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Samenvatting
– Summary in Dutch –

In de afgelopen jaren heeft de introductie van clouddiensten een hele revolutie
teweeggebracht voor implementaties van applicaties. Cloud computing heeft de
laatste tijd een enorme groei doorgemaakt en is de standaard geworden voor het
uitvoeren van applicaties. Eindgebruikers en apparaten maken verbinding naar
een cloudgebaseerd systeem waar deze applicaties worden ingezet. Toegang tot
e-mails of het opslaan van documenten via internet zijn voorbeelden van dien-
sten die momenteel worden uitgevoerd in de cloud. Cloudsystemen verlagen de
kosten voor ondernemingen omdat computationele hulpmiddelen worden aange-
vraagd via een cloudprovider die verantwoordelijk is voor onderhoud en upgrades
van het cloudsysteem. Bovendien hebben recente toepassingsdomeinen zoals het
Internet der Dingen (IoT) en Slimme Steden nieuwe uitdagingen geïntroduceerd
voor traditionele cloud systemen. Een van de uitdagingen die blijft bestaan, is om
efficiënte allocatiestrategieën voor hulpbronnen aan te bieden voor dit soort toe-
passingen. Cloud providers streven ernaar om onnodige implementatiekosten te
vermijden en hun hardware-infrastructuur te optimaliseren zonder de met eindge-
bruikers overeengekomen Service Level Agreements (SLA’s) te schenden. Deze
toepassingen introduceren echter een nieuwe reeks strenge eisen (b.v. lage latentie,
hoge bandbreedte) die traditionele toewijzingsstrategieën niet kunnen inwilligen,
aangezien hun primaire focus het optimaliseren van de efficiëntie van hulpbronnen
is (b.v. CPU en RAM). Latentiereductie speelt een grote rol voor latentiegevoelige
IoT-toepassingen, aangezien zelfs een kleine vertraging hun prestaties drastisch
kan beïnvloeden, vooral bij gezondheidsmonitoring en noodhulptoepassingen.
IoT-verkeer is de afgelopen jaren exponentieel gegroeid, waardoor gecentraliseerde
cloudsystemen ongeschikt zijn voor IoT. Traditionele clouds kunnen niet omgaan
met de strenge vereisten geïntroduceerd door IoT-toepassingen, aangezien hulp-
middelen gelijktijdig door meerdere apparaten op verschillende locaties kunnen
worden aangevraagd. De huidige clouds kunnen geen lage latentie handhaven voor
al deze apparaten verspreid over het netwerk. Om om te gaan met de beperkingen
van gecentraliseerde clouds, wordt het Fog Computing-paradigma geïntroduceerd.
Fog Computing is een uitbreiding op het Cloud Computing-paradigma waar com-
putationele hulpmiddelen aan de randen van het netwerk worden geplaatst om
de latentie die wordt verwacht door IoT-apparaten te verminderen. Fogknopen
vertegenwoordigen een kleine cloud-entiteit die een kleinere set computationele
hulpmiddelen biedt in vergelijking met cloudlocaties. IoT-apparaten, voorname-
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lijk sensoren en actuatoren, communiceren met foglocaties via draadloze gate-
ways. Niettemin blijven onderzoeksuitdagingen bestaan in Fog Computing omdat
het nog geen volwassen concept is. Dit proefschrift behandelt verschillende uit-
dagingen in het Fog Computing-domein gericht op het bieden van een efficiënte
toewijzing van middelen in deze gedistribueerde infrastructuren.
Ten eerste bespreekt dit proefschrift het probleem van het toewijzen van IoT-
diensten in Fog Computing. Efficiënte allocatiestrategieën vinden in een gedistri-
bueerde cloudinfrastructuur is de afgelopen jaren een van de grootste uitdagingen
in Fog Computing geweest. Verschillende diensten vormen samen een enkele IoT-
toepassing, volgens het principe van Dienstgeoriënteerde Architecturen (SOA). De
verdeling van computationele hulpmiddelen over het netwerk voegt verdere com-
plexiteit toe aan het toewijzen van IoT-diensten, omdat bronnen overal beschikbaar
zijn en aanvragen voor diensten van meerdere locaties kunnen komen. De toewij-
zingsstrategieën moeten rekening houden met efficiënt gebruik van hulpbronnen
en de vermindering van latentie, aangezien dit de belangrijkste vereisten zijn voor
vertragingsgevoelige IoT-toepassingen. Het instantiëren van diensten ver van ap-
paraten zou resulteren in een hoge communicatielatentie. Daarom moeten de real-
time beperkingen van tijdgevoelige IoT-toepassingen worden erkend in de strategie
voor het toewijzen van middelen, terwijl de implementatiekosten worden gemini-
maliseerd en de Dienstkwaliteit (QoS) gemaximaliseerd. Dit proefschrift presen-
teert een formulering via Geheeltallig Lineair Programmeren (ILP) voor het plaat-
sen van IoT-diensten, die rekening houdt met meerdere optimalisatiedoelstellingen
zoals latentievermindering en energie-efficiëntie. Het werk dient als benchmark in
toekomstig onderzoek met betrekking tot plaatsingsproblemen in Fog Computing
aangezien de modelbenadering generiek is en op verschillende use-cases kan wor-
den toegepast. De modelevaluatie spitste zich toe op IoT-toepassingen in het kader
van het City of Things testbed in Antwerpen, zonder verlies van algemeenheid.
Ten tweede wordt in dit proefschrift besproken hoe een Fog-computerraamwerk
kan worden geleverd met beheer- en orkestratiefunctionaliteiten voor IoT. De af-
gelopen jaren heeft het Europees Telecommunicatie en Standaardisatie Instituut
(ETSI) oneM2M gewerkt aan een end-to-end (E2E) architectuur op hoog niveau
voor Machine-to-Machine (M2M) communicatie. Verschillende aspecten wor-
den momenteel onderzocht: beveiliging, gegevensbeheer, apparaatauthenticatie,
inschrijven bij M2M-diensten, onder andere. Verschillende werken hebben Fog-
computerarchitecturen voor IoT voorgesteld, maar er is nog geen gemeenschappe-
lijke basis gelegd. Zonder een duidelijk pad naar standaardisatie, is het moeilijk
om de inspanningen van zowel de academische wereld als de industrie te integre-
ren en te combineren. Dit proefschrift presenteert een Fog Computing-raamwerk
dat de richtlijnen van ETSI rond de architectuur voor het beheer en orkestratie
van Virtualisatie van Netwerkfuncties (NFV MANO) volgt, inclusief aanvullende
softwarecomponenten zoals monitoring en data-analysefuncties. Daarnaast is er
een nieuw fogprotocol voor de uitwisseling van dienstinformatie tussen fogknoop-
punten voorgesteld voor snelle beslissingen rond dienstverlening. Uit de eerste
evaluatie ervan blijkt dat het Fog Computing raamwerk voor een aanzienlijke ver-
mindering van het gebruik van netwerkbandbreedte zorgt, vergeleken met traditi-
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onele, gecentraliseerde clouds.
Ten derde presenteert dit proefschrift een op Fog Computing gebaseerde anoma-
liedetectiemethode om te voorzien in efficiënte monitoring en analyse van gedis-
tribueerde gegevens in het IoT-ecosysteem. Toezicht houden op het gedrag van
IoT-toepassingen is een belangrijk aspect van het beheer van hun levenscyclus,
vooral voor toepassingen rond persoonlijke gezondheidsmonitoring en noodhulp.
Traditionele anomaliedetectieschema’s zijn niet geschikt voor latentiegevoelige
IoT-toepassingen, aangezien deze benaderingen vereisen dat alle gegevens naar
een gecentraliseerde locatie worden gestuurd, wat resulteert in een hoge laten-
tie. IoT-apparaten hebben doorgaans lage bandbreedtecapaciteiten, waardoor de
verzamelde gegevens niet snel genoeg worden getransporteerd om de nodige ano-
maliedetectiebewerkingen uit te voeren en ongebruikelijke gebeurtenissen en sto-
ringen op voorhand te detecteren. Fog Computing helpt de communicatielaten-
tie te verminderen door services dichter bij deze apparaten te instantiëren. Dit
proefschrift presenteert inzichten over een op Fog Computing gebaseerd systeem
voor het monitoren en analyseren van gedistribueerde gegevens gericht op een
anomaliedetectie-aanpak voor Slimme Steden. Daarbij zijn de meest geschikte
Low Power Wide Area Netwerktechnologieën (LPWAN) reeds bestudeerd voor
de geëvalueerde use case rond Slimme Steden, op basis van een grote verzamelde
dataset.
Ten vierde onderzoekt dit proefschrift netwerkbewuste planningsmethoden, in het
bijzonder voor latentiegevoelige IoT-toepassingen. Efficiënte planningsstrategieën
moeten rekening houden met bandbreedte en latentie in het planningsproces. La-
tentiereductie en bandbreedte-optimalisatie zijn primaire doelstellingen voor meer-
dere IoT-toepassingen. Dit proefschrift bestudeert de bruikbaarheid van het be-
kende containerorkestratieplatform Kubernetes voor IoT-toepassingen. Het pre-
senteert daarbij ook een Netwerkbewuste Planner (NAS) voor op containers ge-
baseerde applicaties in Kubernetes. De eerste evaluaties tonen reeds dat de pres-
taties van de voorgestelde heuristiek in vergelijking met de standaard plannings-
component in Kubernetes een reductie tot 70% met betrekking tot netwerklatentie
bereiken in vergelijking met het standaardmechanisme. Vervolgens, geïnspireerd
door de principes van Gecombineerde Dienstfuncties (SFC), is het werk uitgebreid
door het ontwerpen en implementeren van een netwerkbewust raamwerk, genaamd
Diktyo, op basis van de architectuur met planningsplug-ins die is ontwikkeld voor
Kubernetes. Het doel is om eindgebruikers een lage latentie te bieden en te zor-
gen voor bandbreedtereserveringen in applicatieplanning. Simulaties tonen aan
dat Diktyo de netwerklatentie minimaliseert voor verschillende infrastructuurto-
pologieën, aan vergelijkbare uitvoeringstijden als de huidige planningsplug-ins.
Ook praktische experimenten met benchmarktoepassingen voor microservices to-
nen aan dat Diktyo de doorvoer met 22% verhoogt en de latentie tot 45% vermin-
dert in vergelijking met standaard plug-ins.
Tot besluit is dit proefschrift slechts een eerste stap naar een efficiënte allocatie van
middelen in Fog Computing-architecturen. Hoewel er de afgelopen jaren op het
gebied van Fog Computing aanzienlijke vorderingen zijn gemaakt, zal onderzoek
naar de toewijzing van middelen blijven groeien, aangezien opkomende toepas-
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singen nog meer complexiteit toevoegen. Toepassingen in de Uitgebreide Reali-
teit (XR) en autonome auto’s behoren tot de meest veeleisende gevallen, waarbij
cloud-architecturen verder worden gestimuleerd door nieuwe uitdagingen te pre-
senteren rond het gebruik van computationele hulpmiddelen met betrekking tot
betrouwbaarheid, doorvoer en latentie. Daarom is het werk met betrekking tot al-
locatie van hulpmiddelen en dienstplanning in de toekomstige cloudarchitecturen
nog lang niet klaar.



Summary

In recent years, the introduction of cloud services has completely revolutionized
application deployments. Cloud computing has seen enormous growth lately and
has become the standard for running applications. End-users and devices connect
to a cloud-based system where these applications are deployed. Accessing emails
or storing documents over the Internet are examples of services currently running
in the cloud. Cloud systems reduce costs for enterprises since computational re-
sources are requested via a cloud provider responsible for maintaining and upgrad-
ing the cloud system. In addition, recent application domains such as the Internet
of Things (IoT) and Smart Cities have introduced novel challenges to traditional
cloud systems. One of the challenges that persist is how to provide efficient re-
source allocation strategies for these types of applications. Cloud providers aim
to avoid unnecessary deployment costs and optimize their hardware infrastructure
without violating the Service Level Agreements (SLAs) agreed with end-users.
However, these applications introduce a new set of stringent requirements (e.g.,
low latency, high bandwidth) that traditional allocation strategies do not acknowl-
edge since their primary focus is to optimize resource efficiency (e.g., CPU and
RAM). Latency reduction plays a major role for latency-sensitive IoT applications
since even a small delay can drastically impact their performance, especially for
health monitoring and emergency response applications.
IoT traffic has been increasing exponentially in the past few years, making central-
ized cloud systems inadequate. Traditional clouds cannot cope with the stringent
requirements introduced by IoT applications since resources can be requested on-
demand simultaneously by multiple devices at different locations. Current clouds
cannot maintain low latency for all these devices spread around the network. Thus,
to deal with the limitations of centralized clouds, the Fog Computing paradigm
has been introduced. Fog Computing is an extension to the Cloud Computing par-
adigm where computational resources are placed on the edges of the network to
decrease the latency expected by IoT devices. Fog nodes or fog locations represent
a small cloud entity that provides a smaller set of computational resources com-
pared to cloud locations. IoT devices, mainly sensors and actuators, communicate
with fog locations via wireless gateways. Nevertheless, research challenges persist
in Fog Computing since it is not a mature concept yet. This dissertation addresses
several challenges in the Fog Computing domain focused on providing an efficient
resource allocation in these distributed infrastructures.
First, this dissertation discusses the problem of IoT service placement in Fog Com-
puting. Finding efficient allocation strategies in a distributed cloud infrastructure
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has been one of the main challenges in Fog Computing in the last few years. Dif-
ferent services compose a single IoT application, following Service-Oriented Ar-
chitecture (SOA) principles. The distribution of computing resources across the
network area adds further complexity to the service placement since resources are
available everywhere, and service requests can come from multiple locations. Ef-
ficient allocation strategies need to consider resource efficiency as well as latency
reduction since this is the main requirement for delay-sensitive IoT applications.
Deploying services far from devices would result in high communication latency.
Thus, the real-time constraints of time-sensitive IoT applications must be acknowl-
edged in the resource allocation strategy while minimizing deployment costs and
maximizing Quality of Service (QoS). This dissertation presents an Integer Linear
Programming (ILP) formulation for IoT service placement that considers multiple
optimization objectives such as latency reduction and energy efficiency. The work
serves as a benchmark in future research related to placement issues in Fog Com-
puting since the model approach is generic and can be applied to several use cases.
The model evaluation focused on IoT applications within the scope of Antwerp’s
City of Things testbed without loss of generality.
Second, this dissertation discusses how to provide a Fog computing framework
with management and orchestration functionalities for IoT. In recent years, the Eu-
ropean Telecommunications Standards Institute (ETSI) oneM2M has been work-
ing towards an end-to-end (E2E) high-level architecture for Machine-to-Machine
(M2M) communication. Several aspects are currently being investigated: secu-
rity, data management, device authentication, M2M service subscription, among
others. Several works have proposed Fog computing architectures for IoT, but no
common ground has yet been established. Without a clear path to standardization,
it is hard to integrate and combine efforts from both academia and industry. This
dissertation presents a Fog Computing framework that follows the guidelines of
the ETSI Network Function Virtualization (NFV) Management and Orchestration
(MANO) architecture, including additional software components, such as moni-
toring and data analysis functionalities. In addition, a novel fog protocol for the
exchange of application service information between fog nodes has been proposed
for fast service provisioning decisions. Preliminary evaluations show that the Fog
Computing framework achieves a significant reduction in terms of network band-
width usage compared to traditional centralized clouds.
Third, this dissertation presents a Fog-based anomaly detection approach to pro-
vide efficient distributed data monitoring and analysis in the IoT ecosystem. Mon-
itoring the behavior of IoT applications is an important aspect of their life-cycle
management, especially for personal health monitoring and emergency response
applications. Traditional anomaly detection schemes are not suitable for latency-
sensitive IoT applications since these approaches require sending all data to a cen-
tralized location, resulting in high latency. IoT devices typically have low band-
width capacities, meaning that the collected data is not transported quickly enough
to run the necessary anomaly detection operations and detect unusual events and
malfunctions beforehand. Fog Computing helps to reduce the communication la-
tency by deploying services closer to these devices. This dissertation presents in-
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sights on a Fog Computing-based distributed data monitoring and analysis scheme
focused on an anomaly detection approach for Smart Cities. In addition, the most
appropriate Low Power Wide Area Network (LPWAN) technologies have been
studied for the evaluated Smart City use case based on a large collected dataset.
Fourth, this dissertation investigates network-aware scheduling methods, specifi-
cally beneficial for latency-sensitive IoT applications. Efficient scheduling strate-
gies need to consider bandwidth and latency in the scheduling process. Latency
reduction and bandwidth optimization are primary objectives for multiple IoT ap-
plications. This dissertation studies the feasibility of a well-known container or-
chestration platform named Kubernetes for IoT applications. Also, it presents a
Network-Aware Scheduler (NAS) for container-based applications in Kubernetes.
Preliminary evaluations show the performance of the proposed heuristic compared
to the default scheduling component in Kubernetes. Results demonstrate that NAS
achieves a reduction of up to 70% concerning network latency compared to the
default mechanism. Then, inspired by Service Function Chaining (SFC) princi-
ples, the work has been extended by designing and implementing a network-aware
framework named Diktyo based on the scheduling plugins architecture developed
for the Kubernetes scheduler. The goal is to deliver low latency to end-users and
ensure bandwidth reservations in application scheduling. Simulations show that
Diktyo minimizes network latency across different infrastructure topologies while
achieving similar execution times as current scheduling plugins. Also, practical
experiments with microservice benchmark applications demonstrate that Diktyo
increases throughput by 22% and reduces latency up to 45% compared to default
plugins.
In conclusion, this dissertation is only a first step towards efficient resource alloca-
tion in Fog Computing architectures. Although considerable advancements have
been made in the Fog Computing field in recent years, resource allocation research
will continue to grow since emerging applications add even more complexity. Ex-
tended Reality (XR) and autonomous cars are among the most demanding use
cases, pushing cloud architectures further by presenting novel challenges in the
resource allocation field concerning reliability, throughput, and latency. There-
fore, the work regarding resource allocation and service scheduling in future cloud
architectures is far from finished.





1
Introduction

“If we knew what it was we were doing, it would not be called
research, would it?”

–Albert Einstein (1879 - 1955)

This chapter situates the conducted research work, summarizes the main contribu-
tions, and outlines the structure of this dissertation. It also provides an overview
of the publications that were authored during this research period. The thesis ad-
dresses the challenges introduced by the Internet of Things (IoT) in traditional
cloud platforms. The Fog Computing paradigm, an evolution of Cloud Comput-
ing, is studied as a potential solution to deal with the massive growth of con-
nected devices due to the IoT. In addition, the heterogeneity of Low Power Wide
Area Network (LPWAN) technologies is evaluated based on several IoT use cases.
Also, the concept of Service Function Chaining (SFC) is studied for IoT service
placement in the container domain. All these concepts are investigated to achieve
efficient resource allocation in a Fog Computing environment.

1.1 The Cloud Computing Revolution

Over the last few years, Cloud computing [1] has seen enormous growth since it
has become the defacto standard for application deployments. End-users and de-
vices connect to a cloud-based system where current applications are deployed.
Accessing emails or sending documents over the Internet are examples of data



2 CHAPTER 1

currently being processed in the cloud. Cloud systems reduce expenses for enter-
prises since computational resources are requested via a cloud provider responsi-
ble for maintaining and upgrading the cloud system. However, challenges persist
concerning the orchestration and management of cloud applications. Efficient al-
locations strategies are missing where cloud providers avoid unnecessary costs
and optimize their hardware infrastructure. The aim is to minimize the number of
allocated resources in the infrastructure without violating the Service Level Agree-
ments (SLAs) agreed with end-users. In addition, recent application domains such
as the Internet of Things (IoT) and Smart Cities have introduced novel challenges
in the resource allocation field. Table 1.1 shows that IoT traffic has been increasing
exponentially in the last few years, making current clouds inadequate for IoT ap-
plications due to their stringent requirements (e.g., low latency, low bandwidth
capacity). Latency reduction plays a major role since even a small delay can
drastically impact the performance of latency-sensitive applications (e.g., health
monitoring or emergency response applications). Current cloud systems cannot
maintain low latency for all these devices spread around the network. Therefore,
to deal with the limitations of centralized clouds, the Fog Computing paradigm has
been introduced.

Table 1.1: The number of connections in the IoT ecosystem [2]

2018 2019 2020 2021 2022 2023
Billions of connections 6.1 7.4 8.9 10.6 12.5 14.7

1.2 The need for Fog Computing
Fog Computing [3] [4] has emerged as an evolution of the Cloud Computing par-
adigm where computational resources are placed on the edges of the network to
decrease the latency. Fig. 1.1 illustrates a Fog Computing architecture, where IoT
devices, mainly sensors and actuators, communicate through wireless gateways,
linked with the fog layer through multiple Fog Nodes (FNs). Each FN represents
a small cloud entity that provides a given set of computational resources. FNs
communicate with the cloud layer through Cloud Nodes (CNs), representing the
top-level management entities. Although the theoretical foundations of Fog Com-
puting have already been established, several challenges persist since Fog Com-
puting is not a mature concept yet. One of the main challenges relates to resource
allocation. Coming up with efficient allocation strategies in a distributed cloud
infrastructure has been the main challenge in Fog Computing in the last few years.
The distribution of computing resources adds further complexity to the service
placement. Resources are available everywhere across the network area, service
requests come from multiple locations, and sensors have limited bandwidth ca-
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Figure 1.1 Overview of a Fog Computing architecture.

pacity. Allocating services far from devices would result in high communication
latency since end devices and gateways lack in terms of processing power, stor-
age capacity, and memory [5]. The real-time constraints of delay-sensitive IoT
applications must be acknowledged in the resource allocation strategy while mini-
mizing deployment costs and maximizing Quality of Service (QoS). Also, the het-
erogeneity of the hardware resources adds further complexity to the problem since
an FN has a lower computing capacity than a CN. Thus, when selecting nodes for
service placement, strategies need to consider the hosts’ capacity (i.e., computing
resources and bandwidth), application requirements, and hosts’ location.

Fog Computing and Multi-access Edge Computing (MEC) are close concepts [6].
Fog Computing focuses on IoT and MEC focuses on the mobile network differing
in the considered interactions (i.e., between edges and cloud). MEC aims to deploy
services close to end-users to reduce latency and avoid congestion in the network
core. MEC follows guidelines established by the European Telecommunications
Standards Institute (ETSI) Network Function Virtualization (NFV) Management
and Orchestration (MANO) [7] while Fog Computing follows architectural prin-
ciples established by the ETSI Machine-to-Machine (M2M) technical committee
[8]. In Fog Computing, bi-directional communications between fog and cloud
nodes are crucial due to the hierarchical architecture. For example, a service re-
quiring high computational requirements is allocated in the cloud, but it needs to
interact with another service, which may be located in the fog. These interac-
tions need to be considered in the allocation process, leading to complex service
dependencies that must be guaranteed.

This dissertation addresses several challenges (e.g., heterogeneity of resources)
introduced by Fog Computing concerning resource allocation.
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1.3 The impact of Low Power Wide Area Networks

The heterogeneity of Low Power Wide Area Network (LPWAN) technologies in-
troduces a novel set of challenges coming from the wireless domain [9]. LPWANs
are used mostly by low-powered devices with low bandwidth capacity. The main
advantage offered by these technologies is the long communication range, usually
of a few kilometers. LPWANs operate at a lower cost with higher energy efficiency
than traditional mobile networks. These solutions can support massive numbers of
connected devices over a large area, making them suitable for M2M and IoT use
cases. However, to decide which LPWAN technology is the most adequate for a
given use case is not a trivial task. Selecting an LPWAN depends on the specific
application and its requirements, including minimum communication range, mini-
mum data rate, downlink capacity, security layer enabled, among others. Previous
research on resource allocation only addressed constraints coming from the cloud
domain. Little attention has been given to requirements stemming from the charac-
teristics of wireless networks. When deploying IoT applications, cloud operators
must consider which LPWAN technology will be used by IoT devices to access
the deployed services. A smart metering use case or a latency-sensitive air quality
application pose different challenges to the cloud system and LPWAN technology.
The current LPWAN ecosystem contains a plethora of technologies with diverse
characteristics far from mature [10]. The performance and scalability of these
technologies are still uncertain since these LPWAN technologies have been only
assessed through small-scale experiments and simulations.
This dissertation studies the heterogeneity of LPWAN technologies by designing
IoT applications (e.g., air quality monitoring) and evaluating the most appropriate
LPWANs for its implementation and deployment in Fog Computing environments.

1.4 The need for efficient Service Function
Chaining

Service Function Chaining (SFC) placement [11], [12] has been studied in the net-
work management domain during the last few years. An application is separated
into a set of services connected in a specific order forming a service chain. SFC
allows mobile operators to benefit from the high flexibility and low operational
costs introduced by network softwarization. SFC offers a reliable alternative to
today’s static network environment. Service chaining has been mostly studied
for Software-defined networking (SDN) and NFV use cases, including data cen-
ter networks [13], carrier networks [14] and edge deployments [15]. The aim
is to optimize resource allocation to improve application performance. Service
Chaining standards are being developed by several industry research groups. The
Internet Engineering Task Force (IETF) has an SFC architecture research group
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[16] studying network flow classifications to be used in traffic routing between
service functions. Also, ETSI has a research group [17] investigating network for-
warding graphs and traffic routing via network service headers. Further, the Open
Networking Foundation(ONF) [18] has already proposed an SDN service chain-
ing framework based on the OpenFlow protocol [19] for traffic routing in service
chains.
Nevertheless, SFC is still quite unexplored in container placement and in the IoT
domain. Most efforts focus on virtual network embedding and Virtual Machine
(VM) placement [20], [21]. Further research is needed to determine where to
place each service in a fog-cloud infrastructure (i.e., edge, fog, cloud). Decid-
ing where to run each service based on the required resources is crucial to meet
the stringent requirements put forward by IoT applications. Service chaining can
provide the flexibility and performance needed for emerging applications but its
standardization is still ongoing and current deployments are not yet mature.
This dissertation investigates SFC in Fog Computing. IoT use cases have been
assessed based on container-based service chains focused on Smart City contexts.

1.5 Challenges

IoT Applications can benefit from the many advantages of Fog Computing since
services are deployed at the edge or fog location close to the devices, reducing the
communication latency and optimizing the bandwidth usage. Reducing data trans-
portation to the cloud is essential to avoid congestion since these devices have a
low bandwidth capacity. Efficient resource allocation is thus important for both
the cloud provider and the user. Reducing costs, maximizing QoS, and minimiz-
ing latency are examples of goals followed by allocation strategies. This disser-
tation investigates how computing resources can be efficiently managed in a Fog
Computing environment. Both perspectives are considered: the user who wants
to maximize its QoS and the cloud provider who intends to reduce its costs re-
garding the infrastructure without compromising SLAs. In this context, four main
challenges have been addressed in this dissertation.
Challenge #1: provide a benchmark for resource allocation research in Fog Com-
puting.
Deploying an application in a Fog Computing environment adds further complex-
ity to a traditional deployment in a centralized cloud. Hardware resources, appli-
cation requirements, fog locations, the bandwidth capacity of the infrastructure are
among the constraints addressed in Fog-cloud environments. The performance of
allocation strategies should be analyzed by considering different factors, such as
latency reduction, energy efficiency, and bandwidth optimization. In recent years,
several works have addressed resource allocation in Fog Computing (e.g., [22],
[23]), but none of them addressed the real-time requirements of IoT applications.
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In addition, the implications of LPWANs should be studied in the allocation pro-
cess. The aim is to establish a relationship between the cloud and the wireless
domain.
Challenge #2: design a Fog Computing framework supporting autonomous man-
agement and orchestration functionalities.
In recent years, the ETSI oneM2M [24] has been working towards an end-to-end
(E2E) high-level architecture for M2M communication. The goal is to establish for
M2M what the 3rd Generation Partnership Project (3GPP) realized for mobile net-
works. Several aspects are currently being addressed: security, data management,
device authentication, M2M service subscription, among others. Designing a Fog
Computing framework addressing all these aspects would help to standardize Fog
Computing architectures. Several works have proposed IoT / Fog computing ar-
chitectures [25] [26] with several functionalities. However, without a clear path to
standardization, it is hard to integrate and combine efforts from both academia and
industry.
Challenge #3: implement efficient distributed data monitoring and analysis in a
Fog Computing environment.
Another important aspect of IoT applications is to monitor their behavior, espe-
cially those dealing with personal health monitoring [27], or emergency response
services [28] since a small delay can impact their performance and produce se-
vere consequences. Detecting unusual events or malfunctions beforehand is thus
an important matter. Traditional anomaly detection approaches are not suitable for
delay-sensitive IoT applications since these solutions would require sending all
data to a centralized location which would result in high latency [29]. Also, data is
not transported quickly enough due to the low bandwidth capacities of IoT devices.
Fog Computing helps to reduce the latency since services are deployed close to de-
vices. By identifying unusual events at the Fog level, malfunctions in IoT sensors
can be detected, and transmissions of incorrect information are avoided, improv-
ing the overall QoS of IoT applications, especially in terms of reliability [30].
Therefore, designing an anomaly detection approach for IoT applications should
be based on the advantages of Fog Computing architectures.
Challenge #4: consider latency and bandwidth in the scheduling process in a
container orchestration system.
Emerging applications such as IoT and video streaming services have revolution-
ized the cloud computing field. By placing computing resources at the edge or fog,
the stringent requirements introduced by these applications can be met, especially
in terms of latency and bandwidth. The installation of dedicated hardware close to
IoT devices reduces the latency and the consumed bandwidth towards the cloud.
Efficient resource allocation strategies need to consider bandwidth and latency in
the scheduling process, especially for these applications since its a primary ob-
jective. Traditional allocation strategies [31], [32] mostly focus on optimizing
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resource usages (e.g., CPU and RAM), and only a few consider network-aware
or bandwidth-aware algorithms [33], [34]. In addition, containers [35] have been
gaining popularity in the virtualization field. Their minimal overhead and high
portability compared to traditional VMs have established containers as the main
virtualization technology. Previous allocation strategies have been designed for
VM allocation and migration, and little attention has been given to containerized
applications. Also, SFC is relatively unexplored in the container area, while its
major studies focus on VMs. The challenge is how to design efficient allocation
strategies that address the latency and bandwidth requirements of these applica-
tions while supporting new trends as containerization and service chaining in fog-
cloud infrastructures.

1.6 Outline

This dissertation is composed of several publications realized within the scope of
this PhD. The selected publications provide an integral and consistent overview
of the work performed. Sec. 1.7 details the different research contributions, and
the complete list of publications that resulted from this dissertation is presented in
Sec. 1.8. This section presents an overview of the remainder of this dissertation
and explains how the different chapters are linked together. A schematic overview
of how the Chapters (Ch.) and Appendices (App.) are related to each other and
to the research contributions is depicted in Fig. 1.2. Table 1.2 illustrates how the
chapters of this dissertation relate to the challenges listed in Sec. 1.5.
Chapter 2 (Ch. 2) studies resource allocation in a Fog Computing environment.
The chapter presents an Integer Linear Programming (ILP) formulation for IoT
application service placement that considers multiple optimization objectives, such
as low latency and energy efficiency. The work addresses heterogeneous hardware
capacities, different application requirements, and the network bandwidth between
cluster nodes. The model is evaluated for IoT applications within the scope of
Antwerp’s City of Things testbed [36]. The formulation serves as a benchmark
in future research related to placement issues of IoT application services in Fog
Computing. The model approach is generic and can be applied to several IoT use
cases without loss of generality.
Chapter 3 (Ch. 3) focuses on the design of a Fog Computing framework for Smart
Cities. A Fog-based framework is proposed that follows the ETSI NFV MANO
guidelines. It presents additional software components, such as monitoring and
data analysis functionalities. In addition, the chapter describes a novel fog proto-
col for the exchange of application service information between FNs to provide
fast service provisioning decisions for Smart City applications. An anomaly de-
tection use case based on an air quality application has also been evaluated based
on the proposed framework. The evaluation shows that the proposed framework
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achieves a significant reduction in terms of network bandwidth usage compared to
traditional centralized clouds. The approach only requires 1.46% of the available
network bandwidth between a fog node and a cloud node.

Chapter 4 (Ch. 4) studies the feasibility of the de-facto container management
platform named Kubernetes [37] for IoT applications. It extends the work pre-
sented in chapter 3 by proposing a Fog Computing framework based on the Kuber-
netes architectural model. Also, it extends the work in chapter 2 by developing a
Network-Aware Scheduler (NAS) for container-based applications in Kubernetes.
Evaluations have assessed the performance of the proposed heuristic compared to
the ILP formulation presented in chapter 2 and the default scheduling component
in Kubernetes. Results show that NAS achieves a reduction of up to 70% concern-
ing network latency compared to the default mechanism.

Chapter 5 (Ch. 5) presents a network-aware framework named Diktyo for the Ku-
bernetes platform inspired by service chaining concepts. The work extends chapter
4 by designing and implementing network-aware algorithms based on the Kuber-
netes scheduling plugin framework [38]. The work proposes multiple scheduling
plugins to optimize the allocation of container-based service chains in Kubernetes
focused on low latency and bandwidth optimization. It studies how this combina-
tion can approximate the optimal allocation scheme provided by a Mixed-Integer
Linear Programming (MILP) model. Application domains such as IoT and video
streaming would benefit the most from schedulers that consider latency and band-
width requirements. Scheduling methods in current cloud platforms focus mostly
on resource usage rates (e.g., CPU and RAM), which are inappropriate for appli-
cations where latency and bandwidth play a major role. Simulations show that
Diktyo can minimize the network latency across different infrastructure topolo-
gies while achieving similar execution times as current scheduling plugins. Also,
practical experiments with microservice benchmark applications demonstrate that
Diktyo increases database throughput by 22% and reduces application response
time by up to 45% compared to default plugins.

Appendix A (App. A) presents further insights on distributed data monitoring and
analysis in Fog Computing addressed in chapter 3. An anomaly detection approach
for Smart City applications has been designed for Antwerp’s City of Things use
cases. The most appropriate LPWAN technologies are investigated for the Smart
City use case based on a large collected dataset: different cars collect air quality
metrics consisting of particle matter indicators (e.g., PM1, PM2.5 and PM10) that
are annotated with a Global Positioning System (GPS) location.

Appendix B (App. B) extends Chapter 2 by proposing a MILP model for the IoT
service placement problem that considers service chaining, different LPWAN tech-
nologies, service replication, and several optimization objectives. The formulation
presents further insights on the complete E2E resource provisioning in Fog-cloud
environments. Evaluations show clear trade-offs between the assessed allocation
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strategies based on Smart City use cases.

Appendix C (App. C) discusses open challenges and future research directions
on low-latency service delivery focused on emerging use cases. The advent of
softwarized networks has enabled the deployment of service chains on computa-
tional resources from the cloud up to the edge, creating a continuum of virtual
resources. The next generation of low latency applications (e.g., Virtual Reality
(VR), autonomous cars) adds even more stringent requirements to the infrastruc-
ture, calling for considerable advancements towards cloud-native architectures.

Table 1.2: An overview of the contributions per chapter in this dissertation.

Ch.2 Ch.3 Ch.4 Ch.5
App.

A
App.

B
App.

C
Challenge #1 • •
Challenge #2 • •
Challenge #3 • •
Challenge #4 • • •

Figure 1.2 Schematic overview of the different chapters in this dissertation.
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1.7 Research contributions

Sec 1.5 formulates the problems and challenges for efficient resource allocation in
a Fog Computing environment. These challenges are addressed in the remainder
of this dissertation for which the outline is given in Sec 1.6. To conclude, an
elaborated list of the research contributions within this dissertation is given:

• Address IoT application deployments in Fog Computing. (Ch. 2 and App.
B, mainly addressing Challenge #1)

– Ch. 2 proposes an ILP formulation for IoT service placement in Fog
Computing.

– Evaluations show a clear trade-off between allocation strategies, such
as low latency and low energy consumption.

– The model can serve as a benchmark in future research related to place-
ment issues of IoT services in Fog Computing environments since the
model approach is generic and applies to a wide range of IoT applica-
tions.

– App. B extends the work presented in Ch. 2 by focusing on service
chaining, different LPWAN technologies, and multiple objectives.

– Evaluations for Smart City use cases show clear trade-offs between the
different provisioning strategies.

• Design a Fog Computing framework with management and orchestration
functionalities. (Ch. 3 and Ch. 4, mainly addressing Challenge #2)

– Ch. 3 proposes a Fog Computing framework that follows the ETSI
NFV MANO architecture and the standards of the ETSI oneM2M con-
cerning device management and security.

– The work proposes an integrated and autonomous solution for efficient
resource management and orchestration in Smart Cities.

– Results show that the approach achieves a substantial reduction regard-
ing bandwidth usage compared to centralized cloud solutions.

– Ch. 4 extends Ch. 3 by evaluating the feasibility of the Kubernetes
platform for IoT services.

– The work presents a Fog Computing framework based on the Kuber-
netes architectural model.

• Implement efficient distributed data monitoring and analysis in Fog Com-
puting. (Ch. 3 and App. A, mainly addressing Challenge #3)
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– Ch. 3 proposes an anomaly detection approach for 5G Smart Cities.
A use case based on an Air Quality monitoring application shows the
benefits of the proposed anomaly detection scheme.

– App. A presents further details about the anomaly detection approach
for Smart City applications in Fog Computing. It has been designed
for the Antwerp’s City of Things testbed and validated for Smart City
use cases.

– The most appropriate LPWAN technologies are selected for the evalu-
ated use case.

• Consider latency and bandwidth in the scheduling process for application
deployments. (Ch. 4, Ch. 5 and App. C, mainly addressing Challenge #4)

– Ch. 4 presents a Network-Aware Scheduling (NAS) approach for Smart
City container-based applications.

– NAS is an extension to the default scheduling feature available in Ku-
bernetes.

– Results show that the proposed NAS can significantly improve the ser-
vice placement concerning latency compared to the Kubernetes default
scheduler.

– The work has been open-sourced [39] and thus available for further
experiments by the network management community.

– Ch. 5 extends the work presented in Ch. 4 by designing a network-
aware framework for the Kubernetes platform by collaborating with
IBM Research.

– The network-aware framework has been implemented based on the
Kubernetes scheduling framework to ease its addition to the Kuber-
netes project.

– App. C discusses open challenges and future directions concerning
low latency service delivery for emerging use cases.

1.8 Publications

The results obtained during this PhD research have been published in scientific
journals and presented at a series of international conferences. The following list
provides an overview of these publications.
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1.8.1 Publications in International Journals

[1] J. Santos, T. Wauters, B. Volckaert, and F. De Turck. Fog computing: En-
abling the management and orchestration of smart city applications in 5G
networks. Published in Entropy, Volume 20, no. 1, pages 4, MDPI, 2018.

[2] J. Santos, T. Vanhove, M. Sebrechts, T. Dupont, W. Kerckhove, B. Braem,
G. Van Seghbroeck, T. Wauters, P. Leroux, S. Latre, B. Volckaert, and F.
De Turck. City of things: Enabling resource provisioning in smart cities.
Published in IEEE Communications Magazine, Volume 56, no. 7, pages
177-183, IEEE, 2018.

[3] J. Santos, T. Wauters, B. Volckaert, and F. De Turck. Resource provisioning
in fog computing: From theory to practice. Published in Sensors, Volume
19, no. 10, pages 2238, MDPI, 2019.

[4] J. Santos, T. Wauters, B. Volckaert, and F. De Turck. Towards end-to-
end resource provisioning in Fog Computing over Low Power Wide Area
Networks. Published in Journal of Network and Computer Applications,
Volume 175, no. 10, pages 102915, Elsevier, 2021.

[5] J. Santos, T. Wauters, B. Volckaert, and F. De Turck. Towards low-latency
service delivery in a continuum of virtual resources: State-of-the-art and
Research Directions. Published in IEEE Communications Surveys & Tuto-
rials, Volume 23, no. 4, pages 2557-2589, 2021.

1.8.2 Publications in Book Chapters

[1] J. Santos, T. Wauters, B. Volckaert, and F. De Turck. Reinforcement learn-
ing for service function chain allocation in fog computing. Published in
Communication Networks and Service Management in the Era of Artificial
Intelligence and Machine Learning, pages 147-173, 2021.

1.8.3 Publications in International Conferences

[1] J. Santos, T. Wauters, B. Volckaert, and F. De Turck. Resource provision-
ing for IoT application services in smart cities. Published in Proceedings
of the 13th International Conference on Network and Service Management
(CNSM), 2017, pages 1 - 9, IEEE.

[2] J. Santos, P. Leroux, T. Wauters, B. Volckaert, and F. De Turck. Anomaly
detection for smart city applications over 5g low power wide area networks.
Published in Proceedings of IEEE/IFIP Network Operations and Manage-
ment Symposium (NOMS), pages 1-9, 2018, IEEE.
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[3] J. Santos, P. Leroux, T. Wauters, B. Volckaert, and F. De Turck. Towards
dynamic fog resource provisioning for smart city applications. Published in
Proceedings of the 14th International Conference on Network and Service
Management (CNSM), pages 290-294, 2018, IEEE.

[4] J. Santos, T. Wauters, B. Volckaert, and F. De Turck. Towards network-
aware resource provisioning in Kubernetes for fog computing applications.
Published in Proceedings of the IEEE Conference on Network Softwariza-
tion (NetSoft), pages 351-359, 2019, IEEE.

[5] J. Santos, T. Wauters, B. Volckaert, and F. De Turck. Towards delay-aware
container-based service function chaining in fog computing. Published in
Proceedings of the IEEE/IFIP Network Operations and Management Sym-
posium (NOMS), pages 1-9, 2020, IEEE.

[6] J. Santos, T. Wauters, B. Volckaert, and F. De Turck. Live Demonstration
of Service Function Chaining allocation in Fog Computing. Published in
Proceedings of the IEEE Conference on Network Softwarization (NetSoft),
pages 362-364, 2020, IEEE.

[7] L. N. Vijouyeh, M. Sabaei, J. Santos, T. Wauters, B. Volckaert, and F. De
Turck. Efficient Application Deployment in Fog-enabled Infrastructures.
Published in Proceedings of the 16th International Conference on Network
and Service Management (CNSM), pages 1-9, 2020, IEEE.

