input data from the sensors, while the communication layer keeps

track of the current network interface and implements the logic to switch

between the different interfaces. Once a CoAP request is pending at the

application layer, it will pass the message to the communication layer. From

there the following flow applies:

1. if Quality of Service (QoS) is required by the application, a different

approach may be requested, otherwise, every message passed to the

communication layer will increment a counter, which is used to check

if it matches with one of the 2 parameter thresholds of a technology.

2. the message counter is checked against all network interfaces’ polling -

threshold parameter. Once counter mod polling threshold is 0, the

network interface is added to the list to poll for, otherwise

3. the counter is matched against the current network driver its

downlink threshold parameter. If the mod operation returns 1, a

regular uplink will be sent over the current technology. Otherwise the

list of network drivers to poll for

4. is run over for max downlink tries times, while requesting an ac-

knowledgment from the back-end. If no response is received, the device

will return to the technology previously connected to.

5. in order to meet the regulatory limitations of duty cycle limited tech-

nologies, the message will first pass the duty cycle check component,

which keeps track of the time on air of every duty cycle limited trans-

mission. If the current technology is bound to a duty cycle, then the

Efficient Vertical Handover in Heterogeneous Low Power Wide Area

Networks 95

Figure 4.3: The state machine for Low Power WAN detection of the constrained
device.

0 1 6

ACK?

DASH-7Sigfox

ACK? ACK?

LoRa

ACK

Sigfox

0

ACK

2 3 4 5 6 6 6 7 8 9 A 1 2 3 4

0 1

SigfoxDASH-7

2 0 1 2

ACK ACK

received signaling

0 1 2 3 4 5 6 7 8 9 A B C

DASH-7

ACK

Figure 4.4: Switching example and signaling from the back-end to the device

96 Chapter 4

next transmission will be scheduled following Equation 4.1

twait = (100−DC) · ToAprev (4.1)

with DC, the duty cycle in percent and ToA the previous (cumulated)

time on air. When requesting downlink information, the duty cycle

is not taken into account to ensure fast handovers, but cumulated for

the next uplink-only transmission. This is in line with the ERC/REC

70-03 regulations, as long as the total time on air is calculated based

on a one hour period. [14]

6. Finally, if an acknowledgment is received, 2 things are indicated:

(a) the current technology is available

(b) the contents of the acknowledgment may be used to update the

parameters of the threshold

4.5.2.2 Network Drivers

Information for each physical interface is kept in a network_driver instance

(Listing 4.1) as part of a linked list, derived from the Light Weight IP (lwIP)

implementation [15].

A network driver will forward data to the correct network interface

through the send pointer and can be initialized and stopped using the

appropriate function pointers. Each network driver also implements the

parameters required by the algorithm as discussed in the previous section.

All interfaces are kept in a linked list, which makes it easy to loop over and

add or remove any.

Listing 4.1: network_driver structure

struct network_driver {

struct network_driver* next;

char name [4];

uint16_t mtu;

uint8_t polling_threshold;

uint8_t downlink_threshold;

uint8_t max_downlink_retries;

uint8_t priority;

void (*init)(void);

void (*stop)(void);

uint8_t (*send)(uint8_t* buf , uint16_t len);

}

Efficient Vertical Handover in Heterogeneous Low Power Wide Area

Networks 97

4.5.2.3 Example

As table 4.1 indicates, the algorithm will check every six unacknowledged

messages if any DASH7 network is available. The upper part of Figure

4.4 demonstrates the initial configuration, where the device is connected

to the Sigfox network and fails to discover a DASH7 network after its

polling_threshold (6) and its number of downlink_retries (2). Sigfox

is used as a fall back, as we assume this is always available. Four messages

later, the device reaches the polling_threshold for LoRaWAN and receives

an acknowledgment over this technology. Once a new network is discovered,

the message counter is reset and the device will start to communicate

over this network. Once the message counter reaches the technology’s

downlink_threshold, the device will ask for a signaling message from the

back-end to check if the network is still available.

The second example shows a device connected to a DASH7 network

with the downlink_threshold parameter set to 2. This means the DASH7

device will ask for a downlink every 2 uplink messages in order to test the

network availability. As the back-end has information about the future

network availability it signals the device to use Sigfox for the coming hours.

By adjusting the thresholds of the other technologies, the device won’t poll

for the availability of other technologies, preserving energy and flexibility.

4.5.3 Virtual Network Operator

The back-end implements a routing table, keeping track of the IPv6 ad-

dress(es) of a single device with multiple Extended Unique Identifiers (EUI)

as well as the active technology. An outgoing IPv6 packet, i.e. an IPv6

packet going to the LPWA network, is matched against a device and for-

warded to the device over the last active technology. However, the low power

nature, i.e. the ability to receive data after an uplink packet, of the network

requires the back-end to keep track of outgoing packets as shown in Figure

4.5.

Upon a new request from the IPv6 network, the IPv6/UDP/CoAP head-

ers are compressed using the SCHC adaptation layer. Next, the active

technology is checked. Some configurations, e.g. LoRaWAN Class C, allow

instantaneous downlink communication, for others the packets are sequen-

tially added to the queue. Each request coming from the LPWA network will

trigger the VNO to match the EUI of a particular technology to a device,

update the active technology, check if there are any packets present for that

device in the queue and forward the first added packet (FIFO).

Once a constrained device sends a request to the back-end system, asking

for confirmation about the availability of the network, updated parameters

98 Chapter 4

Listen for IPv6 packets
Match IPv6 address with

LPWAN device

Compress packet

Add packet to downlink queue

Listen for LPWAN packets Downlink opportunity

Queue empty?

Send over current technology

Get last packet from queue

CoAP/IPv6

SCHC/MQTT

Figure 4.5: The main loop in the back-end. Incoming SCHC packets trigger
transmission of queued compressed IPv6 packets.

of the polling_threshold and downlink_threshold can be piggybacked

on the network status acknowledgment.

4.6 Performance Evaluation

4.6.1 Energy Overhead

As LPWAN devices are required to operate on a single battery charge for

multiple years, energy consumption is one of the prime criteria in evaluating

the feasibility of new concepts and implementations. While the presented

handover schema may have many benefits (the most important one being

the higher available bandwidth and bit rate), it may also introduce some

Efficient Vertical Handover in Heterogeneous Low Power Wide Area

Networks 99

undesirable downsides, such as extra energy consumption. Therefore, a

simulation was performed in Matlab in order to evaluate the feasibility of

the proposed algorithm.

4.6.1.1 Energy Model

In order to evaluate the proposed algorithm based on energy consumption,

header overhead, MTU, current per transmission and receive power and data

rate were gathered from datasheets and are summarized in table 4.2.

As the energy consumption is mainly determined by the time on air of a

device, and the time on air is depending on the bit rate and the physical

layer packet size, the following equation can be used:

Jtx =
(PL+H) · 8

Rtech

· Itech · V (4.2)

Where PL and H are respectively the payload length and header length

in bytes, divided by the data rate in bps. H incorporates the complete

physical (including ramp-up, preamble and ramp-down) and Medium Access

Control (MAC) layer headers. the uplink frame This equation does not

apply to LoRa as the proprietary Chirp Spread Spectrum (CSS) modulation

is used there. Nevertheless, Semtech does provide ways to calculate the data

rate and time on air for LoRa enabled devices [16].

First of all, in order to know the time on air, the total number of payload

symbols must be calculated using the following formula:

n = 8 +

⌈

8PL− 4SF + 16CRC − 20EH

4(SF − 2DE)

⌉

· (CR+ 4) (4.3)

With EH and CRC being the presence of an explicit header or cyclic

redundancy check respectively (1 or 0) and DE low data rate optimization.

Once the total amount of symbols are calculated, also the time (in ms)

required to transmit one symbol (equation 4.4) must be known.

tsym =
2SF

BW
(4.4)

Furthermore, as every frame starts with a preamble with a configurable

length (l), this must be calculated too (equation 4.5).

tpr = (l + 4.25) · tsym (4.5)

Finally, the previous equations can be combined when calculating the

energy for a LoRa enabled device (equation 4.6), divided by 1000 to convert

from ms to s.

Jtx =
Itx(n · tsym + tpr) + 2Irx · tpr

1000
· V (4.6)

100 Chapter 4

Table 4.2: LPWAN overview of data-rate, average transmit and receive power
requirements, Physical layer header size, MAC layer header size and MTU

T
ec
h
n
ol
og
y

C
on

fi
gu

ra
ti
on

R
(k
b
it
/
s)

I r
x
(A

)
I t
x
(A

)
P
H
Y

(B
)

M
A
C

(B
)

M
T
U

(B
)

S
ig
fo
x

U
p
li
n
k

0.
1

-
0.
03
0

6
8

1
2

D
ow

n
li
n
k

0
.6

0.
01

-
18

2
8

L
oR

a

S
F
7
C
R

4
/
5

B
W

12
5
k
H
z

5.
46
88

0.
01
08

0.
02
9

-
1
3
-
2
8

2
2
2
-
2
0
7

S
F
8
C
R

4
/
5

B
W

12
5
k
H
z

3.
12
5

0
.0
10
8

0
.0
29

-
1
3
-
2
8

2
2
2
-
2
0
7

S
F
9
C
R

4
/
5

B
W

12
5
k
H
z

1.
75
78

0.
01
08

0.
02
9

-
1
3
-
2
8

1
1
5
-
1
0
0

S
F
10

C
R

4/
5

B
W

12
5
k
H
z

0.
97
66

0.
01
08

0.
02
9

-
1
3
-
2
8

5
1
-
3
1

S
F
11

C
R

4/
5

B
W

12
5
k
H
z

0.
53
71

0.
01
08

0.
02
9

-
1
3
-
2
8

5
1
-
3
1

S
F
12

C
R

4/
5

B
W

12
5
k
H
z

0.
29
3

0
.0
10
8

0
.0
29

-
1
3
-
2
8

5
1
-
3
1

D
A
S
H
7

L
o-
R
at
e
P
N
9

w
/
F
E
C

4.
8

0.
01
08

0.
02
9

8
5
-
1
3

2
5
1

N
o
rm

a
l
P
N
9

w
/
F
E
C

27
.7
7
75

0
.0
10
8

0
.0
29

8
5
-
1
3

2
5
1

H
i-
R
at
e
P
N
9

w
/
F
E
C

83
.3
3
35

0
.0
10
8

0
.0
29

10
5
-
1
3

2
5
1

Efficient Vertical Handover in Heterogeneous Low Power Wide Area

Networks 101

Since a LoRaWAN class A device will open 1 or 2 receive windows for possible

downlink communication, which is at least equal to the time required to

detect a preamble (tpr), this is included in the model.

In order to show the energy efficiency for each technology, the energy

overhead per 12 bytes uplink and 8 bytes downlink is shown in Figure 4.6.

Sigfox tends to have the largest energy consumption, since 12 bytes in uplink

require 2.08 seconds of airtime. Due to a data rate twice as low for downlink

communication, LoRa with SF12 will consume almost twice the energy of

an 8 byte Sigfox packet. 1 receive window for LoRa is assumed for downlink

communication. The graph clearly shows the low energy overhead of DASH7.

Based on this, it can be concluded that it would be interesting to benefit

from the lower energy consumption and higher data rate offered by DASH7

while still obtaining the range Sigfox has to offer.

DASH7 LoRa SF12 SigFox
0

0.05

0.1

0.15

0.2

0.25

E
n

er
g

y
 c

o
n

su
m

p
ti

o
n

 [
J]

Tx

Rx

Figure 4.6: The energy overhead for each technology for 12 bytes in uplink and 8
bytes in downlink conform the presented models

In the next section, the benefit and overhead of the proposed handover

algorithm is evaluated using a simulation in Matlab.

4.6.1.2 Simulation

In this section, the algorithm will be evaluated theoretically to determine

the energy consumption overhead. The energy overhead calculations of

102 Chapter 4

Table 4.3: Network availability probability (p)

Technology Worst Case Bad Case Medium Case Best Case

Sigfox 1 1 1 1

LoRaWAN 0 0.25 0.5 1

DASH7 0 0.25 0.5 0.75

Table 4.4: Median energy consumption (in Joule) for a heterogeneous device for
different cases over a 24 hour time span with N being the total consecutive

messages over the same technology before disconnection.

N Worst Case Bad Case Medium Case Best Case

2 32.16 24.89 20.68 16.41

5 32.16 20.94 15.18 10.75

10 32.16 17.17 11.41 7.51

a heterogeneous LoRaWAN - DASH7 - Sigfox device based on Table 4.2

combined with the network driver principle of Section 4.5.2.2 are implemented

in Matlab. The simulation also implements the state machine of Section

4.5.2 and calculates, based on the network availability, the energy overhead

of every transmitted message and possible downlink traffic.

As the availability of the networks cannot be modeled based on an exact

model, a probabilistic model is maintained, based on a standard normal

probability distribution object (p). In our model, 4 cases are put forward:

Worst Case, where the algorithm is running, but no other networks are

available. Bad Case, Medium Case and Best Case with increasing network

availability of the other networks. These values are shown in table 4.3.

However, once a device is connected to a network, the probability of

sending over that same network increases as the device is still in the presence

of the network. Therefore, the variable N is defined, expressing the amount

of consecutive messages over the same technology before disconnection.

Every simulation, the corresponding probabilities are applied when the

device attempts to send a message. As an example, a device with an uplink

transmission frequency of 10 minutes over a 24 hour timespan simulation

was run. The values in Table 4.4 indicate how a higher N and p result in

a lower energy consumption. Only for a Worst Case scenario, the energy

budget of the device is not influenced by N , as the only available network is

Sigfox.

Efficient Vertical Handover in Heterogeneous Low Power Wide Area

Networks 103

Worst Case Bad Case Medium Case Best Case
0

5

10

15

20

25

30

35
E

n
er

g
y

 c
o

n
su

m
p

ti
o

n
 [

J]

Sigfox

LoRa SF12

DASH7

N = 2

N = 5

N = 10

Figure 4.7: Heterogeneous devices using the vertical handover algorithm vs
homogeneous devices. Both sending 12 bytes every 10 minutes over a timespan of
24 hours. N represents the total consecutive messages over the same technology

before disconnection.

In order to evaluate the energy overhead of the handover algorithm, a

comparison is made between single technology devices and a multimodal

device. The single technology devices (Sigfox, LoRaWAN SF12 and DASH7)

transmit an uplink packet every 10 minutes and receive downlink commu-

nication based on the values of Table 4.1 (i.e. Sigfox 35, LoRaWAN 10,

DASH7 6). The heterogeneous devices wield the same uplink and downlink

frequency as indicated in Table 4.1. In Figure 4.7, the energy consumption

of the single technology devices over a 24 hour timespan is indicated by

the horizontal lines. The heterogeneous devices, on the other hand, have

been modeled for the 12 different cases from table 4.4 and are illustrated

with bars for every N .

It is clear from the Figure that in a Worst Case scenario, the heteroge-

neous device, configured using the parameters from Table 4.1, only consumes

8% more energy than a single technology Sigfox device. However, once the

probability of connecting to a better network increases, the multi-modal

device quickly outperforms the homogeneous device. For a Bad Case, where

the heterogeneous device has only 25% chance of connecting to a LoRaWAN

or DASH7 network, with probability N = 10, it will already perform similarly

104 Chapter 4

to single technology LoRaWAN (SF12) devices.

Once the device is in the proximity of a DASH7 network, a higher data

rate is available, hence a shorter time on air. As a result, OTA updates

and data offloading can be conducted over this medium range technology.

However, once the device starts moving away from the network, which has a

range from 1 to 5 km, it may benefit from a lower data rate, longer range

technology such as Sigfox or LoRa.

Now that it has been shown that deploying a multi-modal network is

beneficial for LPWAN devices in terms of energy consumption and available

bandwidth, the next section will study the effect of different parameter

configurations in order to find an optimal point of operation.

4.6.2 Network Discovery Time and Reliability

Due to the battery powered nature of the targeted LPWAN devices, an

optimal point should be chosen where the device consumes the least possible

energy, nevertheless an acceptable latency is maintained. In this sense,

two types of latency can be distinguished: (1) the network discovery time,

which is the maximum time before a better network is detected and (2)

the reliability latency, which is the time before the device will notice a

disconnection from the current network. While the polling threshold will

directly impact the network discovery time, both the polling and downlink

thresholds may affect the reliability latency.

4.6.2.1 Network Discovery Time

Figure 4.8 indicates how a lower polling threshold, i.e. the inter-technology

handover check, does not necessarily mean that more energy will be consumed.

For the worst case scenario, the heterogeneous device is never able to connect

to a lower energy, higher bandwidth network, which will result in a higher

energy consumption. However, the higher the probability that the device

succeeds in connecting to such networks, the advantage of these low energy

networks comes through.

Therefore, once a device enters an area where a higher bandwidth network

is available, it should connect to it as fast as possible to make use of the

improved characteristics of the network. The maximum latency (in seconds)

with which it may discover a higher bandwidth network is the maximum

network discovery latency (Smax). The network discovery latency depends on

the polling threshold (pt) of that technology, as this determines after how

many consecutive messages a network can be discovered, and the transmission

frequency (f) in Hz and can be modeled as:

Efficient Vertical Handover in Heterogeneous Low Power Wide Area

Networks 105

5
1
0

1
5

2
0

2
5

P
o
ll

in
g
 T

h
re

sh
o
ld

0

5
0
0
0

1
0
0
0
0

1
5
0
0
0

Maximum latency [s]

01
0

2
0

3
0

4
0

5
0

6
0

Energy consumption [J]

S
y
st

em
 d

is
co

v
er

y
 l

at
en

cy

R
el

ia
b
il

it
y
 l

at
en

cy

N
 =

 5
,
W

o
C

N
 =

 5
,
B

aC

N
 =

 5
,
M

eC

N
 =

 5
,
B

eC

(a
)
D
o
w
n
li
n
k
th

re
sh

o
ld

=
1

5
1
0

1
5

2
0

2
5

P
o
ll

in
g
 T

h
re

sh
o
ld

0

5
0
0
0

1
0
0
0
0

1
5
0
0
0

Maximum latency [s]

01
0

2
0

3
0

4
0

5
0

6
0

Energy consumption [J]

S
y
st

em
 d

is
co

v
er

y
 l

at
en

cy

R
el

ia
b
il

it
y
 l

at
en

cy

N
 =

 5
,
W

o
C

N
 =

 5
,
B

aC

N
 =

 5
,
M

eC

N
 =

 5
,
B

eC

(b
)
D
o
w
n
li
n
k
th

re
sh

o
ld

=
5

5
1
0

1
5

2
0

2
5

P
o
ll

in
g
 T

h
re

sh
o
ld

0

5
0
0
0

1
0
0
0
0

1
5
0
0
0

Maximum latency [s]

01
0

2
0

3
0

4
0

5
0

6
0

Energy consumption [J]

S
y
st

em
 d

is
co

v
er

y
 l

at
en

cy

R
el

ia
b
il

it
y
 l

at
en

cy

N
 =

 5
,
W

o
C

N
 =

 5
,
B

aC

N
 =

 5
,
M

eC

N
 =

 5
,
B

eC

(c
)
D
o
w
n
li
n
k
th

re
sh

o
ld

=
1
0

F
ig
u
re

4
.8
:
T
h
e
en

er
gy

co
n
su
m
p
ti
o
n
,
n
et
w
o
rk

d
is
co
ve
ry

ti
m
e
a
n
d
re
li
a
bi
li
ty

la
te
n
cy

a
re

a
ff
ec
te
d
by

va
ry
in
g
th
e
th
re
sh
o
ld

pa
ra
m
et
er
s.

R
eq
u
es
ti
n
g
a
d
o
w
n
li
n
k
a
ft
er

ev
er
y
u
p
li
n
k
w
il
l
d
ec
re
a
se

th
e
n
et
w
o
rk

d
is
co
ve
ry

ti
m
e,

h
o
w
ev
er
,
w
it
h
a
d
ra
st
ic

in
cr
ea
se

in
en

er
gy

co
n
su
m
p
ti
o
n
.

106 Chapter 4

Smax =
1

f
· pt (4.7)

4.6.2.2 Reliability Latency

As a downlink from a discovered network also improves reliability (i.e.

piggybacked information about previous transmissions), both thresholds (pt

and downlink threshold (dt)) should be taken into account while modeling

the minimum reliability latency (Lmin).

Lmin =
pt+ dt− |pt− dt|

2f
(4.8)

However, if the device is not able to discover another network, the

maximum reliability latency (Lmax) is equal to equation 4.9.

Lmax =
1

f
· dt (4.9)

The maximum reliability latency and network discovery latency are

modeled in Figure 4.8 for various configurations of the threshold parameters.

It can be seen that the reliability latency is equal to the threshold with the

lowest value until the polling threshold exceeds the downlink threshold.

From then on the latency will be equal to Lmax. On the contrary, it is clear

how a higher downlink threshold will restrict the device in fast network

discovery, as pt does not have an impact on the maximum reliability latency.

The network discovery latency is affected directly by the polling -

threshold only, as for every configuration a constant sending frequency of

10 minutes has been used.

Furthermore, it can be seen that the energy consumption of a device in

all cases decreases when increasing the dt parameter. The constrained node

will fire more uplink transmissions without asking for downlink confirmation,

which will reduce the time on air, nevertheless with an increasing reliability

latency as a consequence.

Another observation made is that an increasing pt forces the device to

switch between their different network interfaces less frequently, however

increases the energy consumption. This can be explained that by increasing

the frequency with which the device switches between network interfaces,

the probability of finding a higher bandwidth network increases.

Lastly, a reverse curve can be noticed in the Worst Case scenario due

to the fact that the device will try to detect other networks less frequently.

In contrast to the previous observation, no probability influences the under-

lying network technology, which directly impacts the energy consumption.

Efficient Vertical Handover in Heterogeneous Low Power Wide Area

Networks 107

Wo Ba Me Be

5

10

15

20

25

30

35

40

45

50

E
n

er
g

y
 c

o
n

su
m

p
ti

o
n

 [
J]

pt: 1, dt: 1

Wo Ba Me Be

0

5

10

15

20

25

30

35

40

45

50

E
n

er
g

y
 c

o
n

su
m

p
ti

o
n

 [
J]

pt: 1, dt: 12

Wo Ba Me Be

16

18

20

22

24

26

28

30

32

E
n

er
g

y
 c

o
n

su
m

p
ti

o
n

 [
J]

pt: 25, dt: 1

Wo Ba Me Be

5

10

15

20

25

30

E
n

er
g

y
 c

o
n

su
m

p
ti

o
n

 [
J]

pt: 25, dt: 12

Figure 4.9: Comparison between different configurations for the vertical handover
algorithm with N set to 5 for 24 hours

Furthermore, the curve does not change by increasing the dt parameter,

since the device will remain on the Sigfox network throughout the whole

simulation.

4.6.3 Configuration

From the previous section, it may be concluded that the different parameters

have a large impact on the latency and energy consumption. Therefore,

to have a better understanding when configuring the parameters of the

algorithm, 4 extreme configurations were simulated 100 times with their

distribution shown in Figure 4.9.

This can be broken down as follows:

• pt : 1, dt : 1, the most efficient configuration, i.e. the configuration with

the lowest reliability latency and the fastest network discovery time.

The device will poll for a better network and will ask confirmation

about the current network after every uplink transmission. This

however, is impractical in large networks due to the gateways’ duty

cycle restrictions.

108 Chapter 4

• pt : 1, dt : 12, the multi-modal device will only ask for acknowledgments

after 12 uplink transmissions, and may, in a worst case scenario, only

notice a disconnection from the network after 12 uplink transmissions.

However, the probability of connecting to a better network is high,

which increases the reliability latency.

• pt : 25, dt : 1, the device will notice immediate disconnection from the

network, however, once connected to the network with the highest

energy consumption and lowest data rate, it will only try to discover a

higher bandwidth network after 25 uplink transmissions, which affects

the distribution across the different cases significantly.

• pt : 25, dt : 12, the median energy consumption decreases, since fewer

downlink transmissions are requested, however, the distribution in-

creases due to the increased downlink threshold, which will result in

less stable network detection.

From this, it can be concluded that by using the most efficient (in terms of

latency) configuration (i.e. pt : 1, dt : 1), energy might be saved when there is

a high probability of connecting to a lower energy hungry network. However,

due to duty cycle regulations, it is not possible for gateways to respond to

each message of every device. Therefore, the threshold parameters should

be set as high as possible. Nevertheless, this decreases the reliability latency

and increases the network discovery time. Hence, certain device conditions

require different configurations, which might be solved by signaling updated

parameter thresholds to the device or update the threshold configuration

based on sensor information.

4.6.4 Reliability overhead

Some use cases require reliable communication and can not afford missing a

maximum of f · Lmax messages. In order to achieve reliable communication,

worst case, the total number of unacknowledged messages that have the

possibility to be lost, must be retransmitted using Sigfox. Therefore, as

depicted in Figure 4.10, the maximum overhead when adding reliability

is the total number of unacknowledged messages multiplied by the energy

required for an uplink using Sigfox. When compared to Figure 4.9 it is clear

that when reliability is required, a higher dt has a higher probability in

consuming less energy.

4.6.5 Implementation Overhead

As constrained devices have only a limited amount of memory (< 50kB Ran-

dom Access Memory (RAM) and < 256kB of Read Only Memory (ROM)),

Efficient Vertical Handover in Heterogeneous Low Power Wide Area

Networks 109

WoC BaC MeC BeC

0

5

10

15

20

25

30

35

40

45

50

E
n

er
g

y
 c

o
n

su
m

p
ti

o
n

 [
J]

N = 5

Figure 4.10: The maximum energy overhead while safeguarding reliability

it is important to keep memory consumption to a minimum. Therefore the

different components of the proposed system are presented in Table 4.5 with

their corresponding overhead. The values were listed and processed using

the ARM readelf tool, which performs a similar function to objdump.

It can be seen from the table that the Low Power Handover (LPH)

algorithm requires 538 bytes of RAM, mainly required for message buffers

and to keep track of the different network drivers, as explained in Section

4.5.2.2. The state machine itself requires almost 2 kB. In order to have

a fully working protocol stack, an adapted version of Adam Dunkels’ µIP

library is used, where TCP support can be disabled. This adds 1622 bytes

of ROM and 409 bytes of RAM. Furthermore, the pCoAP library has been

integrated to achieve minimal CoAP support and to (de)compress SCHC

CoAP packets, resulting in 1858 kB of ROM. Only a limited amount of

memory is required for the CoAP stack, since this implementation does not

contain more complex CoAP mechanisms.

It can be seen that the implementation overhead of the different compo-

nents is kept to a minimum in order to target constrained devices.

110 Chapter 4

Table 4.5: Code space required for the different components

LPH pCoAP µIP SCHC Total

RAM 538 B 300 B 409 B 1589 B 2836 B

ROM 1968 B 1858 B 1622 B 16030 B 21478 B

4.7 Conclusion

In this article, a novel network detection algorithm for selecting the best

available LPWA technology in a heterogeneous network was presented. To

the best of our knowledge, no algorithms are currently available for LPWAN

network detection and a novel algorithm and architecture was therefore

presented.

In order to have a single stack over multiple technologies, SCHC was

presented and used as an adaptation layer below a CoAP/UDP/IPv6 stack

in order to enable a standard based, internet compliant Internet of Things.

We showed that some technologies, however provide a full vertical stack,

resulting in a lot of overhead.

Next, in our evaluation it comes forward that a multi-modal device and

the presented algorithm will help to save energy using a correct configuration

compared to a homogeneous Sigfox device and some LoRaWAN configura-

tions. Apart from these energy savings, we enable OTA updates for a Sigfox

device, which by itself is only capable of receiving 32 bytes every day.

Lastly, it is shown that the total implementation overhead is kept to a

minimum in order to cope with constrained IoT device requirements.

Efficient Vertical Handover in Heterogeneous Low Power Wide Area

Networks 111

References

[1] K. Mekki, E. Bajic, F. Chaxel, and F. Meyer. A comparative study of

LPWAN technologies for large-scale IoT deployment. ICT Express, 5(1):1

– 7, 2019. Available from: http://www.sciencedirect.com/science/article/

pii/S2405959517302953, doi:https://doi.org/10.1016/j.icte.2017.12.005.

[2] M. Weyn, G. Ergeerts, R. Berkvens, B. Wojciechowski, and Y. Tabakov.

DASH7 alliance protocol 1.0: Low-power, mid-range sensor and ac-

tuator communication. In 2015 IEEE Conference on Standards for

Communications and Networking (CSCN), pages 54–59, October 2015.

doi:10.1109/CSCN.2015.7390420.

[3] R. Berkvens, B. Bellekens, and M. Weyn. Signal strength indoor localiza-

tion using a single DASH7 message. In 2017 International Conference on

Indoor Positioning and Indoor Navigation (IPIN), pages 1–7, Sapporo,

September 2017. IEEE. Available from: http://ieeexplore.ieee.org/

document/8115875/, doi:10.1109/IPIN.2017.8115875.

[4] Murata partners with STMicro to add SigFox connectivity to its Lo-

RaWAN module enabling “Best of Both Worlds” capability | Murata

Manufacturing Co., Ltd. Available from: https://www.murata.com/en-

global/products/info/connectivitymodule/lpwa/2017/0718.

[5] F. Bendaoud, M. Abdennebi, and F. Didi. Network Selection in Wire-

less Heterogeneous Networks: a Survey. Journal of Telecommuni-

cations and Information Technology, 4:64–74, January 2019. Avail-

able from: https://www.itl.waw.pl/czasopisma/JTIT/2018/4/64.pdf,

doi:10.26636/jtit.2018.126218.

[6] Wen-Tsuen Chen, Jen-Chu Liu, and Hsieh-Kuan Huang. An adap-

tive scheme for vertical handoff in wireless overlay networks. In

Proceedings. Tenth International Conference on Parallel and Dis-

tributed Systems, 2004. ICPADS 2004., pages 541–548, July 2004.

doi:10.1109/ICPADS.2004.1316136.

[7] J. Hoebeke, J. Haxhibeqiri, B. Moons, M. V. Eeghem, J. Rossey,

A. Karagaac, and J. Famaey. A Cloud-based Virtual Network Op-

erator for Managing Multimodal LPWA Networks and Devices. In 2018

3rd Cloudification of the Internet of Things (CIoT), pages 1–8, July

2018. doi:10.1109/CIOT.2018.8627134.

[8] J. Famaey, R. Berkvens, G. Ergeerts, E. D. Poorter, F. V. d. Abeele,

T. Bolckmans, J. Hoebeke, and M. Weyn. Flexible Multimodal Sub-

http://www.sciencedirect.com/science/article/pii/S2405959517302953
http://www.sciencedirect.com/science/article/pii/S2405959517302953
http://ieeexplore.ieee.org/document/8115875/
http://ieeexplore.ieee.org/document/8115875/
https://www.murata.com/en-global/products/info/connectivitymodule/lpwa/2017/0718
https://www.murata.com/en-global/products/info/connectivitymodule/lpwa/2017/0718
https://www.itl.waw.pl/czasopisma/JTIT/2018/4/64.pdf

112 Chapter 4

Gigahertz Communication for Heterogeneous Internet of Things Ap-

plications. IEEE Communications Magazine, 56(7):146–153, July

2018. Available from: https://ieeexplore.ieee.org/document/8419195/,

doi:10.1109/MCOM.2018.1700655.

[9] D. Castells-Rufas, A. Galin-Pons, and J. Carrabina. The Regula-

tion of Unlicensed Sub-GHz bands: Are Stronger Restrictions Re-

quired for LPWAN-based IoT Success? page 17, November 2018.

doi:arXiv:1812.00031.

[10] P. Wetterwalk, P. Thubert, and E. Levy-Abegnoli. HETEROGENEOUS

WIRELESS: DUAL LORA-NB-IOT REDUNDANT CONNECTIVITY.

page 6, 2018.

[11] M. Chen, Y. Miao, X. Jian, X. Wang, and I. Humar. Cognitive-

LPWAN: Towards Intelligent Wireless Services in Hybrid Low Power

Wide Area Networks. IEEE Transactions on Green Communications

and Networking, pages 1–1, 2018. arXiv: 1810.00300. Available from:

http://arxiv.org/abs/1810.00300, doi:10.1109/TGCN.2018.2873783.

[12] F. Lemic, A. Behboodi, J. Famaey, and R. Mathar. Location-

based Discovery and Vertical Handover in Heterogeneous Low-Power

Wide-Area Networks. IEEE Internet of Things Journal, pages 1–1,

2019. Available from: https://ieeexplore.ieee.org/document/8804217/,

doi:10.1109/JIOT.2019.2935804.

[13] G. Castignani, A. E. Arcia Moret, and N. Montavont. A study of

the discovery process in 802.11 networks. ACM SIGMOBILE Mo-

bile Computing and Communications Review, 15(1):25–36, January

2011. Available from: https://hal.archives-ouvertes.fr/hal-00609309,

doi:10.1145/1978622.1978626.

[14] M. Loy and R. Karingattil. ISM-Band and Short Range Device Regula-

tory Compliance Overview, 2005.

[15] A. Dunkels. Design and Implementation of the lwIP TCP/IP Stack,

February 2001. Available from: https://www.artila.com/download/

RIO/RIO-2010PG/lwip.pdf.

[16] Semtech. sx1276-1278113.pdf, 137. Available from: https://www.

mouser.com/ds/2/761/sx1276-1278113.pdf.

https://ieeexplore.ieee.org/document/8419195/
http://arxiv.org/abs/1810.00300
https://ieeexplore.ieee.org/document/8804217/
https://hal.archives-ouvertes.fr/hal-00609309
https://www.artila.com/download/RIO/RIO-2010PG/lwip.pdf
https://www.artila.com/download/RIO/RIO-2010PG/lwip.pdf
https://www.mouser.com/ds/2/761/sx1276-1278113.pdf
https://www.mouser.com/ds/2/761/sx1276-1278113.pdf

5
Linked Data in Constrained Wireless

Sensor Networks

In the previous chapters, a protocol stack was put forward in order to connect

very constrained devices to the Internet and the World Wide Web (WWW).

The technologies that were used make it possible to plug these devices into a

Web of Things. However, not only do these devices require interoperability

in order to access their resources, so does their data. As the future Web

will evolve to a Semantic Web, where data can be interpreted by machines

and humans, data coming from Low Power Wide Area Networks (LPWANs)

should be semantically enriched. Therefore, this Chapter studies how these

LPWANs can be connected using the technologies of the future Web.

⋆ ⋆ ⋆

Many applications and innovations arose from the fact that an excessive

amount of information is openly available thanks to the open vision Tim

Berners-Lee had about the WWW. With the rise of the Internet of Things

(IoT), even more information will be available. As governments, individuals

and companies are rolling out sensor networks to manage their daily tasks

more easily, even more data is added to the ever expanding datasphere that

is predicted to grow from 33 Zettabytes (ZB) in 2018 to 175 ZB by 2025 [1].

Since the real time collected data from the wide spectrum of physical sources

that defines the IoT might be compared using time series analysis algorithms

114 Chapter 5

to historically collected data, it will hold even more information in the near

future. However, different data sources should be easy to integrate in order

to unlock new scientific insights and to empower innovations. A fairly old

concept for doing so, which gained popularity in academia to ensure free

access to academic data, is the concept of Open Data. In order for this open

data to be easily accessible and readable by machines, Tim Berners-Lee

suggested the 5-star Linked Open Data concept in 2006, stating that open

data should be linked to other data in a Linked Data Platform (LDP) to

provide context [2]. Therefore, a set of operations are defined, which can be

used to provide an architecture to read and write Linked Data (LD) on the

web.

However, today two major problems exist. The first one being that data

can most often only be retrieved from proprietary Application Programming

Interfaces (APIs) and secondly, that these data are mainly stored by applica-

tion providers. This led to innovations in the field of data decentralization,

with Solid as the leader. Solid enables data reusability using open standards

and protocols, following the 5-star Linked Open Data concept [3]. Never-

theless, as Solid currently mainly focuses on social web applications, where

users can easily control where they store and who they share their personal

data with. A similar approach should be maintained for easy integration of

services and development of the Internet of Things data cloud. As the IoT

world is also evolving, several open standards and data models are available.

As these standards make it easier to integrate IoT devices with gateways or

back-end platforms, perform device management and exchange data, they

become increasingly adopted. However, as their design was driven by the

device and network constraints often encountered in IoT environments, they

do not incorporate linked open data features.

Therefore, as there is currently no straightforward solution present to

store Internet of Things data in an open, decentralized manner, this paper

analyses how data from constrained IoT networks can be incorporated in

the Linked Open Data cloud. By doing so, a global Web of Things can be

built in which any thing can be linked to any other thing. In order to do so,

data should be self-describing, which requires the use of semantics. However,

our evaluation shows that a naive implementation of these semantics using

Linked Open Data concepts will increase the energy consumption of the

sensor devices to a great extent, and thus requires a more suitable ontology

at the sensor side. Furthermore, we show that by choosing the right protocol

for such constrained networks, device management can be performed too,

while decreasing the battery drain. This, however, requires a mapping from

the wielded light-weight encoding schemes to any format supported by LDPs.

Linked Data in Constrained Wireless Sensor Networks 115

This chapter is based on the following publications:

• Bart Moons, Jeroen Hoebeke. Towards an Open Web of Things. Pub-

lished in the proceedings of the 2020 IEEE International Symposium

on Technology and Society (ISTAS), 12-15 November 2020. p. 176-179.

Online.

• Bart Moons, Flor Sanders, Thijs Paelman, Jeroen Hoebeke. Decentral-

ized linked open data in constrained wireless sensor networks Published

in the proceedings of the 7th International Conference on Internet of

Things: Systems, Management and Security (IOTSMS), 14 December

2020. Online.

5.1 Motivation

5.1.1 Open Standards

The main objective in developing IoT solutions and applications is to inte-

grate everyday objects into our virtual world in order to gain more insight

into our environment and manage our lives more efficiently. This integration,

however, still leaves much room for improvement. Users often need to set

parameters within the application, that must be reconfigured when the

person’s context changes [4]. In order for components (i.e. products and

services) to work together and act upon context changes (e.g. turning the

heating on when you start navigating home from work), interfaces that can

understand each other are required. Ideally, these interfaces are something

that we have collectively agreed upon in the ultimate goal of achieving a

common language for information sharing between services, better known as

open standards. The opposite of open standards are proprietary protocols

and can be defined as a way of retrieving information, specific to one or

more devices or services. Not only should the way to retrieve information

be standardized, in order for systems to be able to seamlessly work together,

data should be structured in order to be able to reuse data. If we want

an application to be able to turn on the heating, when you start driving

home, it should be able to interpret this data. The application should know

how far your work is from your home and in what units you measure this

distance. It should know what the temperature is in your house and in which

units your sensor delivers this data. In order to achieve such interoperability,

information models are required to represent a harmonised format that can

be used by both data consumers and data publishers.

116 Chapter 5

Multiple technologies exist to use information models and to structure

data. The following subsections briefly discusses three of them.