[8] J. Santos, J. van der Hooft, M. Torres Vega, T. Wauters, B. Volckaert, and F.
De Turck. SRFog: A flexible architecture for Virtual Reality content deliv-
ery through Fog Computing and Segment Routing. Published in Proceedings
of the IFIP/IEEE International Symposium on Integrated Network Manage-
ment (IM), pages 1038-1043, 2021.

[9] J. Santos, T. Wauters, B. Volckaert, and F. De Turck. Resource provisioning
in fog computing through deep reinforcement learning. Published in Pro-
ceedings of the IFIP/IEEE International Symposium on Integrated Network
Management (IM), pages 1-7, 2021.

[10] J. Santos, J. van der Hooft, M. Torres Vega, T. Wauters, B. Volckaert, and F.
De Turck. Efficient orchestration of service chains in fog computing for im-
mersive media. Published in Proceedings of the 17th International Confer-
ence on Network and Service Management (CNSM), pages 139-145, 2021.

[11] J. Santos, Chen Wang, T. Wauters, and F. De Turck. Diktyo: Network-aware
Scheduling for Container Cloud. Submitted to the 16th USENIX Sympo-
sium on Operating Systems Design and Implementation (OSDI), December
2021.
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1.9 Code Repositories
During the dissertation, the candidate advocated for open and reproducible re-
search. The following list provides an overview of all public code repositories
generated by the candidate during his PhD research.

[1] SFC-controller
URL: https://github.com/jpedro1992/sfc-controller.

[2] gym-fog
URL: https://github.com/jpedro1992/gym-fog.

[3] Pushing Netperf Metrics to Prometheus
URL: https://github.com/jpedro1992/pushing-netperf-
metrics-to-prometheus.

[4] Bandwidth as an extended resource
URL: https://github.com/jpedro1992/bandwidth-as-an-
extended-resource.

[5] Network-aware algorithms for the Scheduler Plugins framework
URL: https://github.com/jpedro1992/scheduler-
plugins.

https://github.com/jpedro1992/sfc-controller
https://github.com/jpedro1992/gym-fog
https://github.com/jpedro1992/pushing-netperf-metrics-to-prometheus
https://github.com/jpedro1992/pushing-netperf-metrics-to-prometheus
https://github.com/jpedro1992/bandwidth-as-an-extended-resource
https://github.com/jpedro1992/bandwidth-as-an-extended-resource
https://github.com/jpedro1992/scheduler-plugins
https://github.com/jpedro1992/scheduler-plugins
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2
Resource Provisioning for IoT

application services in Smart Cities

“The way to get started is to quit talking and begin doing.”

–Walt Disney (1901- 1966)

The second chapter of this dissertation presents an Integer Linear Programming
(ILP) formulation for Internet of Things (IoT) service placement discussed in chap-
ter 1. The chapter evaluates the trade-offs between different allocation strategies,
such as minimizing latency and maximizing energy efficiency. Latency is related
to the network latency in the communication between cluster nodes where services
that compose an IoT application are running and the end device that requested
the IoT application. Energy efficiency is related to the number of cluster nodes
used for the service deployment. The model considers several constraints, includ-
ing hardware capacities, network bandwidth, and path loss. The model addresses
cloud requirements and characteristics stemming from the wireless domain, which
have not yet been explored in-depth in literature. The cloud model is based on
previous work performed by Moens et al. on network-aware placement of service
oriented applications in clouds. Thus, the main contribution of this chapter is an
ILP formulation that can serve as a benchmark for resource allocation research in
Fog Computing. The model is validated for IoT services without loss of generality.

⋆ ⋆ ⋆
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José Santos, Tim Wauters, Bruno Volckaert and Filip De Turck.

Published in IEEE International Conference on Network and Service Man-
agement (CNSM), pages 1-9, 2017.

Abstract In the last years, traffic over wireless networks has been increasing expo-
nentially, due to the impact of Internet of Things (IoT) and Smart Cities. Current
networks must adapt to and cope with the specific requirements of IoT applications
since resources can be requested on-demand simultaneously by multiple devices
on different locations. One of these requirements is low latency, since even a small
delay for an IoT application such as health monitoring or emergency service can
drastically impact their performance. To deal with this limitation, the Fog com-
puting paradigm has been introduced, placing cloud resources on the edges of the
network to decrease the latency. However, deciding which edge cloud location and
which physical hardware will be used to allocate a specific resource related to an
IoT application is not an easy task. Therefore, in this chapter, an Integer Linear
Programming (ILP) formulation for the IoT application service placement problem
is proposed, which considers multiple optimization objectives such as low latency
and energy efficiency. Solutions for the resource provisioning of IoT applications
within the scope of Antwerp’s City of Things testbed have been obtained. The re-
sult of this work can serve as a benchmark in future research related to placement
issues of IoT application services in Fog Computing environments since the model
approach is generic and applies to a wide range of IoT use cases.

2.1 Introduction

In recent years, the Internet of Things (IoT) has introduced a whole new set of
challenges and opportunities by transforming objects of everyday life in commu-
nicating devices [1]. Moreover, with the advent of the IoT, the concept of Smart
City has become even more popular in the last few years [2]. Smart City applica-
tions will transform a wide range of services in different domains of urban life, for
instance, by creating intelligent smart grid networks, improving public transporta-
tion, developing smart car parking and real-time industrial automation applications
and reducing traffic congestion. Essentially, millions of devices will be connected
to the network, sending and receiving data to the cloud, which current networks
will not be able to support [3]. Therefore, it is necessary to adapt existing cloud
and network architectures to future needs and design and develop new manage-
ment functionalities to help meet the strict requirements of future Smart City IoT
applications. Fog Computing extends the Cloud Computing paradigm by bringing
cloud services closer to the end devices, thus reducing the communication latency
[4], [5]. However, there is still a large number of research challenges associated
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with this approach since Fog Computing is in its early stages and needs more time
to evolve. One of the main challenges is the proper resource allocation, since ser-
vices can be placed in a highly congested location, or even further from the end
devices, which would result in a higher communication latency because current
end devices and gateways are lacking in terms of processing power, storage capac-
ity and memory [6]. Moreover, few resource management strategies are currently
addressing the real-time constraints of Smart City IoT applications while minimiz-
ing resource costs and maximizing quality of service (QoS). Therefore, efficient
resource allocation strategies are needed in order to address all these issues.
This chapter presents an Integer Linear Programming (ILP) formulation for the
IoT application service placement problem in order to evaluate resource provi-
sioning in Smart City scenarios. IoT applications have been considered as a set of
multiple communicating services, like applications designed in Service-Oriented
Architectures (SOA). SOA-based architectures have been used in the last years
for IoT [7], [8]. This way, an IoT application can be designed as a coordinated
workflow of multiple services which are associated with actions performed by end
devices. Research have been carried out to solve the issues of abstracting end
device functionalities, trying to provide a suitable architecture with service man-
agement and composition capabilities able to link a set of common services in a
set of IoT applications. This proposed architecture is presented in Fig. 2.1. Each
communicating service can be provided by a Virtual Machine (VM) which may be
used by multiple tenants. In a Smart City scenario, when there is a request for an
IoT application, resources should be distributed within the network ensuring that
the services composing the IoT application are allocated and instantiated close to
the end device that made the request. Multiple factors should be taken into account
to ensure proper resource allocation such as latency, energy efficiency, bandwidth
and cost.
The remainder of the chapter is organized as follows. In the next Section, re-
lated work is discussed. Section III introduces the proposed ILP model for the
resource provisioning of IoT application services. In Section IV, evaluation sce-
nario is described which is followed by the evaluation results in Section V. Finally,
conclusions are presented in Section VI.

2.2 Related Work

In recent years, studies have been carried out in order to deal with application
placement issues in IoT. In [9], a model and an architecture have been introduced
to deal with resource provisioning in fog computing environments focusing on the
reduction of service latency for IoT applications. In [10], a energy management
strategy for a Fog Computing platform is presented. Moreover, SmartSantander
[11] worked on a suitable architectural model for the IoT and the inherent chal-
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Figure 2.1 SOA-based architecture for IoT applications.

lenges of service provisioning in Smart Cities was in their scope [12]. In [13], a
resilient IoT architecture for Smart Cities has been presented and in [14] the re-
maining issues of integrating Cloud Computing and IoT are discussed, where the
integration was referred to as Cloud of Things. In [15], a novel scheme for an en-
ergy efficient IoT based on Wireless Sensor Networks (WSN) has been introduced
focusing on WSN characteristics. Cloud requirements have not been included on
the model.
In recent years, research efforts have been carried out to overcome application
placement issues mainly focused on cloud environments where IoT or Smart Cities
contexts have not been considered. Many works focused only on the allocation of
virtual network functions (VNFs) or VMs on clouds [16], [17]. However, recently
in [18], a resource aware placement algorithm of IoT applications in Fog Com-
puting environments has been presented focusing on latency, network usage and
energy consumption. Only static network topologies have been evaluated and no
wireless constraint has been introduced. Nevertheless, a lot of challenges still re-
main to fully address resource provisioning of Smart City IoT applications, since
previous research does not take into account requirements stemming from the char-
acteristics of wireless networks. This way, in this chapter, a resource provisioning
ILP model is presented that goes beyond the current state-of-the-art by taking into
account not only cloud requirements but also wireless constraints which were, to
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the best of our knowledge, not yet explored in-depth in literature. The main advan-
tage of ILP is the flexibility to analyze complex problems as the IoT application
service issue presented in this chapter. However, ILP models can only be solved if
there are clear linear relationships between all the different variables.

2.3 The ILP model

2.3.1 Model Description

The resource provisioning model considers cloud and wireless characteristics. The
cloud model is based on the previous work done by Moens et al. [16] on network-
aware placement of service oriented applications in clouds. Regarding wireless
characteristics, an IEEE 802.11ah [19] Low-Power Wide-Area Network (LPWAN)
has been modeled as an ILP formulation. An IoT application is composed of multi-
ple communicating services. End devices send requests for these IoT applications
through wireless gateways. These gateways communicate with the fog-cloud in-
frastructure, managing a set of computational resources. Each service must be
allocated and instantiated on a given set of computational resources, subject to
multiple constraints [16]:

• Computational resources have limited CPU and memory.

• Communication links between computational resources have limited band-
width.

• Gateways have limited association identifiers (AIDs) so end devices can as-
sociate and send requests for IoT applications.

• IoT application services cannot be instantiated on every computational re-
source, due to specific hardware or software requirements.

The work in [16] incorporates multiple optimization objectives which have been
extended to address the IoT application placement problem identified in this chap-
ter. This way, the model is executed iteratively so that in each iteration a different
optimization objective is considered. To retain the objective values obtained in
the previous iterations, additional constraints are added to the model. Thus, the
solution space continuously decreases since iterations must satisfy the previous
optimal solutions. Every iteration refines the previous obtained solution by im-
proving the model with an additional optimization objective. The optimization
objectives considered in the model are the following:

1) Maximization of accepted IoT application requests.

2) Maximization of service bandwidth.

3) Minimization of service migrations between iterations.
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4) Minimization of number of active comp. nodes.

5) Minimization of the number of active gateways.

6) Minimization of hop count between comp. nodes and end devices.

7) Minimization of path loss.

Optimization objectives from 1) to 4) have been already considered in [16]. The
work has been extended with three additional optimization objectives, from 5) to
7), which are related with wireless formulations.

2.3.2 Variables

Table 2.1: Input variables related to the cloud infrastructure.

Symbol Description
Nc The set of comp. nodes on which services are executed.

Nf
The set of fog clouds on the network which manage the comp.
nodes.

A
The set of all IoT applications. Each IoT application is composed
of a set of communicating services.

S The set of all communicating services.
Ra The set containing all requests for an application a ε A.
Da The total number of requests for an application a ε A.
Ωn The total CPU capacity (in GHz) of the comp. node n ε Nc.
Γn The total memory capacity (in GB) of the comp. node n ε Nc.
ωs The CPU requirement (in GHz) of the service s ε S.
γs The memory requirement (in GB) of the service s ε S.

Rs,n

The Relation matrix. If Rs,n = 1, the communicating service
s can be allocated on node n. If Rs,n = 0, the communicating
service s cannot be instantiated on node n.

Ia,s

The Instance matrix. If Ia,s = 1, the communicating service s is
part of application a. If Ia,s = 0, the communicating service s is
not part of application a.

Bn1,n2

The Bandwidth matrix between comp. nodes indicates the band-
width (Mbit/s) available between the comp. node n1 and the
comp. node n2.

Cn1,n2

The Communication matrix between comp. nodes indicates the
bandwidth (Mbit/s) required between services of an IoT applica-
tion.

Ef,l Ef,l = 1 indicates that fog cloud f is at location l.
En,f En,f = 1 indicates that comp. node n is managed by fog cloud f .
En,l En,l = 1 indicates that comp. node n is at location l.
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Table 2.2: Input variables related to the wireless dimensioning.

Symbol Description
Ngw The set of wireless gateways on the network.
Ned The set of end devices on the network.

Red
A binary value that indicates if the end device ed sent a request
for an IoT application a ε A.

Θgw The total association identifiers available on a gateway gw εNgw.

θed
Each end device ed ε Ned needs an association identifier to asso-
ciate with a gateway.

L
Set of locations where IoT application requests are generated by
end devices.

Φa,r,ed
The Request matrix. If Φa,r,ed = 1, the end device ed made the
rth request of application a.

Hn,ed
The Hop Count matrix indicates the number of devices between
the comp. node n and the end device ed.

Dgw,ed
The Distance matrix indicates the distance (in meters) between a
gateway and an end device.

PLgw,ed
The Path Loss matrix indicates the path loss (in dB) between a
gateway and an end device.

Aed,gw

The Association matrix. If Aed,gw = 1, the end device ed can
associate with the gateway gw. If Aed,gw = 0, the end device ed
cannot associate with the gateway gw.

Egw,l Egw,l = 1 indicates that gateway gw is at location l.
Eed,l Eed,l = 1 indicates that end device ed is at location l.
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Table 2.3: Decision variables of the ILP model.

Symbol Description

Ga,r

The acceptance matrix. If Ga,r = 1, the rth request of IoT
application a is accepted. If Ga,r = 0, the rth request of IoT
application a cannot be accepted.

Pa,r
s,n

The placement matrix. If Pa,r
s,n = 1, an instance of service

s is executed on comp. node n for the rth request of IoT
application a.

Us,n

The service execution matrix. If Us,n = 1, an instance of
service s is allocated on comp. node n. If Us,n = 0, there is
not an instance of service s allocated on comp. node n.

Ued,gw
The end device execution matrix. If Ued,gw = 1, the end
device ed is associated with gateway gw.

Ugw
The gateway utilization matrix. Ugw = 1 indicates that there
is at least one end device associated with gateway gw.

Un
The comp. node utilization matrix. Un = 1 indicates that
there is at least one service allocated on comp. node n.

F a,r
s1,s2(n1, n2)

The flow matrix contains the bandwidth (in Mbit/s) belong-
ing to the rth request of IoT application a that is used in the
communication between services s1 and s2 which are allo-
cated on node n1 and n2, respectively.

za,rs1,s2

The service bandwidth matrix contains the amount of band-
width for every flow in the communication between services
s1 and s2 for the rth request of IoT application a.
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Input variables used in the model are shown in Table 2.1 and in Table 2.2 while
decision variables are shown in Table 2.3. All input variables related to the wire-
less dimensioning have been added to previous work as well as four new variables
addressing cloud requirements (17 new variables, representing 57% of the total
input variables alongside two new decision variables for the wireless dimension-
ing). A set of applications A composed of communicating services S are given.
The number of requests and the total number of requests for an application a ε A
are given by Ra and Da respectively. A binary request matrix Φa,r,ed indicates
if an end device ed ε Ned made the rth request of application a. Also, a binary
instance matrix I indicates if a service s ε S is part of an application a ε A. Each
service s has a CPU and a memory requirement represented by ωs (in GHz) and
γs (in GB) respectively. The communicating services must be allocated on com-
putational nodes (comp. nodes) n ε Nc. Each comp. node n has a CPU and a
memory capacity represented by Ωn (in GHz) and Γn (in GB), respectively. A
binary relation matrix R is used to indicate if an instance of service s could be
allocated on a given comp. node n ε Nc. If Rs,n = 1, the communicating service
s can be allocated on node n. Otherwise, due to software or hardware limitations,
the service s cannot be instantiated on node n. Moreover, a binary acceptance
matrix G is used to indicate if the rth request of application a can be accepted.
If Ga,r = 1, all the services that compose application a are allocated on comp.
nodes n ε Nc and therefore the rth request of application a is accepted. A binary
placement matrix P is used to represent in which comp. node n an instance of
a service s is allocated. If P a,r

s,n = 1, an instance of service s is executed on the
comp. node n for the rth request of the IoT application a. A set of locations L is
used to define where IoT applications requests are generated. Multiple binary ma-
trices E are considered to define in which location fog clouds f ε Nf , end devices
ed ε Ned, gateways gw ε Ngw and comp. nodes n ε Nc are on the network. One
additional binary matrix E is considered to indicate if a comp. node n is managed
by a fog cloud f .

Regarding wireless formulation, the total AIDs available on a given gateway gw ε
Ngw is given by Θgw. Each end device ed ε Ned needs an AID to associate with
a gateway which is represented by θed. Moreover, a distance matrix D indicates
the distance (in meters) between a gateway gw ε Ngw and an end device ed ε Ned

while a path loss matrix PL indicates the path loss (in dB) between a gateway
gw ε Ngw and an end device ed ε Ned. A Red binary variable indicates if an end
device ed sent requests for an IoT application. If Red = 1, the end device ed sent
a request for an IoT application a ε A. Otherwise, Red = 0. An additional binary
association matrix A is used to indicate if an end device ed can associate with a
gateway gw. This association is based on the distance matrix D. If Dgw,ed is less
than one thousand meters, the end device ed can associate with gateway gw and
then Aed,gw = 1. Otherwise, Aed,gw = 0. The limit is set to one thousand meters
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because this is the maximum coverage range in IEEE 802.11ah networks[20]. A
hop count matrixH indicates the number of devices between the comp. node n and
the end device ed. Moreover, additional decision execution and utilization matrices
U are considered. First, service execution matrix Us,n and end device execution
matrix Ued,gw indicate if a service instance s is allocated on comp. node n and if
an end device ed is associated with the gateway gw, respectively. Secondly, comp.
node utilization matrix Un and gateway utilization matrix Ugw indicate if there is
at least a service running on comp. node n and if there is at least an end device
associated with gateway gw, respectively.
Then, as mentioned by Moens et al. [16], a two-stage approach has been con-
sidered to allocate the bandwidth between communication services s1 and s2 that
are part of the same IoT application request r. A bandwidth matrix B which
indicates the available bandwidth (in Mbit/s) between two comp. nodes is con-
sidered. Moreover, a communication matrix C is defined, where Cs1,s2 indi-
cates the needed bandwidth (in Mbit/s) between two communication services.
The flow bandwidth between two comp. nodes is defined by the flow matrix F .
Fa,r
s1,s2(n1, n2) contains the bandwidth (in Mbit/s) belonging to the rth request of

IoT application a that is used in the communication between services s1 and s2
which are allocated on node n1 and n2, respectively. Finally, za,rs1,s2 is a decision
variable that indicates the percentage of the requested bandwidth between services
s1 and s2 that is guaranteed for the rth request of the IoT application a.
Each optimization objective is detailed below. The input and decision variables
included in the descriptions are all related with novel variables.

2.3.3 Maximizing the Number of Accepted Requests - MAX R

The goal of this optimization is to maximize the number of accepted requests on
the network. This objective can be represented as shown in (2.1). This optimiza-
tion objective is subjected to multiple constraints. Constraints presented in [16]
have been considered in the model, which has been extended with additional ones
related to the wireless formulation.

max
∑
a ε A

∑
r ε Ra

Ga,r ×

(∑
s ε S

Ia,s × ωs

)
(2.1)

In IEEE 802.11ah networks, end devices associate with gateways through an AID,
a unique value assigned to an end device by the gateway during association hand-
shake [21]. A gateway cannot have more than 8191 associated stations according
to the latest standard. However, the association limitation has been set to 50 since
an urban macro deployment with extended range has been considered [21]. This
way, with this lower limitation, it has been assumed that good channel conditions
are always achieved and that all requests sent for IoT applications can be accepted.
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Therefore, a constraint must be added to the model ensuring that the AIDs limit in
each gateway is respected. This way, by using the end device execution matrix U ,
the AIDs limitation can be expressed as shown in (2.2). The total amount of AIDs
attributed in a gateway must be less than the total amount of AIDs available.

∀gw ε Ngw :
∑

ed ε Ned

θed × Ued,gw ≤ Θgw (2.2)

Secondly, a constraint is added to ensure that end devices are associated with one
gateway to be able to send requests for IoT applications. This constraint is repre-
sented by (2.3).

∀ed ε Ned :
∑

gw ε Ngw

Ued,gw ×Aed,gw = 1 (2.3)

2.3.4 Maximizing the Satisfied Service Bandwidth Demand -
MAX SB

On the previous objective, an IoT application is allocated on the network if at least
80% of the required bandwidth is guaranteed. The goal of this optimization is
to further increase the allocated bandwidth, ensuring that the maximum capacity
available is allocated to the communicating services that compose the IoT applica-
tions requested on the network. This maximization is expressed in (2.4).

max
∑
a ε A

∑
r ε Ra

∑
s1,s2 ε S

za,rs1,s2 (2.4)

2.3.5 Minimizing Service Migrations On Subsequent Iterations
- MIN M

The goal of this optimization is to minimize service migrations between subse-
quent iterations of the model. Since the model is executed iteratively, the exe-
cution matrix from the previous iteration U i−1 is added to the model, which is
used to compare with the current execution matrix U in order to reduce the ser-
vice migrations needed to achieve the next optimization objective. Therefore, the
minimization of service migrations can be expressed as shown in (2.5). Services
may have to be migrated from one comp. node to another in order to find the
optimal solution. However, it might be preferable to find a solution where service
reallocations are minimized so delay caused by reallocations is kept at a minimum.



30 CHAPTER 2

min
∑
s ε S

∑
n ε Nc

| Us,n − U i−1
s,n | (2.5)

2.3.6 Minimizing the Number of Active Comp. Nodes - MIN
Nc

The goal of this optimization is to minimize the number of active comp. nodes in
the cloud infrastructure, which results in cost and energy savings. By using the
comp. node utilization decision variable Un, the minimization can be expressed as
shown in (2.6).

min
∑

n ε Nc

Un (2.6)

The binary decision variable Un is subject to additional constraints, ensuring that it
only takes on value 0 if there is no communicating service allocated on that comp.
node [16]. This constraint is expressed in (2.7).

∀n ε Nc :
∑
s ε S

Us,n ≤ Un× | S | (2.7)

2.3.7 Minimizing the Number of Active Gateways - MIN Ngw

The goal of this optimization is to minimize the number of active gateways in the
network. This minimization results in an improved wireless resource efficiency
as well as energy and cost savings. Moreover, since gateways could be placed
in a sleep state it contributes to an interference reduction. By using the gateway
utilization decision variable Ugw, the minimization can be expressed as shown in
(2.8).

min
∑

gw ε Ngw

Ugw (2.8)

The binary decision variable Ugw is subject to additional constraints, ensuring
that it only takes on value 0 if there is no end device sending requests for an IoT
application through that gateway. This constraint is expressed in (2.9).

∀gw ε Ngw :
∑

ed ε Ned

Ued,gw ×Red ≤
∑
a ε A

Da × Ugw (2.9)
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2.3.8 Minimizing Hop Count Between Comp. Nodes and End
Devices - MIN H

This optimization objective is related to low latency in the communication between
comp. nodes where communicating services that compose an IoT application are
running and the end device that requested the IoT application. This optimization
can be achieved by minimizing the hop count between comp. nodes and end de-
vices. This minimization can be expressed as shown in (2.10) by using the Hop
Count matrix H and the placement matrix P .

min
∑

n,ed ε Nc,Ned

Hn,ed × (
∑
a ε A

∑
r ε Ra

∑
s ε S

P a,r
s,n × Φa,r,ed) (2.10)

2.3.9 Minimizing Path Loss - MIN PL

The objective of this optimization is to minimize the path loss of the wireless
communication links. The path loss matrix PL is calculated based on the path
loss formula for IEEE 802.11ah networks, when an urban macro deployment and
a central frequency (fc) of 900 MHz are considered. This formulation can be
expressed as in (2.11). The distance (in meters) is given by the Distance matrix
D, which indicates the distance between end devices and gateways. This way,
by using the path loss matrix PL and the end device execution matrix Ued,gw the
minimization objective is given by (2.12).

PL(dB) = 8 + 37.6 log10(d) (2.11)

min
∑

gw,ed ε Ngw,Ned

PLgw,ed × Ued,gw (2.12)

2.4 Evaluation Scenarios

The evaluation scenarios are based on use cases within the scope of Antwerp’s City
of Things testbed [22]. A rectangle area of 216 km2 similar to the area of Antwerp
has been considered. Gateways have been strategically placed covering the entire
area while minimizing interference due to low coverage overlap between gateways.
Two use cases have been evaluated, a static and a dynamic scenario as shown in
Fig. 2.2, to demonstrate the wide applicability of the ILP model. It should be noted
that nine areas of 24 km2 are considered as possible locations for fog resources.
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Figure 2.2 Evaluation Scenarios.

2.4.1 Static Scenario

As a future use case, water level sensors will be installed in sewers in the city of
Antwerp. This use case is a static scenario related to a Water Level IoT application,
which is decomposed in four communicating services:

• API service responsible for receiving sensor data.

• Database service for storing information.

• Data processing service for information analysis.

• Monitoring service that supervises all other services.

2.4.2 Dynamic Scenario

As an initial proof of concept of the Antwerp’s City of Things architecture, air
quality sensors have been installed on cars driving around the city of Antwerp
[22]. These sensors send measures of typical gasses and climate data such as
temperature and humidity, which are then annotated with GPS locations. This
use case is a dynamic scenario related to an Air Quality IoT application, which
is decomposed in three services: an API service, a database service and a data
processing service.
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2.4.3 Evaluation Setup

Table 2.4: Input variables for each Scenario.

Variables Static Dynamic
Ned 1000 100
A 1 1
S 4 3
Nc 45 45
Ngw 123 123
Nf 9 9

The ILP model presented has been implemented in Java using the IBM ILOG
CPLEX ILP solver [23]. Input variable values for each scenario are presented in
Table 2.4. Nine fog clouds f ε Nf each one managing 5 comp. nodes n εNc have
been considered. Moreover, 1000 water level sensors randomly distributed in the
City of Antwerp were included in the model for the static scenario while for the dy-
namic scenario, 100 cars driving around the city were considered. In the dynamic
scenario, each car is driving at an average velocity of 30km/h and each simulation
occurs separated by 5 minutes. Therefore, car positions have been changed 2.5 km
between simulations. A new x coordinate is randomly selected and then by solv-
ing the quadratic equation two solutions for the new y coordinate are obtained.
Constraints have been included in the model to make sure that the new calculated
car positions are inside the evaluation area. For both scenarios, the end device ed
which makes the rth request of an IoT application is randomly selected from the
set Ned. Every comp. node has a CPU and a Memory capacity. The CPU capacity
of a comp. node nεNc represents the processing power per core times the number
of cores, which is randomly chosen from the set {9, 12, 15, 18, 21GHz} while the
memory capacity is chosen from the set {6, 8, 10, 12, 14GB}. In the same way, the
communicating services have a CPU and a Memory requirement which are chosen
from the sets {0.5, 0.7, 0.9, 1.1, 1.3 GHz} and {0.5, 0.7, 0.9, 1.1, 1.3, 1.5 GB},
respectively. Each comp. node, gateway, end device and fog cloud has a given
location l ε L associated. A location is one of the nine areas of 24 km2 previously
explained in the Section 2.4. If the location l of a comp. node n and a fog cloud f
is the same, it means that the comp. node n is managed by that fog cloud f since
there is only one fog cloud for each location l ε L. Moreover, (xy) coordinate po-
sitions are randomly attributed to each end device edεNed while for each gateway
gw ε Ngw, (xy) coordinate positions are strategically attributed in order to cover
the entire evaluation area. Based on these (xy) coordinates, the distance matrix D
is calculated by the euclidean distance formula as shown in (2.13).

D(gw, ed) =
√
(xgw − xed)2 + (ygw − yed)2 (2.13)
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Then, the path loss matrix PL is calculated based on the path loss formula for the
IEEE 802.11ah previously shown in (2.11) by using the calculated distance matrix
values. The communication matrix C is a random number between [0.02, 0.04]

which represents the bandwidth requirement (in Mbit/s) between two communi-
cating services, s1 and s2, respectively. Moreover, the bandwidth matrix B is
a random number between [6, 14] which represents the available bandwidth (in
Mbit/s) between two comp. nodes, n1 and n2, respectively. The hop count matrix
H between comp. nodes and end devices is a random number between [2, 3] if
the node n and the end device ed are on the same location l or between [4, 8] if
the node n and the end device ed are on different locations, l1 and l2, respectively.
Different sets of model configurations for each scenario have been evaluated. In
each iteration of the model, a different optimization objective has been consid-
ered. In Table 2.5 and Table 2.6, the model configurations are shown. It should be
highlighted that for all model configurations first, the number of accepted IoT ap-
plication requests is maximized and then the satisfaction of the service bandwidth
is maximized, ensuring that the communication requirements between application
services are guaranteed as well as possible. In Table 2.5, model configuration A
corresponds to a wireless efficiency strategy, since the final objective is the mini-
mization of the number of active gateways on the network. Secondly, model con-
figuration B is related to energy efficiency in the cloud infrastructure, since the
final goal of this configuration is the minimization of power consumption of the
comp. nodes. Finally, model configuration C corresponds to a low latency strat-
egy based on the minimization of the hop count value between comp. nodes and
end devices. IoT application services are placed closer to the end device when this
model configuration is executed.
On the other hand, in Table 2.6, four additional model configuration strategies
are shown. Both D and E configurations are composed of six optimization objec-
tives. D prioritizes low latency, while E prioritizes energy efficiency. Moreover,
both DM and EM configurations are composed of seven optimization objectives
since an additional optimization objective is introduced between the 3rd and the
4th iteration of the configurations D and E, related to the minimization of service
migrations on subsequent model iterations in order to reduce delay from reallo-
cating IoT services. All model configurations have been evaluated 50 times and
confidence intervals of 95% have been considered in the evaluation.

Table 2.5: Model Configurations for the Static Scenario.

A - Wi-Fi Eff. B - Cloud Energy-Aware C - Latency
1 - MAX R 1 - MAX R 1 - MAX R

2 - MAX SB 2 - MAX SB 2 - MAX SB
3 - MIN Ngw 3 - MIN Nc 3 - MIN H
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Table 2.6: Model Configurations for the Dynamic Scenario.

D - Latency E - Energy Eff. DM - Latency EM - Energy Eff.
1 - MAX R 1 - MAX R 1 - MAX R 1 - MAX R
2 - MAX SB 2 - MAX SB 2 - MAX SB 2 - MAX SB
3 - MIN H 3 - MIN Nc 3 - MIN H 3 - MIN Nc

4 - MIN Nc 4 - MIN Ngw 4 - MIN M 4 - MIN M
5 - MIN Ngw 5 - MIN H 5 - MIN Nc 5 - MIN Ngw

6 - MIN PL 6 - MIN PL 6 - MIN Ngw 6 - MIN H
7 - MIN PL 7 - MIN PL

2.5 Evaluation Results

2.5.1 Static Scenario

The model configurations shown in Table 2.5 have been evaluated for the static
scenario presented in Section 2.4. In Fig. 2.3, the execution speed of the model
configurations is shown. By increasing the number of requests, the execution time
of the model configurations increases. For 200 requests, each model configuration
requires on average at least 23 minutes to find the optimal solution. In Fig. 2.4, the
ratio of active gateways and the ratio of active comp. nodes for each model config-
uration are illustrated. Regarding gateways, all are active for configurations B and
C since no optimization objective is included regarding wireless efficiency. How-
ever, for configuration A whose final objective is related to wireless efficiency, the
ratio of active gateways slightly increases with the increase of requests in the net-
work. Results show that 50% of the gateways are active for 140 requests and that
only for values above 220 requests, the ratio is higher than 60%. This configuration
shows a higher wireless efficiency when compared to the other configurations. On
the other hand, the ratio of active comp. nodes is 95% independent of the number
of requests for configurations A and C due to the lack of an optimization objective
regarding energy efficiency in the cloud environment in both configurations. How-
ever, for configuration B whose final objective is energy efficiency in the cloud
domain, for 20 requests only 9% of the comp. nodes are active. Moreover, only
for values above 180 requests, at least 80% of the comp. nodes are active. In
Fig. 2.5, the average hop count between comp. nodes and end devices for each
model configuration is shown. Configuration C obtained lower hop count values
when compared to configurations A and B due to the fact that the final objective
of C is low latency. C achieved slightly constant hop count values of 2.2 while
A and B achieved hop count values between 4.0 and 5.5, which results in an in-
creased latency since on average two more hops are required. Moreover, it should
be noted that the average hop count decreases while requests increase due to the
fact that more comp. nodes are needed in these conditions and therefore hop count
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decreases even if in the model configuration there is no optimization objective
related to latency.

Figure 2.3 Execution speed of the model configurations.
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Figure 2.4 Gateway & Comp. Node Activity for each model configuration.
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2.5.2 Dynamic Scenario

The four model configurations shown in Table 2.6 have been evaluated using the
dynamic scenario presented in Section 2.4. In Fig. 2.6, the ratio of active comp.
nodes for each model configuration is shown. ConfigurationsE andEM achieved
the same results. Therefore, minimizing migrations in subsequent iterations of the
model, when energy efficiency is more important than low latency, does not alter
the final solution. The ratio of active comp. nodes is independent of the cars
repositioning and remains constant at 16%. However, configurations D and DM
obtained different results. For configuration D, where service migrations are not
taken into account average values of 51% are obtained while for configuration
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Figure 2.5 Average Hop Count value for each model configuration.
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Figure 2.6 Comp. Node Activity for each model configuration.
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Figure 2.7 Average Hop Count value for each model configuration.
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Figure 2.8 Service migrations between 3rd and 4th objective.
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DM where service migrations are taken into consideration average values of 88%
are achieved. This way, energy consumption cannot be further minimized when
reallocations are considered, which will contribute to a higher number of active
comp. nodes as it was observed.
In Fig. 2.7, the average hop count between comp. nodes and end devices for each
model configuration is shown. Configurations D and DM obtained the same re-
sults because the minimization of hop count occurs earlier than the minimization
of service migrations and therefore there is no difference in the achieved results
for both configurations. Hop count values of 2.25 are then obtained. However,
configurations E and EM achieved different results. Hop count values of 3.5 are
obtained for model E while for model EM hop count values of 4.0 are achieved.
This is due to the fact that when service reallocations are considered, latency can-
not be further minimized, which will contribute to an even higher hop count as it
was observed. In Fig. 2.8, the ratio of service migrations for each model configu-
ration is illustrated. Values of 0% for configurations DM and EM are achieved
while for D and E, average values of 22% are obtained meaning that in order to
satisfy the optimal solution, 22% of the communicating services must be reallo-
cated. This way, if both low latency and energy efficiency management strategies
are considered, delay caused by service reallocation should be taken into account
in the resource provisioning.

2.6 Conclusion

In this chapter, an ILP model for the resource provisioning of IoT application ser-
vices in Smart Cities has been presented. In the last years, the need for resource
management strategies for Smart Cities is increasing due to the deployment of IoT
application use cases. Proper resource allocation is required in order to minimize
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costs and maximize QoS. The model considers not only cloud infrastructure re-
quirements but also characteristics coming from wireless aspects in order to deal
with these challenges. The model is executed iteratively since it optimizes multi-
ple objectives, such as latency, service migrations and energy efficiency. Obtained
results show that there is a clear trade-off between low latency and low energy
consumption. For an IoT application service with real-time constraints low latency
may be crucial and therefore a low hop count value between the allocated service
and the end device must be achieved. However, another IoT application service
without real-time constraints could be allocated far from the end device with the
goal of minimizing energy consumption since low latency is not important. The
result of this work can serve as a benchmark in research related to placement is-
sues of IoT application services in Fog environments since the model approach
is generic and applies to a wide range of IoT use cases. As future work, the ILP
model will be validated through realistic evaluations based on real service deploy-
ments.
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3
Fog Computing: Enabling the

Management and Orchestration of
Smart City Applications in

5G Networks

“Talent wins games, but teamwork and intelligence wins championships.”

– Michael Jordan, former basketball player

This chapter addresses challenge #2 by investigating novel architectural para-
digms for Smart City applications. The chapter proposes a Fog Computing frame-
work with autonomous management and orchestration functionalities for 5G Smart
Cities. The chapter also presents a Peer-to-Peer (P2P) fog protocol based on the
Open Shortest Path First (OSPF) routing protocol to exchange application service
provisioning information. The goal is to enable fast decisions concerning service
placement between fog nodes. In addition, the chapter discusses challenge #3 by
evaluating an anomaly detection use case based on an air quality monitoring ap-
plication. Results show that the proposed framework significantly reduces network
bandwidth usage and latency compared to centralized clouds. Therefore, the main
contribution of this chapter is the design of a fully integrated fog node management
system.

⋆ ⋆ ⋆
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Abstract Fog computing extends the cloud computing paradigm by placing re-
sources close to the edges of the network to deal with the upcoming growth of
connected devices. Smart city applications, such as health monitoring and predic-
tive maintenance, will introduce a new set of stringent requirements, such as low
latency, since resources can be requested on-demand simultaneously by multiple
devices at different locations. It is then necessary to adapt existing network tech-
nologies to future needs and design new architectural concepts to help meet these
strict requirements. This chapter proposes a fog computing framework enabling
autonomous management and orchestration functionalities in 5G-enabled smart
cities. The approach follows the guidelines of the European Telecommunications
Standards Institute (ETSI) NFV MANO architecture extending it with additional
software components. The contribution of the chapter is its fully-integrated fog
node management system alongside the foreseen application layer Peer-to-Peer
(P2P) fog protocol based on the Open Shortest Path First (OSPF) routing proto-
col for the exchange of application service provisioning information between fog
nodes. Evaluations of an anomaly detection use case based on an air monitoring
application are presented. Results show that the proposed framework achieves a
substantial reduction in network bandwidth usage and in latency when compared
to centralized cloud solutions.

3.1 Introduction

In recent years, the Internet of Things (IoT) has transformed objects of everyday
life into communicating devices. The number of connected devices will be be-
tween 10 and 12 billion by 2021 [1], making it impossible for current network tech-
nologies to support this enormous growth. Future networked systems must adapt
existing network architectures to future needs and design and develop new man-
agement capabilities to help meet the stringent requirements of future use cases.
In fact, the upcoming 5G networks aim to tackle these new business opportuni-
ties by introducing very high carrier frequencies, an enormous number of antennas
and new functionalities, such as Device-to-Device communication (D2D) and fog
computing [2]. The fog computing paradigm, which places resources on the edges
of the network, extends the cloud computing paradigm to deal with the eminent
growth of connected devices [3]. Fog computing brings computing power, storage
and memory capacity closer to wireless gateways, sensors and actuators since these
devices are currently lacking in terms of such capacities [4]. The so named Fog
Nodes (FNs) are cloud entities with a small amount of computational resources
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distributed across the network that must be able to communicate with a different
variety of devices and offer them solutions to gather, process and filter data [3, 5].
These procedures imply a proper resource allocation of multiple services, which is
not an easy task. Nowadays, resource provisioning and orchestration is present in
different topics of literature related to the life-cycle management of applications
and services. Although orchestration is relatively mature in data centers, in fog
architectures, there is still a large number of research challenges associated with
this approach since fog computing is still in the early stages and needs more time
to evolve [6]. In fog architectures, orchestration should be distributed across the
multiple FNs, which are then responsible for the local resource provisioning and
deployment of applications and services, thereby ensuring the necessary Quality
of Service (QoS).

In the last few years, IoT applications have been implemented as a set of small and
independent micro-services. The micro-services architecture is a relatively new
term in software patterns [7]. The micro-service paradigm is an extension of the
traditional Service-Oriented Architecture (SOA) paradigm, where an application
is decomposed into a set of fine-grained services. Each service communicates
through lightweight communication protocols. Research studies have been carried
out to solve the issues of abstracting end device functionalities, trying to provide
a suitable architecture with service management and composition capabilities able
to link a set of micro-services in a set of IoT applications. Each micro-service can
be provided by a lightweight container, which may be used by multiple tenants. In
a smart city scenario, resources should be distributed within the network ensuring
that the micro-services that make up an application are allocated and instantiated
close to the end device that is requesting the IoT application [8]. Multiple factors
should be taken into account to ensure proper resource allocation such as latency,
bandwidth, energy efficiency and cost.

In this chapter, a fog-based management and orchestration framework is proposed
to deal with the application service placement problem in smart cities. The ap-
proach follows the guidelines of the European Telecommunications Standards In-
stitute (ETSI) Network Function Virtualization (NFV) Management and Orches-
tration (MANO) architecture, extending it with additional software components,
which will offer not only high computing performance, but also monitoring and
data analysis functionalities. Furthermore, based on our expertise in the network
management domain, a novel fog protocol is foreseen to enable the exchange of ap-
plication service information between FNs to provide fast service provisioning de-
cisions for smart city applications. This way, each FN can decide where and when
it is more suitable to deploy and instantiate each instance of the micro-services
composing a smart city application. Therefore, an application layer Peer-to-Peer
(P2P) fog protocol based on the Open Shortest Path First (OSPF) routing protocol
is proposed to deal with the exchange of application service information between
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FNs and the cloud layer. Finally, the evaluation of an anomaly detection smart city
use case based on an air monitoring application is presented. Results show that the
proposed fog computing framework achieves a substantial reduction in network
bandwidth usage and in latency when compared to centralized cloud solutions.
The remainder of the chapter is organized as follows. In the next section, related
work is discussed. Section 3.3 introduces the proposed fog computing manage-
ment and orchestration framework. Then, in Section 3.4, the evaluation scenario is
described, which is followed by the evaluation of the results in Section 3.5. Finally,
conclusions are presented in Section 3.6.

3.2 Related Work
With the advent of 5G networks and by exploiting the advantages of new para-
digms, such as NFV, Software-Defined Networking (SDN) and Machine-to-Ma-
chine (M2M) communication, autonomous network management functionalities
become feasible. This section provides a summary of the standardization activi-
ties, research projects and open source initiatives relevant for the specification and
implementation of a MANO framework for 5G-enabled smart cities.