5.1.1.1 RDF

The Resource Description Framework (RDF) is a framework for expressing

information about resources and interchanging this information between

machines without loss of meaning. An RDF statement is made up of a subject,

predicate and object that can be used to represent the relationship between

the subject and the object [5]. Only a single label is supported between

subject and object, which can in some cases lead to complex statements. The

RDF has been standardized by the World Wide Web Consortium (W3C),

together with other semantic tools such as SPARQL Protocol and RDF

Query Language (SPARQL) and Web Ontology Language (OWL). The

standard defines a clear API, that all implementations must adhere to. In

RDF there is already a very large amount of data available to link towards,

such as DBpedia.

5.1.1.2 NGSI-LD

The Next Generation Service Interfaces-Linked Data (NGSI-LD) information

model has been standardized by European Telecommunications Standards

Institute (ETSI) following a request from the European Commission as part

of the “Rolling Plan for ICT Standardisation” [6]. This plan has the ultimate

goal of facilitating the open exchange of data between stakeholders of different

domains. The NGSI-LD format is derived from Property Graphs (PGs).

A PG is an attributed graph where the attributes of graph elements are

represented as key-value pairs. In attributed graphs, nodes and edges can

have an internal structure with the advantage of decreased storage size.

However, the major drawback of having an internal structure is the risk

of limiting expressiveness. For example, extending attributes with another

set of attributes becomes difficult and consequently limits scalability [7].

Another drawback of the NGSI-LD information model is its architecture;

a context broker is used to interconnect several components. This is less

scalable, compared to a client-server architecture, where every component

can evolve individually [8].

5.1.1.3 LPG

The Labeled Property Graph (LPG) is, just like RDF a graph data model

that is used to describe, store and explore graph data. However, in contrast

to the RDF model, nodes and edges in LPG can have an internal structure,

just like the NGSI-LD information model, leading to a more compact data

Linked Data in Constrained Wireless Sensor Networks 117

representation [5]. However, most property graph solutions do not have a

schema, resulting in use case specific mapping between solutions and also do

not have a standard query language and exchange format.

In search of an interoperable solution, we can conclude from the above

observations that the RDF is the most interoperable solution that fits

the scope of this dissertation. Moreover, as the following Sections will

demonstrate, current advancements in data decentralization are supported

by RDF.

5.1.2 Responsible use of Data

The Web has evolved into an information space where we incessantly share

data with each other. However, the information we share is largely controlled

by large entities. Past scandals have shown how these entities can use the

possession of our data to exercise economic and political control by sending

targeted advertisements or possibly manipulate data (Cambridge Analytica,

the Russian interference in the US presidential elections of 2016). Incidents

like these show that the unregulated cyberspace can be misused to influence

our society. In addition, the exponential growth of data during the last decade

has caused a greater applicability of Artificial Intelligence (AI). AI algorithms

are being used by scientists to make predictions and reconstructions, by

banks trying to determine who is eligible for a loan and who is not, or by

companies to screen applicants. AI systems can therefore contribute to

finding patterns and help in making decisions, but also in assisting human

biases. In short, responsible use of data is becoming more important every

day.

5.1.3 SOLID

This is something that recently has been acknowledged by the inventor

of the World Wide Web, Tim Berners-Lee, who took action by starting

the Solid project in order to redistribute data and return it to its rightful

owner [3]. Solid includes a series of standard formats for identity, comments

and discussions, among others, to structure social data. The project also

provides an ecosystem above which social applications can run to eliminate

proprietary APIs. This is done by storing the user’s data in a POD or

Personal Online Datastore (POD) store that can be self-hosted or hosted

by a POD provider. Users can distribute information among different pods;

personal information, contact information, financial information, data about

their health, etc. By distributing the information, benefits in terms of

privacy and security arise because the data is no longer stored by one entity.

Moreover, the use of a standard data format may stimulate innovation. For

118 Chapter 5

example, several initiatives already arose to use a single format for health

information in order to provide better scientific insight [9]. In addition,

people are generating valuable data when tracking all sorts of activities. If

ownership is handed to the user, software developers could offer them a

platform to combine data generated from fitness activities and their health

information. Furthermore, the use of a standard format would allow easier

analysis of this data by, for example, (sports) doctors to prevent overload

injuries. As a result, new applications are no longer limited by data that

is scattered and inaccessible across different, closed platforms; users just

have to agree to share them. In addition, the hardware and software market

remain separate, since specialization in the development of embedded devices

is not a requirement for software companies to access data and consequently

data from any sensor device would be integrable in any platform.

In order to achieve this vision, Solid relies on the foundations of the LDP

to make data self-descriptive and interpretable for machines. Semantically

linked data gives scientists, among others, access to a database that spans

multiple domains, which can significantly increase insight into major hu-

manitarian problems, such as Alzheimer’s and global warming. When the

Web started linking documents with hyperlinks, the foundations of a global

library had been laid. By connecting data using hyperlinks, the Linked Data

platform can build a global database available to anyone.

5.1.4 Towards an (Open) Web of Things

Today, data from IoT devices, such as Google’s Nest, are mainly stored

and exposed in the same way as with many web applications. Data are

collected by a central entity and proprietary APIs are (sporadically) offered

for data retrieval. As a result, companies that offer IoT systems have valuable

information about the living environment of users and will gain more insight

into their lives. This can give more power to companies that own the data

and consequently a greater imbalance can arise on the market. In order to

prevent both economic and social imbalances, it is important to redistribute

the data here as well.

In addition to consumers and businesses, governments will also obtain

more and more valuable information by measuring our living environment.

However, this data concerns information about public spaces, financed with

public money. The Linked Open Data (LOD) movement already suggested

in the past to make this data publicly available, assuming that this would

increase the transparency and trust in the government. With the advent of

the Internet of Things, this static open data might be supplemented with a

tremendous amount of real-time data.

Linked Data in Constrained Wireless Sensor Networks 119

5.1.4.1 Linked Open Data

Linked Open Data has many advocates and opponents. An argument against

LOD says that the large amount of publicly available information can actually

lead to less understanding and more confusion. People can also make wrong

assumptions, which would create less trust. It is therefore important to

provide good infrastructure where people have a user-friendly platform

which allows them to rely on collective intelligence. Another argument

counters that decisions taken collectively are out of hands of policymakers,

which consequently makes society less controllable. As open data will make

society more open and driven by movements, this requires smart, easy-

to-use infrastructure with feedback loops where the government can learn

from its citizens and vice versa. Active monitoring of these feedback loops

and conversations with people require an effort from local authorities, but

at the same time gives citizens the feeling they can actively contribute.

Counterparts also claim that the open data movement will further contribute

to the digital divide, leveraging on what H.G. Wells said in 1951 that

“statistical thinking one day will be as necessary for efficient citizenship as

the ability to read and write” [10].

5.1.4.2 Open Cities

Although the arguments for publishing Linked Open Data are often based on

a rather simplistic and idealized view and arguments against are based on the

belief that barriers are so high that the opposite effect can be achieved, there

is insufficient evidence to support a conclusive decision about the possible

impact of Linked Open Data and the transition of governments to an open

system. However, sensor data can play a major role in drawing conclusions

from the beliefs surrounding the open publication of data. This can be done

by employing the “comply or explain” principle to publish data as long as

there is no argument against it. The relatively simple information provided

by sensor data limits the required ability to have a deep understanding of

the types of (causal) relationships and a profound knowledge of statistical

techniques. A final argument in favor of open data argues that only a small

team of developers from local governments has access to valuable data to

initiate new applications where resources may lack. By openly publicizing

sensor data, the opportunity to a whole community of creatives is offered to

respond to local needs of neighborhoods by coming up with new, innovative

solutions. For example, digital traffic signs indicating a temporary parking

ban or parking sensors that actively monitor parking spots provide a wealthy

source of information to local authorities. Much of this data, such as license

plate number or even identity information, is strictly private and only relevant

120 Chapter 5

for them. However, by openly publishing information such as the geolocation

and the availability time of the parking spot, people and companies can

add this to maps and applications, providing accurate real-time parking

information. Open sensor data in cities have already been put forward in

the past in order to stimulate innovation. Sidewalk Labs for example - the

urban innovation organization of Alphabet Inc. - and Waterfront Toronto

started in 2017 with the elaboration of the hypermodern Quayside project

with the aim of making city life better for everyone [11]. By using open,

digital infrastructure and clear standards for making the collected data

about the environment publicly available, the team was hoping to create

a positive cycle of urban innovation. Unfortunately, economic uncertainty

forced the team to halt the project. Domingo et al. have also discussed the

benefits of Open Sensor Data in cities and provided an architecture for doing

so [12]. However, the centralized database in their proposed platform limits

openness and scalability. A Linked Open Sensor Data platform must invest

in offering feedback loops where discussions, proposals for decision-making

or even private data can be added. By making use of a distributed system,

such as Solid, to store and link the data, openness and scalability can be

ensured. This may enable social machines such as citizen science, crowd

sourcing and collective intelligence to continue to develop. This way of

collecting and sharing data can also show how certain events influence our

environment. Furthermore, a Linked (Open) Sensor Data platform offers a

great source of information for researchers. Access to real-time data, which

can be compared with historically collected data can provide a considerable

insight into changes within our ecosystem. In order to realize this vision, two

things are needed: the use of (1) standardized protocols for retrieving sensor

data and (2) a distributed storage using open data formats. An architecture

that complies with these requirements in the field of LPWAN is given in

Section 5.4.

5.2 Related Work

Incorporating Internet of Things data to the Linked Open data is no novelty.

The authors in [13] address the interoperability issues of the Internet of Every-

thing, whereby proposing the idea of ”Linking Everything”. Their solution is

based upon the 5-star Linked Open Data concept, replacing the Hyper Text

Transfer Protocol (HTTP) by the Constrained Application Protocol (CoAP).

Apart from their vision and enabling technologies, they mainly focus how

real-time data can be queried from traditional data platforms such as Apache

Jena, Virtuoso and Stardog. Similarly, in [14] a HTTP-CoAP proxy is im-

plemented to translate CoAP messages to HTTP requests. Additionally,

Linked Data in Constrained Wireless Sensor Networks 121

new content-format types were introduced (i.e. application/ld+json and

text/turtle to support LDP features. Both articles assume that devices

can be queried directly without constrained links, being exactly a funda-

mental property of Low Power Wide Area Networks (LPWANs) frequently

used for connecting constrained IoT devices. Other work considers the Java

Data Objects (JDO) standard as a data model for a resource framework

incorporated in a generic, uniform data management platform [15]. The

authors present a homogeneous service layer as an interface to heterogeneous

data sources. For this purpose, they defined a novel API which can be

used for data validation and resources handling, thereby centralizing and

unifying the data model from a broad range of data sources. Furthermore,

a transparent proxy is provided, which can deliver data to any SPARQL

endpoint. However, none of these solutions have incorporated data in a

decentralized platform where the data producer can provide access control

to the application of his choice.

5.3 Background Technologies

5.3.1 SOLID

As mentioned in the Introduction, Solid provides a platform for decentralized

data storage which allows users to easily switch between application providers

without having to reorganize their data. Solid does this by offering a platform

where each user can store their data in an online storage space (called a

pod), which can be either self hosted or provided by pod providers. Also

developers can benefit from this approach by making use of data in a

standardized format, instead of managing complex APIs offered by social

Web applications.

In order to ensure data interoperability and easy integration with the

current form of the Web, Solid relies as much as possible on existing open

standards. Data is exchanged using HTTP and stored using the RDF.

Semantic Web technologies, such as RDF, enable self-describing, linkable,

yet independent, data management mechanisms. RDF is a standardized

format for representing information on the Web. It describes a data model

that serves to link RDF-based languages and specifications and as such

provides the basis of the Linked Open Data cloud. RDF consists of graphs -

formed out of self-descriptive subject-predicate-object triples - and datasets,

used to organize collections of RDF graphs [16]. RDF data can be structured

by using an ontology; a formal way of expressing a subject area and how their

different properties are related. It is important for applications that their

ontologies can be accessed by others so that data can be reused by groups

122 Chapter 5

of potential consumers. Ontology sharing is the first step towards semantic

interoperability on a larger scale. A next step includes ontology mapping

and matching, where resources from different ontologies can be matched with

others. A significant number of mapping tools exist to incorporate data into

the Linked Data cloud. One of the few mapping tools, which allows to map

heterogeneous sources into RDF, is the RDF Mapping Language (RML). In

real-world situations, multiple sources of different formats can be part of a

variety of data ecosystems. As RDF is often not supported by these data

sources, the RML can be used as a generic mapping language to express

custom mapping rules from heterogeneous data structures to the RDF data

model.

Finally, different serialization syntaxes exist for storing and exchanging

RDF such as Terse RDF Triple Language (Turtle) and JavaScript Object

Notation (JSON)-LD (JSON-LD).

5.3.1.1 IoT ontologies

Multiple standards are currently being developed in order to provide semantic

interoperability in the IoT. The Semantic Sensor Networks (SSN) Ontology

is created by the Spatial Data on the Web Working Group. At its core

lies the Sensor, Observation, Sample and Actuator (SOSA) ontology that

is intended for light-weight and standalone use. The Smart Applications

REFerence (SAREF) Ontology is another ontology that tries to achieve

semantic interoperability in the domain of the IoT. In the scope of real-

world deployments, such as in [17], both ontologies seem to have limited

support for specialized use cases. However, SSN provides a higher level of

abstraction (a System belonging to a Platform and a Deployment). While,

SAREF only provides an abstraction that starts from the device itself. The

deployment abstraction provided by the SSN/SOSA can be more interesting

in the scope of LPWANs that typically encompass very large deployments.

5.3.2 LwM2M

As the Web became the largest connected information system through the use

of standardized, resource oriented protocols, the Internet of Things should

aim for a similar approach to become a true part of the Web ecosystem.

Consequently, the Internet Engineering Task Force (IETF) developed the

Constrained Application Protocol (CoAP). However, CoAP does not provide

semantic interoperability; developers can specify themselves which Uniform

Resource Identifiers (URIs) should be used to access resources. Therefore, on

top of the CoAP protocol, the Light Weight Machine to Machine (LwM2M)

specification from the Open Mobile Alliance (OMA) was developed in order

Linked Data in Constrained Wireless Sensor Networks 123

to provide a generic API to perform device bootstrapping, registration

and management. Besides these interfaces, an object model is defined to

represent collections of mandatory and optional resources that offer semantics

to both device and management server and as such provide machine-readable

representations of the semantics [18]. The provided object models are

structured using pre-defined URI-templates, known to both client and server.

An object can consist of several instances, which at their turn can consist of

several resources. Objects, instances and resources are all identified with a

unique identifier within its scope, making up the URI. These resources can

then be accessed using CoAP operations.

5.4 Architecture

5.4.1 System Overview

In order to connect the constrained Internet of Things to the Linked Open

Data cloud, several interfaces are required. First of all, the produced data

will be transmitted over constrained wireless links to a receiving gateway.

The data producers, depicted at the bottom of Figure 5.1, make use of

LwM2M, a communication protocol that can fit every network and offering

both device management and data transfer services.

The generated Internet Protocol (IP) packets will then be distributed

to a LwM2M management server, where after the registration of a device

a data flow can be established. Finally, packets of interest (i.e. packets

containing sensor measurements) are filtered and forwarded to the Solid

pod. As Solid makes use of a Web Access Control (WAC) mechanism for

decentralized cross-domain authorization, multiple authorized applications

and parties can be allowed to read, write, append and control the data. This

makes it possible not only to have multiple clients writing data to the same

pod, but also for applications to gather and combine data from different

pods in a decentralized manner, with the possibility of opening up the data

to the Linked Open Data Cloud [3].

5.4.2 Implementation

As described in the previous Section device management and data collection

from several networks, such as NB-IoT, Long Range Wide Area Network

(LoRaWAN) and IEEE 802.15.4, can be performed by means of a LwM2M

server. For this purpose, Leshan, an open-source OMA LwM2M server

implementation is set up (illustrated in the upper right corner of Figure 5.1).

In order to pass every received message from Leshan to a supplementary

data processor, Leshan exposes a RESTful (adhering to the Representational

124 Chapter 5

L
o
R

a
W

A
N

n
e
tw

o
rk

N
B

-I
o
T

n
e
tw

o
rk

P
G

W

A
cc

e
ss

 R
e
so

u
rc

e
s/

D
el

iv
er

 C
o
n
te

n
t

A
cc

es
s

R
es

ou
rc

es
/

D
el

iv
er

 C
on

te
nt

Id
en

ti
fi

es

Id
en

ti
fi

es
A

cc
es

s
R

es
ou

rc
es

/

D
el

iv
er

 C
on

te
nt

D
at

a
 m

an
a
g

em
e
n

t

Id
en

ti
ty

P
ro

fi
le

 S
e
rv

e
r

U
se

r’
s

P
o
d

O
th

er

P
o
d

U
se

r’s
 c

li
en

t

M
an

ag
em

en
t
ap

p
li

ca
ti

o
n

LwM2M/CoAPD
ev

ic
e

m
a
n

ag
em

en
t

L
w

M
2
M

 S
e
rv

er

D
at

a
 p

ro
d

u
ce

rs

L
w

M
2
M

/C
o

A
P

o
v
e
r
 M

Q
T

T

L
o
R

a
 N

S

IE
E

E
 8

02
.1

5.
4

G
at

ew
ay

D
ev

ic
e

R
eg

is
tr

at
io

n

B
o
o

ts
tr

ap
p

in
g

R
es

ou
rc

e
A

cc
es

s

R
M

L
 m

a
p
p

in
g

RDF/HTTP

IE
E

E
 8

0
2
.1

5
.4

n
e

tw
o

rk

M
an

ag
em

en
t
se

rv
ic

e
L

oa
d

N
o
d
e
.j
s

L
e
sh

a
n

M
Q

T
T

C
li

en
t

L
w

M
2
M

/C
o

A
P

Figure 5.1: Implemented system overview. Data from LPWAN devices is captured
and transmitted to the LwM2M server. A node.js instance subscribes to the Leshan
event stream in order to map the LwM2M data to RDF and publish it to the Solid

pod.

Linked Data in Constrained Wireless Sensor Networks 125

CoAPLOG

Event
JSON

Filter

mapping.ttl
Object/Resource

mapping

data.json

Preprocess

RDF

RocketRML

Solid

pod

Store

{…, options : {

 Content-Format: "application/vnd.oma.lwm2m+json",

 payload: { bn: '/3303/0/5700', e: [{ v: -28.8 }] , … }

{ server:

 { protocol: 'http',

 domain: example.com' },

 device: { ep: 'sensor1' },

 meas: [

 {object: '3303',

 objectInstance: '0',

 resource: '5700',

 value: -28.8,

 skolemIRI: '5e549f5-7f41

 22-8745-e6d20e0ef308'

 }], … }

Figure 5.2: Internal working of the translation mechanism running on the node.js
server.

State Transfer (REST) constraints) communication API between the front-

and back-end. The LwM2M/CoAP messages of interest are forwarded to a

Node.js application, where an RML script translates them to an RDF graph,

required to store them in the Solid data pod. The RDF graph consist of

nodes uniquely identified by a URI for which relations are defined using

predicates. Every node in the graph represents either a device, a sensor

instance or a single measurement. Once the graph with the updated data

is produced by the RML script, the measurements are sent to the Solid

pod. Existing graphs will merge fluently since every node with an existing

URI is considered the same and therefore only new elements are stored. An

overview of the translation flow is given in Figure 5.2.

As Section 5.3 introduced, the description of RDF data requires an

ontology, which acts as a lexicon for the data model. As a result of a study

for the European Commission a basis of an ontology containing the OMA

LwM2M data structure is publicly available [19]. However, in order to store

historical sensor data, various adaptations were required to this ontology
1. Firstly, following the OMA LwM2M registry, the mandatory objects and

their resources were completed and predicates were added to represent the

relations between them. Next, a device object was added to represent the

OMA LwM2M client and its exposed objects. Finally, the hasTimestamp

predicate was added to the SensorValue resource enabling the storage of

1https://iotsolidugent.inrupt.net/public/ontologies/omalwm2m.owl.ttl

126 Chapter 5

historical data in a simple manner.

5.5 Evaluation

One of the main requirements for low power sensors is to operate on a

single battery charge for multiple years and therefore consume as little

energy as possible. Since wireless communication modules tend to have

the highest energy consumption in IoT sensor devices, the communication

overhead should be kept as small as possible. This Section will evaluate

the aforementioned encodings and ontologies in order to select the most

appropriate solution to initiate IoT sensor devices into the semantic web of

things. Previous work around this topic introduced additional content-format

types in order to incorporate these sensors directly in the Web as Linked

Data providers [14]. The authors released their implementation as open

source 2, which was used during the comparison of the different ontologies

and encodings.

In order to decide which ontology suits constrained networks the best, the

overhead of a CoAP GET request to the memory availability of the device and

its corresponding response is evaluated for the Linked Data content-format

types application/ld+json, text/turtle and the LwM2M text/plain,

application/vnd.oma.lwm2m+json and application/vnd.oma.lwm2m+tlv

data types.

5.5.1 CoAP CON request

Due to the request-response nature of CoAP, every response is preceded by

a request from a client. First, the linked data request is evaluated and can

been seen in Listing 5.1.

Listing 5.1: CoAP JSON-LD GET request

CON , MID :38929 , GET , TKN :61 62 63 64 65 66 67 68, /

sensors/memory

On the contrary, the request in Listing 5.2 shows how the same resource can

be queried using the predefined LwM2M URI-templates.

Listing 5.2: CoAP LwM2M GET request

CON , MID :35534 , GET , TKN:ee 10 01 6d 28 3b 79 6d,

/3/0/21

2https://github.com/sisinflab-swot/ldp-coap-framework

Linked Data in Constrained Wireless Sensor Networks 127

It can be seen from Figure 5.3 that LwM2M provides a higher efficiency in

CoAP CON requests due to the object model known to both server and device.

Even with User Datagram Protocol (UDP) and Internet Protocol Version

4 (IPv4) overhead, a LwM2M client will not surpass the fragmentation limit

of Long Range (LoRa) using Spreading Factor (SF) 12, which would require

multiple packets and consequently consume a lot more energy.

5.5.2 CoAP response

In response to the GET request, the server will reply with the value of

the queried resource. Listing 5.3 shows the payload of a response in the

application/ld+json data format.

Listing 5.3: Payload of a JSON-LD response to a CoAP GET request

{

"@id": "coap ://192.168.2.16/

MEM_IBCN_096_202006160959AM",

"@type": "http ://www.w3.org/ns/sosa#Observation",

"http ://www.w3.org/ns/sosa#hasSimpleResult ": {

"@type": "http :// w3id.org/lindt/

custom_datatypes#ucum",

"@value ": "253952 kB"

},

"http ://www.w3.org/ns/sosa#madeBySensor ": {

"@id": "coap ://192.168.2.16/M-2 -2230"

},

"http ://www.w3.org/ns/sosa#observedProperty ": {

"@id": "coap ://192.168.2.16/ Memory"

},

"http ://www.w3.org/ns/sosa#resultTime ": {

"@type": "http ://www.w3.org /2001/ XMLSchema#

dateTime",

"@value ": "2020 -06 -16 T09 :59:14.141+02:00"

}

}

Listing 5.4 clearly shows that this is in sheer contrast with the payload

size of a LwM2M request encoded as application/vnd.oma.lwm2m+json.

Listing 5.4: Payload of a LwM2M JSON response containing multiple historical
representations of a memory resource

{

"bn ":"/3/0/21" , "bt ":1592258400 ,

"e":[

128 Chapter 5

Figure 5.3: GET request performed from client to server with different ontologies
and encodings

{"n":"" ,"v":253901 , "t":-5},

{"n":"" ,"v":253952 , "t":-35}

]

}

5.5.2.1 JSON-LD optimization

However, in JSON-LD, it is possible to provide a context in order to use

simple, local names, while maintaining semantic meaning beyond the initial

exchange partners. An example context for the naive request from Listing

5.3 is shown in Listing 5.5. The optimized response is given in Listing 5.6.

This Listing also shows how we optimized the timestamp with the owl-time

ontology and the observation id as a simple counter. Furthermore, in order

to make a fair comparison with LwM2M, we removed the madeBySensor

property. However, in order to show some of the LwM2M optimizations, we

introduced a second historical measurement.

Listing 5.5: The context of the JSON-LD request from Listing 5.6

{

"@context ": {

"@base": "coap ://192.168.2.16" ,

Linked Data in Constrained Wireless Sensor Networks 129

"sosa": "http ://www.w3.org/ns/sosa#",

"cdt": "http :// w3id.org/lindt/custom_datatypes

#",

"owlt": "http ://www.w3.org /2006/ time#",

"v": "@value",

"n": "@id",

"u": "@type",

"sr": "sosa:hasSimpleResult",

"sp": "sosa:observedProperty",

"st": "sosa:resultTime",

"so": "sosa:Observation",

"ot": "owlt:numericPosition",

"cu": "cdt:ucum"

}

}

Listing 5.6: The payload of a JSON-LD request can be compressed using a context

[

{

"n": "1", "u": "so",

"sr": {"u": "cu", "v": "253952 kB"},

"sp": {"n": "Memory"},

"st": {"u": "xt", "v": "1592258395"}

},

{

"n": "2", "u": "so",

"sr": {"u": "cu", "v": "253901 kB"},

"sp": {"n": "Memory"},

"st": {"u": "xt", "v": "1592258365"}

}

]

Figure 5.4 illustrates how the different encodings and ontologies relate to

each other in response to a GET request. The fragmentation lines of different

technologies are shown on the right and again indicate how LwM2M has a

lower overhead. However, both encoding schemes introduce fragmentation

over a LoRa SF12 connection.

Even though, the responses can be optimized using the JSON-LD @context

property, it can be seen from both figures that low power sensor devices can

still benefit from the wielded approach where low power IoT ontologies are

mapped using RML instead of using semantic web ontologies directly on top

of IoT protocols.

Finally, in Figure 5.5 the battery lifetime of a LoRa SF12 device that

130 Chapter 5

Figure 5.4: Response to a GET request, containing two historical measurements,
performed from server to client with different ontologies and encodings

0 100 200 300 400 500 600 700 800

Time [days]

0

100

200

300

400

500

600

700

800

900

1000

B
at

te
ry

 c
ap

ac
it

y
 [

m
A

h
]

JSON LD CTXT

JSON LD CTXT DEFLATE

LwM2M JSON

LwM2M JSON DEFLATE

Figure 5.5: Battery drain of a LoRa SF12 communicating a single measurement
with the server every hour, without self-discharge

Linked Data in Constrained Wireless Sensor Networks 131

responds every hour with a single new measurement to an initial OBSERVE

request in different encoding schemes is shown. This clearly indicates how a

light-weight encoding schema can decrease the energy consumption.

5.6 Conclusion

As current data storage lacks in true data ownership and data openness,

novel principles are being developed, with Solid as the leader. This paper

showed that it is possible to use a standard based approach over constrained

wireless links to enable the concepts of Linked (Open) Data in the IoT.

We showed that using our implementation less packets, and consequently

less energy, is required for devices that should be capable to operate on a

single battery charge for years, compared to a naive RDF-based approach.

By using RML as an ontology matching tool, we showed that it is possible

to couple a set of constrained IoT devices using the LwM2M management

protocol to an RDF-based Solid POD.

132 Chapter 5

References

[1] D. Reinsel, J. Gantz, and J. Rydning. The Digitization of the World

from Edge to Core. page 28, 2018.

[2] 5-star Open Data. Available from: http://5stardata.info/en/.

[3] A. V. Sambra, E. Mansour, S. Hawke, M. Zereba, N. Greco, A. Ghanem,

D. Zagidulin, A. Aboulnaga, and T. Berners-Lee. Solid: A Platform

for Decentralized Social Applications Based on Linked Data. page 16.

[4] J. Miranda, N. Makitalo, J. Garcia-Alonso, J. Berrocal, T. Mikkonen,

C. Canal, and J. M. Murillo. From the Internet of Things to the

Internet of People. IEEE Internet Computing, 19(2):40–47, March

2015. Available from: http://ieeexplore.ieee.org/document/7061811/,

doi:10.1109/MIC.2015.24.

[5] S. Purohit, N. Van, and G. Chin. Semantic Property Graph for Scalable

Knowledge Graph Analytics. arXiv:2009.07410 [cs], September 2020.

arXiv: 2009.07410. Available from: http://arxiv.org/abs/2009.07410.

[6] Rolling Plan 2021 | Joinup. Available from: https://joinup.ec.europa.

eu/collection/rolling-plan-ict-standardisation/rolling-plan-2021.

[7] M. Margitus, G. Tauer, and M. Sudit. RDF versus attributed graphs:

The war for the best graph representation. In 2015 18th International

Conference on Information Fusion (Fusion), pages 200–206, July 2015.

[8] G. Privat. ETSI 06921 Sophia Antipolis CEDEX, France Tel +33 4 92

94 42 00 info@etsi.org www.etsi.org. page 55.

[9] Sciensano. healthdata.be, August 2020. Available from: https://

healthdata.sciensano.be/en.

[10] M. Janssen, Y. Charalabidis, and A. Zuiderwijk. Benefits, Adoption

Barriers and Myths of Open Data and Open Government. Information

Systems Management, 29(4):258–268, September 2012. Available from:

http://www.tandfonline.com/doi/abs/10.1080/10580530.2012.716740,

doi:10.1080/10580530.2012.716740.

[11] S. Labs. Master Innovation and Development plan, ”Toronto Tomorrow:

A New Approach for Inclusive Growth.”, June 2019.

[12] A. Domingo, B. Bellalta, M. Palacin, M. Oliver, and E. Almirall. Public

Open Sensor Data: Revolutionizing Smart Cities. IEEE Technology and

Society Magazine, 32(4):50–56, 2013. Available from: http://ieeexplore.

ieee.org/document/6679327/, doi:10.1109/MTS.2013.2286421.

http://5stardata.info/en/
http://ieeexplore.ieee.org/document/7061811/
http://arxiv.org/abs/2009.07410
https://joinup.ec.europa.eu/collection/rolling-plan-ict-standardisation/rolling-plan-2021
https://joinup.ec.europa.eu/collection/rolling-plan-ict-standardisation/rolling-plan-2021
https://healthdata.sciensano.be/en
https://healthdata.sciensano.be/en
http://www.tandfonline.com/doi/abs/10.1080/10580530.2012.716740
http://ieeexplore.ieee.org/document/6679327/
http://ieeexplore.ieee.org/document/6679327/

Linked Data in Constrained Wireless Sensor Networks 133

[13] D. Le-Phuoc and M. Hauswirth. Linked Data for Internet of Everything.

In R. Gravina, C. E. Palau, M. Manso, A. Liotta, and G. Fortino, editors,

Integration, Interconnection, and Interoperability of IoT Systems, pages

129–148. Springer International Publishing, Cham, 2018. Series Title:

Internet of Things. Available from: http://link.springer.com/10.1007/

978-3-319-61300-0 7, doi:10.1007/978-3-319-61300-0 7.

[14] G. Loseto, S. Ieva, F. Gramegna, M. Ruta, F. Scioscia, and E. Di Sciascio.

Linking the Web of Things: LDP-CoAP Mapping. Procedia Computer

Science, 83:1182–1187, 2016. Available from: https://linkinghub.elsevier.

com/retrieve/pii/S1877050916302770, doi:10.1016/j.procs.2016.04.244.

[15] J. Pullmann and Y. Mohamad. Linked Data Services for Internet of

Things. In Proceedings of the 2015 International Conference on Recent

Advances in Computer Systems, Hail, Saudi Arabia, 2016. Atlantis

Press. Available from: http://www.atlantis-press.com/php/paper-

details.php?id=25847799, doi:10.2991/racs-15.2016.26.

[16] RDF 1.1 Concepts and Abstract Syntax. Available from: https://www.

w3.org/TR/rdf11-concepts/.

[17] M. Poveda-Villalon, Q.-D. Nguyen, C. Roussey, C. De Vaulx, and J.-

P. Chanet. Ontological requirement specification for smart irrigation

systems: a SOSA/SSN and SAREF comparison. In 9th International

Semantic Sensor Networks Workshop (SSN 2018), volume 2213, page 16,

Monterey, United States, October 2018. CEUR Workshop Proceedings.

Available from: https://hal.archives-ouvertes.fr/hal-02042584.

[18] O. LwM2M. Lightweight Machine to Machine Technical Specifica-

tion. Available from: http://www.openmobilealliance.org/release/

LightweightM2M/V1 1 - 20180710 - A/OMA-TS - LightweightM2M

Core-V1 1-20180710-A.pdf.

[19] L. Daniele, F. den Hartog, and J. Roes. Study on Semantic Assets for

Smart Appliances Interoperability : D-S4: FINAL REPORT. 2015.

http://link.springer.com/10.1007/978-3-319-61300-0_7
http://link.springer.com/10.1007/978-3-319-61300-0_7
https://linkinghub.elsevier.com/retrieve/pii/S1877050916302770
https://linkinghub.elsevier.com/retrieve/pii/S1877050916302770
http://www.atlantis-press.com/php/paper-details.php?id=25847799
http://www.atlantis-press.com/php/paper-details.php?id=25847799
https://www.w3.org/TR/rdf11-concepts/
https://www.w3.org/TR/rdf11-concepts/
https://hal.archives-ouvertes.fr/hal-02042584
http://www.openmobilealliance.org/release/LightweightM2M/V1_1-20180710-A/OMA-TS-LightweightM2M_Core-V1_1-20180710-A.pdf
http://www.openmobilealliance.org/release/LightweightM2M/V1_1-20180710-A/OMA-TS-LightweightM2M_Core-V1_1-20180710-A.pdf
http://www.openmobilealliance.org/release/LightweightM2M/V1_1-20180710-A/OMA-TS-LightweightM2M_Core-V1_1-20180710-A.pdf

6
FLINT: Flows for the Internet of

Things

Chapter 4 presented an intermediary to provide a homogeneous interface

towards the Static Context Header Compression (SCHC) router and to

keep track of the last active technology. In Chapter 5, an intermediary was

required to enrich Light Weight Machine to Machine (LwM2M) data with

semantics. This Chapter leverages on these observations in the scope of

the Port of the Future. As a result, a generic architecture is presented that

is able to provide interoperability on five levels for Low Power Wide Area

Network (LPWAN) devices.

⋆ ⋆ ⋆

This chapter is based on the homonymous article by

B. Moons, M. Aernouts, V. Bracke, B. Volckaert and J. Hoebeke

Published in MDPI Applied Sciences 11(19), 7th October 2021

136 Chapter 6

Abstract New protocols and technologies are continuously competing in

the Internet of Things. This has resulted in a fragmented landscape that

complicates the integration of different solutions. Standardization efforts try

to avoid this problem, however within a certain ecosystem, multiple standards

still require integration to enable trans-sector innovation. Moreover, existing

devices require transformations to fit in an ecosystem. In this paper, we

discuss several integration problems in the field of Low Power Wide Area

Networks in the context of the Port of the Future and propose a new

distributed platform architecture, called FLINT. FLINT is a framework

to program flexible and configurable flows on a per device basis. A flow

is constructed from fine-grained components, called adapters. Due to the

modularity of an adapter, users can easily integrate existing software. We

evaluated FLINT based on five levels of interoperability and show that FLINT

can be used to interconnect non-interoperable systems and protocols on every

level. We have also implemented FLINT in a container based environment

and demonstrated that a basic configuration has a 99% forwarding rate of

17.500 513-byte packets per second, showing that the architecture can deliver

good performance.

6.1 Introduction

Due to the plethora of Internet of Things (IoT) technologies and standards

available, an overarching platform is required to interconnect heterogeneous

sources of data. The purpose of an IoT platform is to match non-interoperable

data sources, ranging from something as small as a device to something as

large as a platform spanning multiple application domains. This requires

extensive flexibility. Unfortunately, many platforms, such as Amazon Web

Service (AWS) IoT [1], Kaa IoT [2] and ThingSpeak [3], have closed, inflex-

ible designs and do not enable low-level interaction between components

in the system. Furthermore, extending an IoT system with existing ap-

plications and software libraries can often be complex due to the imposed

programming paradigms and/or languages. Finally, the upcoming trend of

mobile IoT devices that can switch between networks on the one hand and

very constrained devices on the other hand, requires a platform aware of the

device its connection state and the network it is connected to.

To address this, we present FLINT: a flexible, modular and scalable

network architecture for interconnecting IoT devices, networks, middleware

and platforms. A FLINT configuration can be built from fine-grained

components on a per device basis. These components are data processing

elements called adapters. An adapter consists of two sub-elements: an agent

and a sink. The sink connects the adapter to the platform by means of a

FLINT: Flows for the Internet of Things 137

Message Broker. The Message Broker provides a message bus for efficient

data delivery using the publish/subscribe paradigm. The sink and the agent

communicate over a socket interface so that the agent can be built from any

programming language. This allows users to recycle their existing programs

and implementations. A FLINT configuration can be built by chaining

adapters. The user chooses a collection of adapters for a given device and

connects them into a chain that represents the path the data will follow.

We have implemented FLINT in a container based environment and

deployed it in Kubernets cluster to evaluate its scalability. A basic FLINT

configuration has a 99% forwarding rate of 17.500 513-byte packets per second

on a 2.4 GHz intel E5645. The 1% packet loss is likely caused by the Message

Queuing Telemetry Transport (MQTT) broker dropping packets at such

high throughput. Our evaluation shows that, compared to other platforms,

FLINT’s architecture is still able to deliver good performance. We show that

the forwarding rate drops significantly when adding more hops to the system.

However, by demonstrating that the modular architecture can distribute the

load over different machines we show that the platform is able to scale for

more demanding applications. Next, we evaluated FLINT based on five levels

of interoperability: syntactic interoperability, device interoperability, network

interoperability, semantic interoperability and platform interoperability. We

thereby show that FLINT provides tools to cover all levels of interoperability

as described in [4]. This is illustrated by our experiments in a Port of the

Future context (Section 6.2), though can be extrapolated to any other use

case requiring IoT connectivity integration. As a final contribution, FLINT

is available as open source under the LGPL-3.0 license.

The remainder of this paper first analyzes other IoT platforms and their

focus (Section 6.3) before describing FLINT’s architecture (Section 6.4)

which is evaluated in Section 6.5. Finally, Section 6.6 present conclusions.

6.2 Case Study—Port of the Future

The Port of the Future will be equipped with technology to cope with day-

to-day challenges more efficiently [5]. Sensor measurements can be used to

analyze and monitor ports in order to make better operational decisions.

For example, transportation can be tracked between different port terminals

to increase the coordination of traffic and better manage transport logistic

chains. Furthermore, the environment, engineering structures, vehicles and

vessels can be tracked in order to optimize their behaviour and contribute

to sustainable ports. This either involves (1) existing data sources which

have already adopted a specific data format or (2) (wireless) IoT devices.

In order to benefit from information that is already available (1), data

138 Chapter 6

from existing systems, legacy systems and systems that support different

standards, should be converted to a common format [6].