3.2.1 Standardization Activities

This subsection provides a brief summary of the standardization activities relevant
in the management and orchestration domain.

3.2.1.1 ETSI oneM2M

In January 2009, the ETSI M2M technical committee was established with the aim
to develop an end-to-end high level architecture for M2M. ETSI oneM2M aims to
establish for M2M what 3GPP realized for mobile networks. The final release has
been available since 2016 [9], and the correspondent architecture is shown in Fig-
ure 3.1. The architecture consists of two distinct domains: the field domain and
the infrastructure domain. The Application Entity (AE) is responsible for imple-
menting an M2M application service logic in the application layer. Each execution
instance is identified with a unique AE Identifier (AE-ID). Examples of the AEs
include an instance of a remote blood sugar monitoring application, a power me-
tering application or an emergency response application. The Common Services
Entity (CSE) represents an instantiation of a set of common service functions of
the M2M environments. These service functions are exposed to other entities th-
rough the AE – CSE (Mca) and CSE - CSE (Mcc) reference points. Each CSE is
identified with a unique CSE-ID. Examples of service functions offered by CSEs
include: data management, device management and M2M service subscription
management. Finally, the Network Service Entity (NSE) provides services from
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the underlying network to the CSEs. Examples of such services include location
services and device triggering [9]. The reference point CSE – NSE (Mcn) is used
for accessing underlying NSEs. The proposed fog computing framework follows
the guidelines of ETSI OneM2M regarding device management and security stan-
dards by including the correspondent components in the framework. Nevertheless,
the definition of MANO functionalities and components in the ETSI OneM2M
reference architecture are still in an early stage.

Figure 3.1 oneM2M functional architecture [9].

3.2.1.2 OpenFog Consortium

The OpenFog Consortium is working on a framework for efficient and reliable
networks between clouds, endpoints and services based on open standard tech-
nologies. Recently, OpenFog released a reference architecture [10] that clarifies
the characteristics and the requirements for fog computing, focusing primarily on
the FN. The OpenFog reference architecture for a multi-tier deployment is shown
in Figure 3.2. However, the definition of MANO components in the OpenFog
reference architecture are still superficial, and therefore, it is expected that the
consortium will work in this direction in future specifications.

3.2.1.3 ETSI MEC

The ETSI Mobile Edge Computing (MEC) technical committee is currently work-
ing on a reference architecture [11] for an orchestrator with similar requirements
to the orchestrator required by fog computing architectures. MEC is emphasizing
the need to consider a set of stringent constraints, such as application instantiations
and service reallocations, both very important requirements for fog solutions. The
MEC framework is shown in Figure 3.3. MEC is focused on evolving the mobile
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Figure 3.2 The OpenFog reference architecture: N-tier fog deployment.

network edges, in order to create a cloud environment close to the Radio Access
Network (RAN) that hosts enhanced services provided by the Mobile Network
Operator (MNO) or third parties. Mobile Edge (ME) applications run on top of
a generic cloud infrastructure located within the RAN, referred to as the mobile
edge host. The mobile edge host is an entity containing a mobile edge platform
and a virtualization infrastructure, which provides compute, storage and network
resources for the purpose of deploying mobile edge applications. The mobile edge
platform is the collection of functionalities required to run mobile edge applica-
tions on a virtualization infrastructure enabling the provisioning and consumption
of mobile edge services [11]. Nevertheless, a detailed and complete specification
of the MEC Orchestrator reference architecture is still missing.

3.2.1.4 ETSI NFV MANO

The ETSI NFV MANO technical committee is working on the standardization of
management and orchestration frameworks required for the provisioning of Virtual
Network Functions (VNFs) and Network Services (NSs). The MANO committee
focuses on the definition of a reference architecture to overcome the challenges
of the virtualization paradigm by covering operational and management aspects,
such as service life-cycle workflows, information elements and interfaces. The
final release has been available since 2014 [12], and the correspondent architecture
is shown in Figure 3.4. This reference architecture allows network operators to
apply a smooth transition to the new management paradigm, where legacy services
and functionalities are gradually augmented with SDN and NFV capabilities. The
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Figure 3.3 The mobile edge system reference architecture [11].

Figure 3.4 The NFV MANO architectural framework with reference points [12].
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ETSI NFV MANO architecture is composed of four main functional blocks:

• Operations Support System/Business Support System (OSS/BSS):

- Responsible for the control of software applications used to support
back-office activities;

- Coordination of business operations, such as billing and customer ser-
vices.

• NFV Orchestrator (NFVO):

- Responsible for the registration of new VNFs and NSs;
- Life-cycle management (including instantiation,

scale-out/in, termination).

• VNF Manager (VNFM):

- Life-cycle management of VNF instances;
- Coordination of the main configurations between the NFV Infrastruc-

ture (NFVI) and the Elemental Management System (EMS).

• Virtualized Infrastructure Manager (VIM):

- Controlling and managing the NFVI compute, storage and network
resources;

- Collection and forwarding of performance measurements and events;

The proposed fog computing framework in this chapter follows the ETSI NFV
MANO reference architecture, extending it with additional software components.
The architectural elements share concepts with the MANO architecture; however,
the characteristics of fog computing solutions lead us to a different approach, since
ETSI NFV MANO has been conceived of to be applied in data centers, while in fog
environments, each fog node must be able to manage and control its infrastructure.
Management and orchestration are still open issues in the fog computing domain
due to the dynamic behavior and distributed management of the network, which
makes the investigation of using ETSI NFV MANO standards as the base for a
fog-based MANO framework implementation necessary.

3.2.1.5 OMA Lightweight M2M

The Open Mobile Alliance (OMA) designed a device management protocol for
sensor networks and M2M environments, which is named Lightweight M2M
(LwM2M). LwM2M has been specified by a group of industry experts at the
OMAs Device Management Working Group and is based on protocol and secu-
rity standards from the Internet Engineering Task Force (IETF). OMA LwM2M
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aims to respond to the demand in the market for a common standard for manag-
ing lightweight and low power devices necessary to realize the potential of IoT.
The LwM2M protocol builds on an efficient secure data transfer standard named
the Constrained Application Protocol (CoAP). The final release has been available
since 2014 [13], and the correspondent architecture is shown in Figure 3.5. As
mentioned, the proposed fog computing framework follows ETSI’s oneM2M de-
vice management and security standards, which are the main focus of the LwM2M
protocol.

Figure 3.5 The system architecture of OMA LwM2M.

3.2.1.6 TOSCA

In recent years, the Topology and Orchestration Specification for Cloud Appli-
cations (TOSCA) [14] has become the standard language for modeling service
orchestration in cloud environments in a highly extensible and flexible manner.
TOSCA focuses mainly on enhancing the portability and operational management
of cloud applications and services across their entire life-cycle, by defining build-
ing blocks, requirements and capabilities, which should be taken into consideration
in the service orchestration.

3.2.1.7 Cloudlet

The concept of cloudlet was introduced in [15]. A cloudlet is a small-scale data
center that is located at the edges of the network. The main purpose of the cloudlet
is to provide cloud resources close to mobile devices as fog computing is cur-
rently doing for IoT devices. Cloudlet aims to support resource-intensive mobile
applications with latency-sensitive requirements that will emerge in the future 5G
network.
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3.2.1.8 Summary

ETSI MEC has been working on a reference architecture for the evolution of the
mobile network edges, in order to create a cloud environment close to the RAN,
while ETSI MANO has been developing a MANO framework for the provisioning
of VNFs and NSs in data centers. Furthermore, ETSI oneM2M has been design-
ing an end-to-end high level architecture for M2M communications, while OMA
LwM2M is working on the same path, but focused on device management and se-
curity functionalities. Additionally, the cloudlet paradigm is extending the cloud
paradigm by placing resources close to mobile devices, while the OpenFog Con-
sortium by using the fog computing paradigm is placing cloud resources at the
edges of the network to meet the strict requirements introduced by IoT use cases.
Finally, TOSCA is complementing all these standardization efforts by designing a
standard language for modeling service orchestration in cloud environments in a
highly extensible and flexible manner.
However, all the cited standardization activities still face industry challenges for
the full definition of management and orchestration technologies. Most of the
discussed reference architectures are still immature and require further investiga-
tion and development before they can be operationalized and used by network
operators. Research efforts relevant for the specification and implementation of a
MANO framework for 5G-enabled smart cities are detailed next.

3.2.2 Research Projects

In recent years, research projects have been carried out to deal with management
and orchestration issues in smart cities. The SmartSantander project [16, 17]
worked on a suitable architectural model for IoT and on the inherent challenges
of resource provisioning in smart cities. The SmartSantander framework provides
a suitable platform for large-scale experimentation and evaluation of a large set
of IoT use cases deployed in several urban scenarios. Furthermore, the CityPulse
project [18] has been working on a data analytics framework for smart cities. The
CityPulse framework integrates powerful data analytics tools, data aggregation and
event detection modules and quality assessment algorithms, which aim to support
the development of customized smart city applications. The SusCity project [19] is
working on a resilient IoT architecture for smart cities focusing on data collection
from multiple sources, in order to develop intelligent management solutions that
can help the government and citizens to make appropriate decisions. Furthermore,
the VITAL project [20] federates heterogeneous IoT platforms via semantics in a
cloud-based environment focusing on smart city scenarios.
Additionally, in [21], a big data network composed of SDN technologies and
cloud/fog platforms is presented. Their goal is to reduce the large amount of re-
dundant data and the response time in accessing data services. However, their
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focus is only on the orchestration of big data services, while the approach is not
only concerned with data analytics operations, but also decision making function-
alities that can help to autonomously orchestrate smart city applications in a dis-
tributed way. Furthermore, their work is based on simulation studies, while the
approach is based on an actual deployment within the scope of Antwerp’s City
of Things testbed. Furthermore, in a recent article about 5G-enabled smart cities
[22], an approach for M2M communication in cognitive 5G networks is presented.
This paper introduces a novel decentralized multiple gateway assignment protocol
based on multi-channel Carrier Sense Multiple Access (CSMA) for M2M com-
munication in 5G networks. Moreover, a low overhead protocol is also proposed,
which increases the throughput of the system and minimizes energy consumption
by reducing the message header payload. Simulation studies were carried out to
show the effectiveness of the proposed schemes in terms of network lifetime and
energy consumption.

Regarding European research, the European Commission (EC), alongside indus-
try manufacturers, telecommunications operators, service providers, SMEs and
researchers, created the 5G Infrastructure Public Private Partnership (5G-PPP) to
advance the research of 5G technologies in Europe and to build global consen-
sus on 5G networks. The projects supported by the 5G-PPP aim to deliver so-
lutions, architectures, technologies and standards for the ubiquitous next genera-
tion communication infrastructures of the coming decade. Regarding management
and orchestration, the following 5G-PPP projects should be highlighted. First,
the Service Programming and Orchestration for Virtualized Software Networks
(SONATA) project [23] aims to deliver an agile service development and orches-
tration in 5G virtualized networks. SONATA targets both the flexible programma-
bility of software networks and the optimization of their deployments. Secondly,
the Coordinated control and spectrum management for 5G heterogeneous radio
access networks (COHERENT) project [24] will develop and validate a novel
control framework for future mobile networks. The key innovation of COHER-
ENT is the unified programmable control framework to coordinate the underlying
heterogeneous mobile networks as a whole. Thirdly, the Self-organized Network
Management in Virtualized and Software Defined Networks (SELFNET) project
[25] will design and implement an autonomic network management framework to
achieve self-organizing capabilities, such as self-protection, self-healing and self-
optimization functionalities to deal with major network management problems,
which are currently still being manually addressed by network operators, thereby
significantly reducing operational costs and improving user experience. Fourthly,
the End-to-End Cognitive Network Slicing and Slice Management Framework in
Virtualised Multi-Domain, Multi-Tenant 5G Networks (SLICENET) project [26]
aims to maximize the potential of the future 5G infrastructures and their services
based on advanced software networking and cognitive network management in
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SDN/NFV-enabled 5G networks. One scenario considered by SLICENET is a
smart city use case, the goal of which is to implement a remote water metering and
an intelligent public lighting system in the city of Alba Iulia, in Romania. Finally,
the Small cEllS coordinAtion for Multi-tenancy and Edge services (SESAME)
[27] project’ intention is to develop a new multi-operator-enabled small cell that
integrates a virtualized execution platform for deploying VNFs and supporting
self-management capabilities.
Although the existing and ongoing research projects cited address some of the re-
quirements of MANO functionalities for 5G networks, they have not yet delivered
an integrated and autonomous MANO solution. Therefore, in this chapter, a fog-
based MANO framework is proposed that goes beyond the current state-of-the-art
by introducing a fully-integrated and autonomous FN management system, which
combines monitoring and data analysis operations alongside management and or-
chestration decisions for the resource provisioning issue in smart cities.

3.2.3 Open Source Initiatives

This subsection provides a brief summary of the most popular open source activi-
ties related to the development of NFV, SDN and M2M technologies.

3.2.3.1 NFV Open Source Projects

Nowadays, there are several open source projects related to the control and man-
agement of VNFs that follow the reference standards provided by ETSI. In Ta-
ble 3.1, the most popular NFV open source projects today are shown.

3.2.3.2 SDN Open Source Projects

With the growing development of NFV and SDN technologies, the number of open
source projects related to SDN controllers is rapidly increasing. In Table 3.2, the
working groups related to SDN controllers are shown.

3.2.3.3 M2M Open Source Projects

Currently, with the growing amount of connected devices, the number of open
source initiatives related with M2M management issues is rapidly increasing. In
Table 3.3, the most popular M2M standardization efforts are shown.

3.2.4 Ambition

In this chapter, a fog computing framework is proposed to enable autonomous
MANO functionalities for smart city applications in 5G Networks. This work
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Table 3.1: NFV open source projects.

Project Description

OpenStack [28]

OpenStack allows the management of virtualized re-
sources such as virtual disks, computational nodes and
networks. OpenStack addresses the management para-
digm of the ETSI MANO NFV architecture.

OpenBaton [29]

OpenBaton is an ETSI NFV compliant NFVO. OpenBa-
ton has a modular implementation allowing the integra-
tion of other software modules without having to modify
or understand its core implementation. OpenBaton sup-
ports a plugin system to incorporate virtual infrastructure
managers, such as Openstack.

OpenMano [30]

OpenMANO is an approach to the management and or-
chestration of ETSI NFV standardization. However, al-
though OpenMano allows the definition of network ser-
vices and their instantiation and deletion, it does not pro-
vide a virtual network function manager.

Table 3.2: SDN open source projects.

Project Description

OpenDayLight [31]

OpenDayLight is an open source project hosted by
The Linux Foundation working on a platform to ac-
celerate the adoption of SDN technologies. Open-
DayLight aims to solve a wide range of common net-
work problems in an automatic manner by making
networks more programmable and intelligent.

ONOS [32]

ONOS is an open source SDN networking operating
system that aims to provide a scalable and modular
platform that eases the development of SDN applica-
tions and services.

Ryu [33]

Ryu is a component-based SDN framework. Ryu pro-
vides software components with well defined APIs to
create new network management and control applica-
tions.
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Table 3.3: M2M open source projects.

Project Description

OMA LwM2M [34]
OMA LwM2M is a device management protocol de-
signed for IoT networks and the demands of M2M
environments.

Leshan [35]
Leshan is a LwM2M server and client Java implemen-
tation, which provides software libraries to help the
development of other LwM2M applications.

5G-EmPOWER [36]

5G-EmPOWER is a multi-access edge computing op-
erating system supporting heterogeneous radio access
technologies. 5G-EmPOWER aims to provide full
visibility of the network state and allow the dynamic
deployment and orchestration of NSs.

extends the current state-of-the-art within fog computing, NFV and MANO par-
adigms by introducing a fully-integrated and autonomous fog node management
system, which combines monitoring and data analysis operations alongside man-
agement and orchestration decisions. The approach follows the guidelines of the
ETSI NFV MANO architecture and the standards of ETSI oneM2M in terms of
device management and security. Furthermore, a novel fog protocol is introduced,
which enables the exchange of application service information between FNs and
the cloud layer, improving the performance of application-to-resource provision-
ing results.
In summary, this work looks beyond existing and ongoing research projects that
individually address some of the requirements, but have not yet delivered an in-
tegrated and autonomous solution for the resource management and orchestration
issue in smart cities. Smart city applications will introduce a set of stringent re-
quirements, such as low latency and high mobility, since services can be requested
on-demand simultaneously by multiple devices on different locations. To deal with
these limitations, efficient resource provisioning is needed in order to address these
constraints introduced by smart city applications while minimizing resource costs.
Therefore, in this chapter, a fog-based management and orchestration framework
is proposed to deal with the application service placement problem in smart cities.
The framework is presented in the next section.

3.3 A Fog-Based Management and Orchestration
Framework for 5G Smart Cities

In this section, a fog computing framework is presented for the management and
orchestration of smart city applications. First, architectural challenges introduced
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by the fog computing paradigm are presented. Then, a system overview of the pro-
posed framework is detailed. Furthermore, a fog protocol is introduced to provide
exchange of application service provisioning information between multiple FNs.
Finally, a hierarchical and distributed data monitoring and analysis approach based
on the framework is detailed.

3.3.1 Challenges of a Fog-Based MANO Architecture

To deal with diverse IoT requirements, such as latency, energy efficiency and mo-
bility, the fog computing paradigm has been introduced. Centralized cloud so-
lutions are not suitable for future IoT applications, with real-time constraints and
enormous volumes of data to be transported in the network. This way, fog comput-
ing architectures can provide effective ways to overcome many limitations of the
existing network architectures that rely only on computing resources in the cloud
and on end-user devices.

3.3.1.1 Latency Constraints

Fog computing will allow real-time processing and data analytics at the edges of
the network, which will enable the deployment of delay-sensitive applications and
the control of time-sensitive network functionalities close to end devices. This
will allow coping with the strict requirements of the future smart city applications.
This way, fog computing will help to reduce the service provisioning delay for
most applications.

3.3.1.2 Security Challenges

Existing security solutions are designed for protecting enterprise networks and
data centers by providing perimeter-based protections. These security services are
no longer adequate for addressing the new security challenges in the emerging
IoT systems. Fog computing architectures will enable a wide range of security
functions, such as distributed malware monitoring for the multiple IoT devices to
compensate these devices’ limited security and primarily take advantage of the
gathering of local information in order to detect threats and attacks in a timely
manner.

3.3.1.3 Network Bandwidth Constraints

Centralized solutions are not suitable for smart city scenarios since sending all the
data collected by IoT devices to the cloud layer will require an enormous amount
of network bandwidth, which centralized solutions and Low Power Wide Area
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Network (LPWAN) technologies cannot support. Fog computing enables data pro-
cessing and analytics operations locally, which drastically reduces the amount of
data that needs to be sent to the cloud layer.

3.3.1.4 Resource-Constrained IoT Devices

IoT devices have limited resources (battery, computational power, storage and
memory capacity). It is not feasible to rely only on these devices to fulfill all
the needed computational operations. FNs will carry out most of the computa-
tional tasks on behalf of resource-constrained IoT devices, hence reducing these
devices’ complexity, deployment costs and energy consumption.

3.3.1.5 High Dynamicity

Mobility is an important requirement of IoT scenarios since resources can be re-
quested on-demand simultaneously by multiple devices at different locations. Fur-
thermore, IoT introduces serious challenges on how to address seamless mobility
in heterogeneous environments, since devices are constantly moving and accessing
the medium through different technologies. To deal with these inherent mobility
challenges, the fog computing paradigm has been introduced to provide resources
and services on the edges of the network to effectively handle handover proce-
dures.

3.3.1.6 Distributed Data Analysis

As IoT devices can send their data samples to local FNs, monitoring and anomaly
detection operations can be performed in a distributed way. If unusual events or ab-
normal behaviors are detected in the data, faster response times can be achieved.
This way, malfunctions in IoT devices can be detected and transmissions of in-
correct information can be avoided in a timely manner, which can improve the
network reliability.

3.3.1.7 Local Autonomous Operations

By enabling decisions and autonomous operations locally, it is possible to reduce
the amount of data that needs to be sent to the cloud layer, decreasing the latency
in the communication and improving the response time in case network failures
are detected.

3.3.2 System Architecture Overview

The approach follows the guidelines of the ETSI NFV MANO architecture for
infrastructure management and orchestration, defined in the context of NFV tech-
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nologies, extending it with additional software components, which will offer not
only high computing performance and intelligence in 5G smart cities, but also
monitoring and data analysis functionalities to provide secure and reliable com-
munications. Moreover, the solution incorporates the standards of ETSI oneM2M
regarding device management and security.

3.3.2.1 Global Overview of the Fog-Based MANO Framework

Figure 3.6 provides an overview of the proposed fog computing framework. IoT
devices, mainly sensors and actuators, communicate with LPWAN gateways, which
are linked with the fog layer through multiple FNs. Each FN is an autonomous sys-
tem managing a given set of computational resources. FNs communicate with the
cloud layer through a Cloud Node (CN), which is the top level management en-
tity. The CN is responsible for the global management and control operations in
the network. FNs will be able to communicate with other FNs and with the CN
based on an application layer P2P fog protocol, which enables the exchange of ap-
plication service provisioning information between fog nodes and the cloud layer,
improving the decision making process related to the resource provisioning in 5G
smart cities.

3.3.2.2 Fog Node System Architecture

Figure 3.7 presents the detailed architecture of the FN autonomous management
system. Some FN architectural components share concepts with the ETSI NFV
MANO architecture; however, the nature and behavior of the FNs in the infrastruc-
ture lead us to a different approach, since ETSI NFV MANO has been conceived
to be applied in data centers, and the proposal is aligned with fog computing archi-
tectures. The FN must setup and manage its infrastructure and associated devices
in an autonomous manner. Therefore, each FN is managing a set of computational
resources by using a virtualization layer residing over a physical layer, offering vir-
tualization of the main network functionalities. The VIM performs the life-cycle
management of the multiple network functions deployed on the network.
The next upper software module, is the Fog Manager (FM) component, which is
responsible for managing the attached IoT devices through a Fog Agent (FA). The
FM addresses the device management and M2M security guidelines defined by
ETSI oneM2M. The FM module is mainly responsible for:

• Device discovery operations;

• Updating the devices’ configurations through the FA;

• Keeping track of the devices’ mobility;

• The security in M2M communications;
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Figure 3.6 Overview of the proposed fog-based MANO framework for 5G-
enabled smart cities.
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Figure 3.7 Detailed overview of the FN architecture.
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Furthermore, each FN has its own instance of a Fog Orchestrator (FO) component.
The FO module is mainly responsible for the following operations:

• Life-cycle management of micro-services (including instantiation, scale-out
/ in, termination);

• Interface with the monitoring and data analysis system;

• Interface with the Fog Decision (FD) module;

• Responsible for the registration of new VNFs and NSs;

On the one hand, a monitor and data analysis component is responsible for gath-
ering information about the current state of the computational resources, such as
CPU, memory and storage and collecting data samples from the different IoT sen-
sors through the M2M handler. This module is composed of databases of mea-
surements, events, warnings and notifications, which will help to identify network
failures, policy violations and security threats on the network in a timely manner.
In fact, this component keeps an updated status of the overall FN system alongside
the connected IoT devices. On the other hand, the FN system architecture foresees
a fog decision module, which is the component housing the intelligence, mainly
responsible for:

• Life-cycle control and management decisions;

• Self-configuration functionalities;

• Applying the network behavior desired by network administrators;

• Providing autonomous responses to unknown situations detected by the mon-
itoring and data analysis module;

The FD module will use different sets of machine learning algorithms to provide
self-management responses to unusual events or malfunctions that can be detected
in the network. The FD module will apply network strategies indicated in the pol-
icy catalog. Moreover, application and service migration requests will be handled
by the FD module. The main outcome of the FD module is a set of actions that
need to be deployed in the network, which will be done by the FO.
Each FN is composed by a northbound Application Programming Interface (API)
defining a standardized entry point to the FN autonomous system. This interface
defines the interaction between network administrators and FNs. This API will
provide access to all configuration, management and reporting capabilities pro-
vided by FNs.
Finally, each FN also provides a Fog Graphical User Interface (GUI), where net-
work administrators can interact and configure each FN. Furthermore, network
administrators can obtain a broader view of the behavior of the network, in terms
of resource usage, application service deployments, among others, and present this
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status in a command and control center. Both the fog GUI and fog API will pro-
vide the necessary tools for network administrators to stop or manually enforce
any kind of action on an FN despite the fact that each FN is executing a significant
part of the processes in an autonomous way.
In summary, FNs are fully-integrated and autonomous management systems with
data analysis and decision making functionalities. Essentially, an FN manages a
small set of computational resources such as in small cloud environments. This
way, an FN can be considered a small cloud entity. The goal is to distribute these
entities across the network in order to provide autonomous distributed operations
and decisions in future 5G smart cities.

3.3.2.3 Cloud Node System Architecture

The architecture of the CN is essentially the same of the FN. However, CN func-
tionalities are different since the CN is responsible for the global management and
control operations in the network. The CN is mainly responsible for the following
operations:

• Software updates of VNFs or NSs on the FNs;

• Coordination and control of FNs;

• Global data analysis operations;

• Overall QoS and Service Level Agreements (SLAs) monitoring;

• Applying the global network behavior indicated by network administrators;

3.3.3 Fog Protocol: Enabling Exchange of Application Service
Information between Fog Nodes and the Cloud Layer

In the presented framework, each FN will communicate with the other FNs and
with the CN in the cloud layer in order to exchange resource provisioning infor-
mation. To the best of our knowledge, no suitable way to provide the exchange of
this kind of information between the fog and the cloud layer is available in litera-
ture. This is still a key research challenge in the fog computing domain. By tak-
ing into account the main advantages of fog computing architectures, which are
minimized latency and reduced bandwidth use, a suitable fog protocol should be
lightweight, transport agnostic and customizable, since QoS parameters must be
selected according to the requested application. This way, the fog protocol should
be able to cope with the requirements introduced by the different IoT use cases,
such as low-power communication devices, low bandwidth data links, low latency
communications and high mobility scenarios.
The allocation of smart city application composed of micro-services with delay-
sensitive requirements must be reactive if the device that is requesting the appli-
cation is moving through the network area. This will imply a need for fast service
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Figure 3.8 P2P fog protocol: based on a lightweight version of OSPF to ex-
change application service provisioning information between fog nodes and the
cloud layer.

migrations, which can be achieved if messages are exchanged between the mul-
tiple FNs with information regarding services and applications. This way, each
FD module can decide where and when it is more suitable to deploy and instanti-
ate each instance of the micro-services composing the smart city application since
the application service topology information of the network will be known by the
different FNs. Therefore, in the presented framework, an application layer fog
protocol based on a lightweight version of the OSPF [37] routing protocol for the
exchange of application service information between FNs and the cloud layer is
proposed. OSPF provides routing functionality within the same domain. It was
designed to optimize the propagation of topological changes in the network. The
goal is to use a lightweight application layer protocol based on the advantages of
OSPF to propagate the application service logic information in the network, such
as micro-service allocations and migrations, so that each FN knows exactly the
application service topology, i.e., what and where each micro-service is allocated.
This way, application service information can be shared among FNs similar to P2P
networks. In fact, the foreseen fog protocol is a hierarchical application layer P2P
networking protocol based on the advantages of OSPF.

In Figure 3.8, a topology scenario of the fog protocol is presented. By using a
fog protocol based on the advantages of OSPF, it will be possible to achieve rapid
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decisions related to the resource provisioning in smart cities, based on the ex-
change of application service tables. Each instance of applications and services
have a unique ID allowing one to know exactly which instance is allocated to a
certain FN. Each FN has an Internet Protocol (IP) address, IPv4 or IPv6, and also a
unique ID. These attributes are transmitted as headers on the application service ta-
bles. These application service tables enable the exchange of resource operational
information allowing the FD module to provide fast decisions on the resource pro-
visioning because the overall network service allocation will be known by each
fog node system, and therefore, decisions on service migrations can be achieved
in a timely manner.
The fog protocol will split the network domain into multiple areas as in OSPF. FNs
will only need to know the application service logic of the areas to which they are
connected. Furthermore, FNs are classified according to the functions they will
perform. As in OSPF, internal FNs are those connected to networks belonging
to the same area, while Area Border Fog Nodes (ABFNs) are those connected to
networks belonging to multiple adjacent areas. ABFNs will summarize the appli-
cation service logic information of their attached areas for distribution through the
backbone area, the cloud layer. Backbone FNs are those connected to the backbone
area, including ABFNs. Autonomous System Boundary Fog Nodes (ASBFNs) are
those that exchange application service information with FNs belonging to other
service provider domains.

3.3.4 Distributed Data Monitoring and Analysis for 5G Smart
Cities

The future 5G network architecture will support the integration of a massive num-
ber of infrastructure components and application services in smart cities. Regard-
ing 5G-enabled applications, one of the remaining challenges is how to provide
efficient resource allocation operations, because of the stringent requirements in-
troduced by these type of applications: extremely low latencies, ultra-reliable com-
munications and massive M2M communications. For smart city applications, ser-
vices can be placed in a highly congested area, which would result in a higher
latency in the communication between the fog nodes and the IoT device. This is
unfeasible for delay-sensitive applications, since these require very low latencies,
meaning these applications must be allocated on fog nodes close to the IoT sensor
enabling the control of time-sensitive network functionalities close to the device.
Furthermore, to provide a secure and reliable communication, it is necessary to
perform data processing and analysis operations in a distributed way in order to
detect anomalous behaviors and abnormal events in a timely manner so that ap-
propriate actions can be performed in real time. In traditional centralized cloud
solutions, all data are sent to the cloud layer, and then, monitoring and analysis
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operations are executed, which is not suitable for IoT scenarios. As mentioned be-
fore, in the proposed architecture, a monitoring and analysis component is present
in the architecture of the FN. The proposed monitoring and data analysis approach
is shown in Figure 3.9. This way, data will be processed near the end devices at
the edge providing low-latency and scalable anomaly detection solutions, which
will provide appropriate responses to protect infrastructure components, as well as
application-level communication. First, IoT sensors will be distributed at various
public infrastructures to monitor their condition variations over time. Then, these
sensors will forward the raw data into the fog layer, where each FN will process
the data samples associated with a local group of sensors and perform data analysis
operations in a timely manner.

Figure 3.9 Overview of the distributed data analysis approach for 5G smart cities.

The outcomes of this first-level analysis will be processed by an event handler and
a notification engine. If anomalous events are already detected on the data, noti-
fications and alerts are generated and sent to the cloud layer, the CN and also to
the IoT devices. Meanwhile, the unusual data samples that generate the alarms
are also reported to the cloud layer in order to perform global behavior analysis
based on machine learning techniques that require a higher computational power.
Therefore, the CN will provide a broader view of the behavior of the network.
Moreover, in-depth pattern recognition and event detection operations can be per-
formed at the CN in order to support the FD module to apply more appropriate
reactive and proactive responses.
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3.3.5 Summary

The framework presented in this section enables autonomous MANO function-
alities for smart city applications in diverse IoT scenarios. First, architectural
challenges of the fog computing paradigm have been presented. Then, a sys-
tem overview of the proposed framework has been detailed. The work provides
MANO capabilities to 5G networks, which according to our knowledge are still
not yet fully explored in literature since previous and ongoing research has not
yet delivered an integrated and autonomous solution for the resource management
and orchestration issue in smart cities. The approach follows the guidelines of
the ETSI NFV MANO architecture and the standards of ETSI oneM2M regarding
device management and security aspects, by extending it with additional software
components that will offer not only high computing performance, but also mon-
itoring and data analysis functionalities to provide secure and reliable communi-
cations in smart cities. Then, a novel application layer P2P fog protocol based on
the advantages of the OSPF routing protocol has been introduced to provide ex-
change of application service provisioning information between the multiple FNs
in the fog layer and the CN in the cloud layer. Instead of forwarding routing tables
across the network, the objective of the foreseen fog protocol is to forward applica-
tion service information, such as micro-service allocations and migration requests,
enabling fast decisions related to the resource provisioning in smart cities. Fi-
nally, a hierarchical and distributed data monitoring and analysis approach based
on the fog computing framework has been detailed. The proposed framework en-
ables low-latency and scalable data analysis operations in order to detect abnormal
events in a timely manner to apply appropriate actions in real time. In the next
section, an anomaly detection use case is presented, which has been used to val-
idate the distributed data analysis approach in 5G smart cities for the proposed
fog-based MANO framework.

3.4 Evaluation Use Case
In this section, the evaluation scenario is introduced. Then, the datasets are pre-
sented. Finally, the data analysis operations used in the evaluation are described.

3.4.1 Scenario Description: Air Monitoring Application

The evaluation scenario is based on a use case within the scope of Antwerp’s City
of Things testbed [38]. The objective of the air monitoring application is to show
the current status of the environment in the City of Antwerp and alert citizens
of ambient pollution through a notification system in near real time. Regarding
the current literature in air monitoring applications for smart cities, the proposed
approach in [39] must be highlighted. In the article, a novel cloud-based approach
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for air quality monitoring is discussed. The approach is based on the design of
two sensor front ends: a stationary air quality sensor that connects to the cloud
via Ethernet and General Packet Radio Service (GPRS) and a portable sensor that
connects to the smartphone via Bluetooth 4.0.

In contrast, the approach is based on the deployment of a set of air quality sensors
mounted on the roofs of bpost’s (Belgian postal services) delivery cars as an initial
proof of concept. These sensors send measures of typical gases and climate data,
such as temperature and humidity, which are then annotated with GPS locations.
Furthermore, these sensors allow gathering real-time air quality information with
broad city coverage, since each car is continuously driving around in the city.

3.4.2 Datasets

A summary of the characteristics of the datasets gathered for the evaluation is
shown in Table 3.4. The two datasets come from two different bpost cars and
consist of Particle Matter indicators (PM1, PM2.5 and PM10), temperature and
humidity values that are annotated with a GPS location. The datasets have been
collected by our research group between 9 May 2017 and 29 June 2017. Temper-
ature and relative humidity values collected by bpost Car 1 and bpost Car 2 are
shown in Figure 3.10a and Figure 3.10b, respectively.

Table 3.4: Evaluation datasets. bpost, Belgian postal services.

Dataset Name No. of Records Description

bpost 1 70636

Particle matter indicators (PM1,
PM2.5, PM10), Temperature, Hu-
midity and GPS locations from
bpost car 1 between 9 May 2017
and 29 June 2017

bpost 2 70640

Particle matter indicators (PM1,
PM2.5, PM10), Temperature, Hu-
midity and GPS locations from
bpost car 2 between 9 May 2017
and 29 June 2017

3.4.3 Data Analysis Operations

In this subsection, the data analysis operations used in the evaluation are intro-
duced.
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Figure 3.10 Temperature and relative humidity values collected from two bpost
cars.

(a) bpost Car 1

(b) bpost Car 2
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3.4.3.1 First-Level Analysis: Unsupervised Outlier Detection Algorithms

Outlier detection is related to the identification of unusual data samples when com-
pared to the rest of the dataset. The Robust Covariance (RC) and the Isolation For-
rest (IF) algorithms have been employed as a first-level analysis to be performed by
FNs in the fog layer. These algorithms have been evaluated by using Scikit-Learn
[40], a machine learning library written in Python.

3.4.3.2 Global Analysis: GPS Locations of Outliers

The unusual measurements detected by FNs through outlier detection must be fur-
ther analyzed by application experts in order to extract more information from
them. As such, FNs will trigger appropriate alarms and notifications, which will
be forwarded through the network to the CN. Then, these unusual samples will be
sent to the CN so that more complex and resource-consuming operations can be
performed, e.g., for root cause analysis. In the evaluation, the outliers have been
compared with the annotated GPS locations as a global analysis operation.

3.4.4 Fog-Cloud Infrastructure Dimensioning

Nowadays, low power wireless technologies and fog computing architectures have
gained tremendous emphasis due to the massive growth of connected devices in
the network. The need for connecting simple IoT devices, such as sensors and
actuators, is increasing rapidly. Variables used in the fog-cloud infrastructure di-
mensioning are shown in Table 3.5.

Table 3.5: Variables of the fog-cloud infrastructure dimensioning.

Symbol Description
C Communication range in meters.

ULPWAN Upload data rate of the LPWAN technology in Mbps.
DLPWAN Download data rate of the LPWAN technology in Mbps.
UFog Upload speed between a fog node and the cloud node in Mbps.

DFog
Download speed between a fog node and the cloud node in
Mbps.

R Number of data samples to be transmitted.
N Number of bits in each data sample.
T Transmission time of a packet.

In fog computing architectures, fog nodes are usually located within one hop from
the IoT sensors. The variable C is used to indicate the communication range
in meters between a fog node and an IoT sensor. Two variables, ULPWAN and
DLPWAN , are used to indicate the upload and the download data rate of the LP-
WAN technology, respectively. Then, the number of bits in each data sample is
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given by N . The number of data samples to be transmitted is given by R. This
way, the upload and the download transmission time of a packet between an IoT
sensor and a fog node can be expressed as shown in (3.1) and in (3.2), respectively.

T (ULPWAN ) =
N ×R

U
(3.1)

T (DLPWAN ) =
N ×R

D
(3.2)

Moreover, the communication between a fog node and the cloud node is via the
Internet, where the upload speed is given by UFog and the download speed is given
by DFog .

3.5 Evaluation Results
3.5.1 Unsupervised Outlier Detection

In Figure 3.11a,b, the outcomes of the RC algorithm for the three dimensions re-
garding PM10, temperature and relative humidity for the bpost Car 1 are shown,
with a contamination of 1.0% indicating that the RC algorithm intends to find
the 1.0% of samples, which can be considered as abnormal. Similarly, in Fig-
ure 3.11c,d, the results obtained for the IF outlier detection algorithm with a con-
tamination of 1.0% for the bpost Car 1 are shown. In addition, in Figure 3.12a,b,
the outcomes of the RC algorithm for the bpost Car 2 are presented, while in
Figure 3.12c,d, the results obtained from the IF algorithm are shown. As can be
observed, clear similarities are present in the results obtained by both algorithms
for the two bpost cars. PM10 values above 30 ppm collected by both cars are
marked as outliers by both algorithms, which indicates that these samples can be
considered as unusual measurements.

3.5.2 Global Analysis: GPS Locations of Outliers

As previously mentioned, as a global analysis operation, the outliers detected by
the RC and IF algorithms have been linked with the GPS locations available in
the datasets. Only measurements marked as outliers by both algorithms have been
considered. In Figure 3.13, the GPS locations where PM10 values above 70 ppm
have been collected by the bpost cars, which have been marked as outliers by both
RC and IF outlier detection algorithms, are shown on a map of the city. Regard-
ing bpost Car 1 measurements, most of the data samples marked as outliers have
been collected in the warehouse (area highlighted in orange in Figure 3.13), where
the bpost cars usually stay at night. These high values of PM10 can be related to
organic compounds, which were inside the warehouse at the time of the measure-
ments. On the other hand, the outliers measured by bpost Car 2 have been collected
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Figure 3.11 Outcomes of RC and IF algorithms (blue color: normal samples, red
color: abnormal samples) for PM10, temperature and relative humidity values col-
lected by the bpost Car 1.

(a) RC with 1.0% (3D perspective).

(b) RC with 1.0% (3D planes).

(c) IF with 1.0% (3D perspective).

(d) IF with 1.0% (3D planes).
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Figure 3.12 Outcomes of RC and IF algorithms (blue color: normal samples, red
color: abnormal samples) for PM10, temperature and relative humidity values col-
lected by the bpost Car 2.

(a) RC with 1.0% (3D perspective).

(b) RC with 1.0% (3D planes).

(c) IF with 1.0% (3D perspective).

(d) IF with 1.0% (3D planes).
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Figure 3.13 GPS locations collected by the bpost cars (bpost1, red/bpost2, blue).
These values have been marked as outliers by both outlier detection algorithms
considered in the evaluation.
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across the city of Antwerp. These values can be related to high traffic volumes in
the city at the time of the measurements. Furthermore, a large number of samples
collected by bpost Car 2 have been marked as outliers, when the car stayed in the
warehouse. These outliers can be explained by the high relative humidity and the
high values of the PM10 indicator.
Global analysis operations should be conducted in the cloud layer so that unusual
measurements can be understood. This way, citizens and government agencies can
receive live input of the city traffic, which should be used to temporarily modify
traffic rules, e.g., reduce the maximum driving speed on certain highways. Fur-
thermore, in the long term, these global operations can provide an effective way
on how city policies should be changed.

3.5.3 Fog-Cloud Infrastructure Analysis

In the fog-cloud infrastructure evaluation, the communication between a fog node
and the cloud node is via the Internet, where the upload speed is 5 Mbps and the
download speed is 2.5 Mbps. Furthermore, a 500-m communication range has
been considered between a fog node and an IoT sensor. The communication be-
tween a fog node and an IoT sensor is performed by a LPWAN technology. An
IEEE 802.11ah [41] wireless network has been considered as the LPWAN technol-
ogy, because it is one of the most promising LPWAN technologies with very high
data rates. High data rates are an important requirement of the evaluation use case,
because timely alerts need to be sent to the IoT sensor if a malfunction is already
detected on a fog node. This way, an upload data rate of 2 Mbps and a download
data rate of 1 Mbps have been considered based on IEEE 802.11ah. Although the
maximum throughput of IEEE 802.11ah is higher, with this lower limitation, it has
been assumed that good channel conditions are always achieved and that all IoT
sensors can communicate at these data rates. Other LPWAN technologies, such as
LoRaWAN [42] and Sigfox [43], have not been considered because very low data
rates and duty cycle restrictions make it impossible for these LPWAN technologies
to send a data sample every minute.
Considering that for the use case, each upload message is composed of a string of
12 chars (GPS location, geohash) equal to 12 bytes, a 32 bit integer (timestamp)
equal to 4 bytes and 5 floating point 64-bit numbers (particle matter indicators,
temperature and humidity) equal to 40 bytes, the total number of payload bytes
to be transmitted per minute from the IoT sensor to the fog node is 56 bytes. On
the other hand, each download message to be transmitted from the fog node to
the IoT sensor in case of unusual behavior or malfunction is composed of a string
of 12 chars (GPS location, geohash) equal to 12 bytes and a byte defined by 3
alarm bits and 5 bits for 32 types of predefined messages. Therefore, each upload
message is transmitted with at least 56 bytes, which is equal to 448 bits and each
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download message with 13 bytes, which is equal to 104 bits. Moreover, the fog
node will send 1% of the total data samples to the cloud node for global analysis
operations. However, in a traditional centralized cloud solution, all data samples
need to be transported from the IoT sensor to the cloud node. Based on these
assumptions, the fog-based framework has been evaluated and compared with a
traditional centralized cloud solution in terms of response time in case abnormal
samples are detected and in terms of network bandwidth usage. The comparison
is presented in Table 3.6.

Table 3.6: Performance evaluation of the fog-cloud infrastructure.

Variable Fog-Cloud Centralized Cloud
C 500 m

NUpload 448 bits
NDownload 104 bits
ULPWAN 2 Mbps
DLPWAN 1 Mbps

TUpload:Sensor−Fog 0.224 ms
TDownload:Sensor−Fog 0.104 ms

UFog 5 Mbps
DFog 2.5 Mbps

TUpload:Fog−Cloud 0.090 ms
TDownload:Fog−Cloud 0.041 ms

RSensor−Fog 70,000 data samples
RFog−Cloud 700 data samples (1%) 70,000 data samples

(100%)
NFog−Cloud 72.8 Kbps 31.36 Mbps

Transporting Data
Samples to the Cloud

14.56 ms 6.27 s

Network Bandwidth
Usage (%)

1.46% 627.2%

End-to-End delay for
Alert/Notification

0.33 ms 0.46 ms

Results show that to send all data samples to the CN, 6.27 seconds are needed,
while in the fog computing approach, only 14.56 milliseconds are required since
only 1% of the data is transmitted to the cloud node. Moreover, the proposal
only requires 1.46% of the available bandwidth between the fog node and the
cloud node, while in a traditional centralized solution, on average, six-times the
available bandwidth is needed (627.2%) only for a single fog node to transmit all
data samples from only one IoT sensor, which makes it impossible for centralized
cloud solutions to comply with smart city use cases. The end-to-end delay in case
an abnormal sample is detected is lower in the proposed solution since the first-
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level analysis is executed on fog nodes. On average, it needs 0.33 milliseconds
to send an alarm or notification to the IoT sensor, while a traditional approach
requires 0.46 milliseconds, but with an enormous amount of network bandwidth.

3.6 Conclusions

In this chapter, a fog computing framework for the management and orchestration
of smart city applications in 5G wireless networks is presented. Fog computing
has been introduced to deal with the growing amount of connected devices in the
upcoming years, by placing computational resources on the edges of the network.
This way, fog computing solutions can provide effective ways to overcome the
strict requirements introduced by IoT scenarios, such as low latency, high en-
ergy efficiency and high mobility. The proposed framework extends the current
state-of-the-art within fog computing, NFV and MANO paradigms by providing
autonomous capabilities for the resource provisioning in 5G-enabled smart cities.
The main contribution of the chapter is its fully-integrated and autonomous fog
node management system with data analysis and decision making functionalities
alongside a foreseen novel application layer P2P fog protocol based on the OSPF
routing protocol enabling the exchange of application service provisioning infor-
mation between fog nodes and the cloud layer. Moreover, an anomaly detection
use case has been evaluated focusing on the proposed framework. The evaluation
results show that the presented approach achieves a substantial reduction in terms
of network bandwidth usage when compared with traditional centralized cloud so-
lutions. The approach only requires 1.46% of the available network bandwidth
between a fog node and a cloud node. Moreover, the proposed framework can
send timely alerts to IoT sensors in case abnormal samples are detected, since
a first-level analysis is performed in fog nodes. As future work, prototypes and
proof-of-concepts of the fog computing framework will be implemented. More-
over, simulation studies will be carried out to evaluate the operational aspects of
the foreseen fog protocol.
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Addendum

Note on Table 3.6: A mathematical error can be found on the original man-
uscript this chapter is based upon on Table 3.6. Table 3.7 below provides the
corrected Table 3.6.

Table 3.7: Performance evaluation of the fog-cloud infrastructure.

Variable Fog-Cloud Centralized Cloud
C 500 m

NUpload 448 bits
NDownload 104 bits
ULPWAN 2 Mbps
DLPWAN 1 Mbps

TUpload:Sensor−Fog 0.224 ms
TDownload:Sensor−Fog 0.104 ms

UFog 5 Mbps
DFog 2.5 Mbps

TUpload:Fog−Cloud 0.090 ms
TDownload:Fog−Cloud 0.041 ms

RSensor−Fog 70,000 data samples
RFog−Cloud 700 data samples (1%) 70,000 data samples

(100%)
NFog−Cloud 313.6 Kbps 31.36 Mbps

Transporting Data
Samples to the Cloud

62.72 ms 6.27 s

Network Bandwidth
Usage (%)

6.27% 627.2%

End-to-End delay for
Alert/Notification

0.33 ms 0.46 ms
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4
Resource Provisioning in Fog

Computing: From Theory to Practice

“Before anything else, preparation is the key to success.”

–Alexander Graham Bell (1847 - 1922)

This chapter extends the work presented in chapter 3 by evaluating the feasibility
of a popular orchestration platform named Kubernetes for IoT services (challenge
#2). The chapter proposes a Fog Computing architecture based on the Kuber-
netes architectural model. Also, the chapter addresses challenge #4 by studying
efficient allocation strategies for IoT applications. It presents a network-aware
scheduler for the Kubernetes platform focused on minimizing latency and opti-
mizing bandwidth. Evaluations have assessed the performance of the proposed
approach compared to the Kubernetes default scheduling feature and the Integer
Linear Programming (ILP) formulation presented in chapter 2. The ILP model has
been containerized to compare the performance of the proposed approach with
an optimal scheme. Results show that the network-aware scheduling approach
achieves reductions of up to 70% concerning network latency compared to the
default scheduling mechanism. Thus, the main contribution of this chapter is the
development of a network-aware scheduling approach focused on IoT use cases,
validated in Kubernetes against theoretical formulations and default scheduling
algorithms.

⋆ ⋆ ⋆
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Abstract The Internet-of-Things (IoT) and Smart Cities continue to expand at
enormous rates. Centralized Cloud architectures cannot sustain the requirements
imposed by IoT services. Enormous traffic demands and low latency constraints
are among the strictest requirements, making cloud solutions impractical. As an
answer, Fog Computing has been introduced to tackle this trend. However, only
theoretical foundations have been established and the acceptance of its concepts
is still in its early stages. Intelligent allocation decisions would provide proper
resource provisioning in Fog environments. In this chapter, a Fog architecture
based on Kubernetes, an open source container orchestration platform, is proposed
to solve this challenge. Additionally, a network-aware scheduling approach for
container-based applications in Smart City deployments has been implemented as
an extension to the default scheduling mechanism available in Kubernetes. Last
but not least, an optimization formulation for the IoT service problem has been
validated as a container-based application in Kubernetes showing the full applica-
bility of theoretical approaches in practical service deployments. Evaluations have
been performed to compare the proposed approaches with the Kubernetes standard
scheduling feature. Results show that the proposed approaches achieve reduc-
tions of 70% in terms of network latency when compared to the default scheduling
mechanism.

4.1 Introduction

In recent years, the Internet-of-Things (IoT) rapidly started gaining popularity due
to the wide adoption of virtualization and cloud technologies. IoT services have
been introducing a whole new set of challenges by transforming everyday life ob-
jects into smart connected devices [1]. With the advent of IoT, Smart Cities [2]
have become an even more attractive business opportunity. Smart Cities aim to
reshape different domains of urban life, such as waste management, public trans-
portation and street lightning. According to [3], by 2022, nearly three-quarters
of all connected devices in the mobile network are expected to be smart devices.
Additionally, the share of Low-Power Wide-Area Network (LPWAN) connections
is expected to grow from about 2 percent in 2017 to 14 percent by 2022, from
130 million devices in 2017 to 1.8 billion devices by 2022. LPWANs are low-
power wireless connectivity solutions specifically meant for Machine-to-Machine
(M2M) use cases requiring wide geographic coverage and low bandwidth. Nowa-
days, the centralized structure of cloud computing is facing tremendous scalability
challenges to meet the decentralized nature of IoT services due to the enormous
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bandwidth demands, high mobility coverage and low latency requirements [4]. As
an answer, Fog Computing [5, 6] has emerged as an extension to the Cloud Com-
puting paradigm by distributing resources on the edges of the network close to
end devices, thus, helping to meet the demanding constraints introduced by IoT
services. Waste management platforms, Augmented Reality applications, video
streaming services and smart transportation systems are already envisioned Smart
City use cases for Fog Computing, which will benefit from the nearby real-time
processing and data storage operations to overcome the limitations of traditional
cloud architectures [7]. Although the theoretical foundations of Fog Computing
have already been established, the adoption of its concepts is in early stages. Prac-
tical implementations of Fog Computing solutions are scarce. Additionally, re-
search challenges in terms of resource provisioning and service scheduling still
persist. In fact, setting up a proper Fog-based architecture to support millions of
devices and their high demand heterogeneous applications without dismissing the
importance of network latency, bandwidth usage and geographic coverage is still
a challenge to be addressed in Fog Computing [8].

Nowadays, container-based micro-services are revolutionizing software develop-
ment [9]. Micro-services represent an architectural style inspired by service-ori-
ented computing that has recently started gaining popularity. An application is
decomposed in a set of lightweight autonomous containers deployed across a large
number of servers instead of the traditional single monolithic application [10].
Each micro-service is developed and deployed separately, without compromising
the application life-cycle. Currently, containers are the de facto alternative to the
conventional Virtual Machine (VM), due to their high and rapid scalability and
their low resource consumption. In fact, due to their broad acceptance, several
research projects are being conducted on container technologies by IT companies
and open-source communities. The most popular among them is named Kuber-
netes [11]. Kubernetes is an open-source container management platform orig-
inally developed by Google. Kubernetes simplifies the deployment of reliable,
scalable distributed systems by managing the complete orchestration life-cycle
of containerized applications. Although containers already provide a high level
of abstraction, they still need to be properly managed, specifically in terms of
resource consumption, load balancing and server distribution, and this is where
integrated solutions like Kubernetes come into their own [12]. Therefore, in this
chapter, a Fog Computing architecture based on the Kubernetes platform for Smart
City deployments is presented. The proposed architecture has been designed for
Antwerp’s City of Things testbed [13]. Furthermore, intelligent allocation deci-
sions are crucial for proper resource provisioning in Fog environments. Multiple
factors should be taken into account, such as response time, energy consumption,
network latency, reliability, bandwidth usage and mobility [14]. Although Kuber-
netes already provides provisioning functionalities, the scheduling feature merely
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takes into account the number of requested resources (CPU, RAM) on each host,
which is rather limited when dealing with IoT services.
Thus, a network-aware scheduling approach presented in [15] has been imple-
mented as an extension to the default scheduling feature available in Kubernetes to
enable resource allocation decisions based on the current status of the network in-
frastructure. Last but not least, an Integer Linear programming (ILP) formulation
for the IoT service placement problem presented in [16] has been deployed on the
Kubernetes container orchestration platform, showing the full applicability of the-
oretical approaches in practical service deployments. Finally, evaluations based on
Smart City container-based applications have been performed to compare the per-
formance of the proposed provisioning mechanisms with the standard scheduling
feature present in Kubernetes.
The remainder of the chapter is organized as follows. In the next Section, related
work is discussed. Then, in Section 4.3, the importance of proper resource provi-
sioning in Fog Computing is highlighted. Section 4.4 introduces the proposed Fog-
based Kubernetes architecture for the resource provisioning of container-based ser-
vices in Smart City deployments and its scheduling features. In Section 4.5, the
proposed scheduling extensions in Kubernetes are discussed. Then, in Section 4.6,
the evaluation setup is described which is followed by the evaluation results in
Section 4.7. Finally, conclusions are presented in Section 4.8.

4.2 Related Work

In recent years, several studies have been carried out to deal with resource pro-
visioning issues in Smart City deployments specifically tailored to IoT services.
In [17], a reference Fog-based architecture has been presented. Their approach
focused on implementing a Software Defined Resource Management layer at the
Fog layer to locally serve IoT requests. Among different functionalities, a resource
provisioning module has been included which is responsible for making allocation
decisions based on metrics gathered by a monitoring module. In [18] both archi-
tectural and resource allocation concepts have been tackled. The authors proposed
a provisioning algorithm focused on service elasticity and on the number of avail-
able resources by using virtualization technologies. Simulation results have shown
that the proposed algorithm efficiently schedules resources while minimizing the
response time and maximizing the throughput, without any consideration to the
overall cost. Furthermore, in [19], a resource scheduling approach based on de-
mand predictions has been presented. Their work focuses on allocating resources
based on users’ demand fluctuations by using cost functions, different types of
services and pricing models for new and existing customers. The model achieves
a fair performance by preallocating resources based on user behavior and future
usage predictions.
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Additionally, in [20], the IoT resource provisioning issue has been modeled as an
optimization problem. The model considered the maximization of Fog resources
and the minimization of overall network delay. Their work has been extended in
[21], where application Quality of Service (QoS) metrics and deadlines for the
provisioning of each type of application have been taken into account. In [22], a
hybrid approach for service orchestration in Fog environments is introduced. The
solution encompasses two stages. On one hand, at the IoT and South-Bound Fog
Levels, distributed management is proposed, which applies choreography tech-
niques to enable automated fast decision making. On the other hand, centralized
orchestration is suggested at the North-Bound Fog and Cloud Levels. In [23],
an algorithm for workload management in Fog infrastructures has been presented.
Their work focuses on task distribution at the Fog layer while minimizing response
time based on resources demanded by these tasks. However, specific QoS require-
ments have not been considered in their approach. In [24], a service provisioning
approach for combined fog-cloud architectures has been formulated as an opti-
mization problem. Their model focuses on the minimization of network latency
while guaranteeing proper service operation. Furthermore, in [25], an optimiza-
tion formulation for the service deployment of IoT applications in Fog scenarios
has been proposed and implemented as a prototype named FogTorch. Their work
focused not only on hardware and software demands but also on QoS requirements,
such as network latency and bandwidth.

In summary, this work advances beyond existing and ongoing studies that indi-
vidually address some of the remaining challenges, but have not yet delivered an
autonomous and complete solution for proper resource provisioning in Fog Com-
puting. In this chapter, a Fog-based Kubernetes architecture is proposed to enable
the deployment of Smart City container-based services, while increasing the per-
formance over existing network infrastructure to fully maximize the potential of
new business opportunities triggered by IoT and Smart City use cases. It combines
Fog Computing concepts alongside the flexible and powerful Kubernetes platform
to improve the performance of application-to-resource provisioning schemes. By
combining powerful container orchestration technologies as Kubernetes and Fog
Computing concepts, the proposed approach paves the way towards a proper re-
source provisioning in the Smart City ecosystem.

4.3 Open Challenge: Resource Provisioning in Fog
Computing

This section highlights the importance of proper resource provisioning in Fog en-
vironments.
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4.3.1 Relevance of Proper Resource Provisioning

Figure 4.1 High-level view of Fog Computing.

Resource provisioning is related to the allocation of computing, network and stor-
age resources needed to instantiate and deploy applications and services requested
by clients and devices over the Internet. Fog Computing has been introduced to
address the inherent challenges of computing resource allocation for IoT services
in Smart City deployments. Services can be provisioned in a highly congested
location, or even further from sensors, which would result in a higher communica-
tion latency since current sensors and gateways are lacking in terms of processing
power, storage capacity and memory [26]. Centralized solutions are not suitable
for IoT since sending all the collected data to the cloud is unfeasible due to the high
bandwidth requests. Fog Computing provides data processing and analytics oper-
ations locally, which drastically reduces the amount of data needed to transport to
the cloud [27]. Furthermore, appropriate responses to protect infrastructure com-
ponents as well as application level communication can be executed in a timely
manner if malfunctions or abnormal events are detected in the data.
Figure 4.1 presents a high-level view of the Fog Computing architecture. Op-
posed to a centralized cloud solution, end devices, sensors and actuators mainly
communicate through wireless gateways, which are linked with a Fog layer th-
rough multiple Fog Nodes (FNs). The communication with the Cloud layer is then
performed through Cloud Nodes (CNs). Nevertheless, as previously mentioned,
concrete implementations of Fog Computing concepts are still in early stages and
several issues still remain unresolved in resource provisioning for Fog Computing
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architectures:

• Latency: IoT services are highly challenging in terms of latency demands,
since delay-sensitive applications, such as connected vehicles and health-
care monitoring services, require low latencies in the order of milliseconds.
If the latency threshold is exceeded, the service can become unstable, action
commands may arrive too late and control over the service is potentially lost.
Fog Computing is essential to provide low latencies to these delay-sensitive
services.

• Bandwidth: The available bandwidth between sensors and the cloud is a
serious constraint in Smart Cities. Datasets are so huge that the amount of
bandwidth needed to transport all the data to the cloud is unacceptable. For
instance, considering a video surveillance use case, where a video camera
requires a connection of 10 Mb/s. Continuously sending the data from the
video camera to the cloud translates into approximately 3.24 TB/monthly for
a single camera. It is therefore essential to adopt Fog Computing concepts to
perform data analysis operations locally, thus, reducing the amount of data
transferred to the cloud.

• Energy efficiency: IoT devices are usually resource-constrained regarding
their battery capacity, computational power, size and weight. For instance,
considering a smart lightning use case, where thousands of sensors are mea-
suring and controlling the light intensity of street lampposts. These sensors
periodically wake up, measure values, send data samples to the network and
then enter a sleep mode. Then, FNs perform the required computational op-
erations on behalf of the sensors on the data collected to ensure an extension
of the devices’ lifetime.

• Programmability: Fog Computing solutions are currently being designed
as software driven technologies [28]. A Fog service provider will own a set
of distributed Fog and Cloud Nodes where all hierarchical levels are sim-
ple to access and the whole software stack is easy to setup and maintain.
Thus, the economic value of IoT is in the application software and the in-
frastructure running it. In fact, software modules are needed for life-cycle
management and orchestration of Smart City services, including resource
provisioning mechanisms.

• Reliability: Emergency and fire rescue services have extremely demand-
ing availability requirements. In case of malfunctions or failures on a given
FN, nearby FNs must be able to allocate the necessary resources to keep
the provisioned Smart City services running properly. The hierarchical na-
ture of Fog Computing architectures can improve the networks’ reliability
by allowing distributed and local decision making in terms of resource pro-
visioning.
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• Mobility: Several IoT use cases have demanding mobility requirements.
For instance, consider a connected waste management fleet, where trucks
are continuously moving through the City. Messages must be sent to trucks
alerting for possible accidents or roadblocks that may occur on their prede-
fined route. However, due to interference, network overload or even dead
coverage spots the connectivity between the FN and the truck may be lost.
Therefore, FNs must work together to find the best solution for the alloca-
tion of each service instance being requested by a moving device to ensure
adequate service operation at all times. High mobility services require the
deployment of Fog Computing technologies since centralized management
approaches cannot fully satisfy the dynamic demands of these type of ser-
vices. Thus, Fog Computing is essential to rapidly modify the allocation of
services according to highly variable demand patterns.

• Decentralized Management: The available computing resources must be
distributed towards the edge of the network closer to end devices and users
[29]. The so named FNs provide local operations towards improving the
response time in terms of resource allocation by efficiently scheduling all
the necessary operations in the provisioning workflow. FNs should be aware
of the network status and possible anomalies and malfunctions that may
occur to react accordingly and keep all the services operating properly. Fog
Computing brings intelligence and processing power close to end devices,
which increases the networks’ robustness and reliability.

• Scalability: Fog Computing has to accommodate different IoT use cases
and must possess adequate capacity to deal with growing service demands.
IoT services must run without disruption and support millions of devices.
Fog Computing architectures must be designed with scalability constraints
in mind. FNs require modular software platforms where updates and mod-
ifications can be easily made without service interruptions. As network
demands increase, FNs can receive additional software modules providing
functionalities to deal with the growing service usage.

4.4 Fog-Based Kubernetes Architecture for
Smart City Deployments

This section introduces a Fog Computing architecture based on the Kubernetes
platform. First, a system overview of the proposed architecture is detailed, fol-
lowed by the presentation of its main concepts. Then, the scheduling feature of
Kubernetes is discussed.
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4.4.1 Kubernetes: Empowering Self-Driving Orchestration of
Smart City Container-Based Applications

Figure 4.2 High-level view of the proposed Fog Computing infrastructure based
on the Kubernetes platform.

The concept of Self-driving Orchestration has been introduced in [30] where it
has been used to describe networks capable to measure, analyze and control them-
selves in an automated manner when reacting to changes in their environment.
Kubernetes open source community is working towards a complete self-driving
platform, aiming to simplify management and orchestration of scalable distributed
systems across a wide range of environments and cloud providers for container-
ized applications. Kubernetes already provides orchestration features, which can
be used to build reliable distributed systems with a high degree of decentralization
in terms of the service life-cycle management, which is needed to fully leverage
on Fog Computing architectures [31]. The proposed Fog-based Kubernetes ar-
chitecture is shown in Figure 4.2. Several IoT networks are connected through
wireless gateways to each of the represented locations. The architecture follows
the master-slave model, where at least one master node manages Docker [32] con-
tainers across multiple worker nodes (slaves). End devices such as sensors are
considered neither as master nor worker nodes. The proposed architecture follows
the FN approach, where each FN is considered as a small cloud entity. The detailed
architecture of the master and the slave nodes is shown in Figure 4.3. Nodes can
be local physical servers and VMs or even public and private clouds. The Mas-
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ter is responsible for exposing the Application Program Interface (API) server,
the scheduling of service deployments and managing the overall cluster life-cycle.
Users interact with Kubernetes by communicating with the API server, which pro-
vides an entry point to control the entire cluster. Users can also send commands
to the API server through the built-in Kubernetes Command Line Interface (CLI),
known as Kubectl or even by accessing a web-based Kubernetes User Interface
(UI). Another fundamental component is Etcd. Etcd is a lightweight key-value pair
distributed data storage. Namespaces, scheduled jobs, deployed micro-services are
examples of data stored in Etcd allowing other components to synchronize them-
selves based on the desired state of the cluster [33]. Furthermore, the main contact
point for each cluster node is a service named Kubelet. Kubelet is responsible for
recognizing discrepancies between the desired state and the actual state of the clus-
ter. When this happens, Kubelet launches or terminates the necessary containers
to reach the desired state described by the API server. Then, the Controller Man-
ager is responsible for monitoring Etcd and the overall state of the cluster. If the
state changes, the desired modifications are communicated through the API server.
The Controller Manager is also responsible for the overall control of the runtime
environment, including the creation and termination of containers.

Figure 4.3 Detailed Architecture of the Master and the Worker Node in the Ku-
bernetes Cluster [15].

Although Kubernetes makes use of containers as the underlying mechanism to
deploy micro-services, additional layers of abstraction exist over the container
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runtime environment to enable scalable life-cycle orchestration features. In Ku-
bernetes, micro-services are often tightly coupled together forming a group of
containers. This is the smallest working unit in Kubernetes, which is named a
pod [12]. A pod represents the collection of containers and storage (volumes) run-
ning in the same execution environment. The containers inside a pod share the
same IP Address, volumes and port space (namespace), while containers in differ-
ent pods are isolated from one another, since they own different IP addresses and
different hostnames. The main limitation is that two services listening on the same
port cannot be deployed inside the same pod. Based on the available resources,
the component that actually assigns pods to specific nodes in the cluster is named
Kube–Scheduler (KS). The KS is the default scheduling feature in the Kubernetes
platform, which is responsible for monitoring the available resources in the in-
frastructure and deciding on which adequate nodes pods should be placed. The
selected node then pulls the required container images from the Image Registry
and coordinates the necessary operations to launch the pod. The KS mechanisms
are further detailed in the next section.

4.4.2 Resource Scheduling in Kubernetes:
The Kube–Scheduler (KS)

The KS decision making process is illustrated in Figure 4.4. Every pod requiring
allocation is added to a waiting queue, which is continuously monitored by the KS.
If a pod is added to the waiting queue, the KS searches for an adequate node for the
provisioning based on a two step procedure. The first step is named node filtering,
where the KS verifies which nodes are capable of running the pod by applying
a set of filters, also known as predicates. The purpose of filtering is to solely
consider nodes meeting all specific pod requirements further in the scheduling
process. The second operation is named node priority calculation, where the KS
ranks each remaining node to find the best fit for the pod provisioning based on
one or more scheduling algorithms, also named priorities. The KS supports the
following predicates [15, 33]:

• Check Node Memory Pressure: This predicate checks if a pod can be
allocated on a node reporting memory pressure condition. Currently, Best
Effort pods should not be placed on nodes under memory pressure, since
they are automatically deassigned from the node.

• Check Node Disk Pressure: This predicate evaluates if a pod can be sched-
uled on a node reporting disk pressure condition. Pods can currently not be
deployed on nodes under disk pressure, since they are automatically deas-
signed.

• Host Name: This predicate filters out all nodes, except the one specified in
the Spec’s NodeName field of the pod configuration file.
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Figure 4.4 Sample of detailed scheduling operations of the Kube–Scheduler.

• Match Node Selector (Affinity/Anti-Affinity): By using node selectors
(labels), it is possible to define that a given pod can only run on a partic-
ular set of nodes with an exact label value (node-affinity), or even that a
pod should avoid being allocated on a node that has already certain pods
deployed (pod-anti-affinity). These rules can be created by declaring Tol-
erations in the pod configuration files to match specific node Taints. Es-
sentially, affinity rules are properties of pods that attract them to a set of
nodes or pods, while taints allow nodes to repel a given set of pods. Taints
and tolerations ensure that pods are not deployed onto inappropriate nodes.
Both are important mechanisms to fine-tune the scheduling behavior of Ku-
bernetes. Node selectors provide a flexible set of rules, on which the KS
bases its scheduling decision by filtering specific nodes (node affinity/anti-
affinity), by preferring to deploy certain pods close or even far away from
other pods (pod affinity/anti-affinity), or just on node labels favored by the
pod (taints and tolerations).

• No Disk Conflict: This predicate evaluates if a pod can fit due to the storage
(volume) it requests, and those that are already mounted.

• No Volume Zone Conflict: This predicate checks if the volumes a pod
requests are available through a given node due to possible zone restrictions.

• Pod Fits Host Ports: For instance, if the pod requires to bind to the host port
80, but another pod is already using that port on the node, this node will not
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be a possible candidate to run the pod and, therefore, it will be disqualified.

• Pod Fits Resources: If the free amount of resources (CPU and memory)
on a given node is smaller than the one required by the pod, the node must
not be further considered in the scheduling process. Therefore, the node is
disqualified.

The KS knows in advance which nodes are not suitable for the pod deployment by
applying these predicates. Inadequate nodes are removed from the list of possible
candidates. On one hand, after completion of the filtering process, finding no
capable nodes for the pod deployment is always a possibility. In that case, the
pod remains unscheduled and the KS triggers an event stating the reason for the
failed deployment. On the other hand, if several candidates are retrieved after
completion of the filtering operation, the KS triggers the node priority calculation.
The node priority calculation is based on a set of priorities, where each remaining
node is given a score between 0 and 10, 10 representing “perfect fit” and 0 meaning
“worst fit”. Then, each priority is weighted by a positive number, depending on
the importance of each algorithm, and the final score of each node is calculated by
adding up all the weighted scores [33]. The highest scoring node is selected to run
the pod. If more than one node is classified as the highest scoring node, then one
of them is randomly chosen. The KS supports the following priorities [15]:

• Balanced Resource Allocation: This priority function ranks nodes based
on the cluster CPU and Memory usage rate. The purpose is to balance the
resource allocation after the pod provisioning.

• Calculate AntiAffinity Priority: This priority function scores nodes based
on anti-affinity rules. For instance, spreading pods in the cluster by reducing
the same number of pods belonging to the same service on nodes with a
particular label.

• Inter Pod Affinity Priority: This priority algorithm ranks nodes based on
pod affinity rules. For example, nodes with certain pods already allocated
are scored higher, since it is preferred to deploy the given pod close to these
pods.

• Image Locality Priority: Remaining nodes are ranked according to the
location of the requested pod container images. Nodes already having the
requested containers installed are scored higher.

• Least Requested Priority: The node is ranked according to the fraction of
CPU and memory (free/allocated). The node with the highest free fraction
is the most preferred for the deployment. This priority function spreads the
pods across the cluster based on resource consumption.
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• Most Requested Priority: This priority algorithm is the opposite of the one
above. The node with the highest allocated fraction of CPU and memory is
the most preferred for the deployment.

• Node Affinity Priority: In this case, nodes are scored according to node-
affinity rules. For instance, nodes with a certain label are ranked higher than
others.

• Selector Spread Priority: This priority algorithm tries to minimize the
number of deployed pods belonging to the same service on the same node
or on the same zone/rack.

• Taint Toleration Priority: This priority function scores nodes based on
their taints and the correspondent tolerations declared in the pod configura-
tion file. Remaining nodes are preferred according to the number of intoler-
able taints on them for the given pod. An intolerable taint is specified by the
“Prefer No Schedule” key.

Predicates are evaluated to dismiss nodes that are incapable of running the given
pod while priorities are designed to score all the remaining nodes that can deploy
the pod. For example, a given node would be scored lower for the Selector Spread
Priority if an instance of the requested pod is already allocated on that node. How-
ever, if a pod affinity rule is specified in the pod configuration file for the service,
the node would be scored higher for the Inter Pod Affinity Priority since it is pre-
ferred to deploy the given pods close to each other. Furthermore, if a given pod
requires a core CPU (1.0), the Pod Fits Resources predicate returns “False” for a
node that only has 800 millicpu free. Additionally, for the same pod, the Most Re-
quested Priority ranks a node that has only 200 millicpu free higher than one with
3.5 cores CPU left, even though both nodes can accommodate the pod (assuming
they have the same CPU capacity). It should be noted that the KS searches for
a suitable node for each pod, one at a time. The KS does not take the remaining
pods waiting for deployment into account in the scheduling process. When the
allocation decision is made, the KS informs the API server indicating where the
pod must be scheduled. This operation is named Binding.
Another aspect worth mentioning of the Kubernetes provisioning life-cycle is na-
med resource requests and limits. Developers can specify resource requests and
limits on the pod configuration files. A resource request is the minimum amount
of resources (CPU and/or memory) required by all containers in the pod while a
resource limit is the maximum amount of resources that can be allocated for the
containers in a pod. Pods can be categorized in three QoS classes depending on
resource requests and limits:

• Best Effort (lowest priority): A Best Effort pod has neither resource re-
quests or limits on its configuration files for each of its containers. These
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pods are the first ones to be terminated in case the system runs out of mem-
ory.

• Burstable: A Burstable pod has all containers with resource requests lower
than their resource limits. If a container needs more resources than the ones
requested, the container can use them as long as they are free.

• Guaranteed (highest priority): A guaranteed pod has resource requests for
all its containers equal to the maximum resource needs that the system will
allow the container to use (resource limit).

If resource requests are specified, the KS can provide better allocation decisions.
Similarly, if resource limits are described, resource contention can be handled
properly [34]. When several containers are running on the same node, they com-
pete for the available resources. Since container abstraction provides less isolation
than VMs, sharing physical resources might lead to a performance degradation
named resource contention. Resource requests and limits enable Kubernetes to
properly manage the allocation of resources. Nevertheless, developers still need
to accurately set up these requests and limitations, because containers often do
not use the entire amount of resources requested which could lead to wasted re-
sources. For example, two pods have been deployed and each one is requesting 4
Gb of RAM in a node with 8GB RAM capacity, but each pod is only using 1 GB
of RAM. The KS could allocate more pods onto that node, however, due to the
incorrect specification in terms of resource requests, the KS will never schedule
additional pods onto that node.

4.5 Resource Scheduling extension in Kubernetes

This section introduces the proposed extensions to the default scheduling mecha-
nism available in Kubernetes. First, a network-aware scheduling approach is de-
tailed. Then, the ILP formulation implemented as a container-based application is
discussed.

4.5.1 Network-Aware Scheduler (NAS) implementation in Ku-
bernetes

Although the KS provides flexible and powerful features, the metrics applied in
the decision making process are rather limited. Only CPU and RAM usage rates
are considered in the service scheduling while latency or bandwidth usage rates
are not considered at all. A suitable scheduling approach for Fog Computing en-
vironments must consider multiple factors, such as the applications’ specific re-
quirements (CPU, memory, minimum bandwidth), the state of the infrastructure
(hardware and software), the network status (link bandwidth and latency), among
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others. Therefore, this chapter presents a Network-Aware Scheduler (NAS) exten-
sion to Kubernetes, which enables Kubernetes to make scheduling decisions based
on up-to-date information about the current status of the network infrastructure.
Kubernetes describes three ways of extending the KS:

• Adding new predicates and/or priorities to the KS and recompiling it.

• Implementing a specific scheduler process that can run instead of or along-
side the KS.

• Implementing a “scheduler extender” process that the default KS calls out
as a final step when making scheduling decisions.

The third approach is particularly suitable for use cases where scheduling deci-
sions need to be made on resources not directly managed by the standard KS. The
proposed NAS has been implemented based on this third approach, since informa-
tion on the current status of the network infrastructure is not available throughout
the scheduling process of the KS. The proposed NAS has been implemented in Go
and deployed in the Kubernetes cluster as a pod. The pod architecture of the NAS
is illustrated in Figure 4.5. Additionally, the pod configuration file for the NAS is
shown in Figure 4.6a, while the scheduling policy configuration file for the NAS
is presented in Figure 4.6b. As shown, the pod is composed of two containers: the
extender and the NAS. The extender is responsible for performing the proposed
scheduling operation, while the NAS is in fact the actual KS. A specific sched-
uler policy configuration file has to be defined to instruct the KS how to reach the
extender and which predicates should be used to filter the nodes as a first step in
the scheduling process. Essentially, when the KS tries to schedule a pod, the ex-
tender call allows an external process to filter the remaining nodes (second step).
The arguments passed on to the “Filter Verb” endpoint consists of the set of nodes
filtered through the KS predicates and the given pod. This second step is used to
further refine the list of possible nodes.

Figure 4.5 The detailed Pod architecture of the Network-Aware Scheduler (NAS).



Resource Provisioning in Fog Computing: From Theory to Practice 99

Figure 4.6 The configuration files required for the NAS.
(a) The pod deployment configuration
file.

(b) The scheduling policy configuration
file.



100 CHAPTER 4

A complete labeling of the Fog Computing infrastructure previously shown has
been conducted based on Affinity/Anti-Affinity rules and node labels mentioned
in Section 4.4.2. As illustrated, the infrastructure is composed of a Kubernetes
cluster with 15 nodes (1 master node and 14 worker nodes). Nodes have been
classified with labels “Min, Med, High” for keywords “CPU, RAM”, depending
on their resource capacity. Additionally, nodes have been classified in terms of
device type, by classifying them with taints “Cloud, Fog” for the keyword “Device
Type” and according to their geographic distribution. Round Trip Time (RTT)
values have been assigned to each node as a label so that delay constraints can
be considered in the scheduling process. The labels of each node are listed in
Table 4.1. These labels enable the placement of services in specific zones or certain
nodes based on the location delay. All these rules are important to fine-tune the
scheduling behavior of Kubernetes, in particular, to help the scheduler make more
informed decisions at the filtering step by removing inappropriate nodes.
The proposed NAS makes use of these strategically placed RTT labels to decide
where it is suitable to deploy a specific service based on the target location speci-
fied in the pod configuration file. In fact, the node selection is based on the mini-
mization of the RTT depending on the target location for the service after the com-
pletion of the filtering step. Additionally, in terms of bandwidth, NAS checks if
the best candidate node has enough bandwidth to support the given service based
on the pod bandwidth requirement. If the bandwidth request is not specified in
the pod configuration file, a default value of 250 Kbit/s is considered during the
scheduling phase. After completion of the scheduling request, the available band-
width is updated on the corresponding node label. The NAS Algorithm is shown
in Algorithm 1.
In summary, the proposed NAS approach filters the infrastructure nodes based
on KS predicates and then makes use of the implemented RTT location labels
to choose the best candidate node from the filtered ones to the desired service
location.

4.5.2 From Theory to Practice: ILP model implementation in
Kubernetes as a Container-based application

Lastly, an ILP model for the IoT service placement problem has been designed as
a container-based application. The ILP model has been implemented in Java us-
ing the IBM ILOG CPLEX ILP solver [35] and the Spring Framework [36]. The
class diagram of the implementation is shown in Figure 4.7. The class diagram
has been generated with IntelliJ IDEA, a Java Integrated Development Environ-
ment (IDE) developed by Jetbrains [37]. The proposed ILP container application
has been designed as a Representational State Transfer (REST) API. Simulation
entities can be created or deleted through the Simulation Controller. ILP solutions
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Table 4.1: The implemented node labels in the Kubernetes cluster.
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Algorithm 1 NAS Algorithm

Input: Remaining Nodes after Filtering Process in

Output: Node for the service placement out

1: handler(http.Request){ //Handle a provisioning request

2: receivedNodes = decode(http.Request);

3: receivedPod = decodePod(http.Request);

4: node = selectNode(receivedNodes, receivedPod);
5: return node
6: }

7: //Return the best candidate Node (recursive)

8: selectNode(receivedNodes, receivedPod){
9: targetLocation = getLocation(receivedPod);

10: minBandwidth = getBandwidth(receivedPod);

11: min = math.MaxF loat64;

12: copyReceivedNodes = receivedNodes;

13: for node in range receivedNodes // find min RTT

14: rtt = getRTT (node, targetLocation);

15: min = math.Min(min, rtt);

16: // find best Node based on RTT and minBandwidth

17: for node in range receivedNodes

18: if min == getRTT (node, targetLocation)

19: if minBandwidth ≤ getAvBandwidth(node)

20: return node;
21: else
22: copyReceivedNodes =

23: = removeNode(copyReceivedNodes, node);

24: // Available min RTT Nodes are full in terms of Network Bandwidth!

25: // Repeat the Process (Recursive)!

26: // First: Check if copy is not empty

27: if copyReceivedNodes == null

28: return null, Error("No suitable nodes found!");

29: else return selectNode(copyReceivedNodes, receivedPod);
30: }
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can be obtained by issuing a GET Request for all Simulation entities available or
by just sending a GET request for a specific Simulation entity. The ILP formula-
tion incorporates multiple optimization objectives. Users can specify the desired
optimization objectives and the amount of requests for each specific application
when creating Simulation entities through a PUT request. In fact, the model is ex-
ecuted iteratively so that in each iteration a different optimization objective can be
considered. To retain the solutions obtained in previous iterations, additional con-
straints are added to the model. Thus, the solution space continuously decreases
since iterations must satisfy the previous optimal solutions. Every iteration re-
fines the previously obtained solution by improving the model with an additional
optimization objective.

The main advantage of ILP is the flexibility to analyze complex problems such
as the resource provisioning in Fog Computing presented in this paper. However,
theoretical studies lack practical implementations, which limit their applicability
to real deployments. Therefore, the proposed ILP REST API has been deployed
and validated on the Kubernetes platform showing the full applicability of theo-
retical approaches in practical service deployments. In Figure 4.8, the proposed
service architecture is shown. Two YAML Ain’t Markup Language (YAML) files
are used to deploy the ILP REST API. Firstly, the ilp-rest-api.yaml is responsible
for creating the deployment of the ILP REST API. The deployment is composed
of three replicated ilp-rest-api Pods, indicated by the replicas field. This is the de-
sired number of replicas. Additionally, for each pod, a core CPU (1.0) and 2 Gb of
RAM are requested (resource requests), which can be increased to four cores and 8
Gb, respectively (resource limits). The service is listening on port 8080. Secondly,
the svc-ilp-rest-api.yaml creates a Kubernetes Service named svc-ilp-rest-api. A
Kubernetes Service is a flexible abstraction that provides a reliable manner to ac-
cess a logical set of pods. The set of pods exposed are determined by a label
selector, which in this case, corresponds to “app: ilp-rest-api". Services make
pods consistently accessible. Pods can be created, updated or even terminated so
that the service will know exactly how many replicas are running, where pods are
located and which IP addresses are being used. Essentially, services enable auto-
matic load-balancing across several pods. The ClusterIP service type (default) has
been used to provide internal access to the ilp-rest-api by exposing it on an internal
IP in the cluster. Thus, the ilp-rest-api service is only reachable from within the
cluster.

The proposed ILP REST API has been evaluated on the Kubernetes platform to
compare the performance of the theoretical formulation with the implemented
NAS approach and the standard scheduling feature available in Kubernetes. The
evaluation use case is presented next.
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Figure 4.7 The class diagram of the ILP REST API generated with IntelliJ IDEA.

Figure 4.8 The detailed service scheme of the ILP REST API in the Kubernetes
platform.
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4.6 Evaluation Use Case
In this section, the evaluation setup is detailed. Then, the evaluation scenario is
described.

4.6.1 Evaluation Setup

The Kubernetes cluster has been set up on the imec Virtual Wall infrastructure [38]
at IDLab, Belgium. The Fog Computing infrastructure illustrated in Figure 4.9 has
been implemented with Kubeadm [39]. The cluster node hardware configurations
are shown in Table 4.2. Furthermore, the software versions used to implement the
Kubernetes cluster are listed in Table 4.3.

Figure 4.9 A Fog Computing infrastructure based on the Kubernetes platform.

4.6.2 Scenario Description: Air Monitoring Service

The evaluation use case is based on an Air Monitoring Service performing unsu-
pervised anomaly detection. This scenario has been previously presented in [40],
where a novel anomaly detection solution has been proposed for Smart City appli-
cations in Smart Cities based on the advantages of Fog Computing architectures.
The purpose of this use case is to collect air quality data in the City of Antwerp
to detect high amounts of organic compounds in the atmosphere based on outlier
detection and clustering algorithms. Clustering allows the detection of patterns
in unlabeled data while outlier detection is related to the identification of unusual
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Table 4.2: The Hardware Configuration of each Cluster Node.
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Table 4.3: Software Versions of the Evaluation Setup.