Furthermore, depending on the available wireless infrastructure of the

port, this data will originate from a multitude of data sources (2):

• Multiple wireless communication networks can coexist that serve de-

vices equipped with a single radio;

• Devices can be equipped with multiple radios that connect to different

networks over time;

• Devices can have a radio that supports multiple modulation schemes.

For example, devices equipped with a sub-Gigahertz (GHz) compatible

radio and multiple modulation schemes, such as Long Range (LoRa), DASH-

7 (Gaussian Frequency Shift Keying (GFSK)) and Sigfox (Ultra Narrowband

(UNB)), can alternate between long range, low throughput and medium

range, higher throughput technologies [7]. FLINT was initially developed to

interconnect such networks and devices. However, multiple cases, such as

the integration with Obelisk [8], made clear that its flexible design was also

well suited for fast prototyping and use case support. Therefore, this section

presents several modules that were developed and illustrates the evolution

of FLINT from a simple tool to a scalable IoT platform.

6.2.1 Heterogeneous LPWAN

The typical size of a port requires wireless technologies that can transmit

traffic over large distances. Low Power Wide Area Networks (LPWANs)

can span very large areas, however are characterized by severe bandwidth

constraints [9]. Traffic towards the wireless network is often restricted by

duty cycle limitations and must be operated using different transmission

schemes. Furthermore, incorporating multiple wireless networks into a single

platform requires some sort of routing. This can be achieved with a central

entity that stores the last active network and the properties of all available

networks.

Due to their bandwidth constraints, LPWANs often use proprietary

payload encoding formats. This limits the application portability and

interoperability among systems. In order to solve these issues, the Internet

Engineering Task Force (IETF) LPWAN Working Group (WG) developed

the Static Context Header Compression (SCHC) technique. This standard

uses a static context to represent the most common Internet Protocol Version

6 (IPv6), User Datagram Protocol (UDP) and Constrained Application

Protocol (CoAP) patterns of the sensor node, known to both the end-device

FLINT: Flows for the Internet of Things 139

and the gateway. Every flow is distinguished by means of a unique identifier

that precedes the payload of the message. This identifier is used by the

translating gateway to perform the decompression of the message [10].

This way, very constrained devices can establish an end-to-end IPv6

link over a low bandwidth technology. However, LPWAN systems typically

consist of a star topology in which an intermediary captures packets from

receiving gateways to remove duplicates. The SCHC router [11] (i.e., the edge

router that (de)compresses packets from the IPv6 network) must therefore

implement an abstraction to capture packets from the intermediary. Typical

examples of such abstractions include the MQTT, the Hyper Text Transfer

Protocol (HTTP) and the Advanced Message Queuing Protocol (AMQP).

These observations indicate the need to incorporate abstractions for different

wireless networks and devices that have multiple network interfaces and

their mapping to standardized outputs.

6.2.2 Localization

Location-based Services (LBSs) are an essential aspect of IoT applications,

as they provide valuable context information. For instance, sensor mea-

surements from IoT devices in a port can only be interpreted properly

if they are correlated with the correct measurement location. Typically,

Global Navigation Satellite Systems (GNSSs) such as Global Positioning

System (GPS), Global Navigation Satellite System (GLONASS), BeiDou

Navigation Satellite System (BDS) and Galileo are used for outdoor local-

ization. Cellular networks or LPWANs are used to transmit location data

from GNSS receivers on IoT devices to an IoT platform. To reduce the

overall cost of IoT devices or to enable outdoor localization on devices with

an extremely low energy budget, it is possible to omit GNSS receivers and

apply localization methods such as Time Difference Of Arrival (TDoA),

Angle of Arrival (AoA) or Received Signal Strength (RSS)-based methods

to the LPWANs instead [12–14]. These methods are especially popular for

indoor localization scenarios. Technologies such as Wi-Fi, Bluetooth Low

Energy (BLE) or Ultra Wideband (UWB), can cope with the fact that GNSS

coverage is not available in indoor environments [15].

Hence, an LBS can obtain location information from a wide range of

data sources, depending on the current environment and active technology

of an IoT device. Since the performance of a wireless localization method

strongly depends on estimation errors related to the environment, the network

deployment and the IoT device itself [16], LBSs must be able to intelligently

switch between data sources while estimating their reliability [17]. Therefore,

there is a need for flexible, heterogeneous platforms such as FLINT that

can incorporate an additional module for localization purposes. Specifically

140 Chapter 6

for a port use case, this module can switch between outdoor localization

with GNSS if a valid fix is available, TDoA localization with Long Range

Wide Area Network (LoRaWAN) if a transmission is received by at least

four gateways, or accurate indoor fingerprinting localization when FLINT

detects an active Wi-Fi network.

6.2.3 Data Transformation

In the past, ports, port services and general services already have devel-

oped systems to improve their day-to-day operations. By interconnecting

(existing) infrastructure, the efficiency of the entire port can improve even

more. Connecting non-interoperable platforms is often addressed as platform

interoperability and requires data transformation. In order to do so, traffic

must be transformed and interconnected between several platforms.

A common way of interconnecting data is by means of the Linked (Open)

Data schema 1. Linked Data (LD) can be the result of applying the collection

of Semantic Web technologies, such as (Resource Description Framework

(RDF), Web Ontology Language (OWL), etc.) on non-interoperable data.

These tools are standardized by the World Wide Web Consortium (W3C) to

provide an environment where applications can query (using SPARQL) and

interconnect data from several domains [18]. Converting real world data to

interlinked data can be challenging, due to their heterogeneity. This can be

done generically using the RDF Mapping Language (RML) [19]. RML uses

a Turtle mapfile that defines customized mapping rules, that can be applied

to heterogeneous data sources. However, managing multiple data sources

requires a specific mapfile on a per device basis.

Another common problem exists in the management of wireless equipment

and IoT devices. In order to limit coding and integration effort it can be

useful to have a unified mechanism to manage such wireless tools. For this,

several management protocols are available today [20]. However, integration

of already deployed infrastructure and sensors with standardized solutions

can be hard. In this paper, we focus on the Open Mobile Alliance (OMA)

LwM2M protocol [21]. FLINT tries to minimize the required effort so

that their proprietary format can be transformed into LwM2M compliant

equipment.

An abstract overview of the required components is given in Figure 6.1.

1https://5stardata.info/en/) (accessed on 14/07/2021)

https://5stardata.info/en/

FLINT: Flows for the Internet of Things 141

AbstractionsWireless Networks Mapping Processing Service Endpoint

Figure 6.1: An abstract representation of the system. Wireless sensor networks on
the left are integrated using Application Programming Interfaces (APIs). Their
data are collected in a central point that provides an abstraction for devices with

multiple network interfaces. From this central point, data are distributed to
processing nodes and other platforms.

6.3 Related Work

A plethora of both open-source and commercial IoT platforms already

exist. An overview of the most common systems is given in Table 6.1.

The architecture of every platform is presented using a simplified notation

representing the number of inputs, the number of intermediary processing

elements and the number of outputs:

• N* - N* - 1: there can be N inputs, N processing elements and only 1

output. This architecture often stores the data inside the platform.

• N* - N* - N*/N*N*/X*: there can be N inputs, N processing elements

and N , N ∗N , or X outputs.

With

• N* representing a custom, reusable element, either input, processing

or output that can be implemented by the user.

• X* representing an element, either input, processing or output offered

as is by the platform.

Some platforms allow communication between elements inside the de-

ployed system. This is visualized using N*N*. Flows that end with a single

142 Chapter 6

N* or X* provide elements that have a single output. Contrarily, flows that

employ an N*N* approach provide reusable components for every node that

can be integrated in the platform, i.e., every element has multiple inputs and

outputs. An N*N* approach is illustrated in Figure 6.1, where the message

can be passed back and forth between Abstractions, Processing elements

and elements that provide platform interoperability at the Service Endpoint.

Next, the supported directionality of a platform is indicated using the

Input/Output (I/O) column. Furthermore, the complexity of the platform

is presented in column ‘Complexity’. A distinction is made between low,

medium and high complexity. A low complexity platform indicates that

flows can be created by making use of a GUI. A platform that requires some

technological background about the platform and technologies is labeled with

medium complexity. A platform that requires in depth knowledge about the

platform and the underlying technologies is labeled with high complexity.

Many of these projects aim to provide a user friendly interface to in-

terconnect systems and applications. The open source flow-based editor,

Node-RED, provides a Graphical User Interface (GUI) where modules can

be connected to develop a flow [22]. Extra modules are also shared by the

Node-RED community. Node-RED runs as a single Node.js instance and

focuses on usability and fast prototyping, rather than on scalability and

interoperability.

Another open source project, node-wot, implements the Web of Things

(WoT) specification and aims to provide an abstraction between physical

things and the current World Wide Web (WWW) [23]. This abstraction

makes it possible to access things using web technologies. The W3C Thing

Descriptions (TDs) provide semantic interoperability. Devices can be ac-

cessed and interconnected using LD concepts. node-wot runs inside a Node.js

server and focuses on interoperability and usability, rather than on scalability.

INTER-IoT grew out of the objective to design and implement a cross-

layer framework to provide interoperability among heterogeneous IoT plat-

forms. [24]. The INTER-IoT Framework provides an API that exposes

interactions to any IoT platform. Developers can then access the underly-

ing IoT platforms through a single interface, thereby mainly focusing on

interoperability.

Finally, Eclipse Hono provides a container based IoT platform. Different

networks can be added by means of protocol adapters. Setting up an instance

of Eclipse Hono can be done rather quickly using Kubernetes deployment

tools. Devices can be added using an HTTP interface.

FLINT: Flows for the Internet of Things 143

P
ro
je
ct

S
o
lu
ti
on

L
ic
en
se

P
ro
to
co
ls

U
sa
b
il
it
y

In
te
r-

o
p
er
-

ab
il
it
y

A
rc
h
i-

te
ct
u
re

L
an

gu
ag

e
D
ir
ec
ti
on

C
o
m
-

p
le
x
it
y

A
W

S
Io
T

[1
]

M
es
sa
g
e

b
ro
k
er
,

d
ig
it
a
l

tw
in
,
A
le
x
a

V
o
ic
e

S
er
-

v
ic
e
(A

V
S
)

C
o
m
-

m
er
ci
a
l

li
ce
n
se
,

o
p
en

so
u
rc
e

li
-

b
ra
ri
es

M
Q
T
T
,

H
T
T
P

D
ra
w

fl
ow

s
in

a
G
U
I

N
o

N
*
-N

*
-

X
*

G
U
I

I/
O

L
ow

O
p
en
R
em

o
te

[2
5]

In
te
g
ra
te

a
ss
et
s,

d
at
a
v
is
u
al
-

iz
a
ti
on

A
G
P
L
v
3

H
T
T
P
,

W
eb

S
o
ck
et
s

(W
S
),

M
Q
T
T
,

cu
st
o
m

D
ra
w

fl
ow

s
in

a
G
U
I

N
o

N
*
-N

*
-

1
G
U
I

I
L
ow

K
aa

[2
]

F
lo
w
s

C
o
m
-

m
er
ci
a
l

li
ce
n
se
,

fr
ee

p
la
n
u
p

to
5

d
ev
ic
es

M
Q
T
T
,

H
T
T
P

D
ra
w

fl
ow

s
in

a
G
U
I

N
o

N
*
-N

*
-

1
G
U
I

I/
O

L
ow

T
h
in
gS

p
ea
k
[3
]

D
a
ta

v
is
u
-

al
iz
at
io
n

C
o
m
-

m
er
ci
a
l

li
ce
n
se

W
S
,

M
Q
T
T
,

H
T
T
P

In
te
g
ra
te

th
in
g
s

in
M
a
tl
ab

N
o

N
*
-1
-1

M
a
tl
a
b

I/
O

L
ow

144 Chapter 6

P
ro
je
ct

S
ol
u
ti
o
n

L
ic
en
se

P
ro
to
co
ls

U
sa
b
il
it
y

In
te
r-

o
p
er
-

ab
il
it
y

A
rc
h
i-

te
ct
u
re

L
an

gu
ag

e
D
ir
ec
ti
on

C
o
m
-

p
le
x
it
y

IN
T
E
R
-

Io
T

[2
6]

M
u
lt
i-

la
y
er
ed

ap
p
ro
a
ch

A
p
ac
h
e-

2.
0

H
T
T
P
,

C
oA

P
,

M
Q
T
T

D
is
tr
ib
u
te
d

p
la
tf
or
m

Y
es

N
*
-N

*
-

N
*

J
av
a

I/
O

H
ig
h

T
h
in
g
sB

o
a
rd

[2
7]

F
lo
w
s

A
p
ac
h
e-

2.
0/

C
om

-
m
er
ci
a
l

H
T
T
P
,

M
Q
T
T
,

U
D
P
,

T
C
P

D
ra
w

fl
ow

s
in

a
G
U
I

N
o

N
*
-N

*
-

X
G
U
I

I/
O

L
ow

E
cl
ip
se

n
o
d
e-
w
ot

[2
3]

W
eb

of
T
h
in
g
s

p
la
tf
or
m

E
P
L
-

2.
0

H
T
T
P
,

C
oA

P
,

W
S
,

M
Q
T
T
,

cu
st
o
m

A
cc
es
s

th
in
gs

u
si
n
g
w
eb

te
ch
n
o
lo
-

gi
es

Y
es

N
*
-N

*
-

1
J
av
a

S
cr
ip
t

I/
O

H
ig
h

E
cl
ip
se

H
on

o
[2
8]

C
o
n
ta
in
er

b
a
se
d

Io
T
-

p
la
tf
or
m

E
P
L
-

2.
0

H
T
T
P
,

M
Q
T
T
,

cu
st
o
m

H
T
T
P

en
d
-

p
o
in
t

N
o

N
*
-N

*
-

N
*

A
n
y

2
I/
O

H
ig
h

N
o
d
e-
R
E
D

[2
2]

V
is
u
a
ll
y

in
te
gr
a
te

d
a
ta

fl
ow

s

A
p
ac
h
e-

2.
0

H
T
T
P
,

M
Q
T
T
,

W
eb
-

so
ck
et
s,

cu
st
o
m

D
ra
w

fl
ow

s
in

a
G
U
I

N
o

N
*
-N

*
-

N
*
N
*

J
av
a

S
cr
ip
t

I/
O

L
ow

2
A
n
y
p
ro
g
ra
m
m
in
g
la
n
g
u
a
g
e
th

a
t
su

p
p
o
rt
s
A
M
Q
P

FLINT: Flows for the Internet of Things 145

P
ro
je
ct

S
o
lu
ti
on

L
ic
en
se

P
ro
to
co
ls

U
sa
b
il
it
y

In
te
r-

o
p
er
-

ab
il
it
y

A
rc
h
i-

te
ct
u
re

L
an

gu
ag

e
D
ir
ec
ti
on

C
o
m
-

p
le
x
it
y

F
L
IN

T
F
lo
w
s

L
G
P
L
-

3.
0

H
T
T
P
,

M
Q
T
T
,

cu
st
o
m

P
ro
g
ra
m

fl
ow

s
Y
es

N
*
-N

*
-

N
*
N
*

A
n
y

3
I/
O

M
ed

iu
m

T
a
bl
e
6
.1
:
N
o
n
-e
xh
a
u
st
iv
e
li
st

o
f
co
m
m
er
ci
a
l
a
n
d
o
pe
n
so
u
rc
e
Io
T

p
la
tf
o
rm

s.

3
A
n
y
p
ro
g
ra
m
m
in
g
la
n
g
u
a
g
e
th

a
t
su

p
p
o
rt
s
so
ck
et
s

146 Chapter 6

FLINT tries to combine these properties and proposes an open source

IoT platform with support for devices with multiple network interfaces,

intended for fast prototyping, while maintaining scalability. FLINT can be

used to interconnect platforms, while most platforms keep data locked in

the platform or do not directly support platform interoperability.

6.4 Flint Architecture

A FLINT configuration can be built from fine-grained components on a

per device basis. These components are data processing elements called

adapters. An adapter represents a unit of processing. This can be seen as the

transformation between two data sources to match the format from hetero-

geneous data sources, to enrich data by performing complex computations,

to add semantics, etc. A FLINT configuration is a graph with agents at the

vertices. An edge, or sink, between two agents represents a path for data

transformation and/or data output. The user determines the configuration

for a device or a fleet of devices by choosing a set of adapters between them.

A running system consists of one or more Kubernetes deployments, made up

of at least two containers that contain the sink and the agent. Several sinks

can communicate via a Message Broker (currently MQTT), that provides a

(distributed) message bus. The most important properties of an adapter are

the following:

• Adapter identifier. Each adapter has a unique identifier. This specifies

the topic that is used by the Message Broker to interface between

adapters.

• Configuration files. An agent and a sink have a configuration file.

These files are passed to the containers at initialization time. Adapters

use these configuration files to set a per-adapter state and provide

flexibility during deployment.

• Socket connection. An agent and a sink interface over a socket con-

nection. Incoming data from the platform are forwarded to the agent.

Modified data or data coming from other data sources is returned to

the sink over the socket connection.

• Sink port. The sink port is an interface from the sink to the Message

Broker. Data flows from the output sink port of an adapter to the

input sink port of another adapter.

• Agent port. The agent port provides an optional connection to imple-

mentation specific interfaces. An input agent port, for example, can be

FLINT: Flows for the Internet of Things 147

Agent Sink sink port

socket connection

Docker containers

agent port

Figure 6.2: The basic components of an adapter. Triangular ports connect to the
platform, filled rectangular ports connect the agent and the sink. Open rectangular

ports connect the agent to non-FLINT sources.

Data outSink Data outSink Data outSink

Mapper SinkMapper SinkMapper SinkMapper Sink

Data inSink Data inSink Data inSink Data inSink

Figure 6.3: The different types of adapters in a sample configuration. The central
adapter is the Mapper. This is a processing adapter that forwards data from input

adapters to processing adapters and to output adapters.

used to feed data from a network source to the platform. An output

agent port, on the other hand, can be used to forward data to another

platform.

Figure 6.2 shows the layout of an adapter.

6.4.1 Adapter Types

FLINT supports three types of adapters—I/O adapters, processing adapters

and direct adapters. I/O adapters use their agent port to fetch data from

a data source or push data to a destination. Processing adapters, on the

contrary, do not use their agent ports and return the data to the sink after

processing. Figure 6.3 shows how the different types of adapters work in

a simple configuration. Data coming from a data source is captured using

the input port of the Data in agent. The corresponding element forwards

the data to the Mapper adapter. This is a mandatory processing adapter

responsible for data delivery to the next adapter in the chain. Incoming

data are passed to the agent and distributed over one or more outputs. The

Data out I/O adapter can perform extra processing to match the format of

the data source it is connected to or immediately forward the data to the

destination.

148 Chapter 6

Some configurations require bidirectional communication. I/O adapters

therefore support data flowing in both directions. Their corresponding

sink element is subscribed to a unique topic for communication happening

between adapters. Communication coming from an external data source is

published to the central Mapper adapter acting as a router. This allows for

fine-grained configuration in both the upward and downward direction.

Finally, FLINT also supports the use of Direct adapters. These are a

special type of adapter that omit the Mapper adapter. This can be useful to

connect a fleet of devices directly to an adapter chain.

6.4.2 Device Based Context

FLINT uses the Mapper adapter as a hub for data distribution. The

Mapper is a simple processing adapter with multiple sink inputs and outputs.

Incoming data are processed on a per-device basis. The agent matches a

device’s Medium Access Control (MAC) address with an adapter based

on the input topic. A routing scheme is constructed from the configured

information for a particular device. The sink then forwards the original

payload and the routing scheme to the next adapter in the chain. From

there, based on the routing scheme, the processed packet is distributed to

the next hop.

Adapters have a unique identifier. These identifiers are used to construct

chains of adapters. Every adapter, except for the Mapper adapter, subscribes

to their input topic, i.e., urn:uuid:adapter-uuid/in. The Mapper, on the

contrary, is subscribed to the output topic of every adapter, i.e., +/out.

Figure 6.4 shows a directed graph using the different types of adapters.

The io-1 and io-2 adapters are I/O adapters. Adapter p-1 is a processing

adapter and d-1 is a direct adapter. In this example, adapter io-1 publishes

its input data to the output topic urn:uuid:io-1/out to request a routing

scheme from the mapper. An exact match for a device’s MAC address

and the requesting adapter will return the configured routing scheme. The

packet from adapter io-1 is sent to the next hop in the chain, i.e., p-1. From

there, p-1 forwards the modified data to the next adapter in the chain—

io-2. At this point, data are output using the adapter’s agent. Similarly,

communication flowing in the other direction is published to the adapter’s

output topic to request routing information from the mapper. The scheme in

the other direction excludes p-1 from the chain and is directly forwarded to

io-1. Direct adapters, such as d-1, forward data directly to their destination.

This can be useful to serve a fleet of devices.

FLINT: Flows for the Internet of Things 149

io-1

mapper

p-1

io-2

pub

urn:uuid:io-1/in

pub

urn:uuid:p-1/in

pub

urn:uuid:io-2/in

pub

urn:uuid:io-2/out

pub

urn:uuid:io-1/out

d-1

pub

urn:uuid:io-2/in

Figure 6.4: A directed graph constructed using the different types of adapters.
Adapter io-1 is an I/O adapter. Adapter p-1 is a processing adapter and adapter
io-2 is another I/O adapter. The mapper adapter passes the messages along the

vertices. Adapter d-1 communicates directly with io-2.

6.4.3 Packet Storage

FLINT is built from the observation that IoT devices can have multiple

network interfaces that must be routed to multiple outputs. These devices

can also have restricted communication opportunities due to their energy

savings mechanisms. Therefore, the Mapper adapter keeps track of the last

active network for every device and their corresponding downlink scheme.

Traffic flowing in the downward direction will be routed towards the active

network interface or will be queued when no interface is active. Consequently,

other FLINT adapters do not require the implementation of queues between

adapters or any other routing logic. The Mapper adapter forwards a routing

scheme upon a request on its input, which can be interpreted by the sink from

any other adapter. Hence, the Mapper adapter is a mandatory component

in more advanced configurations.

6.4.4 Device Configuration

FLINT device configurations are written in JavaScript Object Notation

(JSON), based on the W3C Thing Description (TD) ontology. A stan-

dard TD is extended using three keys: IPv6, ioAdapterDefinitions and

adapterScheme. ioAdapterDefinitions contain values required for bidi-

rectional communication. The adapterScheme indicates how the different

adapters are connected. An example is given in Listing 6.1.

{

"id": "urn:5f3cc650 -c91a -477f-9726 - f5f27097b6c7",

150 Chapter 6

"@context ": "https ://www.w3.org /2019/ wot/td/v1",

"title": "SampleDevice",

"ipv6": ["2001:0 db8:85a3 :0000:0000:8 a2e

:0370:7334"] ,

"ioAdapterDefinitions ":

[{

"uuid": "urn:uuid:cc0c1e3b -ce09 -4c44 -b9da -57

ee9871497a",

"deviceDefinitions ": {

"interfaceType ": "continuous"

"mac": "0004 a30b0024e96c"

}

},

{

"uuid": "urn:uuid :489 edd56 -4b1c -4332 -a5ba -

cad14994668d",

"deviceDefinitions ": {

"interfaceType ": "uplink_triggered",

"mac": "92 BC10"

}

},

{

"uuid": "urn:uuid :1323b31a -1af7 -4548 -aad7 -89

f45f7b5713",

"deviceDefinitions ": {

"id": "2"

}

}],

"adapterScheme ": [

[

["urn:cc0c1e3b -ce09 -4c44 -b9da -57 ee9871497a", "

urn:uuid :489 edd56 -4b1c -4332 -a5ba -

cad14994668d "]

["urn:uuid:8b6092c2 -09a4 -4aca -aca2 -2948195 c10de

"],

["urn:uuid :1323b31a -1af7 -4548-aad7 -89 f45f7b5713

"]

],

[

["urn:uuid :1323b31a -1af7 -4548-aad7 -89 f45f7b5713

"],

["urn:cc0c1e3b -ce09 -4c44 -b9da -57 ee9871497a", "

urn:uuid :489 edd56 -4b1c -4332 -a5ba -

cad14994668d "]

]

FLINT: Flows for the Internet of Things 151

],

...

}

Listing 6.1: A Thing Description contains a list of adapter definitions. These
adapters can be used in a scheme to construct a directed graph.

An ioAdapterDefinition contains routing information. Every definition

can be linked to an adapter using its uuid. The Mapper adapter also requires

the MAC address of every I/O interface to uniquely target a device and

manage the queue based on the interfaceType. These types can be divided

in three groups. A continuous interface can be reached at any given

moment. A beacon interface can be interfaced with during predefined

intervals and an uplink triggered interface can be reached only after an

uplink transmission.

The adapterScheme is a JSON array constructed of chains that contain

shackles, which on their turn contain a list of adapters. A chain starts with

an array of I/O adapters (a shackle). Every adapter in this array can be a

possible source of data. The Mapper adapter will therefore keep track of

the last active adapter in this shackle. The chain ends with a shackle of

I/O adapters. Processing adapters can be added at any level in between

them. Every shackle in the chain indicates a hop. An adapter that receives

a packet on its input will forward the processed packet to every adapter in

the next hop.

The example adapterScheme in Listing 6.1 contains two chains. The

first chain is used for traffic flowing in the upward direction and contains

three shackles. The first shackle contains two adapters that are used to

interface with the device directly. Data from any of these adapters will

flow to the adapter in the next shackle that contains a processing adapter

(urn:uuid:8b6092c2-09a4-4aca-aca2-2948195c10de). The last shackle in the

chain will output the processed data to a given destination. The second

chain contains the inverted configuration, used for communication in the

downward direction. In this example, the processing adapter is not required

for communication in this direction and is removed from the chain. The

last shackle again contains the two adapters that can interface directly with

the device. The Mapper adapter keeps track of the last active adapter to

forward data to.

Communication between the adapters also happens in JSON. Every

adapter must therefore adhere to a JSON scheme to provide syntactical

interoperability.

152 Chapter 6

LoRaWANSink LoRaWANSinkMapper SinkMapper Sink

SigfoxSink SigfoxSink

LocalizationSink LocalizationSink

Platform A
Sink

Platform A
Sink

SCHC RouterSink SCHC RouterSink from/to IPv6

from/to

LoRaWAN

from/to

Sigfox cloud

to platform A
from

platform B
Platform B Sink

processing

input/output

input/output

input/output

processing

outputinput

RDF MapperSink RDF MapperSink from/to LDP
input/output

Figure 6.5: More complex system configuration. Every sink is connected to others
via the message bus. The Mapper adapter implements a queue.

6.5 Evaluation

This section evaluates a real FLINT configuration: two Low Power Wide

Area Networks (LoRaWAN and Sigfox) serve as a communication technology

for several low power devices. Some devices use the novel SCHC standard to

compress IPv6 packets. Others require enriching their data with LPWAN

localization before forwarding it to an IoT platform (e.g., Linked Data

Platform (LDP), Obelisk). An overview of the complete system configuration

is given in Figure 6.5.

The system is evaluated in terms of interoperability, scalability and

performance.

6.5.1 Levels of Interoperability

Interoperability in the IoT can be seen from different perspectives such as

syntactic interoperability, networking interoperability, device interoperability,

semantic interoperability, and platform interoperability [4]. These subdivi-

sions are further explained in the following sections while being applied to

FLINT.

FLINT: Flows for the Internet of Things 153

6.5.1.1 Syntactic Interoperability

Processing tasks that involve local information do not require any adaptation

to the network. The SCHC router, for example, must store information

about the fragmentation state of a device. If the device does not acknowledge

a fragment in time, the SCHC router will re-transmit the fragment or discard

the packet. These actions depend on the packet’s content and do not involve

any other adapters. Other processing tasks, however, do require information

from another adapter in the chain.

Passing information between adapters requires a common messaging

pattern, often referred to as syntactic interoperability. FLINT uses a message

scheme that adapters must adhere to. The message scheme contains fields

to carry information along and may include:

• Device information. Information such as the device MAC address

and the original data packet are stored in this field. Any additional

information can be added to the device-custom-ctrl field.

• Adapter information. The adapter-ctrl field contains information

about the previous adapter in the chain. Information about the chain

is also stored in this field. Every I/O adapter first consults the Mapper

adapter to generate the routing scheme that is added to this field.

• Input information. The input-ctrl field contains information about

the adapter that first received the packet. Custom information about

the network the adapter is connected to, can be added to the field

input-custom-ctrl.

• Output information. Additional information about the device is stored

in the output-ctrl field. The TD of every device contains the uuid

of each device and is added to the message by the Mapper adapter.

Other adapters in the chain must be able to uniquely identify devices,

regardless of their input adapter. The uuid provides an abstraction

for devices that have multiple network interfaces.

Every sink serializes these messages using the above grammar in order

to provide syntactical interoperability.

6.5.1.2 Device and Network Interoperability

The lowest level of interoperability that FLINT can guarantee, is device and

network interoperability. Device interoperability ensures that high-end IoT

devices, such as smartphones, can communicate with resource constrained,

low-end IoT devices [4]. The Mapper interface provides a queue and supports

154 Chapter 6

SCHC Router

input/output

SCHC Router

input/output

Mapper
processing

Mapper
processing

Sigfox
input/output

Sigfox
input/output

receive

packet p
calculate routing

scheme decompress

and send p

receive

packet f

LoRaWAN
input/output

LoRaWAN
input/output

publish p

publish p

publish f

queue f
publish s

receive

packet s

calculate routing

scheme decompress

and send s

publish s

dequeue f

publish f

Figure 6.6: Mobility and queue management in a FLINT system. This diagram
shows how packets travel through a FLINT system configuration. Time moves
downwards. The central element is a Mapper adapter. Packets are distributed
from transmitting devices to the destination. Packets in the downward direction

are queued and dequeued according to the device’s interfaceType.

bidirectional communication over multiple network interfaces. Both low-

end devices and high-end devices can exchange information using different

communication technologies with diverse downlink patterns. Figure 6.6 shows

an excerpt of the complete FLINT configuration that provides device and

network interoperability for a low-end device with a Sigfox and LoRaWAN

interface. The Sigfox adapter forwards packet p together with the device’s

MAC address to the Mapper adapter. The routing scheme is calculated

based on the information in the TD. Packets coming from these networks

are SCHC compressed and forwarded to the SCHC router. This adapter

handles requests to, and responses from, the IPv6 network. The response

from the IPv6 network (packet f) is stored in the queue of the Mapper

adapter, since downward traffic for these devices can not flow continuously.

Finally, due to a network change, the device transmits packet s over its

LoRaWAN interface. The Mapper adapter will immediately dequeue packet

f and forward it to the corresponding LoRaWAN adapter. Packet s is also

delivered to the SCHC router.

As illustrated, the Mapper adapter is required to provide device and

network interoperability.

6.5.1.3 Semantic and Platform Interoperability

FLINT is well suited to provide both semantic and platform interoperabil-

ity. For example, imagine a LPWAN sensor network with the following

requirements:

• Low-end sensors must be manageable through the LwM2M proto-

col. Preferably, their packets should be compressed using the SCHC

compression and fragmentation standard.

FLINT: Flows for the Internet of Things 155

schc

mapper

lwm2m

rml

CoAP

lwm2m

HTTP

event stream

ldp

HTTP

sub
urn:uuid:schc/in

sub
urn:uuid:rml/in

from/to
sensor networks

vdm

sub
urn:uuid:+/out

CoAP

sub
urn:uuid:vdm/in

Figure 6.7: FLINT configuration that provides semantic and platform
interoperability. Packets from the LPWANs are delivered to the LwM2M server.

Data from the LwM2M server are mapped to an ontology that matches the
semantics of the LDP.

• For proprietary sensors, an adapter must run as a digital twin in the

FLINT platform. This can be done by converting their proprietary

format using the Virtual Device Manager (VDM) [29].

• Data from the LwM2M server must be delivered to a LDP. Hence, the

LwM2M ontology must be mapped to RDF. This can be done using

the RML.

FLINT’s modular and extensible architecture makes this easy; Figure

6.7 shows the configuration. Data coming from the LPWANs are delivered

either to the SCHC router or the VDM. Both adapters send requests to the

LwM2M server and deliver responses to the Mapper adapter. The LwM2M

adapter subscribes to the event stream of the LwM2M server. The RML

adapter on its turn maps the LwM2M ontology to the Semantic Sensor

Networks (SSN) ontology. The result is published to a LDP.

The above configuration shows how two incompatible platforms can be

interconnected through FLINT. An adapter is dedicated to match their

semantics and thereby provides semantic and cross-platform interoperability.

Once cross-platform interoperability is achieved, cross-domain interoper-

ability can be enabled by adding adapters that integrate platforms from

heterogeneous domains.

156 Chapter 6

adapter_conf.ini,

lwm2m_to_ngsi.ttl

POD

container runtime

volume

POD

container runtime

volume

POD

container runtime

volume

POD

container runtime

volume

adapter_conf.ini,

lwm2m_to_ssn.ttl

MASTER

API SERVER

etcd

CM SCHED

MASTER

API SERVER

etcd

CM SCHED

Figure 6.8: An excerpt of a FLINT system in a Kubernetes environment. Every
Kubernetes deployment consists of (at least) two Docker containers—the sink and

the agent. Both containers can be configured by mounting configuration files.
Every deployment is managed by the Kubernetes master.

6.5.2 Scalability

This section evaluates FLINT in terms of scalability. Every FLINT adapter

consists of at least two components—the agent and the sink. Consequently,

every adapter consists of (at least) two containers. Components can be

updated easily when pulling an image in a Kubernetes deployment. Kuber-

netes thereby provides a fast iteration cycle and scalability. Consider as an

example the data flow from Section 6.5.1.3.

There, a FLINT configuration uses RML to match different ontologies.

The RML adapter uses a Turtle mapfile that describes the mapping. The

Kubernetes configuration file is used to input the mapfile to the RML adapter

that runs in a Node.js server instance. In a running system, this adapter

can be replicated so multiple adapters can match the LwM2M vocabulary

to various ontologies. This can be done by simply replacing the mapfile.

Figure 6.8 shows two Kubernetes deployments that are managed by the

Kubernetes master. A Kubernetes deployment represents an adapter and can

be configured by mounting configuration files. In this example, the LwM2M

data model can be translated to SSN by one adapter and to Next Generation

Service Interfaces-Linked Data (NGSI-LD) models, such as the Port model,

by another one. By simply replicating the adapter and mounting a different

configuration file, the FLINT configuration can be expanded easily.

FLINT: Flows for the Internet of Things 157

MQTT BrokersMQTT Clients IoT Platform UDP Client UDP ServerPlatform Adapters

SERVER 1 SERVER 2 SERVER 3

Figure 6.9: The test setup. Every test consists of six MQTT clients, subscribed to
six MQTT brokers. The clients forward their data to the IoT platform that is

being tested. A UDP client fetches data from the platform and forwards the packet
to a UDP server.

6.5.3 Performance Evaluation

This section first compares FLINT with other State of the Art (SOTA)

platforms that provide similar functionality (i.e., open source N*-N*-N*

platforms). The evaluation uses six MQTT clients that publish data to a

broker. For every platform, a platform adapter processes the incoming data

in order to feed it to the IoT platform. The platform delivers the data to a

UDP client that forwards the data to a UDP server. This is illustrated in

Figure 6.9.

6.5.3.1 Experimental Setup

The experimental setup consists of three servers running Ubuntu 18.04 and

are synced using the Network Time Protocol daemon (ntpd). All three

servers have a gigabit Network Interface Card (NIC), 2 Hexacore Intel E5645

(2.4GHz) Central Processing Unit (CPU) and 24 Gigabyte (GB) Random

Access Memory (RAM). One server is used to host the MQTT clients and

brokers. Another to host the platforms and one to host the UDP server.

Each IoT platform is configured to run in a Kubernetes cluster.

6.5.3.2 Analysis of Platform Performance

This section analyzes the different selected platforms under different loads.

The responsiveness of every platform is measured using the goodput. This

has been defined as the total number of successfully received packets divided

by the total number of sent packets. Figure 6.10 shows the average time and

158 Chapter 6

0 2500 5000 7500 10000 12500 15000 17500
req/s

1

2

3

4

5

6

7

8

de
la

y
(m

s)

hono
nodered multiple
flint

(a) Average delay in seconds

0 2500 5000 7500 10000 12500 15000 17500
req/s

0.5

0.6

0.7

0.8

0.9

1.0

go
od

pu
t

hono
nodered single
nodered multiple
flint

(b) Goodput

Figure 6.10: The latency (in seconds) and goodput measured for six MQTT
adapters in different platforms. Multiple instances of Node-RED perform best
compared to Hono and FLINT. Node-RED single had too large delays for the

Figure, but can be retrieved from Table 6.2.

goodput for Node-RED (v.1.3.5), Eclipse Hono (v 1.9) and FLINT.

Excluded from the Figure are the very large delays for a single Node-RED

instance. For completeness, these values are provided in Table 6.2. These

high delays are due to the single-threaded design of the underlying Node.js

instance [30]. Furthermore, the goodput for a Node-RED (single instance)

application dropped significantly for data rates above 7500 messages per

second, which can be seen in Figure 10b. To take advantage of multi-core

systems, a cluster of Node.js processes can be deployed to handle the load.

Therefore, six Node-RED instances were deployed and is referenced as Node-

RED multiple. Every instance subscribes to a MQTT broker, processes the

data and forwards it to the UDP server. This resulted in near-zero latency

and a 100% goodput.

For this experiment, Hono used the default configuration. However, as

Hono seemed to struggle with data rates above 5000 messages/second (which

was also reported in [31]), we deployed a Vert.x MQTT adapter for every

MQTT client. This resulted in slightly worse results in terms of latency and

goodput, compared to Node-RED.

Finally, FLINT consisted of six direct MQTT adapters that published

their data directly over the message bus to the UDP I/O adapter. Even

though FLINT requires at least twice the payload size of the other platforms,

the experiment showed slightly better results compared to Hono and slightly

worse results than Node-RED running multiple instances. We noticed that

the MQTT broker was dropping packets, which could have caused the 1%

packet loss. Increasing the queue size of the broker resulted in 0% packet

loss, however did increase the latency tremendously. The broker could in

FLINT: Flows for the Internet of Things 159

this case act as some sort of shock buffer and does not necessarily explain

the real cause of packet loss.

6.5.4 Mapper Forwarding Rate

FLINT provides flexibility in connecting non-interoperable IoT networks.

Due to its modularity, it is possible to interconnect various IoT components

on top of which the Mapper adapter can queue packets based on the interface

type of the device. These advantages, however, come at a cost. This section

analyzes the drawbacks introduced by the platform.

The above section used six direct adapters. This type of adapter forwards

the data directly to another endpoint in the platform. However, the Mapper

adapter can be used to forward data between several components. As shown

in Figure 6.11, the average latency increases and the goodput decreases,

since the message bus must process twice as many messages.