Software Version
Kubeadm v1.13.0
Kubectl v1.13.0

Go go1.11.2
Docker docker://17.3.2

Linux Kernel 4.4.0-34-generic
Operating System Ubuntu 16.04.1 LTS
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data samples when compared to the rest of the dataset. In this chapter, the anomaly
detection algorithms have been implemented as container APIs and then deployed
as pods in the Kubernetes cluster. Regarding clustering, the Birch and the Kmeans
algorithms have been evaluated while for outlier detection, the Robust Covariance
and the Isolation Forrest have been assessed. The deployment properties of each
service are shown in Table 4.4. In Figure 4.10, the pod configuration files for the
deployment of the Birch service are presented. As shown, the service chain of the
Birch service is composed of two pods, the API and the corresponding database.
The desired location for the allocation of the service is expressed by the “target-
Location" label. Furthermore, the minimum required bandwidth per service is
expressed by the “minBandwidth" label. As illustrated previously, the available
bandwidth per node is 10.0 Mbit/s. Additionally, pod anti-affinity rules have been
added to each service so that pods belonging to the same service chain are not
deployed together, meaning that a node can only allocate one instance of a certain
pod for a particular service. For instance, for the Birch service, the birch-api and
the birch-cassandra pods cannot be deployed together. All pods have also been
categorized as Burstable, since their containers have resource requests lower than
their resource limits. The deployment of these services has been performed to
compare the performance of the implemented approaches with the default KS.

Figure 4.10 The pod configuration files for the Birch Service
(a) birch-api service. (b) birch-cassandra service.
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Table 4.4: Deployment properties of each service.
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4.6.3 ILP model configurations

In Table 4.5, the evaluated ILP model configurations are shown. First, for all
model configurations, the number of accepted service requests is maximized in
the first iteration. Then, on one hand, the ILP-A configuration corresponds to the
minimization of service latency based on the service target location. On the other
hand, the ILP-B configuration is related to the infrastructure’s energy efficiency,
since the final goal of this configuration is to minimize the number of nodes used
during the service provisioning. Finally, the ILP-C configuration corresponds to
a joint optimization of latency and energy, where minimization of latency and the
minimization of nodes correspond to the second and third iteration, respectively.

Table 4.5: The evaluated ILP model configurations.

ILP configurations

Iteration
ILP-A

(Latency)
ILP-B

(Energy)
ILP-C

(Latency and Energy)
1st MAX Requests MAX Requests MAX Requests
2nd MIN Latency MIN Nodes MIN Latency
3rd - - MIN Nodes

4.7 Evaluation Results

In this section, the evaluation results are detailed. First, the execution time of
the different scheduling approaches is presented, followed by the correspondent
scheduler resource consumption. Then, the allocation schemes for each of the
schedulers is detailed. Finally, the average RTT per service and the expected ser-
vice bandwidth per node for the different scheduling approaches are shown.

4.7.1 Scheduler Execution Time

In Table 4.6, the execution time of the different scheduler approaches is presented.
Each evaluation run considered 24 pods as shown in Table 4.4 previously. The exe-
cution time has been evaluated 10 times. The scheduling decision of the default KS
is made after on average 4.20 ms per pod, while the NAS requires on average 5.42
ms, due to the extender call procedure. The total execution time of the KS and the
NAS is 126.08 ms and 162.74 ms, respectively. Additionally, the three ILP config-
urations previously presented have been requested to the ILP REST API. Firstly,
the execution time of the ILP-A configuration is 1.82 s (first iteration: 0.86 s, sec-
ond iteration: 0.96 s). Secondly, the execution time of the ILP-B configuration is
6.30 s (first iteration: 0.79 s, second iteration: 5.51 s). Thirdly, three objectives
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are considered in the ILP-C configuration. The ILP-C is a refined solution of the
ILP-A configuration, since the minimization of the number of allocated nodes is
considered as a third optimization objective, resulting in a higher execution time
of 4.20 s (first iteration: 0.87 s, second iteration: 0.95 s, third iteration: 2.38 s).
The higher execution time of the ILP-B configuration is due to the high potential
solution space for minimizing energy in this scenario. Regarding the pod startup
time, the KS and the NAS require on average 2 seconds to allocate and initialize
the required containers while the ILP configurations need between 4 and 8 seconds
due to the higher decision time. By comparing both the KS and the NAS with the
three ILP formulations, it can be seen that heuristics can significantly reduce the
execution time of ILP models.

Table 4.6: The execution time of the different schedulers.

Scheduler
Avg. Scheduling

Decision (per pod)
Total

Execution Time
Pod

Startup Time
KS 4.20 ms 126.08 ms 2.04 s

NAS 5.42 ms 162.74 ms 2.13 s
ILP-A - 1.82 s 3.97 s
ILP-B - 6.30 s 8.45 s
ILP-C - 4.20 s 6.35 s

4.7.2 Scheduler Resource Consumption

In Table 4.7, the resource consumption (CPU and RAM) of the different scheduler
approaches is shown. As expected, the ILP REST API requires more resources
than the other two scheduling mechanisms. Traditionally, ILP solvers need a high
amount of resources and require high execution times to find optimal solutions
to the given problem. Nevertheless, ILP techniques could improve the quality of
the decision-making process by linearizing the problem and by only considering
concrete objectives. The KS and the NAS have a similar resource consumption,
since both schedulers are based on the default scheduling mechanism available in
Kubernetes.
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Table 4.7: The resource consumption of the different schedulers.

Scheduler Used CPU (m) Used RAM (Mi)
KS 102 41.93

NAS 102 56.67
ILP-A 233 452.36
ILP-B 639 630.06
ILP-C 438 636.71

4.7.3 Allocation Scheme

In Figure 4.11, the different allocation schemes for each of the schedulers are illus-
trated. As expected, the KS deployment scheme is not optimized for the service’s
desired location, since no considerations are made about network latency in its
scheduling algorithm. For instance, the KS allocation scheme of the Isolation ser-
vice is fairly poor since both pods, isolation-api and isolation-cassandra, are not
deployed in the desired location (Leuven). Furthermore, the ILP-B configuration
is also not optimized for service latency, since the objective of the ILP is to min-
imize the energy consumption by just considering bandwidth constraints between
services allocated on different nodes.

4.7.4 Network Latency and Bandwidth

The differences in the average RTT per scheduler are detailed in Figure 4.12. As
shown, the proposed NAS achieves significantly lower RTTs for each of the de-
ployed services when compared with the default KS. Both NAS and ILP-A con-
figuration achieve similar results in terms of the overall RTT. However, clear dif-
ferences exist in the Birch and Robust service. RTT values of 6.5 ms and 23.0 ms
are achieved with the NAS, while values of 16.0 ms and 13.5 ms are obtained with
ILP-A. This difference occurs because the ILP takes all remaining pods waiting
for deployment into account in the service provisioning, while the NAS searches
for a suitable node for each pod, one at a time, similar to the KS. Therefore, the
NAS optimizes first the birch-api and the robust-api services and just after their
deployment, the correspondent birch-cassandra and robust-cassandra services are
scheduled. The service provisioning in terms of network latency is highly im-
proved with the NAS and the ILP-A configuration since KS and ILP-B do not
consider bandwidth requests in the scheduling process. In this particular alloca-
tion scheme, the NAS improves the performance of the default KS by reducing the
network latency by 70% while increasing the scheduling decision time by 1.22 ms
per pod.
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Figure 4.11 The service provisioning schemes of the different schedulers.
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Figure 4.12 Comparison of the average RTT per scheduler for different pod-
deployment scheduling strategies in a Smart City air quality monitoring scenario.
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In Table 4.8, the expected service bandwidth per node for the different schedul-
ing approaches is presented. Both KS and the ILP-B configuration allocate pods
on nodes already compromised in terms of network bandwidth. For instance, KS
overloads worker 4 and 12 by allocating to them at least 3 pods leading to ser-
vice bandwidths of 17.0 Mbit/s and 12.5 Mbit/s for the workers 4 and 12, respec-
tively, which surpasses the available bandwidth of 10.0 Mbit/s. This allocation
scheme may lead to service disruptions due to bandwidth fluctuations. Further-
more, the ILP-B configuration overloads 5 worker nodes to reduce the number of
active nodes to solely 8, meaning that the remaining 7 are not used in the service
provisioning. This occurs due to the selected optimization objective (MIN Nodes).
Additionally, it should be highlighted that, although ILP-A and ILP-C achieve
the exact same values of RTT for each of the deployed services, their allocation
scheme is quite different. ILP-C refines the solution obtained by ILP-A by trying
to further optimize the solution space by considering the minimization of nodes as
a third optimization objective while maintaining the same RTT values. As shown
for this configuration, several nodes can be considered full in terms of network
bandwidth since service bandwidths of 10 Mbit/s are expected, which is the limit
in the network. Therefore, the ILP-C solution provides us a more efficient usage
of the infrastructure by reducing the fraction of free resources per node.
In summary, the proposed NAS optimizes the resource provisioning in Kubernetes
according to network latency and bandwidth, which is currently not supported by
the default KS. An ILP REST API has been also validated as a container-based
application to evaluate the performance of theoretical formulations in real service
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deployments. As shown, the execution time of ILP models is higher than heuristic
mechanisms (KS and NAS). Nevertheless, ILP models obtain the optimal solution
for the given problem based on a set of objectives. The evaluated ILP formula-
tions improve the resource provisioning performance of the default KS in terms
of latency or energy efficiency and even can refine the allocation scheme of the
proposed NAS, while increasing the pod startup time on average by 4 seconds. It
should be noted that a dynamic mechanism suitable for dealing with bandwidth
fluctuations and delay changes is required, however, it is out of the scope of this
chapter.

Table 4.8: The expected service bandwidth per node for the different scheduling strategies.
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4.8 Conclusions

In this chapter, a Fog Computing architecture is proposed for the proper resource
provisioning of Smart City container-based applications. Fog Computing has been
introduced to manage the growing amount of connected devices in the upcom-
ing years, by placing computational resources on the edges of the network. This
trend has encouraged the development of scalable orchestration mechanisms to
guarantee the smooth performance of IoT services. Fog Computing provides ef-
fective ways to overcome the high demanding requirements introduced by IoT use
cases, such as low latency, high energy efficiency and high mobility. The pop-
ular open-source project Kubernetes has been used to validate the proposed so-
lution. The scalable design of Kubernetes provides flexible abstractions between
the micro-services and the underlying infrastructure. In this chapter, a network-
aware scheduling approach is proposed, which enables allocation decisions based
on the current status of the network infrastructure. Additionally, an ILP formula-
tion for the IoT service placement problem has been designed as a container-based
application and then validated on the Kubernetes platform showing the full appli-
cability of theoretical approaches in real service deployments. Evaluations have
been performed to compare the proposed scheduling mechanisms. Results show
that the proposed NAS can significantly improve the service provisioning of the
default KS by achieving a reduction of 70% in network latency, while increasing
the scheduling decision time by only 1.22 ms per pod. Theoretical approaches can
demonstrate their full applicability when applied to real service deployments as
shown by the validated ILP REST API.
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5
Diktyo: Network-aware Scheduling for

Container Clouds

“Patience is a key element of success.”

–Bill Gates, former Microsoft CEO

This chapter extends chapter 4 by designing a network-aware framework named
Diktyo integrated into the Kubernetes scheduling plugins project. Diktyo proposes
three additional plugins to optimize the allocation of service chains in Kubernetes
focused on low latency and bandwidth optimization. The approach in Chapter 4
relied on an extender call not fully integrated with the Kubernetes project. Latency-
sensitive applications demand lower latency between the microservices in the ap-
plication. Current scheduling methods focus on reducing deployment costs, insuf-
ficient for applications where end-to-end latency reduction is a primary objective.
Simulations show that Diktyo can minimize network latency across different infras-
tructure topologies while achieving similar execution times as current scheduling
plugins. Practical experiments in a Kubernetes cluster show that Diktyo increases
throughput by 22% and reduces latency by 45% by placing dependent microser-
vices close to each other. The main contribution of this chapter is the develop-
ment of the Diktyo framework for the Kubernetes scheduling plugins project. This
chapter has been submitted for publication in the OSDI 2022 proceedings and
represents a collaboration with IBM TJ Watson, NYC, USA.

⋆ ⋆ ⋆
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José Santos, Chen Wang, Tim Wauters and Filip De Turck.

Submitted to USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI), December 2021.

Abstract Recent applications are becoming more and more delay-sensitive, de-
manding lower latency between the microservices in the application. Current
scheduling policies aim to reduce costs or increase resource efficiency, which is
insufficient for applications where end-to-end latency reduction becomes a pri-
mary objective. Application domains such as multi-tier web services and highly-
available databases would benefit the most from network-aware scheduling poli-
cies, which consider both latency and bandwidth requirements. This paper pro-
poses a fast and scalable network-aware scheduling framework for the Kubernetes
platform named Diktyo, which determines the placement of containerized applica-
tions at run time to guarantee low latency and necessary bandwidth reservations.
Simulations show that Diktyo can significantly reduce network latency for various
applications across different infrastructure topologies. Scalability benchmarks of
Diktyo prove that its execution times are similar to production-ready scheduling
plugins and are scalable over 10k nodes/pods. Further application experiments in a
distributed Kubernetes cluster demonstrate that Diktyo scheduling on average can
increase database throughput by 22% and reduce the application’s response time
up to 45%.

5.1 Introduction

Next-generation applications are pushing cloud infrastructures further by demand-
ing even lower latency between their microservices. Application domains such
as the Internet of Things (IoT) [1], multi-tier web services [2], databases [3],
and video streaming services [4] are latency-sensitive, requiring sub-millisecond
end-to-end (E2E) latency for their proper operation. Current scheduling policies
in popular orchestration platforms (e.g., Kubernetes [5], Amazon AWS [6]) fo-
cus mostly on optimizing resource utilization in the infrastructure (e.g., CPU and
RAM), which is not enough to meet the stringent requirements of these applica-
tions. Kubernetes is currently the most popular container orchestration platform.
It automates several processes through the containerized applications’ life-cycle,
including deployment and scaling [7]. Nevertheless, network-aware scheduling
policies are missing to enable the network-aware placement of application mi-
croservices in container clouds.
Latency reduction is a primary objective since users usually face latency issues
when using multi-tier applications, affecting the overall application performance
[8]. These applications typically include tens to hundreds of microservices with
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complex inter-dependencies. Distance between servers is usually the primary
culprit as these microservices are scheduled in the infrastructure without latency
awareness. Currently, the best strategy is to reduce the latency between chained
microservices of an application, according to previous works on Service Function
Chaining (SFC) [9, 10]. Bandwidth optimization also plays a key role, espe-
cially for those applications with high volumes of data transfers among microser-
vices. For example, multiple replicas in a database application may require fre-
quent copies to ensure data consistency. Spark jobs [11] may have regular data
transfers between mappers and reducers. Insufficient network capacity on links
between nodes would lead to increasing delay or packet drops, which would fur-
ther degrade the Quality of Service (QoS) for applications.
These applications would benefit the most from network-aware scheduling poli-
cies, considering latency and bandwidth in addition to computing resources (e.g.,
CPU and RAM) used by the default scheduling mechanism. Network latency and
available bandwidth on links between cluster nodes can vary according to their lo-
cations in the underlying infrastructure. Deploying microservices on different sets
of nodes can impact the application’s response time and overall QoS. For example,
latency and bandwidth requirements are critical for the Redis cluster application
[12] (Fig. 5.1a), where master nodes need to synchronize data with slave nodes
regularly. Dependencies between the masters and the slaves need to be considered
in the scheduling process. High latency or low bandwidth between masters and
slaves can lead to slow Create, Read, Update, and Delete (CRUD) operations [13].
Similarly, dependencies exist between microservices for multi-tier web applica-
tions, e.g. the Online Boutique e-commerce application [14] (Fig. 5.1b). Placing a
single microservice far away from others can impact the overall performance of the
service chain and its E2E latency. Previous works on network-aware scheduling
focus mostly on theoretical formulations (e.g., [15–17]) or heuristic-based solu-
tions (e.g.,[18, 19]) that usually are assessed via simulations, which limits their
applicability in production systems.
This paper presents a network-aware scheduling framework, named Diktyo 1, for
the Kubernetes platform inspired by its recent scheduling plugins architecture [20].
Diktyo places application microservices on cluster nodes by applying network-
aware mechanisms. It schedules dependent microservices on nodes with links
of sufficient capacity to reserve the required bandwidth. Also, it minimizes the
SFC latency by selecting nodes with low network costs based on dependencies of
chained microservices. All types of infrastructures can benefit from Diktyo, as
network conditions between cluster nodes vary according to their locations in the
topology. Common topologies include Multi-Region (MR) geo-distributed sce-
narios, Data Centers (DCs) with fat-tree topology or even a highly available multi-
zone cluster topology. Further details about the framework are given in Section 5.5.

1Diktyo means "network" in Greek, as an analogy of Kubernetes, which means "pilot" in Greek.
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To the best of our knowledge, Diktyo goes beyond the current state-of-the-art. It
is the first attempt toward efficient service chain placement in future cloud-native
architectures. As the first network-aware scheduling framework on Kubernetes,
Diktyo provides near-optimal container placement, considering both the applica-
tion microservice dependencies and the underlying cluster topology in a scalable
manner. The main contributions are the following:

• Diktyo framework: The design and implementation of a network-aware
scheduling mechanism that separates the control plane (the scheduling logic)
from the data plane (e.g., the application microservice dependencies and the
cluster network topology). Several scheduling plugins are designed to de-
termine the container placement algorithm. Two asynchronous controllers
manage two Custom Resources (CRs) defined as Custom Resource Defi-
nitions (CRDs) [21] in Kubernetes: AppGroup CRD establishes service
chain dependencies; NetworkTopology CRD caches and updates network
costs between regions and zones for the underlying cluster topology.

• Mixed-Integer Linear Programming (MILP) modeling: The formulation
of a MILP model for the container scheduling problem, where containers
are chained in an application dependency graph, and the underlying cluster
topology has links with varying network latency and capacity. The optimal
solution from the MILP model serves as an ideal baseline to compare Dik-
tyo and other heuristic scheduling algorithms. Simulations show that Dik-
tyo significantly outperforms current production-ready scheduling plugins
in terms of reducing application E2E latency (Sec. 5.6.1).

• Plugin implementation: The design of three plugins for the Diktyo together
approximate a near-optimal scheduling solution that minimizes the applica-
tion E2E latency in a scalable manner. These plugins include a Topolog-
icalSort plugin that sorts microservices based on topology information, a
NodeNetworkCostFit plugin that filters out candidate nodes based on the
microservice’s AppGroup requirements and a NetworkMinCost plugin that
scores nodes based on network weights ensuring low SFC latency for mi-
croservices in AppGroups. The time complexity of these plugins is loga-
rithmic over the number of pods and nodes.

• Evaluations in Practical Use Cases: Diktyo is evaluated on real-world ap-
plications, including a multi-tier web application benchmark (Online Bou-
tique [14]) and a database application (Redis cluster [12]). Experiments in
a distributed Kubernetes cluster show that Diktyo increases throughput by
22% for the Redis database and reduces the application response time up to
45% for the Online Boutique application (Sec. 5.6.3).
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Figure 5.1 Illustration of microservice dependencies [12, 14].
(a) Redis Cluster application.

(b) Online Boutique application.

5.2 Related Work

This section addresses current literature on topology-aware and network-aware
scheduling. Section 5.2.1 presents prior works related to topology-aware schedul-
ing. Section 5.2.2 introduces works studying network-aware solutions for applica-
tion deployment in cloud platforms, and Section 5.2.3 reviews recent research on
container-based scheduling, including open-source plugins.

5.2.1 Dependency/Topology-aware scheduling

Microservice inter-dependencies have been mainly addressed in the field of batch
job scheduling systems [22–25]. Most efforts focus on improving resource effi-
ciency [25–27], characterizing inter-job dependencies [28], reducing the makespan
of jobs [22, 24, 29] or improving the system’s throughput [23, 30, 31]. The con-
sidered dependencies usually are temporal [27, 28] dependencies, meaning later
running jobs depend on successful completion of earlier ones. However, the mi-
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croservice dependencies considered in this paper are spatial, meaning all contain-
ers need to communicate with others and run as a whole for the application. The
placement of these dependent containers can impact the performance of the whole
application.

Topology-aware scheduling allows the placement to be aware of the underlying
cluster topology information. An example is the Topology-aware [32] scheduler
plugin for Kubernetes. The node topology is specified in NodeResourceTopol-
ogy CRDs. Its placement overcomes performance issues concerning memory, and
CPU accesses in Non-Uniform Memory Access (NUMA) nodes [33]. Also, the
heterogeneity of resources has been studied for performance improvement in [31].
However, these works do not address the network topology of the cluster. In con-
trast, the Diktyo framework considers both the microservice dependencies and the
underlying cluster network topology to enable network-aware scheduling in Ku-
bernetes.

5.2.2 Network-aware scheduling

Theoretical formulations have been the most applied method to solve network-
aware allocation in the last few years [15–19, 34]. Typically, these proposals focus
on Integer Linear Programming (ILP) and MILP models to find the optimal alloca-
tion scheme based on a particular objective. The main drawback of these modeling
approaches is that they cannot find a feasible solution within an acceptable time,
thus limiting their applicability in operational environments. However, the model-
ing can always provide an optimal benchmark for heuristic-based algorithms.

Data Center is an important scenario where network-aware scheduling has been
studied in recent years [16, 17, 19, 35–38]. These works focus on optimizing
network bandwidth to reduce traffic congestion [36] or reducing the average task
completion time [35]. However, practical implementations of these methods are
missing since most network-aware algorithms are evaluated via simulations. In
addition, most efforts focus on Virtual Machine (VM) placement and only a few
address container allocation [19]. Nevertheless, network latency is usually over-
looked in current network-aware approaches for DC topologies since network
bandwidth is their primary focus.

Geo-distributed clouds also impose several challenges toward network-aware
deployments [34, 39–44]. Prior works [45, 46] model application microservice
dependencies as service chains to optimize service scheduling in Fog Comput-
ing [47]. High latency is a concern in these topologies, especially for IoT and
video streaming applications. These efforts have demonstrated the benefits of us-
ing network-aware placement solutions concerning the application’s response time
and throughput.
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5.2.3 Container-based Scheduling

Containerized applications have been recently studied [19, 43, 45, 46, 48–51].
Authors aim mostly to reduce the network latency in container deployments by
efficiently resizing containers [50]. In addition, resource fragmentation [19] and
multi-tenant fair scheduling [49] have also been addressed lately. Furthermore, a
few scheduling plugins are already available for Kubernetes in open-source that
consider service dependencies. The Volcano project [52] provides several plug-
ins, such as Gang [53], Task Topology [54], Binpack [55] and Dominant Resource
Fairness (DRF) [56]. The Gang scheduling plugin considers several tasks running
in different containers as a group. It ensures that a minimum number of contain-
ers in the group can be deployed as a whole based on cluster resource availability.
The Task Topology plugin groups containers into buckets based on task affinities
and anti-affinities. The goal is to minimize data transmission between tasks in
the same bucket, thus decreasing transmission delay in the overall job execution
time. However, latency is not clearly defined as an objective because tasks are
placed according to the created buckets. The Binpack and DRF plugins are addi-
tional plugins in Volcano to work with Gang and Task Topology to improve node
resource utilization and prevent small job starvation [57]. Another plugin that con-
siders the relationship between microservices in an application is the CoSchedul-
ing [58]. The CoScheduling plugin operates similarly to the Gang plugin provided
by Volcano. It ensures that a minimum number of pods belonging to the same
PodGroup are scheduled as a whole. The main difference between Diktyo and ex-
isting plugins is that current plugins cannot handle complex dependencies between
heterogeneous pods.
In summary, Table 5.1 shows a comparison of all plugins listed above with the
proposed Diktyo framework in terms of plugin extension points, placement opti-
mization goals, and their network awareness. The proposed approach goes beyond
the current literature since Diktyo is the only one that considers application service
dependencies and the underlying network topology to optimize the SFC latency
with the necessary bandwidth reservation. Prior works focus on theoretical mod-
els and heuristics evaluated via simulations or small testbed experiments, limiting
their applicability in large-scale production clusters.

5.3 Scheduling in Kubernetes

Microservices in Kubernetes are often tightly coupled into a group of containers
named a pod. A pod is the smallest working unit in Kubernetes representing the
collection of containers and volumes (storage) running in the same execution envi-
ronment [5]. Kubernetes schedules a given pod on a certain node based on the pod
deployment requirements and the cluster’s available resources. The selected node
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pulls the container images from the image registry if needed and coordinates the
necessary operations to launch the pod. The component responsible for scheduling
operations is named Kube-Scheduler (KS), the default scheduler in Kubernetes.
The KS chooses a node for the pod deployment based on a two-step operation.
Firstly, the KS checks if nodes can run the pod based on a set of filters, also known
as predicates. These filters mostly focus on the pod’s resource requirements (e.g.,
CPU and RAM) and check if the node has enough capacity to meet those. Sec-
ondly, the KS applies node priority calculation by ranking each remaining node
based on a set of scoring algorithms, also named priorities. Then, the highest-
scoring node is selected by KS for the pod deployment. To ease the development
of further filter and scoring functions, Kubernetes released a scheduling frame-
work [59] so that developers could implement their algorithms and contribute to
the Kubernetes project.
The Kubernetes scheduling framework implements several extension points for
the KS. The framework allows developers to implement their algorithms as plu-
gins without interfering with the main scheduling components. The framework
currently exposes the following main extension points, responsible for:

• QueueSort: sort pods in the scheduling queue.

• Filter: filter out nodes that cannot run the pod.

• Score: rank nodes that have passed the filtering phase.

• NormalizeScore: modify scores before the final ranking of nodes.

The Diktyo framework makes use of these extension points to include bandwidth
and latency in the scheduling process in Kubernetes. The framework is detailed in
Sec. 5.5. The next section presents a MILP model for the Kubernetes deployment
scheme, where pods are allocated on nodes based on a given objective. The model
provides a benchmark for the network-aware framework and existing plugins to
compare their sub-optimal allocation schemes with an optimal solution.

5.4 Mixed-Integer Linear Programming
(MILP) Approach

This section presents the MILP formulation for the network-aware Kubernetes
scheduler, which places application pods on cluster nodes to both maximize the
total number of applications admitted and minimize the application’s SFC latency.
The main advantage of MILP models is the flexibility to analyze NP-hard problems
[60] as the Kubernetes application deployment model and provide a benchmark for
developed heuristics [61]. The MILP model formulates the pod placement prob-
lem in Kubernetes as an optimization problem subject to several constraints, where



130 CHAPTER 5

Table 5.2: Input variables of the MILP model.

Symbol Description
N The set of nodes on which pod replicas are executed.

A
The set of all applications. Each application consists of a set of
different pods ordered in a chain.

P The set of all pods.
P a The set of all pods p belonging to the application a.

P a
r

The replica set r of pods of the same pod type belonging to the
application a.

Z The set of zones where applications can be deployed.

Ia,p
The Instance matrix I . If the element Ia,p = 1, the pod p belongs to
application a.

Ωn[c]
The capacity vector of node n. c denotes resources as CPU (in
vcpu), memory (in Mi), and bandwidth (in Mbps).

ωp[r]
The demand vector of pod p. r denotes resources as CPU (in vcpu),
memory (in Mi), and bandwidth (in Mbps).

Bn1,n2

The network bandwidth matrix B. Bn1,n2 indicates the bandwidth
capacity (in Mbps) between node n1 and node n2.

τn1,n2

The network latency matrix τ . The element τn1,n2
indicates the

latency (in ms) between the node n1 and the node n2.

Cpi,pj

The pod communication matrix C. The element Cpi,pj
indicates the

minimum bandwidth (in Mbps) demand between the pod pi and pj .
The pod pi is the source of the network flow while pj is the sink.

En,z
The zone matrix E. If the element En,z = 1, the node n is at zone
z.

αpi,pj

The SFC matrix α. If the element αpi,pj
= 1, the flow bandwidth

between the pods pi and pj must be guaranteed.

Table 5.3: Decision variables of the MILP model.

Symbol Description

Ga
The acceptance matrix GA. If the element Ga = 1, the ap-
plication a is deployed.

Ga,p
The pod acceptance matrix GA×P . If the element Ga,p = 1,
the pod p for the application a is allocated.

Pp,n
The placement matrix P . If the element Pp,n = 1, the pod p
is executed on node n.

Fpj ,pi(n1, n2)
The binary flow matrix indicates that pod pi and pod pj are
allocated on node n1 and n2, respectively.

Λa

The SFC latency matrix Λ. The element Λa indicates the
end-to-end response time (in ms) of requests traversing the
service chain belonging to application a.
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input variables are listed in Table 5.2 and decision variables as the application ac-
ceptance matrix GA and the placement matrix P are shown in Table 2.3.
The objectives considered in the model are the following:

1) Maximization of Application Requests (MAX AR).

2) Minimization of the Network Latency (MIN NL).

These two objectives are executed iteratively, meaning that a different optimiza-
tion is applied in each iteration. First, the acceptance of application requests is
maximized, and then, in the second iteration, the network latency is minimized.
Additional constraints are added to the model to retain the objective value ob-
tained in the previous iteration. Thus, the solution space continuously decreases
since iterations must satisfy the previous optimal solutions. Every iteration re-
fines the previously obtained solution by improving the model with an additional
objective.
The maximization of application deployments related to the first objective is ex-
pressed in (5.1) by using the acceptance matrix GA. The second objective relates
to the latency reduction in the service chain between pods from the same applica-
tion. The model determines an allocation scheme based on the service dependency
graph where pods with an established connection are allocated close to each other
to reduce the expected network latency while respecting all constraints. This ob-
jective is expressed as shown in (5.2), where the SFC latency (in ms) of each
application can be derived from the application flow matrix F as shown in (5.3).

max
∑
a ε A

Ga (5.1)

min
∑
a ε A

Λa (5.2)

∀a ε A : Λa =
∑

pi,pj ε Pa

∑
n1,n2 ε N

τn1,n2
× Fpj ,pi

(n1, n2) (5.3)

The application flow matrix F is subjected to various constraints to accurately
represent network flows. A chain path is expressed by the Flow Factor Υpi, pj
as shown in (5.4) by using the SFC matrix αpi,pj

. Bandwidth capacity limita-
tions (5.5) ensure the infrastructure capacity is respected, while flow conservation
constraints (5.6) and (5.7) ensure no flow is lost within the network.

Υpi,pj
= Ia,pi

× Ia,pj
× αpi,pj

(5.4)

∀n1, n2 ε N :∑
a ε A

∑
pi,pj ε Pa

Υpi,pj × Cpi,pj × Fpj ,pi(n1, n2) ≤ Bn1,n2
(5.5)
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∀a ε A, ∀pi, pj ε P a,∀n1, n2 ε N :

Fpj ,pi
(n1, n2) = 0 if Ppi,n = 0 ∨ Ppj ,n = 0

(5.6)

∑
a ε A

∑
pi,pj ε Pa

∑
n1,n2 ε N

Fpj ,pi
(n1, n2) =

∑
pi,pj ε Pa

αpi,pj (5.7)

Also, the placement of all application pods needs to satisfy multiple constraints.
First, all pods in the application need to be deployed as a whole. An indicator
constraint (5.8) states that an application a is deployed (i.e., Ga = 1) if all pods
belonging to the application have been deployed. Further, pod placements must
ensure nodes to be scheduled on have enough resources for allocation represented
in (5.9).

∀a ε A :
∑

p ε Pa

Ga,p =
∑

p ε Pa

Ia,p if Ga = 1 (5.8)

∀n ε N :
∑
a ε A

∑
p ε Pa

Pp,n × ωp[r] ≤ Ωn[c] (5.9)

In addition, two constraints have been added to represent topology preferences
[62]. Pod anti-affinity rules (5.10) ensure replicas of the same pod are allocated
on different nodes, and zone anti-affinity rules (5.11) spread pod replicas across
different zones in the cluster.

∀n ε N,∀a ε A :
∑

p ε Pa
r

Pp,n ≤ 1 (5.10)

∀a ε A, ∀z ε Z :
∑

p ε Pa
r

∑
n ε N

Pp,n × En,z ≤ 1 (5.11)

5.5 Diktyo framework: System Design

5.5.1 System Overview

Fig. 5.2 shows an overview of the Diktyo framework. Bandwidth resources are
advertised to the Kubernetes API to consider the node’s available bandwidth ca-
pacity in the scheduling process 1⃝. The framework also introduces two CRs:
AppGroup and NetworkTopology to maintain both the service dependency in-
formation 2⃝ and the infrastructure network topology 3⃝. The NetworkTopol-
ogy controller obtains network weights between nodes across regions and zones.
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Figure 5.2 Illustration of the Diktyo framework.

Thus, Diktyo is aware of both application and infrastructure network topology.
The network-aware algorithms are implemented via the Kubernetes Scheduler plu-
gin framework [59], and it consists of three scheduling plugins: TopologicalSort,
NodeNetworkCostFit and NetworkMinCost. First, pods are sorted based on
their established dependencies 4⃝. Then, nodes are filtered out based on the pod’s
AppGroup requirements 5⃝, and lastly, nodes are scored based on network weights
focusing on reducing the network latency between chained microservices 6⃝. Fur-
ther explanations are given below on how these plugins interact with both CRs.

5.5.2 Bandwidth Enforcement

In Kubernetes, bandwidth resources can be defined for pods and nodes and used
by the KS via extended resources [63]. The node’s (physical) bandwidth ca-
pacity can be advertised in the cluster through a bandwidth component [64] de-
veloped to send HTTP requests to the Kubernetes API server. The label net-
work.aware.com/bandwidth specifies bandwidth capacities. The bandwidth CNI
plugin [65] can enforce network bandwidth allocations for pods. It supports ingress
and egress traffic shaping to limit the pod bandwidth. Pods share the host net-
work bandwidth when deployed on the same node. Limiting Pod bandwidth can
prevent mutual interference and improve network stability [66]. The addition of
kubernetes.io/ingress-bandwidth and kubernetes.io/egress-bandwidth annotations
to the pod configuration file ensures bandwidth limitations are respected. This al-
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lows to perform filter and score algorithms based on bandwidth resources (e.g.,
MostRequested, BalancedAllocation).

5.5.3 Application Group Custom Resource Definition (CRD) &
Controller

Figure 5.3 Example of a service chain in Kubernetes.

Table 5.4: Topological sorting for Online Boutique.

Algorithm Topological order
Kahn [P1, P10, P9, P8, P7, P6, P5, P4, P3, P2, P11]

Alt. Kahn [P1, P11, P10, P2, P9, P3, P8, P4, P7, P5, P6]
Rev. Kahn [P11, P2, P3, P4, P5, P6, P7, P8, P9, P10, P1]

Tarjan [P1, P8, P7, P5, P4, P2, P11, P9, P10, P6, P3]
Alt. Tarj. [P1, P3, P8, P6, P7, P10, P5, P9, P4, P11, P2]
Rev. Tarj. [P3, P6, P10, P9, P11, P2, P4, P5, P7, P8, P1]

An AppGroup CRD [67] is defined to describe the microservice dependencies in
service chains. Fig. 5.3 shows an example of a service chain in Kubernetes and the
corresponding service dependency graph. The minbandwidth requirement defines
the minimum bandwidth between two pods of the same AppGroup. Thus, pods
cannot be scheduled on nodes with the connection not having enough capacity
to meet the specified bandwidth requirement. The maxNetworkCost requirement
determines the maximum network cost between two pods. If the network cost
between two nodes is higher than the defined maxNetworkCost, then Diktyo cannot
place these two pods on these nodes.
An application consists of several pods with dependencies. The tighter constraints
a pod has, the more likely the pod cannot find a node that satisfies all constraints.
Scheduling the pod with tighter constraints earlier would be preferred, so it would
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not be blocked later, leading to starvation. However, it is not straightforward to de-
termine which pod has tighter constraints. Therefore, the AppGroup controller
[68] calculates the scheduling order of all pods in an application via six heuristic
topological sorting algorithms [69]: Kahn [70], Tarjan [71], AlternateKahn, Alter-
nateTarjan, ReverseKahn, ReverseTarjan. Alternate Kahn modifies the order given
by Kahn by selecting the first element of Kahn as its first element, the last of Kahn
as its second, the second of Kahn as its third, and so on. AlternateTarjan follows
the same pattern of AlternateKahn and modifies the order of Tarjan. ReverseKahn
and ReverseTarjan essentially reverse the order given by Kahn and Tarjan, respec-
tively. For the service chain example, the preferred topology order would be P1,
P2, P3 for Kahn and P3, P2, P1 for ReverseKahn. Furthermore, a complex App-
Group is the Online Boutique application previously shown in Fig. 5.1b. It consists
of eleven microservices, named from P1 - P11. Table 5.4 presents the preferred
order for all sorting algorithms. As shown, significant differences in the ordering
of pods are obtained depending on which topology algorithm is selected.

5.5.4 Network Topology Custom Resource Definition (CRD) &
Controller

A networkTopology CRD [72] defines a networkTopology CR to store and update
network costs between all pair-wise nodes in the cluster based on their zones and
regions. As an initial design, network weights can be manually defined in a single
NetworkTopology CR where network costs between zones and between regions
are specified. In addition, to accurately measure the latency in the cluster, a net-
perf component [73] has been developed for the Diktyo framework. Netperf tests
[74] are executed based on the nodes available in the infrastructure, allowing to
estimate the latency between nodes in the cluster, especially different latency per-
centiles (i.e., 50th, 90th, and 99th percentile).These measurements are recorded in
a configmap [75] as key-value pairs with origin and destination as labels. Then,
the networkTopology controller [76] accesses the configmap to extract the net-
perf measurements and calculates accurate network costs across regions and zones
in the cluster. The networkTopology controller can then dynamically update the
CR accordingly, so scheduling plugins always use the updated network weights
instead of the one-time manually configured weights. The periodical probing of
the network latency via the netperf component is only necessary for one pair of
nodes between zones/regions. One-time probing between a single pair of nodes
is sufficient if nodes within a zone have similar connections. Therefore, the prob-
ing is limited, avoiding significant overhead for large-scale clusters. Furthermore,
the networkTopology controller can work with any customized software compo-
nents that update the configmap. Thus, cloud administrators can apply various
methods to update the network costs according to their preferences. Also, the net-
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workTopology controller maintains the available bandwidth capacity (i.e., band-
widthAllocatable) between regions and zones in the cluster. Pod allocations and
corresponding dependencies are read from an AppGroup lister [77], and bandwidth
reservations are saved in the networkTopology CR based on pod deployments.

5.5.5 Network-aware Scheduling Plugins

This section presents further details on the scheduler plugins designed and imple-
mented for the Diktyo framework.

TopologicalSort QueueSort Plugin [78] sorts pods belonging to an AppGroup
based on the topology order, which are calculated by the AppGroup controller
using the specified sorting algorithm. It prioritizes pods based on the sorted order.
If pods do not belong to an AppGroup or belong to different AppGroups, the plugin
follows the strategy provided by the QoS plugin [79].

NodeNetworkCostFit Filter Plugin [80] respects pod dependencies established
in the AppGroup CR. The implementation currently focuses on maxNetworkCost
requirements, filtering out nodes that would generate higher network costs than the
specified threshold. Since applications usually include multiple pods with inter-
dependencies, the pods deployed later may have constraints not fully respected.
Thus, the NodeNetworkCostFit plugin filters out nodes that cannot support the ma-
jority of the requirements required by the dependencies of pods already deployed
to reduce the number of nodes to score.

NetworkMinCost Score Plugin [81] favors the node with the lowest aggregated
network cost to nodes where pods are already deployed. The aggregated network
cost is calculated based on all pods’ dependencies maintained by the AppGroup.
The cost per dependency is the network weight between nodes of scheduled pods.
Pods scheduled in an AppGroup are retrieved via a pod lister [82] from the Ku-
bernetes API. Thus, the plugin calculates the aggregated cost to schedule a pod
on a particular node based on previous pod placements. Also, network weights
between regions and zones of the cluster are available in the NetworkTopology
CR. The plugin favors all candidate nodes equally for the first pod scheduled in
the AppGroup. Lastly, the NetworkMinCost plugin normalizes scores between 0
and 100 based on all candidate nodes’ maximum and minimum costs. Nodes with
lower costs are favored since it also corresponds to lower latency. The Network-
MinCost plugin can be combined with other scoring functions (e.g., BalancedAl-
location, LeastRequestedPriority). However, a higher weight should be attributed
to the NetworkMinCost plugin to prefer the latency-aware scheduling policy.
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5.6 Evaluations
This section presents the experiments conducted to evaluate the performance of the
Diktyo framework. Sec. 5.6.1 presents a simulation environment used to validate
the proposed approach, and Sec. 5.6.2 shows the scalability benchmarks of the im-
plemented plugins. Lastly, Sec. 5.6.3 presents the testbed experiments concerning
the implemented framework.

5.6.1 Simulation Environment
5.6.1.1 Infrastructure Topologies & Input Variables

Table 5.5: The hardware configuration of each node based on Amazon EC2 On-Demand
Pricing [83].

Topology Node
Amazon
Image

CPU
(cpu)

RAM
(Mi)

Band.
(Gbps)

MR

C 4XL 16.0 32.0 40.0
FT2 2XL 8.0 16.0 10.0
FT1 XL 4.0 8.0 5.0

E L 2.0 4.0 1.0
C FT1 XL 4.0 8.0 1.0

DC FT1 XL 4.0 8.0 1.0

Topology: MR= Multi-Region, C= Cluster, DC= Data center.
Node: C= Cloud, FT2= Fog Tier 2, FT1= Fog Tier 1, E=Edge.
Amazon Image: 4XL= a1.4xlarge, 2XL= a1.2xlarge, XL= a1.xlarge,

L= a1.large.

Fig. 5.4 shows the three typical infrastructure topologies to be evaluated. Fig. 5.4a
represents a highly available cluster with nodes deployed across zones. Fig. 5.4b il-
lustrates a DC topology with nodes connected via a fat tree network [84]. Fig. 5.4c
shows a typical edge MR cluster with nodes distributed across several zones and
regions. Nodes provide computing resources to allocate pods in the infrastruc-
ture. Table 5.5 presents the nodes’ hardware configurations for each topology.
The bandwidth matrix Bn1,n2

is based on the available bandwidth capacity and
the latency matrix τn1,n2

is calculated based on the shown latency values. The
described MILP model has been implemented in Python using the IBM ILOG
CPLEX ILP solver [85]. The model considered two consecutive objective func-
tions: first, the acceptance of applications requests is maximized (i.e., MAX AR),
and then the network latency is minimized (i.e., MIN NL). As stated, the MILP
model is executed iteratively, and to retain the objective value of the first objec-
tive, an additional constraint is added to the model. The model has been executed
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Figure 5.4 Illustration of the three evaluated topologies.
(a) Cluster infrastructure.