0 2500 5000 7500 10000 12500 15000 17500
req/s

0

10

20

30

40

50

de
la

y
(m

s)

direct
mapper
dummy

(a) Average delay in seconds

0 2500 5000 7500 10000 12500 15000 17500
req/s

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

go
od

pu
t

direct
mapper
dummy

(b) Goodput

Figure 6.11: The latency (in seconds) and goodput for six MQTT adapters
measured for different configurations in FLINT.

In order to measure the impact of another hop, a dummy adapter was

added to the system. This is a processing adapter that forwards the packet

after a No Operation (NOP). Messages will now flow from the MQTT

adapter to the Mapper adapter, to the dummy adapter and finally to the

UDP adapter. Using this configuration, the message bus must process three

times the amount of messages compared to the second configuration.

An overview of the measurements is given in Table 6.2. It can be seen

that the message bus and the Mapper adapter form a bottleneck for the

system. In the future, this can be solved in several ways. A first solution

could use MQTT v5 Shared Subscriptions. This feature distributes the load

across all subscribers on the same topic and is sometimes referred to as client

load balancing. This allows setting up multiple Mapper adapter instances

without having duplicates. To avoid saturation of the MQTT broker, a

cluster of MQTT brokers can be deployed. Managing a cluster of MQTT

160 Chapter 6

0 5 10 15 20 25 30 35
time (s)

0

10

20

30

40

50

60

CP
U

(%
)

CPU
Memory

0

1000

2000

3000

4000

5000

Re
al

 M
em

or
y

(M
B)

(a) FLINT Direct adapter
configuration without load balancing

0 5 10 15 20 25 30 35
time (s)

0

5

10

15

20

25

30

35

CP
U

(%
)

CPU
Memory

0

1000

2000

3000

4000

Re
al

 M
em

or
y

(M
B)

(b) FLINT Direct adapter
configuration with external broker

Figure 6.12: Comparison of a very simple load balancing method. The first
configuration runs every component on the same machine, while in the second

configuration the broker is moved to a different machine.

brokers, however, requires non-standard broker discovery, subscriber takeover

and routing management. Therefore, other messages busses, such as Apache

Kafka or Pulsar [32] can be used. This would require a few changes to the

system. First, the sink must be replaced in order to communicate with the

improved message bus. In Apache Kafka, multiple partitions can then be

used to form consumer groups. These groups avoid duplication of data over

multiple members subscribed to the same topic. As such, multiple mapper

instances can be deployed, without the need to redesign the Mapper adapter

completely. However, all Mapper adapters should access the same Thing

Descriptions, and therefore require access to a shared Thing Directory.

6.5.5 Resource Consumption

Finally, in Figure 6.12, two system configurations are presented in order

to explore the impact of a very basic workload offloading approach. In

Figure 6.12, a, every component runs on the same machine. This results

in an average of around 45% CPU load and 4.5 GB memory consumption.

In the second configuration, the MQTT broker was moved to a different

machine. This resulted in an average of only 17% CPU usage and 4 GB

memory consumption.

This confirms the previous statement that the message bus forms a

bottleneck for the system, since every message between components passes

through the broker. However, due to FLINT’s modularity, the message bus

can be transferred easily to a different system in order to divide the load, at

the cost of a higher network delay.

FLINT: Flows for the Internet of Things 161

Table 6.2: The Latency (L) in seconds, the Goodput (G) and the Payload size in
bytes for every platform using different configurations.

re
q/
s

4
5
0
0

1
0
5
0
0

1
4
5
0
0

1
7
5
0
0

A
ll

L
(s
)

G
L
(s
)

G
L
(s
)

G
L
(s
)

G
P
a
yl
oa
d
si
ze

(B
)

N
o
d
e
-R

E
D

(1
)

0.
00
7

0
.9
8

1
1.
63
3

0
.5

20
.8
4
3

0.
5
3

2
6.
2
78

0
.5
4

2
5
9

N
o
d
e
-R

E
D

(6
)

0
.0
01
6

1
0
.0
00
8

0.
99

0.
0
00
6

1
0
.0
0
07

0
.9
9

2
5
9

E
c
li
p
se

H
o
n
o

0.
00
7

1
0
.0
04

0.
99

0
.0
0
3

0
.9
9

0.
0
03

0
.9
9

2
5
9

F
L
IN

T
(d

ir
e
c
t)

0.
00
3

1
0
.0
02

0.
98

0
.0
0
4

0
.9
8

0.
0
02

0
.9
9

5
1
3

F
L
IN

T
(m

a
p
p
e
r)

0.
00
5

0
.9
9

0
.0
12

0.
97

0
.0
2
2

0
.7
8

0.
0
25

0
.6
4

1
1
0
2

F
L
IN

T
(d

u
m
m
y
)

0.
00
7

0
.9
8

0.
04

0.
63

0
.0
5

0.
4
1

0.
0
54

0
.3
3

1
2
0
2

162 Chapter 6

6.6 Discussion

Other platforms, such as INTER-IoT and Eclipse node-wot have been around

to provide interoperability in the IoT. However, INTER-IoT has become a

rather complex platform that provides multi-layer interoperability for large

scale projects. Eclipse node-wot, implemented in Node.js, merely focuses on

interoperability, rather than scalability.

These observations led to the initial design of FLINT with the main ob-

jective to interconnect non-interoperable IoT networks that are characterised

by intermittent connectivity. FLINT was designed to support five levels of

interoperability—syntactic interoperability, semantic interoperability, device

interoperability, network interoperability and platform interoperability. The

modularity of the design, consisting of a sink and agent, allows the recycling

of existing programs through the use of a socket connection, while still being

able to scale.

We implemented FLINT to support our design choices and to show how

the implementation behaves against different loads on comparable platforms.

Our evaluation showed that Node-RED performs best in terms of latency

and goodput. However, this requires to break apart the application in order

to take advantage of the available CPU cores of the system. Eclipse Hono

and FLINT show similar results. However, due to its flexible design using the

sink, developers require only little understanding of the underlying protocols

and can use any language that supports UDP sockets. Integrating business

logic in Eclipse Hono, on the contrary, requires both an AMQP library and

understanding of the protocol.

The evaluation showed that FLINT is able to deliver good performance

in a scalable, container based system. However, both the performance

evaluation of the Mapper adapter and the resource consumption of the basic

load balancing approach show the impact of a single, central message bus.

Since every message has to pass through the broker and, if configured, the

Mapper adapter, this forms a bottleneck for the system. Therefore, other

distributed streaming platforms, such as Apache Kafka or Pulsar can be

used in the future to provide support for use cases that require higher data

rates.

6.7 Conclusions

FLINT is an open and extensible distributed platform architecture. Chains of

adapters can be built in order to serve non-interoperable IoT devices. FLINT

was developed and tested in the scope of the Port of the Future where several

adapters interconnect networks and platforms. Due to the modularity of an

FLINT: Flows for the Internet of Things 163

adapter, developers can easily integrate existing software while maintaining

a flexible design. This will allow further evolution of separate networks and

platforms and may contribute to inter-port interaction, port-city interaction

and trans-sector innovation in general. Our performance analysis shows that

the modularity is comparable to other existing platforms, while offering the

ability to develop software using rapid prototyping approaches. In order to

maintain a scalable platform, components can be replicated in a distributed

network. However, scalability should still be looked at in more detail.

Duplicates must be avoided when deploying multiple adapter instances and

the abilities of different messages busses should be analyzed. FLINT is free

software; it is available for download at https://github.com/imec-idlab/flint

(accessed on 06/10/2021).

https://github.com/imec-idlab/flint

164 Chapter 6

References

[1] Amazon. AWS IoT Core for LoRaWAN. Available from: https://docs.

aws.amazon.com/iot/latest/developerguide/connect-iot-lorawan.html.

[2] K. Technologies. Kaa Enterprise IoT Platform. Available from: https:

//www.kaaiot.com.

[3] M. Inc. ThingSpeak Internet of Things. Available from: https://

thingspeak.com/.

[4] M. Noura, M. Atiquzzaman, and M. Gaedke. Interoperability in Internet

of Things: Taxonomies and Open Challenges. Mobile Networks and

Applications, 24(3):796–809, June 2019. Available from: http://link.

springer.com/10.1007/s11036-018-1089-9, doi:10.1007/s11036-018-1089-

9.

[5] Y. Yang, M. Zhong, H. Yao, F. Yu, X. Fu, and O. Postolache. Inter-

net of things for smart ports: Technologies and challenges. IEEE

Instrumentation & Measurement Magazine, 21(1):34–43, February

2018. Available from: http://ieeexplore.ieee.org/document/8278808/,

doi:10.1109/MIM.2018.8278808.

[6] T. Inkinen, R. Helminen, and J. Saarikoski. Port Digitalization with

Open Data: Challenges, Opportunities, and Integrations. Journal of

Open Innovation: Technology, Market, and Complexity, 5(2):30, May

2019. Available from: https://www.mdpi.com/2199-8531/5/2/30,

doi:10.3390/joitmc5020030.

[7] J. Famaey, R. Berkvens, G. Ergeerts, E. D. Poorter, F. V. D. Abeele,

T. Bolckmans, J. Hoebeke, and M. Weyn. Flexible Multimodal Sub-

Gigahertz Communication for Heterogeneous Internet of Things Ap-

plications. IEEE Communications Magazine, 56(7):146–153, jul 2018.

doi:10.1109/MCOM.2018.1700655.

[8] V. Bracke, M. Sebrechts, B. Moons, J. Hoebeke, F. De Turck, and

B. Volckaert. Design and evaluation of a scalable Internet of Things

backend for smart ports. Software: Practice and Experience, 51(7):1557–

1579, July 2021. Available from: https://onlinelibrary.wiley.com/doi/

10.1002/spe.2973, doi:10.1002/spe.2973.

[9] B. Buurman, J. Kamruzzaman, G. Karmakar, and S. Islam. Low-Power

Wide-Area Networks: Design Goals, Architecture, Suitability to Use

Cases and Research Challenges. IEEE Access, 8:17179–17220, 2020.

doi:10.1109/ACCESS.2020.2968057.

https://docs.aws.amazon.com/iot/latest/developerguide/connect-iot-lorawan.html
https://docs.aws.amazon.com/iot/latest/developerguide/connect-iot-lorawan.html
https://www.kaaiot.com
https://www.kaaiot.com
https://thingspeak.com/
https://thingspeak.com/
http://link.springer.com/10.1007/s11036-018-1089-9
http://link.springer.com/10.1007/s11036-018-1089-9
http://ieeexplore.ieee.org/document/8278808/
https://www.mdpi.com/2199-8531/5/2/30
https://onlinelibrary.wiley.com/doi/10.1002/spe.2973
https://onlinelibrary.wiley.com/doi/10.1002/spe.2973

FLINT: Flows for the Internet of Things 165

[10] A. Minaburo, L. Toutain, C. Gomez, D. Barthel, and JC. Zúñiga.

SCHC: Generic Framework for Static Context Header Compression

and Fragmentation. Technical Report RFC8724, RFC Editor, April

2020. Available from: https://www.rfc- editor.org/info/rfc8724,

doi:10.17487/RFC8724.

[11] B. Moons, A. Karaagac, J. Haxhibeqiri, E. D. Poorter, and J. Hoebeke.

Using SCHC for an optimized protocol stack in multimodal LPWAN

solutions. In 2019 IEEE 5th World Forum on Internet of Things (WF-

IoT), pages 430–435, Limerick, Ireland, April 2019. IEEE. Available

from: https://ieeexplore.ieee.org/document/8767210/, doi:10.1109/WF-

IoT.2019.8767210.

[12] M. Aernouts, N. BniLam, N. Podevijn, D. Plets, W. Joseph, R. Berkvens,

and M. Weyn. Combining TDoA and AoA with a particle filter in an

outdoor LoRaWAN network. In 2020 IEEE/ION Position, Location and

Navigation Symposium (PLANS), pages 1060–1069. IEEE, apr 2020.

doi:10.1109/PLANS46316.2020.9110172.

[13] T. Janssen, M. Weyn, and R. Berkvens. A Primer on Real-world RSS-

based Outdoor NB-IoT Localization. In 2020 International Conference

on Localization and GNSS (ICL-GNSS), pages 1–6. IEEE, jun 2020.

doi:10.1109/ICL-GNSS49876.2020.9115578.

[14] G. G. Anagnostopoulos and A. Kalousis. A Reproducible Analysis of

RSSI Fingerprinting for Outdoor Localization Using Sigfox: Preprocess-

ing and Hyperparameter Tuning. In 2019 International Conference on

Indoor Positioning and Indoor Navigation (IPIN), pages 1–8. IEEE, sep

2019. arXiv:1908.06851, doi:10.1109/IPIN.2019.8911792.

[15] F. Zafari, A. Gkelias, and K. K. Leung. A Survey of Indoor Localization

Systems and Technologies. IEEE Communications Surveys & Tutorials,

21(3):2568–2599, 2019. doi:10.1109/COMST.2019.2911558.

[16] Y. Li, Y. Zhuang, X. Hu, Z. Gao, J. Hu, L. Chen, Z. He, L. Pei,

K. Chen, M. Wang, X. Niu, R. Chen, J. Thompson, F. Ghannouchi,

and N. El-Sheimy. Toward Location-Enabled IoT (LE-IoT): IoT Po-

sitioning Techniques, Error Sources, and Error Mitigation. IEEE

Internet of Things Journal, 4662(c):1–1, 2020. arXiv:2004.03738,

doi:10.1109/JIOT.2020.3019199.

[17] M. Aernouts, F. Lemic, B. Moons, J. Famaey, J. Hoebeke, M. Weyn,

and R. Berkvens. A Multimodal Localization Framework Design for IoT

Applications. Sensors, 20(16):4622, aug 2020. doi:10.3390/s20164622.

https://www.rfc-editor.org/info/rfc8724
https://ieeexplore.ieee.org/document/8767210/

166 Chapter 6

[18] Data - W3C. Available from: https://www.w3.org/standards/

semanticweb/data.

[19] A. Dimou, M. V. Sande, and P. Colpaert. RML: A Generic Language

for Integrated RDF Mappings of Heterogeneous Data. page 5, 2014.

[20] S. Sinche, D. Raposo, N. Armando, A. Rodrigues, F. Boavida, V. Pereira,

and J. S. Silva. A Survey of IoT Management Protocols and Frame-

works. IEEE Communications Surveys Tutorials, 22(2):1168–1190,

2020. Conference Name: IEEE Communications Surveys Tutorials.

doi:10.1109/COMST.2019.2943087.

[21] O. LwM2M. Lightweight Machine to Machine Technical Speci-

fication: Core, November 2020. Available from: http://www.

openmobilealliance.org/release/LightweightM2M/V1 2-20201110-A/

OMA-TS-LightweightM2M Core-V1 2-20201110-A.pdf.

[22] O. Foundation. Node-RED: Low-code programming for event-driven

applications. Available from: https://nodered.org/.

[23] Thingweb. ThingWeb: A Web of Things Implementation. Available

from: https://www.thingweb.io/.

[24] P. Gimenez and M. Llop. Interoperability of IoT platforms

in the port sector. other, March 2020. Available from:

https : / / www .morressier . com / article / 5e4fe9bf6bc493207536f6d6,

doi:10.26226/morressier.5e4fe9bf6bc493207536f6d6.

[25] O. Inc. OpenRemote: The 100% Open Source IoT Platform. Available

from: https://openremote.io/.

[26] G. Fortino, C. Savaglio, C. E. Palau, J. S. de Puga, M. Ganzha,

M. Paprzycki, M. Montesinos, A. Liotta, and M. Llop. Towards Multi-

layer Interoperability of Heterogeneous IoT Platforms: The INTER-

IoT Approach. In R. Gravina, C. E. Palau, M. Manso, A. Li-

otta, and G. Fortino, editors, Integration, Interconnection, and In-

teroperability of IoT Systems, pages 199–232. Springer International

Publishing, Cham, 2018. Series Title: Internet of Things. Avail-

able from: http://link.springer.com/10.1007/978-3-319-61300-0 10,

doi:10.1007/978-3-319-61300-0 10.

[27] T. T. Authors. ThingsBoard: Open-source IoT Platform. Available

from: https://thingsboard.io/.

[28] T. E. H. Project. Eclipse Hono: Connect, Command & Control IoT

devices. Available from: https://www.eclipse.org/hono/.

https://www.w3.org/standards/semanticweb/data
https://www.w3.org/standards/semanticweb/data
http://www.openmobilealliance.org/release/LightweightM2M/V1_2-20201110-A/OMA-TS-LightweightM2M_Core-V1_2-20201110-A.pdf
http://www.openmobilealliance.org/release/LightweightM2M/V1_2-20201110-A/OMA-TS-LightweightM2M_Core-V1_2-20201110-A.pdf
http://www.openmobilealliance.org/release/LightweightM2M/V1_2-20201110-A/OMA-TS-LightweightM2M_Core-V1_2-20201110-A.pdf
https://nodered.org/
https://www.thingweb.io/
https://www.morressier.com/article/5e4fe9bf6bc493207536f6d6
https://openremote.io/
http://link.springer.com/10.1007/978-3-319-61300-0_10
https://thingsboard.io/
https://www.eclipse.org/hono/

FLINT: Flows for the Internet of Things 167

[29] A. Karaagac, M. VanEeghem, J. Rossev, B. Moons, E. DePoorter,

and J. Hoebeke. Extensions to LwM2M for Intermittent Connectivity

and Improved Efficiency. In 2018 IEEE Conference on Standards for

Communications and Networking (CSCN), pages 1–6, Paris, France,

October 2018. IEEE. Available from: https://ieeexplore.ieee.org/

document/8581821/, doi:10.1109/CSCN.2018.8581821.

[30] Cluster | Node.js v16.5.0 Documentation. Available from: https://

nodejs.org/api/cluster.html.

[31] J. Reimann. We scaled IoT – Eclipse Hono in the lab, July 2018.

Available from: https://dentrassi.de/2018/07/25/scaling-iot-eclipse-

hono/.

[32] V. John and X. Liu. A Survey of Distributed Message Broker Queues.

page 9.

https://ieeexplore.ieee.org/document/8581821/
https://ieeexplore.ieee.org/document/8581821/
https://nodejs.org/api/cluster.html
https://nodejs.org/api/cluster.html
https://dentrassi.de/2018/07/25/scaling-iot-eclipse-hono/
https://dentrassi.de/2018/07/25/scaling-iot-eclipse-hono/

7
Conclusion

“A dream you dream alone is only a dream. A dream you dream together is

reality.”

John Lennon

Interoperability is something that has been part of the Internet since the

American Ministry of Defence introduced the Advanced Research Projects

Agency Network (ARPANET) in 1969. Researchers proposed packet switch-

ing methods in Request For Comments (RFC) to provide a common way

of communicating. The foundations of the Web were also laid by Tim

Berners-Lee’s proposal about standardized information sharing. Without

these standardization efforts both the World Wide Web (WWW) and the

Internet wouldn’t have contributed to the largest communication platform in

human history. Private companies are nevertheless often looking to provide

the highest efficiency possible and consequently proprietary solutions have

been around since the development of the first terrestrial communication

systems. However, standardization is much needed to provide trade-offs

between efficiency and interoperability so that global communication systems

can sprout.

Just like the Internet and the WWW grew out of a connection of machines,

so will the Internet of Things (IoT) emerge from a connection of smart

devices. In order to connect these IoT devices, many wireless technologies

170 Chapter 7

are available. Communication protocols such as IEEE 802.15.4, ZigBee and

Bluetooth Low Energy (BLE) provide wireless links for short range IoT

devices, while technologies such as Long Range (LoRa) and Sigfox, provide

very long range wireless communication links. These Low Power Wide Area

Network (LPWAN) technologies provide a promising solution for many use

cases ranging from Smart Logistics to Smart Ports. Energy savings, structure

monitoring and asset tracking are just a few of the many cases that can

benefit from the added efficiency that the IoT is expected to bring. Their

long range and low power consumption provide a communication link for

devices that should operate on a single battery charge for multiple years.