(b) Data Center (DC) fat tree topology.

(c) Multi-Region (MR) scenario.
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Table 5.6: Deployment properties of the evaluated applications.

App. Pods & Number of Replicas
CPU
(cpu)

RAM
(Mi)

Band.
(Mbps)

Basic
(a1)

P1 (pa1
1 ): {1, .., 5}

1.0 1.0 500P2 (pa1
2 ): {1, .., 5}

P3 (pa1
3 ): {1, .., 5}

Redis
Cluster

(a2)

Master 1 (pa2
1 ): {1}

1.0 1.0 250

Master 2 (pa2
2 ): {1}

Master 3 (pa2
3 ): {1}

Slave 1 (pa2
4 ): {1, .., 5}

Slave 2 (pa2
5 ): {1, .., 5}

Slave 3 (pa2
6 ): {1, .., 5}

Online
Bout.
(a3)

Frontend (pa3
1 ): {1, 2}

1.0 1.0 250

Cart (pa3
2 ): {1, 2}

Prod. (pa3
3 ): {1, 2}

Currency (pa3
4 ): {1, 2}

Payment (pa3
5 ): {1, 2}

Shipping (pa3
6 ): {1, 2}

Email (pa3
7 ): {1, 2}

Checkout (pa3
8 ): {1, 2}

Recom. (pa3
9 ): {1, 2}

Ad (pa3
10): {1, 2}

Redis (pa3
11): {1, 2}

on a 6-core Intel i7-9850H CPU @ 2.6 GHz processor with 16 GB of memory.
The model and the scheduling algorithms are evaluated 50 times and the results
are shown with a 95% confidence interval.

5.6.1.2 Applications & Scheduling algorithms

Table 5.6 shows the experimental settings for the three evaluated applications. The
Basic (a1) application provides a naive service chain example previously shown in
Fig. 5.3 to demonstrate the viability of the MILP model. Then, two practical use
cases are assessed: 1) a Redis Cluster (a2) database and 2) an Online Boutique
(a3) application as shown in Fig. 5.1. The simulation compares four scheduling
algorithms: the optimal allocation scheme provided by the MILP model, the Vol-
cano Binpack scheduling plugin, the Volcano Task Topology scheduling plugin,
and the Diktyo framework.
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Figure 5.5 The MILP model requires 12 and 30 minutes for 15 pods in the cluster
and MR infrastructures for the basic application. The Diktyo framework reduces
the expected SFC latency by up to 34% compared to existing plugin algorithms.

(a) Execution time (Cluster). (b) Network latency (Cluster).

(c) Execution time (MR). (d) Network latency (MR).

Figure 5.6 Deployment of the Redis cluster application (12 pods) with different
topology constraints.

(a) Network Latency (Cluster). (b) Network Latency (DC).
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Figure 5.7 Deployment of the Online Boutique application (cluster topology) for
different sorting algorithms.

(a) Network Latency (11 pods). (b) Network Latency (22 pods).

5.6.1.3 Simulation Results

Fig. 5.5a and Fig. 5.5c compare the execution time of the four scheduling meth-
ods to obtain the placement solution on both the multi-zone Cluster topology and
the MR edge scenario. The MILP model provides an ideal optimal solution that
typically cannot be applied in practice, as its execution time increases significantly
as the number of pods in the application increase. As it is not acceptable to run
scheduling for a long time in production systems, a 30-minute limitation has been
added to the MILP model. Though the execution time of all algorithms increases
due to the increasing number of pods, other heuristic scheduling algorithms only
increase the execution time slightly compared to the MILP model. The MILP
model requires 12 minutes and over 30 minutes to schedule 15 pods in the basic ap-
plication on the cluster and MR topologies, respectively. In contrast, Diktyo needs
only 0.01 seconds for both topologies, similar to the execution times of the Bin-
pack and Task Topology algorithms. This occurs because all network weights are
pre-calculated beforehand, and no recalculation is needed in the Diktyo plugins.
Regarding network latency, Diktyo considerably reduces the expected SFC latency
compared to the Binpack and Task Topology algorithms as shown in (Fig. 5.5b and
Fig. 5.5d). It achieves reductions of up to 34% and 26% for the MR scenario with
15 pods compared to Binpack and Task Topology, respectively. Compared to the
ideal optimal solution of the MILP model, Diktyo only increases the average SFC
latency by 20% and 15% for 9 and 15 pods, respectively. However, it provides a
scalable solution due to its lower execution time.
Fig. 5.6 evaluates the SFC latency in box plots for the Redis Cluster application
under different topology constraints. The zone/region anti-affinity constraints are
usually applied to provide high availability for Redis clusters. No particular topol-
ogy sorting algorithm is applied in this scenario since all pods depend on all oth-
ers in the Redis Cluster application. As shown, latency reductions by the Diktyo
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framework are more noticeable when pod and zone anti-affinity rules are not con-
sidered. Diktyo can reduce the latency up to 34% in the cluster (Fig. 5.6a) and
up to 77% in the DC topology (Fig. 5.6b) compared to Binpack and Task Topol-
ogy. Compared to the MILP model, Diktyo increases the average SFC latency by
37% in the cluster topology and reduces the expected latency by 22% in the DC
topology as the MILP model fails to find the optimal solution within 30 minutes.
Furthermore, even with additional topology constraints, the proposed framework
can still reduce the latency up to 20% in the cluster topology and up to 38% in
the DC topology compared to Binpack and Task Topology algorithms. The MILP
model cannot find the optimal solution for both scenarios and obtains similar re-
sults to the Binpack algorithm due to the increased complexity of additional pod
and zone topology constraints.

Fig. 5.7 evaluates the impact of different topology sorting algorithms for schedul-
ing the Online Boutique application. The first scenario (Fig. 5.7a) considers the
scheduling of 11 pods, in which the service chain has only one possible path since
there is only one replica per pod type. As expected, the placement solution from
the MILP model obtains the lowest latency (28 ms) while Diktyo produces a place-
ment scheme 50% worse on average when combined with Alt. Kahn and Alt. Tar-
jan sorting algorithms. Nevertheless, Diktyo can still reduce the SFC latency up
to 34% on average compared to Binpack and Task Topology algorithms. The sec-
ond scenario (Fig. 5.7b) considers the scheduling of 22 pods, in which the service
chain has several possible paths due to two replicas per pod type. Two allocation
schemes are obtained from the MILP model in this scenario. The first experiment
runs the model up to 30 minutes and the second up to 6 hours to search for the
optimal placement scheme. However, the MILP model cannot find the optimal
solution within 6 hours due to the highly complex service dependency graph for
the Online Boutique application with 22 pods. Diktyo reduces the SFC latency
up to 30% compared to the MILP 30-minute model. Also, it significantly reduces
the expected latency compared to Binpack and Task Topology algorithms. It only
increases the SFC latency by 13% compared to the MILP 6-hour model. Further-
more, Diktyo provides a much faster and more scalable solution as it solves the
scenario on average in about 0.015 seconds.

In conclusion, the results show that the Diktyo scheduling can significantly reduce
the expected SFC latency in Kubernetes clusters. Performance comparisons with
two available scheduling plugins, Binpack and Task Topology, show that these
scheduling strategies are not latency-aware. The MILP model shows that network-
aware scheduling needs to solve a very complex optimization problem, which re-
quires an unacceptable execution time. Thus, these methods are not practical to
use in production systems. However, the Diktyo framework achieves similar exe-
cution times to Binpack and Task Topology by pre-calculating all network weights
beforehand. On average, Diktyo obtains sub-optimal solutions 10 - 30% worse
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than the MILP model but provides a much faster and more scalable solution.

5.6.2 Plugin Evaluation

Figure 5.8 Benchmark of the Filter and Score plugins. The execution time of both
plugins increases logarithmically over the number of nodes, though it is still below
1 second for 10000 nodes.

(a) Execution Time. (b) Number of Operations.

Figure 5.9 Benchmark of the QueueSort plugin. The execution time increases
logarithmically over the number of pods.

(a) Execution Time. (b) Number of Operations.

The Go [86] testing package provides an integration testing utility that can be used
to benchmark the performance of the scheduling plugins. Integration tests are im-
plemented to assess the scalability of the plugins, including NodeNetworkCostFit
and NetworkMinCost. Fig. 5.8 shows the plugins’ execution time over the number
of cluster nodes. Though the execution time of both plugins increases logarithmi-
cally over the number of nodes, the execution time for 10000 nodes is still below
1 second. It confirms that accessing network-aware information via CRs does not
add significant overhead in terms of execution time to the Kubernetes scheduling
process. Also, the TopologicalSort plugin is evaluated based on the number of
pods in the sort queue as shown in Fig. 5.9. Results show a similar pattern (i.e.,
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logarithmic time) as the other two plugins. This benchmark highlights that the
plugins designed for the Diktyo framework do not introduce significant overhead
over the scheduling process and is scalable for clusters with 10K nodes/pods.

5.6.3 Testbed Evaluation
5.6.3.1 Testbed Infrastructure

Figure 5.10 Illustration of the testbed infrastructure.

Table 5.7: Software Versions of the Testbed Infrastructure.

Software Version
Kubeadm / Kubectl v1.22.4
Go go1.16.10
Docker docker://20.10.10
Linux Kernel 5.4.0-80-generic
Operating System Ubuntu 20.04.2 LTS

A Kubernetes cluster is set up using Kubeadm [87] on VMs created with IBM
Cloud [88]. Network connections between VMs are illustrated in Fig. 5.10. The
cluster consists of 16 nodes (1 master and 15 workers). Nodes are labelled with
region (i.e., topology.kubernetes.io/region) and zone (i.e., topology.kubernetes-
.io/zone) labels. All nodes are in the same region (i.e., r1), but each node belongs
to a different zone (i.e., master, z1, .., z15). These topology labels are impor-
tant to evaluate the scheduling behavior of Diktyo. Varying delays are emulated
on network connections via Traffic Control (TC) [89]. The netperf component is
deployed to estimate the latency between nodes in the cluster and caches the mea-
surements in a configmap object. Then, the networkTopology controller calculates
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the network weights between zones based on the measurements in the configmap.
Therefore, the proposed plugins can apply accurate network weights instead of
manually defined weights. Table 5.7 lists the software versions of all the compo-
nents used to set up the Kubernetes cluster.

5.6.4 Testbed Results

Figure 5.11 Performance of a Redis Cluster application deployed using different
schedulers. Diktyo increases database throughput up to 22% for most operations.

First, a Redis Cluster application is deployed with different schedulers. The de-
ployment consists of five replicas for Redis-master pods and five for Redis-slave
pods. To benchmark the performance of the Redis cluster, the Redis-benchmark
utility [90] is used to generate a total of 250K database queries from 50 emu-
lated clients. Fig. 5.11 shows the throughput obtained with different schedulers.
As shown, the Diktyo framework achieves higher throughput on average by 22%
compared to KS and Volcano since it allocates Redis-master and Redis-slave pods
close to each other based on the dependencies established in the Redis AppGroup
CR [91]. With the specification of pod dependencies, the Diktyo framework can
produce an optimized placement for database application microservices than KS
and Volcano, leading to higher throughput for various database operations.
Second, the Online Boutique application is deployed, and its load generator based
on the locust load tool [92] is used to evaluate the performance concerning the ap-
plication response time. Different GET and POST requests are executed as shown
in Fig. 5.12. An Online Boutique AppGroup [93] composed with the dependen-
cies shown in Fig. 5.1b is submitted via an AppGroup CR in the Kubernetes clus-
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Figure 5.12 The response time for the Online Boutique application, deployed us-
ing different schedulers. Diktyo reduces the average response time up to 45% for
most requests.

ter to establish all pod dependencies needed by Diktyo to find a near-optimal pod
placement scheme. As shown, the Diktyo framework reduces the Online Boutique
response time by 15% to 45% for most requests on average. This result highlights
the main advantage of the Diktyo framework since it allocates pods with estab-
lished dependencies close to each other, resulting in lower latency.
In summary, the achieved results show the benefits of the proposed Diktyo frame-
work. By specifying dependencies among pods in Kubernetes clusters, scheduling
algorithms can make informed decisions regarding latency and bandwidth. Appli-
cation developers need to know their applications’ microservice dependencies to
define their AppGroup properly. Given information on microservice dependencies,
the proposed three plugins combined in the Diktyo framework can produce a near-
optimal scheduling solution to minimize the SFC latency with complex topology
constraints in logarithmic time. The testbed experiments demonstrate that Dik-
tyo increases database applications’ throughput and reduces the expected response
time for typical web-based applications in a distributed cluster.

5.7 Conclusions

This paper presented a network-aware scheduling approach for the Kubernetes
platform based on its recent scheduling plugin architecture. The aim is to tackle
the challenge of designing and implementing scalable and efficient network-aware
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scheduling algorithms capable of delivering low latency to end-users without com-
promising the system performance. Most efforts available in the literature require
an unacceptable execution time to find proper allocation schemes. Results obtained
from detailed experiments and realistic scenarios, show the advantages of the Dik-
tyo framework compared to default schedulers, especially in terms of through-
put and network latency. Diktyo can increase the throughput by 22% for typical
database applications and reduce the expected response time by 45% in web-based
applications. The work is an important step toward efficient service chain place-
ment in future cloud-native architectures.
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6
Conclusion

“The true sign of intelligence is not knowledge but imagination”

–Albert Einstein (1879 - 1955)

This dissertation presented several methods for efficient resource allocation in a
Fog Computing architecture. Theoretical formulations, architectural paradigms,
and practical implementations are among the various proposed approaches for ef-
ficient resource allocation of IoT services in Fog Computing. This chapter reviews
the addressed challenges in this dissertation and presents future research directions
in the resource allocation field, relevant in the coming years. In addition, App. C
complements this chapter by discussing open challenges and research directions
concerning low latency service delivery in next-generation networks focused on
emerging use cases such as Extended Reality (XR).

⋆ ⋆ ⋆
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6.1 Review of the Addressed Challenges

This section briefly summarizes the most important findings of this dissertation.
Challenge #1: provide a benchmark for resource allocation research in Fog Com-
puting.
To tackle this challenge, Chapter 2 presented an Integer Linear Programming
(ILP) formulation for IoT application service placement that considered multiple
optimization objectives such as low latency and energy efficiency. Fog Computing
adds further complexity to application deployments in a traditional cloud system.
The heterogeneity of hardware resources, their availability at different levels in
the network area, and the network bandwidth capacity are among the constraints
considered in the model. Multiple factors have been considered in the perfor-
mance analysis of resource allocation strategies, such as latency and deployment
costs. Also, the model considered the implications of Low Power Wide Area Net-
work (LPWAN) technologies in the allocation process to establish a relationship
between the cloud and the wireless domain. The model has been validated for spe-
cific IoT applications within the scope of Antwerp’s City of Things testbed. The
evaluation showed clear trade-offs between the assessed allocation strategies.
Appendix B extends the ILP formulation presented in Chapter 2 by proposing a
Mixed Integer Linear Programming (MILP) model for the IoT service placement
problem that considers service chaining, different LPWAN technologies, service
replication, and several optimization objectives. The formulation addresses recent
advancements concerning Service Function Chaining (SFC) and micro-service
deployments. The formulation presents further insights on the complete end-to-
end (E2E) resource provisioning in Fog-cloud environments. Evaluations focused
on Smart City use cases showed clear trade-offs between the assessed allocation
strategies.
Challenge #2: design a Fog Computing framework supporting autonomous man-
agement and orchestration functionalities.
Chapter 3 addressed this challenge by designing a Fog Computing framework
for Smart Cities that followed the guidelines of the European Telecommunications
Standards Institute (ETSI) Network Function Virtualization (NFV) Management
and Orchestration (MANO) architecture. The approach proposed additional soft-
ware components to provide a complete fog node management system to enable
the life-cycle management of Smart City applications. Also, the chapter described
a fog protocol for the exchange of application service information between FNs to
provide fast service provisioning decisions.
Chapter 4 studied the feasibility of a well-known container management plat-
form named Kubernetes for IoT deployments. The chapter proposed a Fog-based
framework based on the Kubernetes architectural model.
Challenge #3: implement efficient distributed data monitoring and analysis in a
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Fog Computing environment.
Chapter 3 proposed an anomaly detection approach for 5G Smart Cities alongside
the Fog Computing framework. The evaluation has shown how an anomaly detec-
tion use case for IoT could benefit from Fog Computing architectures. Results
have demonstrated that the proposed framework achieves a significant reduction
in terms of network bandwidth usage compared to traditional clouds.
Appendix A presented further insights on distributed data monitoring and analysis
in Fog Computing. Popular LPWAN technologies have been investigated for the
evaluated use case (i.e., air quality monitoring application), leading to a suitable
set of LPWAN technologies: IEEE 802.11ah, DASH7, and LTE-M.
Challenge #4: consider latency and bandwidth in the scheduling process in a
container orchestration system.
IoT Applications would benefit from scheduling algorithms considering latency
and bandwidth requirements. Current scheduling methods in popular cloud plat-
forms focus mostly on optimizing resources (e.g., CPU and RAM), insufficient
for applications where latency reduction and bandwidth optimization play a major
role. Chapter 4 addressed this challenge by developing a Network-Aware Sched-
uler (NAS) for container-based applications in Kubernetes. Evaluations have as-
sessed the performance of the proposed scheduler compared to the ILP formula-
tion presented in chapter 2 and the default scheduling component in Kubernetes.
Results show that NAS achieves a reduction of up to 70% concerning network la-
tency compared to the default mechanism. The work has been open-sourced and
thus available for further experiments by the network management community.
Chapter 5 presented a complete network-aware framework for the Kubernetes
platform inspired by service chaining concepts. The work extended Chapter 4 by
designing and implementing a fast and scalable network-aware approach based on
the Kubernetes scheduling plugin framework. Simulations show that the proposed
framework can minimize network latency across different infrastructure topolo-
gies while achieving similar execution times as current scheduling plugins. Ex-
periments with microservice benchmark applications in Kubernetes clusters show
that the network-aware framework can increase database throughput by 22% and
reduce the application’s response time up to 45%. The work attracted attention
from the Kubernetes scheduling community and is currently being integrated as
part of their open-source project.

6.2 Future Challenges on Resource Allocation

As discussed above, this dissertation presented several improvements to optimize
resource allocation in a Fog Computing environment. Nevertheless, novel chal-
lenges are emerging, which will need to be addressed by the network management
community. This section briefly discusses four main research directions in the re-
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source allocation field, which will become even more important in the next few
years.

6.2.1 Towards cloud-native architectures

The advent of novel architectural paradigms enabled the deployment of service
chains on computational resources from the cloud up to the edge, creating a con-
tinuum of virtual resources. The ambition is to set up a cloud infrastructure across
the entire network area by placing resources at the edge and fog, enabling flexible
deployments [1]. Architectural concepts for next-generation networks have been
studied in Appendix C. The following paradigms will be of utmost importance:
Multi-access Edge Computing (MEC) [2], Fog Computing [3], micro-services [4],
and hardware acceleration [5].
Regarding networking advancements, SFC research will continue to evolve. This
dissertation already addressed service chaining in several chapters by adding SFC
concepts to the presented network-aware scheduling methods. In addition, Seg-
ment Routing (SR) [6] and Intent-based networking (IBN) [7] are interesting re-
search directions to pursue towards truly cloud-native architectures. SR provides
scalable and flexible routing mechanisms, simplifying traffic engineering. In fact,
the combination of SFC and SR has already been proposed in the literature to
obtain further flexibility in application deployments and optimize traffic flow in
future cloud infrastructures [8, 9]. In addition, IBN has been conceptualized to
communicate intents to the network. Enforcing rules without detailing the system
how it should perform is its main goal. IBN can help to achieve the needed levels
of reliability and scalability for emerging use cases. Also, another interesting di-
rection is to study efficient auto-scaling [10] methods to guarantee that deployed
services are sufficient to handle current network demand. SFC concepts in auto-
scaling research are still quite unexplored.
In summary, the combination of these concepts is needed to obtain a more inte-
grated solution concerning resource allocation in future distributed infrastructures.

6.2.2 Machine Learning-based and Artificial Intelligence-based
orchestration

Machine Learning (ML) and Artificial Intelligence (AI) have positioned them-
selves as crucial enablers of autonomous networks [11]. ML and AI will automate
several tasks currently being solved via human intervention. ML and AI-based
methods will continue to evolve, especially in the areas of resource allocation
[12, 13], network slicing [14], and privacy preservation [15]. Appendix C pro-
vides a comprehensive review on three ML research fields: Deep Learning (DL)
[16], Reinforcement Learning (RL) [17] and Federated Learning (FL) [18]. DL
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and RL have already been applied for resource allocation focused on SFC place-
ment [19], [20]. These methods have demonstrated their potential applicability in
resource allocation due to their performance and scalability. However, DL and RL
research is still far from finished. The applicability of DL and RL algorithms in
operational environments is still quite limited since these methods require a high
execution time for model training (offline), and their usage without training (on-
line) is still not mature. Therefore, developing RL systems capable of reallocating
services in the infrastructure by reacting to sudden network demands is a major
research question in network management. Also, applying DL methods capable
of identifying patterns on historical data based on previous service demands is
another research direction.
In summary, all these ML domains will help achieve higher levels of indepen-
dence in next-generation networks. The integration of these novel trends can lead
to fully automated networks with minimum human intervention, providing self-
configuration and self-repairing features that will strongly impact the performance
of emerging use cases.

6.2.3 Low-Latency and High-Mobility service delivery

A plethora of allocation methods is proposed in this dissertation to tackle the strin-
gent requirements of IoT applications. Chapter 2 presented a theoretical formu-
lation for the IoT service placement problem, while chapters 4 and 5 proposed
network-aware scheduling approaches for container-based service chains in the
Kubernetes platform. However, emerging use cases will add further complexity
to resource allocation due to their diverse and even more stringent requirements.
Extended Reality (XR) [21] requires throughput levels above 1Tbps, while their
interactive experiences need sub-millisecond latency. In contrast, autonomous cars
[22] demand high mobility and at least seven levels of reliability without necessar-
ily requiring higher throughput. Also, Industrial IoT (IIoT) [23] presents several
challenges regarding latency and resilience guarantees. A sub-millisecond latency
for these applications may not be enough to detect failures in manufacturing pro-
cesses.
In summary, resource allocation research will continue to evolve to meet the de-
manding requirements of all these novel applications. Recent technologies such
as IBN and SR in combination with SFC will help to achieve higher levels of
flexibility and the referenced sub-millisecond latency.

6.2.4 Distributed and Decentralized Resource Allocation

In the last few years, several studies have addressed resource allocation or ser-
vice scheduling in current orchestration systems [24]. However, few works have
addressed multi-domain scenarios [25] or decentralized approaches [26]. Recent
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works have been studying how to optimize SFC orchestration across several do-
mains [27]. Academia and Industry working in the network management field
agree that a single centralized entity responsible for optimizing the life-cycle or-
chestration and management of SFCs across several domains might be difficult
to converge at optimal strategies due to the increased complexity of the service
placement problem. Thus, distributed and decentralized approaches are getting
significant attention lately, where several entities cooperate to achieve efficient al-
location strategies for service deployments.
In summary, distributed and decentralized approaches in the resource allocation
field will become even more important in the next few years. Recent orchestra-
tion systems are developing multi-cluster management functionalities capable of
efficiently managing service deployments across several clusters and domains.
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A
Anomaly detection for Smart City

applications over 5G Low Power Wide
Area Networks

This appendix extends the work described in Chapter 3 by focusing on a Fog-based
distributed data monitoring and analysis approach. It presents further insights
based on an anomaly detection solution for Smart City applications designed for
Antwerp’s City of Things testbed. Popular LPWAN technologies have been inves-
tigated for the anomaly detection approach, and the most appropriate ones are
selected based on the evaluated use case. Results show that clustering and outlier
detection mechanisms can be performed by fog resources close to IoT sensors and,
thus, send timely alerts in case unusual events are detected. Therefore, the main
contributions of this appendix are the distributed anomaly detection approach, in-
cluding its design and implementation and further LPWAN evaluation.
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Abstract In recent years, the Internet of Things (IoT) has introduced a whole
new set of challenges and opportunities in Telecommunications. Traffic over wire-
less networks has been increasing exponentially since many sensors and every-
day devices are being connected. Current networks must therefore adapt to and
cope with the specific requirements introduced by IoT. One fundamental need
of the next generation networked systems is to monitor IoT applications, espe-
cially those dealing with personal health monitoring or emergency response ser-
vices, which have stringent latency requirements when dealing with malfunctions
or unusual events. Traditional anomaly detection approaches are not suitable for
delay-sensitive IoT applications since these approaches are significantly impacted
by latency. With the advent of 5G networks and by exploiting the advantages of
new paradigms, such as Software-Defined Networking (SDN), Network Function
Virtualization (NFV) and edge computing, scalable, low-latency anomaly detec-
tion becomes feasible. In this appendix, an anomaly detection solution for Smart
City applications is presented, focusing on low-power Fog Computing solutions
and evaluated within the scope of Antwerp’s City of Things testbed. Based on
a collected large dataset, the most appropriate Low Power Wide Area Network
(LPWAN) technologies for the Smart City use case are investigated.

A.1 Introduction

In recent years, with the advent of the Internet of Things (IoT), the concept of
Smart Cities has become even more popular [1]. IoT will transform a wide range
of services in different domains of urban life, by creating intelligent smart grids,
improving public transportation and developing car parking and personal health
monitoring applications. In the future network generation, information will be
transmitted from different types of devices, over heterogeneous wireless networks
with even higher data rates, lower latencies and lower power consumption [2].
Therefore, it will be necessary to adapt existing network architectures to future
needs and develop new autonomous management functionalities to help meet the
demanding requirements of future 5G use cases. In fact, 5G technologies promise
very high carrier frequencies with massive bandwidths, extreme base station densi-
ties, an unprecedented large numbers of antennas and new functionalities, such as
device-to-device communication (D2D) and Fog Computing [3], [4]. In Fig. A.1,
a 5G network architecture is presented in a Smart City context. 5G technologies
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aim to tackle the new business opportunities created by the stringent requirements
of IoT applications. One of the main challenges is how to efficiently handle with
the gathering and processing of all data coming from the enormous amount of IoT
sensors that will be connected to the network in the next years [5].

The Fog Computing paradigm, which places cloud resources close to the IoT sen-
sors, extends the Cloud Computing paradigm to deal with the eminent growth of
connected devices [6]. Nevertheless, Fog Computing is still in its early stages and
needs more time to evolve. One of the remaining challenges is how to provide
proper resource allocation, since IoT applications and services can be placed in a
highly congested area, which would result in a higher latency [7]. Furthermore,
current IoT sensors and gateways lack in terms of processing power, battery, mem-
ory and storage capacity [8, 9]. IoT applications will be so diverse that they will
have different sets of communication requirements. For instance, on one hand, a
delay-sensitive IoT application may require very low latencies, meaning this IoT
application must be allocated on fog resources close to the sensor enabling the con-
trol of time-sensitive network functionalities close to the device [10]. On the other
hand, if this requirement is less important, the IoT application could be placed far
from the IoT sensor in a central location in order to reduce the number of active
fog resources on the network and therefore minimize the total energy consump-
tion in the fog domain. Additionally, it is also important to detect malfunctions
and abnormal events in the network. By identifying unusual events, malfunctions
in IoT sensors can be detected and transmissions of incorrect information can be
avoided, which can improve the overall Quality of Service (QoS) of the IoT ap-
plication, especially in terms of reliability [9]. Detecting unexpected patterns in
the data traffic is known as anomaly detection [11]. Recently, anomaly detection
has attracted the attention of the research community in multiple areas, such as
intrusion detection, health monitoring, preventive maintenance and fault detection
[12]. In this appendix, an anomaly detection approach for IoT applications in 5G
Smart Cities based on the advantages of Fog Computing architectures is presented.
The proposed architecture has been designed for Antwerp’s City of Things testbed
[13] and validated for Smart City use cases, in particular for an Air Quality mon-
itoring application. Finally, multiple Low Power Wide Area Network (LPWAN)
technologies have been considered for the use case scenario. The evaluation re-
sults identify the most adequate LPWAN technologies as wireless communication
enablers for the considered IoT application.

The remainder of this appendix is organized as follows. In the next section, related
work is discussed. In section III, the anomaly detection approach for smart city
environments as well as the LPWAN network dimensioning is presented. Then, in
Section IV, the scenario and datasets used in the evaluation are presented, followed
by the evaluation results in section V. Finally, conclusions are presented in section
VI.
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Figure A.1 High-level view of the considered 5G network architecture.
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A.2 Related Work

Recently, research studies have been carried out in order to deal with anomaly
detection in IoT, Smart City and Industry 4.0 scenarios. In [14], a real-time Intru-
sion Detection System (IDS) for IoT has been presented. The proposed solution
is a novel IDS with an integrated mini-firewall for 6LoWPAN networks in order
to detect malicious nodes. Moreover, in [11], an anomaly detection scheme based
on sensor data has been proposed to deal with unexpected behaviors in turboma-
chines in the Petroleum Industry. Furthermore, in [15], a temporal clustering and
anomaly detection method has been presented for a car parking IoT application
in order to detect unusual events. In [16], a supervised statistical-based anomaly
detection method for Smart Grid data has been proposed.

In recent years, research projects have also been focusing on reliable and secure
IoT for Smart Cities. In the SOCIOTAL project [17], an anomaly detection method
based on hyperellipsoidal models has been used to identify unusual patterns in en-
vironmental data collected from IoT sensors [18]. However, a traditional cloud
solution has been deployed instead of a Fog Computing approach. Additionally,
in [9], a Fog Computing anomaly detection approach for IoT using a hyperellip-
soidal clustering algorithm has been proposed to significantly reduce latency and
energy consumption in the network when compared to distributed and centralized
architectures. Nevertheless, their work is based on simulation studies, while the
proposed approach is based on an actual deployment within the scope of Antwerp’s
City of Things testbed. Finally, in the CityPulse project [19], [20], a complete set
of real-time data analytics tools have been presented, such as data aggregation,
event detection and decision support.

In summary, in this appendix, a Fog-based anomaly detection approach is pro-
posed. The work takes into account not only the advantages of Fog Computing
architectures, which are suitable for IoT applications in Smart City scenarios, but
also characteristics stemming from LPWAN technologies, since low power tech-
nologies have gained tremendous emphasis due to the enormous growth of con-
nected devices. All Anomaly detection approaches cited are only focused on cloud
and data management aspects and no considerations are included about wireless
networks. The proposed approach has been implemented on the City of Things
platform and evaluated with Unsupervised Clustering and Outlier detection algo-
rithms for the Air Quality monitoring application. Furthermore, the most popular
LPWAN technologies today have been assessed based on the requirements of the
application.
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A.3 Anomaly Detection in Smart Cities

This section presents the proposed low-latency anomaly detection approach for
Smart Cities on Fog Computing resources interconnected by LPWAN networks.

A.3.1 Anomaly Detection Principles

Anomaly detection or outlier detection is known as the process of detecting unex-
pected behavior or abnormal patterns in datasets. In the past, anomaly detection
was mainly used to remove the outliers from a dataset, which is named data cleans-
ing. However, in recent years, anomaly detection has attracted the attention of the
research community because researchers began to get interested in knowing more
about the anomalies themselves, since they are usually associated with potentially
reoccurring events [21]. There are three main categories of anomaly detection
which are shown in Fig. A.2.

Figure A.2 Anomaly Detection Categories: Supervised, Semi-supervised and Un-
supervised.

A.3.1.1 Supervised

In supervised anomaly detection methods, a fully labeled training dataset is used,
i.e., each sample is considered as normal or abnormal. This category is only used
for specific applications where anomalies are known beforehand.

A.3.1.2 Semi-Supervised

In semi-supervised anomaly detection techniques, a training dataset consists of
labeled and unlabeled samples. Usually, a small amount of labeled samples is
used.
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A.3.1.3 Unsupervised

In unsupervised anomaly detection algorithms, there is no training dataset since
nothing is known about the samples in advance. Therefore, these methods usu-
ally give an estimation of what a normal sample and what an abnormal one is.
The approach presented in this appendix makes use of unsupervised techniques
since the goal was to see if the selected algorithms could learn the distribution of
the data samples without knowing anything beforehand as in most anomaly detec-
tion use cases. The objective was that the algorithms themselves could discover
and present interesting behaviors in the datasets. Moreover, labeling datasets for
anomaly detection is not an easy task.
Many categories of unsupervised anomaly detection algorithms exist, of which the
most popular are listed in Table A.1. Many of these algorithms are available in
Scikit-Learn [22], a powerful machine learning library written in Python, which
has been used to implement the anomaly detection evaluations.

Table A.1: Unsupervised Anomaly Detection Algorithms [23]

Statistical-based Univariate and Multivariate Gaussian distribution,
Grubbs’ test, Likelihood approach

Proximity-based K Neighbors
Clustering-based K-Means, MiniBatchKMeans, Birch

Density-based Local Outlier Factor (LOF)
One-class support
vector machines One Class SVM, Gaussian envelope (Robust Covari-

ance)
Ensemble-based Isolation Forrest (IF)

A.3.2 Fog-based Anomaly Detection Approach

To deal with the growing amount of connected devices in the network, the Fog
Computing paradigm has been introduced to place computational resources on the
edges of the network in order to deal with the stringent requirements introduced
by IoT use cases, such as low latency and high mobility. Centralized solutions are
not suitable for most future IoT applications, since most of them will require real-
time communication and generate an enormous volume of data to be transported
in the network, which makes it impossible for centralized solutions to comply with
these requirements. The IoT sensors communicate with wireless gateways, which
are linked with the fog resource layer, managing a set of computational resources.
These fog resources can communicate with the cloud layer, which is the top level
management entity. Each service or IoT application must be allocated to and in-
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stantiated on a given set of computational resources. For instance, for a delay-
sensitive IoT application, service allocation must be performed on a fog resource
as close as possible to the IoT sensor that runs the client application allowing real-
time processing and data analytics at the edges of the network in order to enable
the control of time-sensitive network functionalities close to the IoT sensor.
In a traditional centralized approach, all IoT sensors send their data samples to the
cloud layer. Then, the anomaly detection algorithms are executed. This approach
implies a high bandwidth cost, because all data samples need to be transmitted
from the IoT sensors to the cloud layer. The approach presented in Fig. A.3 is
based on the advantages of Fog Computing architectures, i.e., anomaly detection
operations are performed on fog resources. Every IoT sensor sends its data samples
to one of the fog resources. Then, anomaly detection operations are performed in
a distributed way. After completion of the anomaly detection tasks, fog resources
may send alerts to the cloud layer and to the IoT sensors if unusual events are
already detected on the data. This way, faster response times can be achieved
if any abnormal behavior is discovered. Moreover, fog resources can send the
outcomes of the anomaly operations to the cloud layer to combine results from
the different fog resources in order to have a broader view of the behavior of the
network. Afterwards, the cloud layer could perform global anomaly detection
operations and present the outcomes in a central dashboard in a control room.
Then, alerts can be sent to fog resources and IoT sensors in case abnormal patterns
or inconsistent events were not detected.

Figure A.3 High-level view of the Fog-based anomaly detection approach.
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A.3.3 LPWAN Dimensioning

Nowadays, low power wireless technologies have gained tremendous emphasis
due to the massive growth of connected devices in the network. The need for con-
necting simple IoT devices, such as sensors and actuators, is increasing rapidly.
In Table. A.2, the most popular LPWAN technologies and the main differences
between them are shown. To select a suitable LPWAN technology for a specific
IoT application, an analysis of its requirements in terms of specific parameters
such as communication range, upload and download data rate, frequency bands,
and latency is needed. In this appendix, multiple LPWAN technologies have been
evaluated based on the requirements of the Air Quality monitoring use case pre-
sented in Section A.4.1.
Variables used in the LPWAN dimensioning are shown in Table A.3. In Fog Com-
puting architectures, fog resources are usually located within one hop from the IoT
sensors. The variable C is used to indicate the communication range in kilometers
between a fog resource and an IoT sensor. Two variables, U and D, are used to
indicate the upload and the download data rate, respectively. Then, the total num-
ber of bits to be transmitted is given by N . This way, the upload and the download
transmission time of a packet can be expressed as shown in (A.1) and in (A.2),
respectively.

T (upload) =
N

U
(A.1)

T (download) =
N

D
(A.2)

Moreover, by using the communication range C and the propagation speed P for
wireless communications, which is the speed of light (3 × 108), the propagation
time is given by (A.3).

P =
C

3× 108
(A.3)

Finally, the total packet delivery time L is given by (A.4).

L = T + P (A.4)

A.4 Evaluation Scenario

In this section, the evaluation scenario is introduced. Then, the datasets are pre-
sented. Finally, the evaluation setup is described.



174 APPENDIX A

Table A.2: Comparison between different LPWAN technologies for IoT applications [24],
[25], [26], [27]
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Table A.3: Variables of the LPWAN dimensioning

Symbol Description
C Communication range in kms.
U Upload Data Rate in kbps.
D Download Data Rate in kbps.
N Number of bits to be transmitted.
T Transmission time of a packet.
P Propagation time of a packet.
L Packet Delivery time.

A.4.1 Use Case - Air Quality Monitoring Application

The evaluation scenario is based on a use case within the scope of Antwerp’s City
of Things testbed. The goal of the Air Quality monitoring application is to detect
high amounts of organic compounds in the atmosphere and then alert citizens of
air pollution in real-time. As an initial proof of concept, Air Quality sensors have
been integrated in collaboration with the Belgian postal services Bpost [13]. For
daily mail delivery, Bpost has cars driving around in the city of Antwerp. There-
fore, within the City of Things project, a set of Air Quality sensors have been
mounted on the roofs of Bpost’s delivery cars as shown in Fig. A.4. These sensors
send measures of typical gases and climate data such as temperature and humidity,
which are then annotated with GPS locations. Moreover, these sensors allow gath-
ering real-time Air Quality information with broad city coverage, since each car is
continuously driving around in the city. Currently, the set of Air Quality sensors
can communicate via three different LPWAN technologies: LoRaWAN, SigFox
and DASH7 [13].

A.4.2 Datasets

A summary of the characteristics of the datasets gathered for the evaluation is
shown in Table A.4. The two datasets come from two different Bpost cars and
consist of particle matter indicators (PM1, PM2.5 and PM10) that are annotated
with a GPS location. The datasets have been collected by our research group
between 2017-05-09 and 2017-06-29. The particle matter indicators are shown in
Fig. A.5a and in Fig. 3.10b for Bpost car 1 and Bpost car 2, respectively.

A.4.3 Selected Algorithms

As previously mentioned, the anomaly detection evaluations have been imple-
mented in Python using Scikit-Learn. Unsupervised Clustering and Outlier de-
tection algorithms have been assessed by using the two datasets presented in Sec-
tion A.4.2. Clustering allows the detection of patterns in unlabeled data with many
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Figure A.4 As part of the Antwerp’s City of Things testbed, multi-radio Air Qual-
ity sensors have been mounted on cars of the Belgian postal service.

(a) Inside view of the multi-radio sensor.
(b) Air Quality sensor mounted on a
Bpost car.

Table A.4: Evaluation datasets

Dataset Name No. of records Description

Bpost 1 70636

Particle matter indicators (PM1,
PM2.5, PM10) and GPS locations
from Bpost car 1 between 2017-05-09
and 2017-06-29

Bpost 2 70640

Particle matter indicators (PM1,
PM2.5, PM10) and GPS locations
from Bpost car 2 between 2017-05-09
and 2017-06-29
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Figure A.5 Particle Matter Indicators (PM1, PM2.5, PM10 in ppm) for two Bpost
cars.

(a) Particle Matter Indicators (PM1, PM2.5, PM10) - Bpost car 1.

(b) Particle Matter Indicators (PM1, PM2.5, PM10) - Bpost car 2.
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dimensions while Outlier detection is related to the identification of unusual data
samples when compared to the rest of the dataset. Regarding Clustering, the Birch
algorithm has been evaluated while for Outlier detection Robust Covariance (RC)
has been assessed. Birch and RC outcomes have been compared in order to find
patterns or unusual events in the datasets. Furthermore, the results have been com-
pared with the correspondent GPS locations to know exactly where in the city of
Antwerp each sample has been measured.

A.5 Evaluation Results

A.5.1 Clustering and Outlier Detection

In Fig. A.6a and in Fig. A.6b, the outcomes of the RC outlier detection algorithm
for the three dimensions regarding particle matter indicators for the Bpost car 1
are shown with a contamination of 1.0% indicating that the RC algorithm intends
to find the 1.0% of samples which can be considered as abnormal. Moreover, in
Fig. A.6c and in Fig. A.6d, the results obtained for the Bpost car 1 by using the
Birch clustering algorithm for 5 clusters are illustrated. Regarding outlier detec-
tion, values of PM1, PM2.5 and PM10 above 30 ppm collected by Bpost car 1
are marked as outliers meaning that these values can be considered as unusual.
Regarding clustering, there are clear similarities between these results and the out-
comes obtained by the RC outlier detection algorithm. The first cluster is com-
posed of almost 99.4% of the total data samples indicating that this cluster can be
considered as the normal region of values for the three particle matter indicators
collected by Bpost car 1. Moreover, the second and the fifth cluster, consist of
0.5% of the data samples which are also detected as outliers by the RC algorithm.
These clusters can be considered as unusual regions. Finally, the third and the
fourth cluster, are composed of 0.1% of data samples which are also detected as
outliers by the RC algorithm. These clusters can therefore be considered as very
unusual regions.

In Fig. A.7a and in Fig. A.7b, the outcomes of the RC algorithm with a contam-
ination of 1.0% for the three dimensions regarding particle matter indicators for
the Bpost car 2 are shown. In Fig. A.7c and in Fig. A.7d, the results obtained
for the Bpost car 2 by using the birch clustering algorithm for 5 clusters are illus-
trated. Regarding outlier detection, values of PM1 above 60 ppm, PM2.5 above
70 ppm and values of PM10 above 150 ppm collected by Bpost car 2 are marked
as outliers. This way, these values can be considered as unusual data samples.
Regarding clustering, there are clear similarities between these results and the out-
comes obtained by the RC outlier detection algorithm, as shown for the Bpost car
1.



Anomaly detection for Smart City applications over 5G Low Power Wide Area
Networks 179

Figure A.6 Robust Covariance Outlier detection with a contamination of 1.0%
(blue color: normal samples, red color: abnormal samples) and Birch Clustering
results with 5 clusters (blue, red, green, brown, pink) for Particle Matter Indicators
(PM1, PM2.5, PM10) - Bpost car 1.

(a) RC with 1.0% - 3D perspective - Bpost car 1

(b) RC with 1.0% - 3D planes - Bpost car 1

(c) Birch: 5 clusters - 3D perspective - Bpost car 1

(d) Birch: 5 clusters - 3D planes - Bpost car 1
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Figure A.7 Robust Covariance Outlier detection with a contamination of 1.0%
(blue color: normal samples, red color: abnormal samples) and Birch Clustering
results with 5 clusters (blue, red, green, brown, pink) for Particle Matter Indicators
(PM1, PM2.5, PM10) - Bpost car 2.

(a) RC with 1.0% - 3D perspective - Bpost car 2

(b) RC with 1.0% - 3D planes - Bpost car 2

(c) Birch: 5 clusters - 3D perspective - Bpost car 2

(d) Birch: 5 clusters - 3D planes - Bpost car 2
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A.5.2 GPS Locations of outliers

Figure A.8 GPS locations (Bpost car 1 - red / Bpost car 2 - blue) considered as
outliers by the RC algorithm.

Outliers must be further analyzed by application experts in order to extract more
information from them. In the evaluation, the outliers have been compared with the
GPS locations available in the datasets. In Fig. A.8, the GPS locations are shown
where PM10 values above 75 ppm and PM2.5 values above 30 ppm have been
collected by the Bpost cars, which have been considered as unusual data samples
by the RC outlier detection algorithm.
Regarding Bpost car 1 measurements, all the unusual values have been collected in
the warehouse where usually the Bpost cars stay at night. In fact, all these values
have been collected on a single night between 2:54 am until 6:33 am on 5/18/2017.
These high values of PM10 and PM2.5 can be related to dust and organic com-
pounds, which were inside the warehouse at the time of the measurements. On the
other hand, the unusual values measured by Bpost car 2 have been collected across
the city of Antwerp. These high values of PM10 and PM2.5 can be explained by
high traffic volumes in the city at these locations at the time of the measurements.
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This way, by conducting anomaly detection operations in fog resources, timely
alerts can be transmitted to IoT sensors and to the cloud layer indicating that high
values of particle matter indicators have been measured. In doing so, citizens can
be alerted of high air pollution levels in real-time.

A.5.3 LPWAN Dimensioning Analysis

Considering that for the use case, each upload message is composed of a String of
12 chars (GPS Location - geohash) equal to 12 bytes, a 32 bit integer (timestamp)
equal to 4 bytes and 3 floating point 64 bit numbers (particle matter indicators)
equal to 24 bytes, the total number of payload bytes to be transmitted per minute
from the IoT sensor to the fog resource is 40 bytes. On the other hand, each down-
load message to be transmitted from the fog resource to the IoT sensor in case of
unusual behavior or malfunction is composed of a String of 12 chars (GPS Lo-
cation - geohash) equal to 12 bytes and a byte defined by 3 alarm bits and 5 bits
for 32 types of predefined messages. Furthermore, each message has a header
for which the size depends on the LPWAN technology itself. In the evaluation, a
general 13 byte header has been considered in each message as in Sigfox and in
LoRaWAN technologies. Therefore, each upload message is transmitted with at
least 53 bytes which is equal to 424 bits and each download message with 26 bytes
which is equal to 208 bits. Moreover, considering that the area of Antwerp is equal
to 204.5 km2, an estimation of the minimum number of gateways required for each
LPWAN technology to cover the entire area of the city has been performed. Based
on these assumptions, the LPWAN technologies presented in Table A.2 have been
evaluated. The comparison is presented in Table A.5 and in Table A.6, a list of pros
and cons for the multiple LPWAN technologies is shown. Based on these results
and because of the application requirements, Sigfox technology is unfeasible to
provide wireless communication, since a single upload message takes more than
a second to be transmitted and due to duty cycle regulations, real-time communi-
cation is not possible, because sending an upload message every minute implies
going against the fairness rules of duty cycle. Moreover, the download capabil-
ities are very limited in Sigfox technology. On the other hand, Ingenu RPMA
is not considered as an adequate solution because it operates in the crowded 2.4
GHz band. Nowadays, low frequencies are being considered as optimal to provide
wireless communication for IoT solutions. Besides, Ingenu RPMA requires high
processing power, which translates into a higher energy consumption.
Regarding licensed LPWANs, LTE-M is the optimal solution to deploy the use
case, because it has a higher data rate than NB-IoT making LTE-M more suitable
for the application since real-time communication is needed for the scenario. On
the other hand, regarding unlicensed LPWANs, IEEE 802.11ah and DASH7 are the
most adequate solutions to provide wireless communication between the devices.
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Table A.5: Comparison between the different LPWAN technologies based on the require-
ments of the Air Quality application
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Table A.6: List of Pros and Cons of the different LPWAN technologies for the Air Quality
application

LPWAN
Technology PROS CONS

LoRaWAN Security; Limited downlink capability;

Sigfox None;

Duty cycle regulations (transmit time
of 36s per 1 hour): impossible to
transmit a message every minute for
the application; Proprietary protocol;
Limited security; Limited downlink;

LTE-M High data rate; Se-
curity; Under development;

DASH7
High data rate when
compared with sim-
ilar LPWANs;

Open Source Solution; Lack of de-
ployments;

IEEE
802.11ah

Lower transmission
time; High data
rate;

High number of gateways needed
(low range when compared with
other LPWANs); Under develop-
ment;

NB-IoT

High data rate
when compared
with other LP-
WANs; Security;

Under development;

Ingenu
RPMA

High uplink data
rate; High coverage
and robustness;

Lower range when compared with
other LPWANs; Operates in the
crowded 2.4Ghz band; High process-
ing power;
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LoRaWAN is not considered as an appropriate solution, because the downlink
capacities are very limited. Moreover, LoRaWAN has the lower data rate and the
correspondent highest transmission time when compared with IEEE 802.11ah and
DASH7. In fact, although IEEE 802.11ah is currently under development, it is one
the most promising LPWAN technologies with a very high data rate. However,
IEEE 802.11ah deployment will require a very large number of gateways to cover
the entire city of Antwerp due to the low communication range. On the other hand,
DASH7 supports high data rates when compared to similar LPWAN technologies
and it is already deployed in the City of Things testbed. Both technologies meet the
application demands, which make them appropriate solutions to provide wireless
communication for the use case in the unlicensed spectrum.

A.6 Conclusions

In recent years, the need for management functionalities in Smart Cities is increas-
ing due to the deployment of IoT use cases. Fog Computing provides an efficient
manner of dealing with stringent requirements introduced by IoT use cases. It is
important to detect malfunctions and abnormal events in IoT devices to provide a
secure and reliable communication. Therefore, in this appendix, a low-latency
Fog-based anomaly detection approach has been presented to identify unusual
events or abnormal patterns in IoT scenarios. The approach has been evaluated
for a Smart City use case within the scope of City of Things testbed. Obtained
results show that both Birch clustering and RC outlier anomaly detection mecha-
nisms can be performed by fog resources close to IoT sensors and, this way, send
timely alerts in case unusual events are detected. Moreover, for multiple criteria,
LPWAN technologies have been evaluated for the Air Quality application, leading
to a suitable set of LPWAN technologies, IEEE 802.11ah, DASH7 and LTE-M,
that can be used as wireless communication enablers for the Smart City use case.
As future work, the selected LPWAN technologies will be deployed and techno-
economical studies will be performed.

Acknowledgment

This research was performed as part of the "City of Things" project
(Antwerp, Belgium) funded by imec and in the "Intelligent DEnse And Longe
range IoT networks (IDEAL-IoT)" project under Grant Agreement #S004017N,
from the fund for Scientific Research-Flanders (FWO-V).



186 APPENDIX A

References

[1] Vito Albino, Umberto Berardi, and Rosa Maria Dangelico. Smart cities: Def-
initions, dimensions, performance, and initiatives. Journal of Urban Technol-
ogy, 22(1):3–21, 2015.

[2] Tao Han, Xiaohu Ge, Lijun Wang, Kyung Sup Kwak, Yujie Han, and Xiong
Liu. 5g converged cell-less communications in smart cities. IEEE Commu-
nications Magazine, 55(3):44–50, 2017.

[3] Akhil Gupta and Rakesh Kumar Jha. A survey of 5g network: Architecture
and emerging technologies. IEEE access, 3:1206–1232, 2015.

[4] Jeffrey G Andrews, Stefano Buzzi, Wan Choi, Stephen V Hanly, Angel
Lozano, Anthony CK Soong, and Jianzhong Charlie Zhang. What will 5g
be? IEEE Journal on selected areas in communications, 32(6):1065–1082,
2014.

[5] Cisco Visual Networking Index: Global Mobile Data Traffic Forecast
Update, 2016–2021 White Paper, 2017. URL http://www.cisco.com/c/en/us/
solutions/collateral/service-provider/visual-networking-index-vni/mobile-
white-paper-c11-520862.pdf.

[6] Weisong Shi, Jie Cao, Quan Zhang, Youhuizi Li, and Lanyu Xu. Edge com-
puting: Vision and challenges. IEEE Internet of Things Journal, 3(5):637–
646, 2016.

[7] Mohit Taneja and Alan Davy. Resource aware placement of iot application
modules in fog-cloud computing paradigm. In Integrated Network and Ser-
vice Management (IM), 2017 IFIP/IEEE Symposium on, pages 1222–1228.
IEEE, 2017.

[8] Hlabishi I Kobo, Adnan M Abu-Mahfouz, and Gerhard P Hancke. A sur-
vey on software-defined wireless sensor networks: Challenges and design
requirements. IEEE Access, 5:1872–1899, 2017.

[9] Lingjuan Lyu, Jiong Jin, Sutharshan Rajasegarar, Xuanli He, and Marimuthu
Palaniswami. Fog-empowered anomaly detection in internet of things using
hyperellipsoidal clustering. IEEE Internet of Things Journal, 2017.

[10] Mugen Peng, Shi Yan, Kecheng Zhang, and Chonggang Wang. Fog-
computing-based radio access networks: issues and challenges. IEEE Net-
work, 30(4):46–53, 2016.

http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/mobile-white-paper-c11-520862.pdf
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/mobile-white-paper-c11-520862.pdf
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/mobile-white-paper-c11-520862.pdf


Anomaly detection for Smart City applications over 5G Low Power Wide Area
Networks 187

[11] Luis Martí, Nayat Sanchez-Pi, José Manuel Molina, and Ana
Cristina Bicharra Garcia. Anomaly detection based on sensor data in
petroleum industry applications. Sensors, 15(2):2774–2797, 2015.

[12] Monowar H Bhuyan, Dhruba Kumar Bhattacharyya, and Jugal K Kalita. Net-
work anomaly detection: methods, systems and tools. Ieee communications
surveys & tutorials, 16(1):303–336, 2014.

[13] Steven Latre, Philip Leroux, Tanguy Coenen, Bart Braem, Pieter Ballon, and
Piet Demeester. City of things: An integrated and multi-technology testbed
for iot smart city experiments. In Smart Cities Conference (ISC2), 2016 IEEE
International, pages 1–8. IEEE, 2016.

[14] Shahid Raza, Linus Wallgren, and Thiemo Voigt. Svelte: Real-time intrusion
detection in the internet of things. Ad hoc networks, 11(8):2661–2674, 2013.

[15] Yanxu Zheng, Sutharshan Rajasegarar, Christopher Leckie, and Marimuthu
Palaniswami. Smart car parking: temporal clustering and anomaly detection
in urban car parking. In Intelligent Sensors, Sensor Networks and Infor-
mation Processing (ISSNIP), 2014 IEEE Ninth International Conference on,
pages 1–6. IEEE, 2014.

[16] Xiufeng Liu and Per Sieverts Nielsen. Regression-based online anomaly
detection for smart grid data. arXiv preprint arXiv:1606.05781, 2016.

[17] SOCIOTAL project. An EU FP7 funded STREP project addressing the ob-
jective FP7-ICT-2013.1.4 “A reliable, smart and secure Internet of Things for
Smart Cities”, 2017. URL http://www.sociotal.eu.

[18] Punit Rathore, Aravinda S Rao, Sutharshan Rajasegarar, Elena Vanz,
Jayavardhana Gubbi, and Marimuthu Palaniswami. Real-time urban micro-
climate analysis using internet of things. IEEE Internet of Things Journal,
2017.

[19] CityPulse: Real-Time IoT Stream Processing and Large-scale Data Analytics
for Smart City Applications, 2017. URL http://www.ict-citypulse.eu.

[20] Dan Puiu, Payam Barnaghi, Ralf Toenjes, Daniel Kümper, Muhammad In-
tizar Ali, Alessandra Mileo, Josiane Xavier Parreira, Marten Fischer, Se-
fki Kolozali, Nazli Farajidavar, et al. Citypulse: Large scale data analytics
framework for smart cities. IEEE Access, 4:1086–1108, 2016.

[21] Markus Goldstein and Seiichi Uchida. A comparative evaluation of unsuper-
vised anomaly detection algorithms for multivariate data. PloS one, 11(4):
e0152173, 2016.

http://www.sociotal.eu
http://www.ict-citypulse.eu


188 APPENDIX A

[22] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, et al. Scikit-learn: Machine learning in python.
Journal of Machine Learning Research, 12(Oct):2825–2830, 2011.

[23] Varun Chandola, Arindam Banerjee, and Vipin Kumar. Anomaly detection:
A survey. ACM computing surveys (CSUR), 41(3):15, 2009.

[24] Usman Raza, Parag Kulkarni, and Mahesh Sooriyabandara. Low power wide
area networks: An overview. IEEE Communications Surveys & Tutorials, 19
(2):855–873, 2017.

[25] Ramon Sanchez-Iborra and Maria-Dolores Cano. State of the art in lp-wan
solutions for industrial iot services. Sensors, 16(5):708, 2016.

[26] Dash7 Alliance, 2017. URL http://www.dash7-alliance.org/.

[27] 3GPP Low Power Wide Area Technologies, 2016 GSMA White Paper,
2017. URL https://www.gsma.com/iot/wp-content/uploads/2016/10/3GPP-
Low-Power-Wide-Area-Technologies-GSMA-White-Paper.pdf.

http://www.dash7-alliance.org/
https://www.gsma.com/iot/wp-content/uploads/2016/10/3GPP-Low-Power-Wide-Area-Technologies-GSMA-White-Paper.pdf
https://www.gsma.com/iot/wp-content/uploads/2016/10/3GPP-Low-Power-Wide-Area-Technologies-GSMA-White-Paper.pdf


B
Towards End-to-End resource

provisioning in Fog Computing

This appendix extends the work presented in Chapter 2 by proposing a Mixed Inte-
ger Linear Programming (MILP) model for IoT service placement that considers
service chaining, different Low Power Wide Area Network (LPWAN) technologies,
service replication, and multiple optimization objectives. The model provides sev-
eral insights on the complete end-to-end (E2E) resource provisioning in Fog Com-
puting environments. Results show clear trade-offs between the evaluated alloca-
tion strategies. Therefore, the main contribution of this appendix is the extended
MILP model and its considerations concerning service chaining, service replica-
tion, and LPWAN interoperability.

⋆ ⋆ ⋆
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Abstract Recently, with the advent of the Internet of Things (IoT), Smart Cities
have emerged as a potential business opportunity for most cloud service providers.
However, centralized cloud architectures cannot sustain the requirements imposed
by many IoT services. High mobility coverage and low latency constraints are
among the strictest requirements, making centralized solutions impractical. In re-
sponse, theoretical foundations of Fog Computing have been introduced to set up
a distributed cloud infrastructure by placing computational resources close to end-
users. However, the acceptance of its foundational concepts is still in its early
stages. A key challenge still to answer is Service Function Chaining (SFC) in Fog
Computing, in which services are connected in a specific order forming a service
chain to fully leverage on network softwarization. Also, Low Power Wide Area
Networks (LPWANs) have been getting significant attention. Opposed to tradi-
tional wireless technologies, LPWANs are focused on low bandwidth communica-
tions over long ranges. Despite their tremendous potential, many challenges still
arise concerning the deployment and management of these technologies, making
their wide adoption difficult for most service providers. In this appendix, a Mixed
Integer Linear Programming (MILP) formulation for the IoT service allocation
problem is proposed, which takes SFC concepts, different LPWAN technologies
and multiple optimization objectives into account. To the best of our knowledge,
the work goes beyond the current state-of-the-art by providing a complete end-
to-end (E2E) resource provisioning in Fog-cloud environments while considering
cloud and wireless network requirements. Evaluations have been performed to
evaluate in detail the proposed MILP formulation for Smart City use cases. Re-
sults show clear trade-offs between the different provisioning strategies. The work
can serve as a benchmark for resource provisioning research in Fog-cloud envi-
ronments since the model approach is generic and can be applied to a wide range
of IoT use cases.

B.1 Introduction

In recent years, the Internet of Things (IoT) has introduced a whole new set of chal-
lenges and opportunities by converting everyday life objects into smart communi-
cating devices [1]. Due to the advent of IoT and the wide adoption of virtualization
and cloud technologies, the concept of Smart Cities has become an even more at-
tractive business opportunity [2]. Smart Cities powered by IoT aim to revolutionize
different domains of urban life. For instance, improving public transportation and
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environmental monitoring. According to Cisco [3], billions of devices will be in-
tegrated in the IoT ecosystem in the forthcoming years. All these devices will be
connected to the network, sending and receiving data to the cloud, making current
centralized cloud solutions impractical. As an answer, Fog Computing [4, 5] has
emerged as an extension to the cloud paradigm, by bringing cloud services closer
to the end devices, thus, helping to meet the demanding requirements introduced
by IoT services (e.g. low latency, high mobility coverage). Waste management
platforms and surveillance camera systems are already envisioned Smart City use
cases for Fog-cloud infrastructures, which will benefit from the nearby real-time
processing, storage procedures and data analytics to overcome the limitations of
centralized cloud environments [6].

Furthermore, IoT is pushing for a paradigm shift in terms of connectivity for these
so named smart devices. Recently, Low Power Wide Area Networks (LPWANs)
have drawn significant attention [7]. These wireless solutions enable low band-
width communications over long ranges, up to several kilometers, at low power
consumption, ensuring a high device lifetime. LoRaWAN [8], Sigfox [9] and the
upcoming IEEE 802.11ah standard [10] are among the most popular LPWAN tech-
nologies today. In spite of their significant potential to impact the IoT ecosystem,
the current market is highly fragmented and many challenges still exist concerning
the deployment and management of these technologies, making their wide adop-
tion difficult for most service providers. Additionally, micro-services are currently
revolutionizing software development practices [11]. An application is decom-
posed in a set of small, self-contained containers deployed across a large number
of servers, as opposed to the traditional single monolithic application. Contain-
ers are currently the most promising alternative to the conventional Virtual Ma-
chines (VMs), due to their high scalability and low overhead. Nevertheless, sev-
eral challenges still prevent cloud providers and end users from fully benefiting
from network virtualization and micro-service patterns. For example, users access
a database to retrieve collected data, in which data values were already filtered and
modified by a machine learning engine. Cloud providers must implement proper
allocation strategies to ensure that database services are instantiated close to the
users and that machine learning services are allocated nearby database ones to re-
duce the latency in accessing the inferred results. This key challenge is named
Service Function Chaining (SFC) [12, 13], where services must be connected in
a specific order, forming a service chain that each request needs to traverse to ac-
cess a particular Network Service (NS). Thus, NSs are dynamically configured in
software without any significant change at the hardware level, which results in op-
timized network resources and increased application performance. Although SFC
provides high flexibility and low operational costs, SFC concepts are still quite
unexplored in Fog Computing since most SFC research is focused on Multi-access
Edge Computing (MEC) use cases, in which the interactions between fog locations
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and the cloud are not considered [14]. In MEC scenarios, all services are prefer-
ably allocated at the network edge close to end-users to reduce latency and avoid
congestion in the network core while in Fog Computing, services can be placed in
a fog node or cloudlet [15], but also in the cloud making the inherent bi-directional
communications crucial due to the hierarchical architecture. For example, a ser-
vice may be allocated in the cloud due to its high computational requirements but
needs to interact with another service, which may be located in a Fog location.
These interactions (e.g. low latency, minimum available bandwidth) must be guar-
anteed. These bi-directional communications are currently not being studied in the
context of MEC.
Although the theoretical foundations of Fog Computing have been already estab-
lished, its adoption is in early stages. Research challenges in terms of resource
provisioning and service scheduling persist. Therefore, in this appendix, a Mixed-
Integer Linear Programming (MILP) formulation for the IoT service allocation
problem is proposed, which takes SFC concepts, different LPWAN technologies
and multiple optimization objectives into consideration. To the best of our knowl-
edge, the work goes beyond the current state-of-the-art by bridging the gap be-
tween the cloud and the wireless domain, since most research only focuses on
one of the domains and almost no consideration is given to the joint optimiza-
tion of both. Finally, evaluations have been performed to validate the proposal,
specifically for Smart City use cases. The proposed MILP model optimizes SFC
allocation in Fog-cloud environments by not only reducing user latency since ser-
vices (e.g. databases) are instantiated close to users, but also by decreasing the
sensor’s data transfer time and taking bandwidth requirements into account. The
result of the work can serve as a benchmark in research covering IoT provisioning
issues in Fog Computing since the model approach is generic, considers several
cloud and wireless aspects and can be applied to a wide range of IoT use cases.
Furthermore, the model can be adopted in realistic scenarios as the ones presented
in Section B.4 and the performance of future heuristics can be assessed based on
the measured results.
The remainder of the appendix is organized as follows. In the next Section, related
work is discussed. Section III introduces the proposed MILP model for the IoT
service allocation problem. In Section IV, the use cases are described which is
followed by the evaluation setup in Section V. Next, in Section VI, results are
shown. Finally, conclusions are presented in Section VII.

B.2 Related Work

Resource provisioning or also known as resource allocation has been studied for
years in the network management domain [16], [17]. In recent years, resource
provisioning and service placement issues gained significant attention in the field
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of Fog Computing. In [18], an optimization formulation for the service deploy-
ment of IoT applications in Fog scenarios has been proposed and implemented
as a prototype named FogTorch. Their approach focused not only on hardware
and software demands, but also on Quality of Service (QoS) requirements, such
as network latency and bandwidth. Results showed that their heuristic algorithm
ensures the optimal deployment of services while decreasing hardware capacity
and increasing resource demands. Additionally, in [19], the IoT service place-
ment issue has been modeled as an optimization problem. The model focused on
the maximization of Fog resources and the minimization of overall network delay.
Their work has been extended in [20], where application QoS metrics and dead-
lines for the provisioning of each type of application have been taken into account
in their ILP formulation. In [21] both architectural and resource allocation con-
cepts have been tackled. The authors presented a provisioning algorithm focused
on service elasticity and on the optimization of available resources. Simulation
results showed that the proposed algorithm efficiently allocates resources while
minimizing the response time and maximizing the throughput. Furthermore, in
[22], a particle swarm optimization algorithm has been introduced for the resource
provisioning in Fog-cloud infrastructures specifically focused on Smart buildings.
Results showed that their approach can reduce the response time, the data transfer
and the cost of VM allocation. In [23], a provisioning algorithm formulated as
a Mixed-Integer Non-Linear (MINL) problem has been presented for VM alloca-
tion in IoT networks. Their proposal enables the offloading of computationally
intensive and delay-sensitive tasks to Fog nodes connected to IoT gateways. Their
goal is to minimize the system cost by meeting QoS requirements. Then, in [24],
their work has been extended by evaluating the trade-off between maximizing the
reliability and minimizing the overall system cost. A highly computationally com-
plex ILP model has been described followed by a heuristic-based algorithm able to
find suboptimal solutions, albeit achieving better time efficiency. Additionally, in
[25], a MILP formulation addressing the MEC resource provisioning issue for IoT
services has been introduced. Their approach focused on the provisioning of re-
sources (edge servers and applications) as well as the workload assignment while
minimizing latency. Moreover, in [26], two placement strategies in Fog Comput-
ing based on matching game algorithms have been introduced. The first one is
based on SFC concepts, by taking into account the ordered sequence of services
requested by each application. The second one overlooks the SFC structure, to
lower the computation complexity without losing performance. Comparison re-
sults highlighted the increased performance of the stated methods. In [27], the
authors proposed a Fog Computing scheme to support IoT-based crowdsensing
applications. Their proposal focused on a MINL formulation, which has then been
linearized into a MILP model. Results showed that their proposal can outperform
traditional cloud infrastructures. Additionally, in [28], a scheduling mechanism
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for resource provisioning in Fog Computing based on deep reinforcement learning
has been presented. The work focuses on minimizing the time consumption of
safety-related applications in vehicular fog use cases. Results confirmed that their
allocation schemes can reduce time consumption when compared to traditional
cloud infrastructures. Recently, in [29], a provisioning approach for Fog Com-
puting based on Bayesian learning techniques has been presented. Their work
focuses on the dynamic scaling of resources according to the current network de-
mand. Simulation results have shown that their proposal can reduce costs and
delay violations. Furthermore, in [30], a resource allocation approach focused on
dynamic deadline-based requirements has been proposed. Their proposal provi-
sions resources in a hierarchical manner by considering dynamic changes in user
requirements and the limited available resources in Fog nodes. Simulation results
have shown improvements in terms of data processing time, allocation costs and
network delay when compared with other approaches.
Although most of the cited research has dealt with provisioning issues in Fog Com-
puting, none of the aforementioned studies considered realistic latency-sensitive
services with actual E2E latency demands, or any kind of connectivity constraints
coming from the wireless domain. Also, few works considered the strict require-
ments coming from service chains or container-based applications. Most studies
are focused on VM allocations, while container-based provisioning is still a novel
research topic. Thus, in this appendix, a MILP formulation has been proposed to
tackle the problem of resource provisioning in Fog-cloud environments focused
on containerized services. The present work builds further on [31] by considering
SFC concepts, different LPWAN technologies and several optimization objectives.
By combining characteristics coming from the cloud and the wireless domain,
the approach paves the way towards a complete E2E resource provisioning in the
Smart City ecosystem.

B.3 The MILP Model: E2E Service Provisioning in
Fog-cloud Infrastructures

This section introduces the MILP formulation for the IoT service allocation prob-
lem. Then, the variables considered in the model are described, followed by the
objectives and respective constraints.

B.3.1 Model Description

The proposed MILP model significantly extends the authors’ recent previous work
[31] as follows: the previous formulation has already considered cloud and wire-
less characteristics. Nevertheless, several additions have been made to the model
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mainly dealing with service chaining and LPWAN characteristics. The most rel-
evant ones are the limited bandwidth capacity of cloud and Fog nodes and the
minimum bandwidth requirement of micro-services. Then, latency metrics have
been included instead of hop count. Several SFC and Network Slicing concepts
have been added. LoRaWAN has been also included as an LPWAN technology.
Then, micro-service replication and the gateway bandwidth factor have been added
as a decision variable. Finally, the sensors’ data transfer time and the user latency
have been included as an optimization objective.
The model decomposes an IoT application in a set of different micro-services,
which have a replication factor. Multiple users are expected to access these micro-
services. Sensors are spread across the network area to collect data. Each sensor
needs to be connected with a wireless gateway to be able to send data to the Fog-
cloud infrastructure. The bandwidth available per sensor is affected by a gateway
bandwidth factor, which may increase the sensor’s data transfer time. The Fog-
cloud infrastructure manages a set of nodes, in which micro-service instances must
be allocated based on its requirements and subject to multiple constraints:

1. Nodes have limited capacities (e.g. CPU and memory).

2. Micro-service instances cannot be instantiated on every node, due to specific
hardware or software requirements.

3. Gateways have limited capacity, based on a maximum number of association
identifiers (AIDs).

4. Sensors can only associate with gateways within their communication range.

5. Sensors need to be associated with the gateway slice allocated for the par-
ticular application which they are trying to access.

6. The sensors’ data transfer time depends on the selected LPWAN technology.

7. All micro-services composing an application must be allocated in the net-
work.

8. Users must access their assigned application.

9. The replication factor of each micro-service depends on the number of user
requests.

The model incorporates multiple optimization objectives, which are executed iter-
atively. In each iteration, a different optimization objective is considered. Addi-
tional constraints are added to the model to retain the objective values obtained in
previous iterations, imposing an upper or lower bound. Consequently, since itera-
tions must satisfy the previous optimal solutions, the solution space continuously
decreases. Every iteration refines the previously obtained solution by improving
the model with an additional optimization objective. Sequential objectives have
been preferred to multi-criteria objectives to reduce the complexity of the MILP
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model calculation. Furthermore, opposing allocation policies have been applied in
the evaluation, thus, the sequential ordering of objectives eased the shift between
strategies and refining the solution space. The objectives considered in the model
are the following:

1) Maximization of accepted user requests.

2) Minimization of service migrations between iterations.

3) Minimization of the number of active nodes.

4) Minimization of the number of active gateways.

5) Minimization of the network latency.

6) Minimization of the sensor’s data transfer time.

7) Minimization of the user latency.

B.3.2 Variables

Table B.1: Input variables related to the cloud infrastructure

Symbol Description
N The set of nodes on which micro-service instances are executed.

A
The set of all IoT applications. Each application is composed of a
set of different micro-services.

S The set of all micro-services.
ID The set of SFC identifiers.
U The set of users.

L
The set of locations where users can access a given application
a ε A.

Φu,a
The user assignment matrix. If Φu,a = 1, the user u makes use of
the application a.

ρa
The maximum number of users that can associate with an appli-
cation.

ρs
The maximum number of users that can associate with a micro-
service instance.

λu The association cost of the user u for the assigned application.
β The maximum replication factor for each micro-service.

υs
The SFC first position indicator. If υs = 1, the micro-service s is
the first micro-service in the service chain.

ιs
The SFC last position indicator. If ιs = 1, the micro-service s is
the last micro-service in the service chain.

µ
The service migration factor represents the maximum allowed
percentage of micro-service reallocations.

continued on next page. . .
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Table B.1: Input variables related to the cloud infrastructure (continued)

Symbol Description

Ia,s

The Instance matrix. If Ia,s = 1, the micro-service s is part of
application a. Otherwise, the micro-service s is not part of appli-
cation a.

Rs,n

The Relation matrix. If Rs,n = 1, the micro-service s can be
allocated on node n. Otherwise, it cannot be instantiated on node
n due to hardware or software limitations.

Ωn The total CPU capacity (in cpu) of the node n ε N .
Γn The total memory capacity (in GB) of the node n ε N .
∆n The bandwidth capacity (in Mbit/s) of the node n ε N .
ωs The CPU requirement (in cpu) of the micro-service s ε S.
γs The memory requirement (in GB) of the micro-service s ε S.
δs The bandwidth requirement (in Mbit/s) of the micro-service sεS.

Bn1,n2

The bandwidth matrix indicates the available bandwidth capacity
(Mbit/s) between the node n1 and the node n2.

τn1,n2

The latency matrix indicates the latency (in ms) between the node
n1 and the node n2.

τl1,l2
The location matrix indicates the latency (in ms) between the lo-
cation l1 and the location l2.

τn,l
The node location matrix indicates the latency (in ms) between
node n and location l.

τu,l
The user location matrix indicates the latency (in ms) between
user u and location l.

τu,n
The user node matrix indicates the latency (in ms) between user u
and node n.

Csi,sj

The Communication matrix indicates the minimum amount of
bandwidth (in Mbit/s) between the micro-services si and sj for
their proper operation. The micro-service si is the source of the
network flow while sj is the sink.

En,l If En,l = 1, the node n is at location l.
Eu,l If Eu,l = 1, the user u is at location l.

αsi,sj

The service matrix. If αsi,sj = 1, the flow bandwidth between the
micro-service si and the micro-service sj needs to be guaranteed.
If αsi,sj = 0, the flow bandwidth does not need to be guaranteed.

Table B.2: Input variables related to the wireless dimensioning

Symbol Description
GW The set of wireless gateways.
SR The set of sensors.

continued on next page. . .
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Table B.2: Input variables related to the wireless dimensioning (continued)

Symbol Description
SL The set of network slices.

Θgw
The total association identifiers (AIDs) available on a gateway
gw ε GW .

θsr Each sensor sr ε SR needs an AID to connect with a gateway.

Φsr,a
The sensor assignment matrix. If Φsr,a = 1, the sensor sr makes
use of the application a.

Dgw,sr
The Distance matrix indicates the distance (in meters) between the
gateway gw and the sensor sr.

PLgw,sr
The Path Loss matrix indicates the path loss (in dB) between the
gateway gw and the sensor sr.

Asr,gw
The Association matrix. If Asr,gw = 1, the sensor sr can asso-
ciate with the gateway gw.

Aa,sl
The Application Slice matrix. If Aa,sl = 1, the slice sl is respon-
sible for the wireless traffic belonging to app. a.

Asr,sl
The Slice Association matrix. If Asr,sl = 1, the sensor sr needs
to be assigned to the slice sl due to its associated application.

Bsl,gw
The Bandwidth matrix indicates the available bandwidth capacity
(in Mbit/s) for the slice sl in the gateway gw.

ηsr,sl,gw
The Data Rate matrix indicates the available bandwidth (in
Mbit/s) for the sensor sr assigned to slice sl in the gateway gw.

τgw,l
The gateway location matrix indicates the latency (in ms) between
gateway gw and location l.

τgw,n
The gateway node matrix indicates the latency (in ms) between
gateway gw and node n.

Igw
The IEEE 802.11 ah matrix. If Igw = 1, the gateway gw is an
IEEE 802.11 ah gateway.

Lgw
The LoRaWAN matrix. If Lgw = 1, the gateway gw is a Lo-
RaWAN gateway.

Kgw
The gateway access delay matrix represents the propagation time
(in ms) from the gateway gw to the Fog-cloud infrastructure.

πa
The number of bits needed to be transmitted in each upload mes-
sage for application a.

πsr
The number of bits needed to be transmitted by each sensor sr
based on the assigned application.

Egw,l If Egw,l = 1, the gateway gw is at location l.
Esr,l If Esr,l = 1, the sensor sr is at location l.
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Table B.3: Decision variables of the MILP model

Symbol Description

Ga,id

The application acceptance matrix. If Ga,id = 1, the
application awith the SFC identifier id can be allocated.
If Ga,id = 0, the application a with the SFC identifier
id cannot be deployed.

Ga,id,s

The micro-service acceptance matrix. If Ga,id,s = 1,
the micro-service s for the application a with the SFC
identifier id can be allocated. If Ga,id,s = 0, the micro-
service s for the application a with the SFC identifier id
cannot be deployed.

Gu,a,id

The user acceptance matrix. If Gu,a,id = 1, the user u
is associated with application a with the SFC identifier
id.

βa,id,s
The replication factor of the micro-service s for the ap-
plication a with the SFC identifier id.

P a,id
s,βi

(n)
The placement matrix. If Pa,id

s,βi
(n) = 1, the replica βi

of micro-service s is executed on node n for the appli-
cation a with the SFC identifier id.

P a,id
s,βi

(n)i−1 The placement matrix from the previous iteration.

F a,id,si,βi

sj ,βj
(n1, n2)

The binary flow matrix indicates that the replica βi from
the micro-service si and the replica βj from the micro-
service sj are allocated on node n1 and n2, respectively,
for the application a with the SFC identifier id.

Λa,id

The SFC latency matrix indicates the time (in ms) to
traverse all possible paths in the service chain for the
application a with the SFC identifier id.

Ma,id
s,βi

The service migrations matrix. If Ma,id
s,βi

= 1, the replica
βi of micro-service s for the application a with the SFC
identifier id has been reallocated to another node based
on the previous iteration.

Ugw
The gateway utilization matrix. Ugw = 1 indicates that
there is at least one sensor associated with gateway gw.

Un
The node utilization matrix. Un = 1 indicates that there
is at least one micro-service replica allocated on node n.

Us,n

The micro-service execution matrix. If Us,n = 1, a
replica of the micro-service s is allocated on node n. If
Us,n = 0, no replica of the micro-service s is allocated
on node n.

continued on next page. . .
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Table B.3: Decision variables of the MILP model (continued)

Symbol Description

Uu,a,id
s,βi

(n)

The user service matrix. If Uu,a
id,s,βi

(n) = 1, the user
u is associated with the replica βi of micro-service s
allocated on node n for the application a with the SFC
identifier id.

Usr,gw
The sensor association matrix. If Usr,gw = 1, the sensor
sr is associated with gateway gw.

Usr,sl
The slice association matrix. If Usr,sl = 1, the sensor
sr is associated with the slice sl.

Usr,sl,gw
The sensor execution matrix. If Usr,sl,gw = 1, the sen-
sor sr is assigned to slice sl in the gateway gw.

ζgw The gateway bandwidth factor.

Tsr

The data transfer time matrix indicates the propagation
time (in ms) of a single upload message from the sensor
sr.

ψu

The user latency matrix indicates the propagation time
(in ms) of a request from the user u to reach the last
micro-service in the assigned service chain.

The input variables used in the model are shown in Table B.1 and in Table B.2,
while decision variables are shown in Table B.3. All variables added to previous
work have been underlined. Thirty-one new input variables have been included
in the model. Furthermore, thirteen new decision variables have been added to
the model, while two others have been slightly modified to address micro-service
replication. Regarding cloud formulation, a set of applications A composed of
micro-services S need to be allocated on nodes n ε N . Each application a has
a given SFC identifier id ε ID. All micro-services have a maximum number of
replicas given by β. The replication factor for a particular micro-service s ε S for
the application a with the SFC identifier id is given by βa,id,s. Thus, the model
determines the exact number of replicas for each micro-service depending on the
considered objective (e.g. maximizing user requests, reducing user latency). Each
micro-service s has a CPU and a memory requirement represented by ωs (in cpu)
and γs (in GB) respectively. For instance, a CPU requirement equal to 0.5 cpu
(i.e. 500 millicpu) means that the micro-service needs 50% of a core to operate
properly. Also, each micro-service s has a minimum bandwidth requirement rep-
resented by δs (in Mbit/s). A binary placement matrix P is used to represent in
which node n, the replica βi of a micro-service s is allocated. Also, the previous
placement matrix P a,id

s,βi
(n)i−1 is added to the model so that decisions can be made

in terms of service migrations since the model has information on where micro-
service instances have been allocated on the previous iteration. Then, the service
migrations matrix M is used to indicate if a particular micro-service replica has
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been reallocated on another node. If Ma,id
s,βi

= 1, the replica βi of micro-service
s for the application a with the SFC identifier id has been reallocated based on
the previous placement matrix. Additionally, the service migration factor µ rep-
resents the maximum allowed percentage of service reallocations between model
iterations.

Regarding wireless formulation, the model supports two LPWAN technologies,
which have been represented through linear equations: IEEE 802.11ah and Lo-
RaWAN. The LoRaWAN formulations are based on the work presented in [32].
The binary matrix Igw indicates if the gateway gw is an IEEE 802.11ah gateway,
while the binary matrix Lgw determines if the gateway gw is a LoRaWAN gate-
way. Also, the gateway access delay matrix given by Kgw represents the access
delay from the gateway gw to the Fog-cloud infrastructure. Without loss of gener-
ality, if Igw = 1 (i.e. IEEE 802.11 ah gateway), the access delay corresponds to 2
ms. Otherwise, if Lgw = 1 (i.e. LoRaWAN gateway), the access delay is equal to
5 ms. The distance matrix D indicates the distance (in meters) between a gateway
gw and a sensor sr. An additional binary association matrix A is used to indicate
if a sensor sr can associate with a gateway gw. This association is based on the
distance matrix D and on the AIDs available on each gateway. An IEEE 802.11ah
[33] gateway cannot have more than 8192 associated stations as stated in the latest
standard. However, the association limitation has been set to 50, since an urban
macro deployment with extended range has been considered [34]. For LoRaWAN
gateways, the association limitation has been set to 100, since the maximum data
rate achieved by each sensor decreases considerably when a higher number of sen-
sors is associated [35]. Thus, by setting up a lower limitation, it is assumed that
good channel conditions are always achieved and that all sensors can access the de-
ployed applications, if connected with one gateway. Furthermore, for IEEE 802.11
ah, the distance limitation is set to one thousand meters because this is the max-
imum coverage range in IEEE 802.11ah networks [36] while for LoRaWAN the
limit is set to four thousand meters [37]. If Dgw,sr is lower than the imposed limit,
the sensor sr can associate with gateway gw and then Asr,gw = 1, otherwise,
Asr,gw = 0. Furthermore, the concept of network slicing has been included in the
model by adding the set of slices SL. The binary application slice matrix Aa,sl in-
dicates if the slice sl is responsible for the wireless traffic belonging to application
awhile the binary slice association matrixAsr,sl indicates if the sensor sr needs to
be associated with slice sl due to its assigned application. The bandwidth matrix
Bsl,gw contains the available bandwidth (in Mbit/s) for the slice sl in the gateway
gw. Then, the data rate matrix ηsr,sl,gw contains the available bandwidth for the
sensor sr assigned to slice sl in the gateway gw. For LoRaWAN, the data rate of
each gw depends on the Spreading Factor (SF) adopted by each sensor sr. The SF
concerns the ratio between the symbol rate and the chip rate. LoRaWAN spreads
each symbol in a rate of 2SF chips per symbol with SF = {7, .., 12}. Increasing
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the spreading factor reduces the transmitted data rate at the expense of offering
longer range. In the model, SF has been set to 9. Additionally, the data transfer
time matrix Tsr corresponds to the propagation time (in ms) for a single upload
message from the sensor sr to reach the associated gateway. The data transfer time
depends on the selected LPWAN technology and on the total number of connected
sensors to the particular gateway, which is affected by ζgw, the gateway bandwidth
factor. Essentially, the available bandwidth per sensor may drop depending on
the number of connected sensors on each gateway. Further details on how data
transfer time is affected by this factor are given in the next section. Then, to fully
minimize the latency expected by each user when accessing the given application,
another decision variable ψu has been added, which contains the propagation time
(in ms) of a request from the user u to reach the assigned application, more pre-
cisely to access an instance of the last micro-service in the application’s service
chain with which user u is connected to. Each optimization objective is detailed
below. All constraints previously presented in [31] have been considered in this
extended model. To avoid repetition, only constraints related to novel variables are
described.