However, these benefits come at the cost of very low bandwidth. These

constraints complicate the issue of interoperability in this domain. Not

only will interoperable systems limit the integration effort and speed up the

adoption of these technologies, they can also integrate them into the Web

of the future. As has been proven in the past a single smart device cannot

add much value, it is the combination of things (i.e. an ecosystem) that will

disrupt the future.

Therefore, this PhD examined interoperability issues from sensor to

storage in LPWANs. Not much research has been conducted to provide a

complete interoperable LPWANs system that can be plugged into future

versions of the Internet and the WWW. In order to connect these devices to

the Internet following its well-proven end-to-end principle, this dissertation

investigated the novel Static Context Header Compression (SCHC) protocol.

This adaptation layer sits between the Medium Access Control (MAC) layer

and the network layer and compresses the upper layers of the Internet

protocol stack in order to limit the overhead over these low bandwidth

technologies. Current solutions lack the ability to provide an interoperable

solution which, as shown in Chapter 2, can be solved by SCHC.

However, given the static nature of this protocol, the current solution

cannot solve the end-to-end issue entirely. LPWANs typically connect

via an Application Programming Interface (API) to a back-end application,

resulting in an engineered link for every technology as we showed in Chapter 4.

Therefore, Chapter 3 provides a way to move the complexity in such networks

to the gateway. Both solutions result in a higher energy consumption due

to the extra traffic to complete the registration flow. Even though the

specification has been designed following the fact that the traffic flows to be

compressed are known in advance, the slightest change in the application will

result in a significant higher energy consumption. This was shown on the basis

of an example taken from the Light Weight Machine to Machine (LwM2M)

specification. LwM2M has a way to provision devices with the credentials

of the network and thus requires altering the context during operation. We

Conclusion 171

showed that in such a situation a constrained device can benefit from both

solutions.

The work done in Chapter 3 provided a solution to move away from

systems that can be integrated only by using their APIs. However, in order

to incorporate multiple technologies on a single device, a central orchestra-

tion entity will always be required to keep track of the last active gateway.

Therefore, a modular architecture was proposed in Chapter 4 to handle

transmissions over multiple technologies. In such architecture, LPWAN

technologies can complement each other. Medium range technologies can be

used to distribute Over The Air (OTA) Updates (OTAUs), offload sensor

readings or patch security issues, while long range technologies can provide

nation wide connectivity. In order to select the best available LPWAN

technology, a novel network detection algorithm was designed that provides

parameter trade-offs between the network discovery time and desired reliabil-

ity. The algorithm was shown to help save energy when configured correctly

and provide OTAUs for a Sigfox device, which by itself is only capable of

receiving 32 bytes.

Whereas Chapters 2 to 4 delivered device and network interoperability

for multimodal LPWAN devices, Chapter 5 tries to come up with a solution

to provide interoperability at a semantic level. The Chapter investigates

how data coming from LPWANs can be prepared for the Semantic Web.

Technologies that have been around for years, such as Resource Description

Framework (RDF), weren’t optimized for constrained networks. Therefore,

a mapping tool was added to the architecture that can convert IoT (man-

agement) semantics to an RDF-based ontology. The evaluation showed that

using this approach, it is possible to convert regular IoT data to Linked

Data (LD) while consuming substantially less energy compared to a regular

LD approach.

Both Chapter 4 and 5 showed the need of a central entity in order

to provide the targeted interoperability and multimodality. In order to

cope with this need, Chapter 6 presented a generic approach in developing

interoperable, scalable and extensible LPWAN IoT applications. The mod-

ularity of the platform, makes it easy to integrate adapters that connect

non-interoperable networks, platforms and applications. The provided plat-

form interoperability, cross-domain interoperability and modular approach

allow fast prototyping and integration of existing software. Therefore, it

may in the future contribute to trans-sector innovation.

172 Chapter 7

7.1 Future Work

The adoption of LPWAN technologies, and IoT technologies in general,

did not reach its peak yet. Much of its potential is currently locked in

vertical silos. Silos in multiple domains were addressed in this dissertation

in order to move towards a horizontally interconnected LPWAN landscape.

However, this dissertation only offers a few solutions to move towards scalable,

interoperable, heterogeneous LPWA networks. The following section gives a

non exhaustive overview of existing problems that still exist and possible

avenues to investigate.

Although SCHC provides a standards-based approach for communication

over LPWANs, and ideally, the developed device and context registration

mechanisms could result in decentralized LPWAN systems, further research

is required in order to decouple these networks from their APIs. Eventually,

this could lead to a connected Wide Area landscape, were devices can roam

freely between heterogeneous networks. However, just like in Mobile Internet

Protocol (IP), connectivity should be achieved seamlessly, without device

or user intervention. Mobile IP provides a node with the ability to retain

the same IP address, while moving between networks, with the help of a

Foreign Agent and a Home Agent. These concepts might be translated to

SCHC-enabled LPWANs, which could lead to global LPWAN connectivity.

Currently, LPWAN deployments are not as congested as the 2.4 Gigahertz

(GHz) band, where scheduling algorithms are being used for fairness among

technologies that use the same frequency space. However, with the upcoming

trend of IoT, this is expected to happen in the Industrial, Scientific and

Medical (ISM) band too. Due to the use of sub-GHz radio frequencies, a

single LPWAN base station has a large coverage area that can support a high

number of connected devices (> 1000) and since most LPWAN technologies

do not employ an advanced MAC protocol, scaling up the number of devices

may result in a network collapse. Several solutions have been proposed for

single technology deployments, such as the use of Carrier-Sense Multiple

Access with Collision Avoidance (CSMA/CA), Request to Send and Clear

to Send (RTS/CTS) and time based scheduling. The latter has been proven

to provide the most efficient and scalable solution. However, co-located

networks may still interfere with each other. Therefore, there is a need for

cross-technology scheduling and cross-gateway coordination in multimodal

networks.

This dissertation focused on the widespread Internet Protocol; the heart of

the Internet architecture. It is a simple, universal layer that allows devices to

communicate with a destination directly. However, the growth of the Internet

led to a network that is mainly used to distribute content. This resulted in

Conclusion 173

many complex Internet protocols that solve distribution problems over a

communications network. Therefore, Van Jacobsen introduced the concept

of Content Centric Networking (CCN) in 2006 to provide an alternative to

the Internet Protocol Specification (RFC791). This proposes an evolution

from the current, location-based networking to content-based networking,

leveraging on the idea that people value the Internet for what content it

contains and not where it resides. From this project, the Named Data

Networking (NDN) project emerged to investigate Jacobsen’ proposal. The

IoT has been identified as a potential deployment area for Information

Centric Networks (ICNs) and therefore received increasing attention from

the research community. However, extensive header values make it unfeasible

to use NDN over networks with limited bandwidth capabilities. Further

investigation should clarify whether it can be used directly on top of LPWAN

networks. NDN provides native support for mobility, therefore, a comparative

study might shed light on which of both approaches is the most feasible. The

header overhead of NDN should be studied, as it can have a large impact

on the energy consumption of constrained devices. SCHC could play a role

in communication optimization in NDN networks over constrained wireless

links.

The architecture that was presented in Chapter 6 has at its core a

directory that contains all Thing Descriptions (TDs), based on the World

Wide Web Consortium (W3C) Web of Things (WoT) specification. The

directory exposes an API that can be used to create, read, update and delete

a TD and to browse things. Hence, the directory can be used by other

Web resources to discover the connected devices. FLINT has implemented

a small part of the WoT specification for further exploration of the W3C

specification for LPWAN devices. Since most LPWAN devices are sleeping

end-points that can not be reached directly, digital twins can reflect their

last known state. However, applications should be redirected to a device

its Linked Data Platform (LDP) end-point in order to retrieve historical

measurements. Furthermore, FLINT has developed a solution to deal with

multimodality in constrained networks. These solutions can be used as a

leverage point for Web of Things platforms.

A
Device Discovery and Context

Registration in SCHC Networks

This Chapter provides additional material to clarify various proposals from

chapter 3.

A.1 SCHC Neighbor Discovery

Static Context Header Compression (SCHC)-compressed Neighbor Discovery

(ND) builds on optimized ND, which introduced the Address Registration

Option. When using the Address Registration Option (ARO), several

requirements are imposed to the client [1], which can be optimized using

SCHC. First of all, the address to be registered must be the Internet

Protocol Version 6 (IPv6) source address of the message. Therefore, the client

should perform stateless address configuration first and send the generated

IPv6 Interface Identifier (IID) address in the residue of the SCHC packet.

Furthermore, the Destination Address field should be set to the unicast

address of the target. This, however, can be reconstructed by the receiving

gateway and can therefore be elided. Furthermore, a Source Link-Layer

Address Option (SLLAO) must be included, the Extended Unique Identifiers

(EUI)-64 field can be computed using SCHC and can therefore be elided. The

compression rules for a Network Server (NS)/Neighbor Advertisement (NA)

exchange is given in Table A.1. The table also shows that the SCHC-

176 Device Discovery and Context Registration in SCHC NetworksA

compressed ARO message must not carry the target Medium Access Control

(MAC) address of the SCHC gateway, as this can be reconstructed using

the values of the Router Advertisement (RA). The ARO also includes the

lifetime of the registration in the upward direction (in units of 60 seconds)

and the status of the registration in the downward direction.

Device Discovery and Context Registration in SCHC Networks 177

Table A.1: SCHC neighbor discovery NS/NA for Ack-on-Error and Ack-Always.

Field FL DI TV MO CDA

IPv6 Version 4 BI 6 equal not-sent

IPv6 Traffic Class 8 BI - ignore not-sent

IPv6 Flow Label 20 BI - ignore not-sent

IPv6 Length 16 BI - ignore compute-*

IPv6 Next Header 8 BI 58 equal not-sent

IPv6 Hop Limit 8 BI 255 ignore not-sent

IPv6 Src Prefix 64 UP - ignore not-sent

IPv6 Src IID 64 UP - ignore value-sent

IPv6 Src Prefix 64 DO - ignore not-sent

IPv6 Src IID 64 DO - ignore not-sent

IPv6 Dst Prefix 64 UP - ignore not-sent

IPv6 Dst IID 64 UP - ignore not-sent

IPv6 Dst Prefix 64 DO - ignore not-sent

IPv6 Dst IID 64 DO - ignore not-sent

ICMPv6 NS 8 UP 135 equal not-sent

ICMPv6 NA 8 DO 136 equal not-sent

ICMPv6 Code 8 BI 0 equal not-sent

ICMPv6 Checksum 16 BI 0 ignore compute-*

ICMPv6 Reserved 32 UP 0 ignore not-sent

ICMPv6 R 1 DO 1 ignore not-sent

ICMPv6 S 1 DO 1 ignore not-sent

ICMPv6 O 1 DO 0 ignore not-sent

ICMPv6 Reserved 29 DO 0 ignore not-sent

ICMPv6 Target Addr 128 BI - ignore not-sent

ICMPv6 SLLAO 8 UP 1 equal not-sent

ICMPv6 Length 8 UP 1 equal not-sent

ICMPv6 EUI-64 64 UP - ignore compute-*

ICMPv6 ARO 8 BI 33 equal not-sent

ICMPv6 Length 8 BI 2 equal not-sent

ICMPv6 Status 8 UP 0 equal not-sent

ICMPv6 Status 8 DO - ignore value-sent

ICMPv6 Reserved 24 BI 0 ignore not-sent

ICMPv6 Lifetime 16 BI - ignore value-sent

ICMPv6 EUI-64 64 BI - ignore not-sent

178 Device Discovery and Context Registration in SCHC NetworksA

A.2 SCHC Context Options

SCHC Context Options are divided in Fixed Size Context Options and

Variable Size Context Options. Both message structures have a fixed flag

field, indicating either the fixed (0) or variable (1) type. The layer field (2

bits) indicates which layer is targeted; (0) the network layer, (1) transport

layer, or (2) application layer, leaving room for inclusion of other protocols.

The fixed header employs a 4-bit type field, which reflects the header fields

of the targeted protocol in the order of appearance. The variable header on

the contrary, uses an 8-bit type field to indicate the type of, for example,

a Constrained Application Protocol (CoAP) option. A CoAP message can

therefore be constructed using variable and fixed sized options. The variable

sized fields require the Field Position (FP) (3 bits) option, as they can appear

multiple times in a single header. The Field Length indicates the Target

Value (TV)’s number of bits and can be used to calculate the total length of

the Internet Control Message Protocol (ICMP) for IPv6 (ICMPv6) message.

Finally, both structures indicate the Direction using the DI field (2 bits) to

indicate the direction (0) Up, (1) Down, or (2) Bidirectional. For fixed sized

headers, the DI field and the type are used to form a unique combination

inside the rule. Fields in variable sized headers can be distinguished by

means of FP and Type.

Next, the Matching Operator (MO) field (2 bits) indicates which Match-

ing Operator will be used.

• 0x00 indicates the equal MO

• 0x01 indicates the ignore MO

• 0x02 indicates the MSB(x) MO

• 0x03 indicates the match-mapping MO

Both MSB(x) and match-mappingMO, however, require extra parameters.

The MSB(x) MO will only transmit x bits of the Target Value, while the

match-mapping MO implements an array of which the index is sent as a

compressed value. In order to configure this information, a SCHC Context

Option with the MO field set to 0x02 or 0x03, must be succeeded by an

8-bit SCHC Compression Action Option, given in Figure A.1.

When the MSB(x) MO is targeted, the Parameter Value field carries

the number of bits that must be transmitted. When configuring the

match-mapping MO, the Parameter Value is used to indicate the length

of the array. In order to distinguish between different entries, the Tar-

get Value of any array must be constructed using Concise Binary Object

Representation (CBOR).

Device Discovery and Context Registration in SCHC Networks 179

Parameter Value

0 8

Figure A.1: SCHC compression action option.

Finally, the Compression Decompression Action (CDA) field (3 bits) is

used to designate which Compression/Decompression Action to use

• 0x00 not-sent

• 0x01 value-sent

• 0x02 mapping-sent

• 0x03 LSB

• 0x04 compute-*

• 0x05 DevIID

• 0x06 AppIID

A.3 SCHC Parameter Option

The SCHC Parameter Option (SPO) can set the following values:

• Type: 41

• RULE ID SIZE: 4 bits indicating the default number of bits for a rule id

• WINDOW SIZE (M): 6 bits indicating the default window size in bits. If

set to 0, no windows are used.

• MAX ACK REQ: 4 bits indicating the default maximum allowed acknowl-

edgment requests

• RCS SIZE: 6 bits to indicate the default size used to calculate the Cyclic

Redundancy Check (and default polynomial 0xEDB88320, with size

equal to RCS SIZE)

• DTAG (T): 3 bits indicating the Datagram Tag size. If set to 0, no more

than 1 SCHC packet can be in transit for each fragmentation rule id.

• P: the value of the padding bits

180 Device Discovery and Context Registration in SCHC NetworksA

• RETRANSMISSION TIMER: 16 bits in units of 60 seconds, resulting in a

maximum of 45 days and 12 hours for reliability modes to time out

while waiting for an acknowledgment

• INACTIVITY TIMER: 16 bits in units of 60 seconds representing the time

before a receiver will abort waiting for a SCHC message

Device Discovery and Context Registration in SCHC Networks 181

References

[1] Z. Shelby, S. Chakrabarti, E. Nordmark, and C. Bormann. Neighbor

Discovery Optimization for IPv6 over Low-Power Wireless Personal

Area Networks (6LoWPANs). Technical Report RFC6775, RFC Editor,

November 2012. Available from: https://www.rfc-editor.org/info/rfc6775,

doi:10.17487/rfc6775.

https://www.rfc-editor.org/info/rfc6775

	Front cover
	Table of Contents
	List of Figures
	List of Tables
	List of Acronyms
	Samenvatting
	Summary
	Introduction
	Background
	A Brief History of the Internet
	The Web and the Internet of Things

	The Future Web
	Research Challenges
	Outline
	Contributions
	List of Publications
	Publications in international journals(SCI)
	Publications in international conferences (SCI)
	Publications in other International Conferences
	Publications in other International Journals

	References

	Overview and implementation of the SCHC standard
	Low Power Wide Area Networks
	LoRa
	DASH-7
	Sigfox
	Others

	IETF Protocols for Constrained Devices
	CoAP
	Observe
	No-Response Option
	CoAP block-wise transfer

	6LoWPAN and 6lo

	Static Context Header Compression
	Compression
	Fragmentation

	Multi protocol analysis
	Overhead

	Implementation
	Network Memory Buffers
	Connection State
	Timers and Retransmissions

	Evaluation
	Connections
	Memory Footprint

	Conclusion
	References

	Device Discovery and Context Registration in SCHC Networks
	Introduction
	Related Work

	Motivation
	Device Management and Registration
	Basic Neighbor Discovery Protocol
	Optimized Neighbor Discovery Protocol
	Address Registration Option
	Prefix and Context Information Distribution
	Others

	NETCONF
	CORECONF

	LwM2M
	Conclusion

	Device Registration
	SCHC Rule Registry
	SCHC Registration
	Registration

	SCHC Optimized Neighbor Discovery

	Context Configuration
	SCHC Registration
	Extended Registration
	Fragmentation
	Application Layer Compression
	Limitations

	SCHC Control Messages
	Context Advertisement Object and Context Option
	Synchronization
	SCHC Parameter Option

	Evaluation
	Comparison
	Registration Overhead
	Registration Time

	SCHC ND: Context Configuration Overhead
	Energy overhead

	LwM2M Configuration
	CoAP Compression

	Discussion
	CORECONF

	Future Work
	SCHC
	ICMPv6
	Security

	References

	Efficient Vertical Handover in Heterogeneous Low Power Wide Area Networks
	Introduction
	Case study: Construction and Logistics
	Problem statement and research goals
	Related Work
	Low Power WAN Discovery
	Overall System Architecture
	Network Discovery Method
	End-device state machine
	Network Drivers
	Example

	Virtual Network Operator

	Performance Evaluation
	Energy Overhead
	Energy Model
	Simulation

	Network Discovery Time and Reliability
	Network Discovery Time
	Reliability Latency

	Configuration
	Reliability overhead
	Implementation Overhead

	Conclusion
	References

	Linked Data in Constrained Wireless Sensor Networks
	Motivation
	Open Standards
	RDF
	NGSI-LD
	LPG

	Responsible use of Data
	SOLID
	Towards an (Open) Web of Things
	Linked Open Data
	Open Cities

	Related Work
	Background Technologies
	SOLID
	IoT ontologies

	LwM2M

	Architecture
	System Overview
	Implementation

	Evaluation
	CoAP CON request
	CoAP response
	JSON-LD optimization

	Conclusion
	References

	FLINT: Flows for the Internet of Things
	Introduction
	Case Study—Port of the Future
	Heterogeneous LPWAN
	Localization
	Data Transformation

	Related Work
	Flint Architecture
	Adapter Types
	Device Based Context
	Packet Storage
	Device Configuration

	Evaluation
	Levels of Interoperability
	Syntactic Interoperability
	Device and Network Interoperability
	Semantic and Platform Interoperability

	Scalability
	Performance Evaluation
	Experimental Setup
	Analysis of Platform Performance

	Mapper Forwarding Rate
	Resource Consumption

	Discussion
	Conclusions
	References

	Conclusion
	Future Work

	Device Discovery and Context Registration in SCHC Networks
	SCHC Neighbor Discovery
	SCHC Context Options
	SCHC Parameter Option
	References