B.3.3 Optimization Objectives & Constraints

B.3.3.1 Maximization of User Requests (MAX R)

This objective is related to the maximization of acceptance of user requests. Mul-
tiple constraints have been added to reflect the extensions regarding service repli-
cation, service chaining and wireless formulations made in the model. Firstly, the
objective has been updated to consider the user’s assigned application as shown in
(B.1).

max
∑
u ε U

∑
a ε A

∑
id ε ID

Φu,a ×Gu,a,r (B.1)

To limit the association of users to a certain application, a constraint represented by
(B.2) has been used to guarantee that the maximum number of users per application
is respected.

∀a ε A, id ε ID :
∑
u ε U

Φu,a ×Gu,a,id ≤ ρa (B.2)

A constraint has been also included to ensure that each user is associated with only
one application as shown in (B.3).

∀u ε U :
∑
a ε A

∑
id ε ID

Φu,a ×Gu,a,id = 1 (B.3)
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Service association constraints have also been added to guarantee that users are
associated with one particular micro-service instance for all micro-services of their
admitted application. Thus, users can only access their assigned application if they
are associated with all of their micro-services as shown in (B.4). Also, each user
can only be admitted to only one replica of the same micro-service as given by
(B.5).

∀u ε U, a ε A, id ε ID :∑
s ε S

∑
βi ε β

∑
n ε N

Uu,a,id
s,βi

(n) = Φu,a ×
∑
s ε S

Ia,s
(B.4)

∀u ε U, a ε A, id ε ID, s ε S :∑
βi ε β

∑
n ε N

Uu,a,id
s,βi

(n) = Φu,a × Ia,s
(B.5)

Each micro-service replica is then subject to an association limitation based on ρs
and the user’s association cost λu as shown in (B.6).

∀a ε A, id ε ID, s ε S, βi ε β, n ε N :∑
u ε U

λu × Φu,a × Uu,a,id
s,βi

(n) ≤ ρs
(B.6)

Also, a constraint has been included to assure that users are only connected with
micro-service instances allocated in the network as shown in (B.7).

∀u ε U, ∀a ε A, id ε ID, s ε S, βi ε β, n ε N :

Uu,a,id
s,βi

(n) ≤ P a,id
s,βi

(n)
(B.7)

Then, two constraints have been added to reflect the relations between the ac-
ceptance matrices G. A micro-service is considered instantiated if the expected
number of micro-service instances is equal to the number of allocated replicas in
the network. Also, an application is only accepted if all its micro-services have
been admitted in the network (i.e. all instances deployed on the network). These
constraints are represented by (B.8) and (B.9), respectively.

∀a ε A, id ε ID, s ε S :

Ga,id,s =

{
1.0 if Ia,s × βa,id,s =

∑
βi,n ε β,N P a,id

s,βi
(n)

0.0 Otherwise

(B.8)
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∀a ε A, id ε ID :

Ga,id =

{
1.0 if

∑
s ε S Ia,s =

∑
s ε S Ga,id,s

0.0 Otherwise

(B.9)

A constraint has been added to limit the allocation of one instance of the same
micro-service per node. Thus, only one micro-service replica can be deployed on
the same node. This constraint is shown in (B.10).

∀a ε A, id ε ID, s ε S, βi ε β :
∑
n ε N

P a,id
s,βi

(n) ≤ 1.0 (B.10)

CPU and memory constraints have also been updated as shown in (B.11) and
(B.12), respectively. Similarly, in (B.13), bandwidth limitations have been de-
fined. Bandwidth requirements have been added to the model so that expected
bandwidth demands can be met given the limited network link capacity.

∀n ε N :
∑
a ε A

∑
id ε ID

∑
s ε S

∑
βi ε β

P a,id
s,βi

(n)× ωs ≤ Ωn (B.11)

∀n ε N :
∑
a ε A

∑
id ε ID

∑
s ε S

∑
βi ε β

P a,id
s,βi

(n)× γs ≤ Γn (B.12)

∀n ε N :
∑
a ε A

∑
id ε ID

∑
s ε S

∑
βi ε β

P a,id
s,βi

(n)× δs ≤ ∆n (B.13)

Secondly, several modifications have been made to the wireless formulations since
one additional LPWAN technology has been included in the model. Sensors as-
sociate with gateways through an AID, a unique value assigned to a sensor by the
gateway during association handshake. A constraint has been added to the model,
ensuring that the AID limit on each gateway is respected. Therefore, by using the
sensor association matrix Usr,gw, the AID limitation can be expressed as shown in
(B.14). The total number of AIDs attributed to a gateway must be lower than the
total number of available AIDs.

∀gw ε GW :
∑

sr ε SR

θsr × Usr,gw ≤ Θgw (B.14)

A constraint is also added to ensure that sensors are connected with at least one
gateway to be able to send the collected data. This constraint is represented by
(B.15).

∀sr ε SR :
∑

gw ε GW

Usr,gw ×Asr,gw = 1 (B.15)
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Then, the association of sensors is based on the distance matrix Dgw,sr and on
the path loss matrix PLgw,sr. On the one hand, for IEEE 802.11 ah, the path
loss is calculated based on the path loss formula for urban macro deployments
at a central frequency (fc) of 900 MHz. This formulation can be expressed as
in (B.16), with the distance d in meters. On the other hand, for LoRaWAN, the
path loss is calculated based on the path loss formula presented in [37] for the
Dortmund use case at a central frequency (fc) of 868 MHz. This formulation can
be expressed as in (B.17), with the distance d in kilometers.

PL(dB) = 8 + 37.6 log10(d) (B.16)

PL(dB) = 132.25 + 10× 2.65 log10(d) (B.17)

Thirdly, constraints have been added on network slicing. The main goal behind
virtual slicing is to bring flexibility to the network by splitting the wireless traf-
fic. Resources are reserved for each slice sl on the different gateways. Each slice
sl is characterized by a bandwidth matrix Bsl,gw. The bandwidth matrix Bsl,gw

depends on the LPWAN technology and on the corresponding maximum band-
width allowed for each sensor. For IEEE 802.11ah, the value of 256 Kbit/s has
been considered, while for LoRaWAN, 50 Kbit/s has been chosen, since this is the
theoretical maximum possible bandwidth for each sensor. The bandwidth matrix
Bsl,gw (in Mbit/s) can be expressed as in (B.18).

Bsl,gw =

{
Θgw×0.256

SL if Igw = 1
Θgw×0.050

SL if Lgw = 1
(B.18)

The data rate matrix ηsr,sl,gw (in Mbit/s) estimates the available bandwidth ca-
pacity for the sensor sr depending on the bandwidth assigned to the slice sl of
gateway gw, which is given by (B.19).

ηsr,sl,gw =

{
0.256 if Igw = 1

SF × Bsl,gw

2SF if Lgw = 1
(B.19)

An additional constraint is added to ensure that sensors access the correspondent
slice of their associated application. This constraint is represented by (B.20).

∀sr ε SR, sl ε SL : Usr,sl = Asr,sl (B.20)

To limit the association of sensors to only one slice from a given gateway, a con-
straint represented by (B.21) has been applied. Two constraints are also added to
make sure that the formulation only selects one slice and one gateway for each
sensor. These two constraints are shown in (B.22).
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∀sr ε SR, sl ε SL :
∑

gw ε GW

Usr,sl,gw = 1 (B.21)

Usr,sl,gw =

{
1 if Usr,sl = 1 ∧ Usr,gw = 1

0 if Usr,sl = 0 ∨ Usr,gw = 0
(B.22)

To limit the traffic in each slice, a constraint given by (B.23) has been used to guar-
antee that the total wireless traffic on each slice sl does not exceed the maximum
data rate capacity on each gateway gw.

∀sl ε SL, gw ε GW :
∑

sr ε SR

ηsr,sl,gw × Usr,sl,gw ≤ Bsl,gw (B.23)

Fourthly, constraints are added about the data transfer time Tsr and the gateway
bandwidth factor ζgw. The data transfer time of a single message can be expressed
by using the sensor’s data rate ηsr,sl,gw and the total number of bits to be transmit-
ted πsr. Thus, the data transfer time of each sensor sr is given by (B.24), in which
the data transfer time is affected by ζgw. The gateway bandwidth factor ζgw is
used to make sure that the formulation considers that a higher number of sensors
associated to a single gateway will decrease the available bandwidth per sensor
and, consequently, increase the data transfer time. The various constraints added
to the model are shown in (B.25). These values are based on the work presented in
[38]. Their experiments showed that increasing the number of sensors per gateway
greatly decreases the maximum attainable data rate of each sensor.

∀sr ε SR, sl ε SL, gw ε GW :

Tsr =

(
πsr × 1000

ηsr,sl,gw

)
× ζgw (in ms)

(B.24)

ζgw =



1.0 if
∑

sr,gw ε SR,GW : Usr,gw ≤ 3

1.11 if
∑

sr,gw ε SR,GW : 3 < Usr,gw ≤ 5

1.25 if
∑

sr,gw ε SR,GW : 5 < Usr,gw ≤ 8

1.43 if
∑

sr,gw ε SR,GW : 8 < Usr,gw ≤ 12

1.67 if
∑

sr,gw ε SR,GW : 12 < Usr,gw ≤ 15

2.0 if
∑

sr,gw ε SR,GW : 15 < Usr,gw ≤ 18

2.5 if
∑

sr,gw ε SR,GW : 18 < Usr,gw ≤ 26

3.33 if
∑

sr,gw ε SR,GW : 26 < Usr,gw ≤ 33

5.0 if
∑

sr,gw ε SR,GW : 33 < Usr,gw ≤ 40

10.0 if
∑

sr,gw ε SR,GW : Usr,gw ≥ 40

(B.25)
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Finally, constraints are added about the user latency ψu. The user latency cor-
responds to the propagation time (in ms) of a request from the user u to reach
an instance of the last micro-service in the application’s service chain with which
user u is connected to, as expressed by (B.26). As shown, the user latency depends
on which node the last micro-service replica is allocated. If the micro-service in-
stance is deployed on a node far from the user, the user latency will thus be higher.
Consequently, the E2E latency is two times the value of ψu since it represents the
time it takes for a user request to reach the last service in the chain and coming
back to the user.

∀u ε U, a ε A, id ε ID, s ε S, βi ε β, n ε N :

if Gu,a,id = 1 (u associated with app. a with SFC id. id)

if ιs × Uu,a,id
s,βi

(n) = 1 (u connected with last instance)

Then ψu = τu,n (in ms)

(B.26)

B.3.3.2 Minimizing Service Migrations - (MIN M)

Although this objective has already been considered in the previous version of the
model, the service migration estimation in the model has been reformulated. In
a dynamic use case, micro-service replicas may need to be reallocated from one
node to another to provide the optimal provisioning solution. However, it may be
desirable to find a sub-optimal solution, in which service migrations are kept to
a minimum to reduce the delay caused by service reallocations. Since the model
is executed iteratively, the placement matrix from the previous iteration P i−1 is
added to the model, which is compared with the current placement matrix P to
reduce the service migrations needed to achieve the next objective. The decision
variable Ma,id

s,βi
(n) is used to determine the correspondent service migrations as

shown by (B.27).

∀a ε A, id ε ID, s ε S, βi ε β, n ε N :

Ma,id
s,βi

(n) =

0
if P a,id

s,βi
(n) = 1 ∧ P a,id

s,βi
(n)i−1 = 1

if P a,id
s,βi

(n) = 0 ∧ P a,id
s,βi

(n)i−1 = 0

1 Otherwise

(B.27)

Then, the service migrations matrix Ma,id
s,βi

is calculated as given by (B.28).

∀a ε A, id ε ID, s ε S, βi ε β :

Ma,id
s,βi

=

{
1 if

∑
n ε N Ma,id

s,βi
(n) ≥ 1

0 if
∑

n ε N Ma,id
s,βi

(n) = 0

(B.28)
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Thus, the minimization of service migrations compared to the previous iteration
can be expressed as shown in (B.29).

min
∑
a ε A

∑
id ε ID

∑
s ε S

∑
βi ε β

Ma,id
s,βi

(B.29)

In most cases, this objective will obtain solutions where service migrations are
not admitted at all (i.e. 0% service migrations). To allow the model to achieve
intermediate solutions based on a predefined limit on the maximum number of
allowed service migrations, a constraint has been added to the model based on the
service migration factor µ. This constraint is given by (B.30).

∀a ε A, id ε ID :∑
s ε S

∑
βi ε β

Ma,id
s,βi

× Ia,s ≤ µ×
∑
s ε S

Ia,s × βa,id,s
(B.30)

B.3.3.3 Minimizing Active Nodes - (MIN N)

This objective concerns the minimization of the number of nodes used in the ser-
vice allocation, which results in cost and energy savings. This optimization can be
expressed as shown in (B.31) by using the node utilization matrix Un.

min
∑
n ε N

Un (B.31)

B.3.3.4 Minimizing Active Gateways - (MIN GW)

This optimization aims to minimize the number of active gateways in the network.
This objective ensures that a minimum number of gateways is used to provide
connectivity to all the sensors. This results in energy and cost savings, however, it
increases the data transfer time for each sensor. A clear trade-off exists between
this objective and the minimization of the sensor’s data transfer time. Service
providers may opt for one of the two strategies, depending on their service char-
acteristics and the network behavior at a given moment. By using the gateway
utilization matrix Ugw, the minimization can be expressed as shown in (B.32).

min
∑

gw ε GW

Ugw (B.32)

B.3.3.5 Minimizing Network Latency - (MIN NL)

This objective is related to latency reduction in the communication between micro-
services from the same application corresponding to the proper service chain path.
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This is expressed by the Flow Factor Υsi, sj shown in (B.33). Thus, by allocating
each micro-service as close to the next micro-service in the service chain as possi-
ble, the latency is reduced. The SFC latency matrix Λa,id is determined by using
the Flow matrix F as stated in (B.34).

Υsi, sj = Ia,si × Ia,sj × αsi,sj (B.33)

∀a ε A, id ε ID : Λa,id =
∑
si ε S

∑
βi ε β

∑
sj ε S

∑
βj ε β

∑
n1 ε N

∑
n2 ε N

Υsi, sj × τn1,n2
× F a,id,si,βi

sj ,βj
(n1, n2)

(B.34)

The Flow matrix F is also subjected to various constraints to accurately represent
network flows, specifically in terms of flow conservation, which ensures no flow
is lost within the network, as shown in (B.35).

∀a ε A, id ε ID, si ε S, βi ε β, sj ε S, βj ε β :∑
n1 ε N

∑
n2 ε N

F a,id,si,βi

sj ,βj
(n1, n2) =

=

{
1 if P a,id

si,βi
(n1) = 1 ∧ P a,id

sj ,βj
(n2) = 1

0 Otherwise

(B.35)

Thus, this objective can be expressed as shown in (B.36).

min
∑
a ε A

∑
id ε ID

Λa,id (B.36)

B.3.3.6 Minimizing Data Transfer Time - (MIN T)

In an IoT scenario, sensors need to communicate with gateways to send their col-
lected data to the Fog-cloud infrastructure. This objective concerns the reduction
of the data transfer time of a single message by optimizing the sensor’s associa-
tion with the several heterogeneous gateways available in the network. If a given
gateway is supporting a high number of sensors, the maximum bandwidth for each
sensor drops and thus the data transfer time increases. In the model, the data trans-
fer time Tsr is affected by the gateway bandwidth factor ζgw, which depends on
the number of associated sensors with a given gateway. This minimization can be
expressed as shown in (B.37).

min
∑

sr ε SR

Tsr (B.37)
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Figure B.1 The container-based Service Function Chains envisioned for the three
evaluated use cases.

(a) Waste Management Use Case.

(b) Surveillance Camera Use Case.

(c) Air Quality Monitoring Use Case.

B.3.3.7 Minimizing User latency - (MIN UL)

Previously, two optimization objectives regarding latency have been presented.
However, neither objective addresses the expected latency for each user based on
their assigned application. To fully address user latency, the model needs to make
decisions not only in terms of micro-service allocation but also on the replication
factor for each micro-service. If users are spread across the network, it may be
beneficial to allocate more micro-service instances to reduce the latency expected
by each user. All these factors should be taken into account to fully achieve the
minimization of the user latency. In the model, the user latency is between the
user and the last service in the chain, since it is expected that users access the
last service to obtain the required information. This objective can be expressed
as shown in (B.38) based on the previously presented constraints regarding user
latency.

min
∑
u ε U

ψu (B.38)
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B.4 Use Cases

In this section, three Smart City use cases within the scope of Antwerp’s City of
Things testbed [39] are introduced. First, a Waste Management use case is pre-
sented where sensors are installed in waste bins to collect bins’ fill levels to opti-
mize garbage collection through route optimization services. Then, a surveillance
camera scenario is detailed where cameras are placed in crowded streets to send
continuous video streams to Fog locations where face detection and recognition
services are applied in a distributed manner. Finally, an air quality monitoring use
case is described where sensors are installed on vehicles to collect air quality data
and then alert citizens in case air pollution levels are detected through machine
learning (ML) services. In Fig. B.1, the container-based service chains for the
three use cases are illustrated and the correspondent deployment requirements are
shown in Table B.4.

B.4.1 Waste Management Scenario

Although waste bins are located everywhere (e.g. restaurants, office buildings, re-
tail stores), garbage collection has been an inefficient service for years. Garbage
trucks follow a predefined route without knowing if waste bins are currently empty
or full. Furthermore, waste bins may get overloaded before the planned collection.
This traditionally results in high maintenance and fuel costs. However, IoT can
improve the performance of waste collection by gathering bin data [40]. For in-
stance, sensors can be installed into waste bins to monitor which bins are full. By
sending the collected data to a Fog-cloud infrastructure, route planning services
can be executed to find the optimal route for each truck based on the bins’ fill lev-
els. Thus, drivers do not waste time driving to empty bins and broken bins may be
repaired quickly. Drivers can access their optimized route through a mobile appli-
cation that connects to a database service, enabling them to improve their customer
service. Therefore, an IoT-based waste management service provides a more ef-
ficient waste collection through route optimization and higher driver productivity.
The objective of this use case is to enable access to waste bin information.

Considering that for the waste management use case, each upload message is com-
posed of a string of 12 chars (GPS Location - geohash) equal to 12 bytes, a 32-bit
integer (timestamp) equal to 4 bytes and 1 floating point 64-bit number (fill level
measure) equal to 8 bytes, the total number of payload bytes to be transmitted from
the sensor to the Fog-cloud infrastructure is 24 bytes. In the evaluation, a general
13-byte header has been considered in each message as in LoRaWAN technolo-
gies. Therefore, each upload message is transmitted with at least 37 bytes, which
is equal to 296 bits.
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Table B.4: Deployment properties of the three evaluated use cases.
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B.4.2 Surveillance Camera Scenario

Surveillance services have become highly relevant due to the possibility of iden-
tifying individuals or even objects in crowded areas [41]. However, connectivity
issues still need to be addressed, including data transfer over limited bandwidth
and high latency in sensor-cloud communications. For instance, imagine a low-
quality surveillance camera requiring a continuous streaming bandwidth of 256
Kbit/s. Sending the entire data from a single video camera to the cloud translates
into approximately 0.08 TB/monthly. To reduce the amount of data transmitted to
the cloud, Fog-cloud infrastructures may be adopted by performing data operations
locally. Surveillance cameras placed on particular streets or crowded areas send
continuous video streams to Fog locations, where face recognition algorithms are
performed in a distributed manner. Thus, suspicious individuals can be detected in
near real-time. Fog nodes located close to the surveillance cameras receive their
video streams and perform a first-level analysis, such as face detection and feature
extraction tasks. Then, Fog nodes send the results to the cloud for global analy-
sis operations, such as face matching and recognition operations, due to its high
computational requirements. Afterwards, global outcomes can be presented in a
central dashboard in a control room. Also, police officers may access the detection
results through a mobile application. This approach has been previously presented
in [42], to enable anomaly detection services in Fog Computing. An IoT-based
surveillance camera service enables an efficient way of recognizing individuals in
crowded areas by distributing tasks between Fog and cloud. The objective of this
use case is to provide a near real-time face detection system.
Considering that the surveillance camera use case is a video streaming scenario,
each upload message is composed of 1500 bytes, equal to 12000 bits. The value
of 1500 bytes has been selected due to the Maximum Transmission Unit (MTU)
limitation, which defines the largest packet size that can be sent over a network
connection.

B.4.3 Air Quality monitoring scenario

Air pollution has become the largest environmental and public health challenge
in the world. Air pollution leads to adverse effects on human health and climate
change. As an initial proof of concept within Antwerp’s City of Things project, air
quality sensors have been installed on vehicle rooftops in collaboration with the
Belgian postal services, Bpost. For daily mail delivery, Bpost keeps cars continu-
ously driving around the city of Antwerp, thus enabling air quality sensors gather-
ing data with broad city coverage. These sensors collect measures of typical gases
(e.g. carbon dioxide (CO2), Nitrogen Dioxide (NO2), Particulate Matter indica-
tors (PMIs)), and also climate data, such as temperature and humidity, which are
then annotated with GPS locations. By sending the collected data to a Fog-cloud
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infrastructure [43], ML services can be executed to find patterns and anomalies in
the data. Then, citizens can be alerted in case unhealthy levels of air pollution are
detected through a mobile application in near real-time. Thus, an IoT-based air
quality monitoring system enables the detection of high concentrations of organic
compounds and contributes to improved public health [44].
Considering that for the air quality monitoring use case, each upload message is
composed of a string of 12 chars (GPS Location - geohash) equal to 12 bytes, a
32-bit integer (timestamp) equal to 4 bytes, 3 floating-point 64-bit numbers (PMIs)
equal to 24 bytes and 5 floating-point 64-bit numbers (Nitrogen, Ozone, Carbon
Monoxide, Temperature, Humidity) equal to 40 bytes, the total number of payload
bytes to be transmitted from the sensor to the Fog-cloud infrastructure is 80 bytes.
Therefore, each upload message is transmitted with at least 93 bytes, which is
equal to 744 bits.

B.5 Evaluation Setup

In this section, the network infrastructure used for the MILP model is described.
Then, input variables and optimization policies used in the evaluation are shown.

B.5.1 Network Infrastructure

Table B.5: Input variables for the MILP model.

Variables Value
A 3
S 9
L 5
SL 3
GW 35

Ia,s

a1 : s1 → s2 → s3
a2 : s4 → s5 → s6
a3 : s7 → s8 → s9

β 10 (Maximum Replication factor)
Lgw 5 (LoRaWAN gateways)
Igw 30 (IEEE 802.11ah gateways)

The Fog-cloud infrastructure illustrated in Fig. B.2 has been represented in the
model. Input variables are presented in Table B.5 based on the described network
infrastructure. A total area of 324 km2 has been considered. The Fog-cloud infras-
tructure is deployed on five locations L, where the micro-service provisioning is
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Table B.6: The hardware configurations of each node.

Node CPU (cpu) RAM (Mi) Band. (Mbit/s)
Worker 1 (n1) 2.0 (Ωn1 ) 4.0 (Γn1 ) 10.0 (∆n1 )
Worker 2 (n2) 2.0 (Ωn2

) 4.0 (Γn2
) 10.0 (∆n2

)
Worker 3 (n3) 1.0 (Ωn3

) 2.0 (Γn3
) 5.0 (∆n3

)
Worker 4 (n4) 2.0 (Ωn4

) 4.0 (Γn4
) 10.0 (∆n4

)
Worker 5 (n5) 1.0 (Ωn5 ) 2.0 (Γn5 ) 5.0 (∆n5 )
Worker 6 (n6) 2.0 (Ωn6 ) 4.0 (Γn6 ) 10.0 (∆n6 )
Worker 7 (n7) 2.0 (Ωn7

) 4.0 (Γn7
) 10.0 (∆n7

)
Worker 8 (n8) 2.0 (Ωn8

) 4.0 (Γn8
) 10.0 (∆n8

)
Worker 9 (n9) 1.0 (Ωn9

) 2.0 (Γn9
) 5.0 (∆n9

)
Worker 10 (n10) 2.0 (Ωn10 ) 4.0 (Γn10 ) 10.0 (∆n10 )
Worker 11 (n11) 2.0 (Ωn11 ) 4.0 (Γn11 ) 5.0 (∆n11 )
Worker 12 (n12) 2.0 (Ωn12

) 4.0 (Γn12
) 10.0 (∆n12

)
Worker 13 (n13) 6.0 (Ωn13

) 16.0 (Γn13
) 30.0 (∆n13

)
Worker 14 (n14) 6.0 (Ωn14

) 16.0 (Γn14
) 30.0 (∆n14

)
Master (n15) 8.0 (Ωn15 ) 24.0 (Γn15 ) 30.0 (∆n15 )

Figure B.2 A Fog-cloud infrastructure for the IoT service allocation problem.
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possible. Each location manages a set of three nodes. The hardware configurations
of each node are shown in Table B.6. Each node, gateway, and sensor have a given
location associated. Coordinate positions (x, y) are randomly attributed to each
sensor, while for each gateway, coordinate positions are strategically attributed to
cover the entire five locations. Based on these coordinates, the distance matrix D
is calculated by the euclidean distance formula as shown in (B.39). Then, the path
loss matrix PL is calculated based on the path loss formulas previously described
by using the calculated distance matrix values. The bandwidth matrix Bn1,n2 is
based on the available bandwidth capacity. Also, all latency matrices τ are calcu-
lated based on the shown latency values.

D(gw, sr) =
√

(xgw − xsr)2 + (ygw − ysr)2 (B.39)

B.5.2 Input variables & Optimization Policies

Table B.7: The evaluated optimization policies.

A - Minimum Latency B - Energy Efficiency
1 - MAX R 1 - MAX R
2 - MIN UL 2 - MIN N
3 - MIN NL 3 - MIN GW
4 - MIN T

The described MILP formulation has been implemented in Java using the IBM
ILOG CPLEX ILP solver [45]. As previously mentioned, several optimization
objectives are executed iteratively, where the optimal solutions of previous objec-
tives are added as additional constraints to the model for the subsequent iterations.
Two policies have been evaluated. In each iteration of the model, a different opti-
mization objective has been considered. In Table B.7, the evaluated optimization
policies are shown. On the one hand, policy A is responsible for finding micro-
service allocations focused on reducing latency. Also, it tries to minimize the
sensor’s data transfer time by spreading wireless traffic across multiple gateways.
On the other hand, policy B is related to energy efficiency, since it minimizes
the number of active nodes needed to allocate all the required micro-service in-
stances. Furthermore, policy B maximizes gateway usage by connecting all sen-
sors to the minimum number of gateways possible. It should be highlighted that
for the two policies, the number of accepted user requests is maximized first. The
model has been executed on the HPC-UGent supercomputing infrastructure [46].
Cluster nodes have been requested to run the experiments (2 x 18-core Intel Xeon
Gold 6140 @ 2.3 GHz processor with 32 GB of memory). All policies have been
evaluated 30 times and confidence intervals of 95% have been considered in the
evaluation.
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Figure B.3 The execution time of the different optimization objectives for the
waste management use case.
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B.6 Results
In this section, the results are detailed. First, the execution time of the different
optimization objectives is shown, followed by performance outcomes on the three
presented use cases. Finally, a joint use case is shown followed by an analysis con-
cerning the impact of service migrations when provisioning strategies are altered.

B.6.1 Execution Time per Objective

In Fig. B.3, the execution time of the different optimization objectives is shown
for the waste management use case. The MILP model has been executed until
the optimal solution for each objective has been found. The number of sensors
has been set to 100 throughout the experiment. By increasing the number of user
requests, the execution time of most objectives increases due to the increased allo-
cation complexity. More micro-service instances need to be allocated since more
users are sending requests. The most affected objectives by the increase of user
requests are the MIN UL and the MIN NL. The complexity increases significantly
for these two objectives since several users are spread across the network area
and the latency needs to be reduced. In fact, the MIN UL requires on average 43
minutes to find the optimal solution already for 5 user requests while the MIN NL
requires on average 8 minutes for the same number of user requests. Additionally,
the execution time of the MIN N objective significantly increases for user requests
higher than 40. Over 40 requests, still minimizing the number of nodes used in the
micro-service allocation becomes a difficult task. For example, the MIN N requires
on average 13 minutes and 63 minutes to find the optimal solution for 40 and 50
user requests, respectively. Also, the execution time of both MIN T and MIN G
objectives slightly increase during the experiment since the number of sensors is
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Figure B.4 The gateway usage rate for the waste management use case.
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kept constant and, thus, the complexity of both objectives does not increase sig-
nificantly. The MAX R objective slightly increases throughout of the experiment,
however, it greatly increases for 100 user requests requiring more than an hour and
a half to find the optimal solution, meaning that finding any solution that meets all
constraints and maximizes the acceptance of 100 requests is quite time-consuming.
Additionally, it should be highlighted that regarding sequential convergence speed,
the optimization order that is applied has a strong impact on execution time and on
the solution space. For instance, the two strategies evaluated can be combined into
a single optimization strategy. As a first objective, MIN N is applied followed by
the MIN UL optimization. As expected, the second optimization is quite limited
since the overall value found in the first iteration is added as a constraint. So, the
optimization in terms of user latency only occurs if the current allocation scheme
can be further optimized without changing the overall value found in the first iter-
ation. Thus, the execution time of the second objective is significantly faster when
the first objective is considered since user latency cannot be fully optimized.

In summary, the MILP model can find a solution for most objectives in rather
small execution time for user requests lower than 20 (i.e most cases 4 - 10 minutes).
However, for the MIN UL, the model takes on average 1 hour and 6 minutes to find
a solution for 20 user requests. Both MIN UL and MIN NL objectives related to
latency reduction do not scale well. For example, the MIN UL requires on average
4 hours and 18 minutes to find the optimal solution for 50 user requests while the
MIN NL requires on average 14 hours and 15 minutes for the same number of user
requests. The execution time of the other objectives is still acceptable for values
lower than 75 user requests.
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Figure B.5 The data transfer time per sensor for the waste management use case.
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Figure B.6 The node utilization rate for the waste management use case.
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Figure B.7 The number of micro-service instances allocated for the waste man-
agement use case.
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Figure B.8 The expected E2E latency per user for the waste management use case.
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B.6.2 Waste Management Use Case

In Fig. B.4, the ratio of active gateways for each policy is shown. On the one hand,
high usage rates are shown for policyA since no optimization objective is included
regarding gateway efficiency. On the other hand, for policy B, the ratio of active
gateways slightly increases with the increase of connected sensors. For example,
for policy B, results show that only 16% of the gateways are needed for 250 sen-
sors and that only for 500 sensors, the ratio is higher than 60%. In contrast, policy
A requires on average more than 90% of active gateways already for 100 sensors.
Thus, policy B shows a higher gateway efficiency. In Fig. B.5, the sensor’s data
transfer time for each policy is illustrated. As expected, policy A achieved the
lowest values of data transfer time per sensor while policy B achieved the high-
est values since both policies represent opposing strategies. For example, for 250
sensors, each sensor requires on average 33 ms to send a message for policy B
while for policy A, each sensor requires only 3.5 ms. This difference occurs be-
cause of the gateway usage rate. As previously shown, policy B needs on average
only 16% active gateways while policy A requires 90% to minimize the sensor’s
data transfer time. In Fig. B.6, the ratio of active nodes for each policy is shown.
On the one hand, for policy B, the active number of nodes slightly increases with
the increase of user requests, since this policy is focused on maximizing energy
efficiency in the infrastructure. On the other hand, for policy A, the active nodes
greatly increase since this policy is focused on reducing latency. It should be noted
that for 40 and 50 user requests, the confidence interval for policy A is higher be-
cause user latency can be reduced by activating a different number of nodes, which
depends on the user’s location. This can be considered a borderline case, where
a single user on a particular location could mean that another node needs to be
active and thus the higher confidence interval. In Fig. B.7, the exact number of
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Figure B.9 The sensor’s data transfer time for the surveillance camera use case.
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micro-service instances allocated on the network for both policies is depicted. As
expected, policy A allocates more micro-service instances on the network than
policy B. This results in reduced E2E latency as shown in Fig. B.8. Latency val-
ues between 8 and 10 ms are obtained for policyA throughout the experiment even
for a high number of user requests while values between 30 and 70 ms are obtained
for policy B since the micro-service allocation is not focused on E2E latency but
energy efficiency. However, for 100 user requests, policy A is not able to further
minimize latency since the infrastructure is already exhausted. Thus, the average
E2E latency increases to 13 ms, which is still considerably low when compared to
policy B, which obtains latency values of 34.73 ms.
In summary, the Waste Management scenario represents a low bandwidth use case.
As shown, differences can be achieved in terms of micro-service allocation de-
pending on the provisioning strategy. Node usage rates are distinct among the two
evaluated strategies, which resulted in different results in terms of E2E latency.
The gateway usage rate directly affects the data transfer time of each sensor, which
could be an important factor. Nevertheless, the sensor’s data transfer time varia-
tions for the two evaluated strategies (between 33 ms - 3.5 ms in the worst case)
can be classified as not particularly relevant for this use case.

B.6.3 Surveillance Camera Use Case

The variations of the ratio of active gateways for both policies are similar to the
waste management use case, thus the graph is not included to avoid repetition.
Nevertheless, the sensor’s data transfer time variations are higher as illustrated
in Fig. B.9 since this use case is related to a video streaming scenario (i.e. high
bandwidth requirements). As shown, policy A achieved the lowest values of data
transfer time per sensor. For instance, for 250 sensors, each sensor requires on
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Figure B.10 The node utilization rate for the surveillance camera use case.
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Figure B.11 The number of micro-service instances allocated for the surveillance
camera use case.
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Figure B.12 The expected E2E latency per user for the surveillance camera use
case.
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Figure B.13 The sensor’s data transfer time for the air quality monitoring use case.
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average 158 ms to send a message for policy A while for policy B, each sensor
requires at least 1.3 seconds. This significant difference occurs due to the high
bandwidth requirements for this use case. In Fig. B.10, the ratio of active nodes for
each policy is shown. The ratio of active nodes for both policies slightly increases
with the increase of user requests. The difference between policyA andB is lower
when compared to the waste management use case, due to the difference in user
cost (λu), 1.0 and 0.25, respectively for both use cases. Also, the number of micro-
service instances allocated on the network demonstrated in Fig. B.11 clearly shows
that the fluctuations are attenuated due to the user cost. Nevertheless, the pattern
in terms of E2E latency remains similar as shown in Fig. B.12. Latency values
between 8 and 10 ms are obtained for policy A while values between 30 and 70
ms are obtained for policy B.
In summary, the Surveillance Camera scenario represents a high bandwidth use
case regarding video streaming. As shown, significant differences are achieved in
terms of micro-service allocation and the sensor’s data transfer time. For instance,
notable data transfer time variations (between 158 ms - 1.3 seconds in the worst
case) have been shown, which make this use case extremely challenging in the IoT
ecosystem.

B.6.4 Air Quality Monitoring Use Case

As expected, the variations of the ratio of active gateways for both policies are
similar to the waste management and the surveillance use case, thus the graph
is not included. In Fig. B.13, the sensor’s data transfer time for each policy is
illustrated. For instance, for 250 sensors, each sensor requires on average 9.6
ms to send a message for policy A while for policy B, each sensor requires 81
ms. In Fig. B.14, the ratio of active nodes for each policy is shown. The ratio
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Figure B.14 The node utilization rate for the air quality monitoring use case.
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Figure B.15 The number of micro-service instances allocated for the air quality
monitoring use case.
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Figure B.16 The expected E2E latency per user for the air quality monitoring use
case.
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Figure B.17 The gateway usage rate for the joint use case.
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of active nodes slightly increases for policy B with the increase of user requests
while for policy A, the ratio significantly increases to minimize the user latency.
For example, for 10 user requests, 40% of nodes are active for policy A while for
policy B only 13.3% of nodes are needed. In Fig. B.15, the number of micro-
service instances allocated on the network is shown. Similar to the surveillance
scenario, the differences in terms of micro-service allocation are attenuated due
to the user cost. Finally, in Fig. B.16, the expected E2E latency is shown. As
previously demonstrated for the other two scenarios, the E2E pattern remains the
same. Latency values between 8 and 10 ms are obtained for policy A while values
between 40 and 80 ms are obtained for policy B.
In summary, the Air Quality Monitoring scenario represents a medium bandwidth
use case regarding a near real-time air pollution detection service. As shown,
differences are achieved for the two evaluated strategies, specifically in terms of
node usage rates and E2E latency. Also, variations in the sensor’s data transfer
time are obtained depending on the applied strategy. Results show differences
between 9.6 ms - 81 ms, which make this use case more challenging than the
waste management use case.

B.6.5 Joint Use Case: Optimizing all Use Cases together

The Joint use case corresponds to a real-world scenario where multiple applica-
tions need to be deployed in the network. The three previously evaluated use cases
need to be allocated in the network at the same time since users need to access
all their respective applications. The user’s assigned application has been random-
ized throughout the experiment while increasing user requests. In Fig. B.17, the
ratio of active gateways for each policy is shown. Higher usage rates are shown
for policy A since no optimization objective is included regarding gateway effi-
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Figure B.18 The sensor’s data transfer time for the joint use case.
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Figure B.19 The node utilization rate for the joint use case.
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Figure B.20 The number of micro-service instances allocated for the joint use
case.
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Figure B.21 The expected E2E latency for the joint use case.
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ciency. In contrast, for policy B, the ratio of active gateways slightly increases
with the increase of connected sensors. Results show that only 51% of the gate-
ways are needed for 750 sensors and that only for 1000 sensors, the ratio is higher
than 70%. PolicyA requires already more than 65% of active gateways for only 50
sensors. Previous use cases showed similar results in terms of gateway usage rates,
but in contrast, for this particular scenario, differences are achieved. This occurs
because, in the previous use cases, all sensors are assigned to the single application
deployed in the network while in this scenario, three applications are deployed and
sensors have different application associations. In Fig. B.18, the data transfer time
per sensor for each policy is illustrated. As expected, the differences between the
two strategies have been obtained. For example, for 250 sensors, each sensor re-
quires on average 1.4 seconds to send a message for policy B while for policy A,
each sensor takes on average only 130 ms. Policy A can reduce the data transfer
time of each sensor at the cost of a higher gateway usage rate. Additionally, in
Fig. B.19, the ratio of active nodes for each policy is shown. For instance, for 20
user requests, 17% of the nodes are needed to deploy all the required micro-service
instances for policy B while for policy A, 77% of nodes are active to fully achieve
the optimal solution. For high values of user requests, policy B is not able to re-
duce the number of active nodes. For example, for 75 user requests, on average
87% of nodes are needed while policy A needs all nodes active in the network to
minimize latency. In Fig. B.20, the number of micro-service instances allocated in
the network for both policies is shown. The differences between both provisioning
strategies significantly increase for values higher than 5 user requests. In fact, for
high values of user requests, policy A deploys 10 more instances than policy B.
In Fig. B.21, the obtained results in terms of E2E latency are shown. Policy A can
minimize the E2E latency since it deploys more micro-service instances, however,
for 75 user requests, the infrastructure is exhausted and the latency increases to 19
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Figure B.22 The node utilization rate by changing from policy A to B.
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ms. PolicyB by focusing on optimizing energy efficiency is only able to minimize
latency to 57 ms for the same number of user requests.
In summary, the Joint Use Case represents a real-world scenario where multi-
ple applications are deployed in the network and cloud providers want to offer
their users the best QoS for all of their services. As shown, large differences
are achieved in terms of micro-service allocation depending on the provisioning
strategy. Cloud providers must determine which requirements are more important
for their services to optimize these at the maximum. Clear trade-offs have been
presented. Reducing the sensor’s data transfer time implies an increase of active
gateways and, thus, higher energy costs. Optimizing the energy efficiency in the
infrastructure does not translate into low latency values. In fact, to minimize the
latency a higher number of service instances needs to be allocated.

B.6.6 Changing Provisioning Strategies: Impact of Service Mi-
grations

Table B.8: The evaluated policies for the dynamic scenario.

A → B B → A
Service

Migration
Factor

(µ)

150% 100% 70% 50% 30%
10%

150% 100% 70% 50% 30%
10%

The last part of the evaluation considered a use case where cloud providers may
want to change their provisioning strategy. Thus, an important factor to measure is
the number of service migrations needed to find the optimal allocation scheme. For
this scenario, the joint use case has been considered with 50 sensors and 30 users.
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Figure B.23 The number of micro-service instances allocated by changing from
policy A to B.
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Figure B.24 The expected E2E latency per user by changing from policy A to B.
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Figure B.25 The node utilization rate by changing from policy B to A.
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Figure B.26 The number of micro-service instances allocated by changing from
policy B to A.
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Figure B.27 The expected E2E latency per user by changing from policy B to A.
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Sensors and user locations have been changed between strategies by attributing
new x and y coordinates. Constraints have been included in the model to make
sure that the newly calculated positions are inside the evaluation area. The alloca-
tion strategy has been changed and different service migration factors have been
evaluated as shown in Table B.8. It should be highlighted that a migration factor
of 150% has been evaluated since in the model a previous iteration may only need
to deploy 4 micro-service instances in the network, but a further iteration focused
on low latency may allocate 6 micro-service instances. Thus, a migration factor
higher than 100% is allowed in the MILP formulation. The impact of service mi-
grations must be studied because it can lead to service disruptions and, thus, it may
be desirable to find a sub-optimal solution, in which service migrations are kept to
a minimum to reduce the delay caused by service reallocations.

In the evaluation, three factors have been evaluated: the ratio of active nodes,
the number of micro-service instances allocated and the expected E2E latency for
each user. On the one hand, in Fig. B.22, the ratio of nodes by changing from
policy A to B is shown while in Fig. B.23 and Fig. B.24, the number of micro-
service instances allocated and the expected E2E latency are shown, respectively.
As expected, policy A requires a high number of active nodes to minimize latency
and when policy B is applied, it will reallocate micro-service instances to only
a small percentage of nodes to maximize energy efficiency. For example, for a
service migration factor of 0.5, the number of active nodes is reduced to 43%,
which corresponds to a total reduction of 50%, but it increases the expected E2E
latency per user from 9ms to 47.7 ms. Furthermore, policy B can significantly
reduce the number of micro-service instances allocated in the network from 25
to 14 replicas for the highest migration factor (µ = 1.5). On the other hand, in
Fig. B.25, the ratio of nodes by changing from policy B to A is shown while in
Fig. B.26 and Fig. B.27, the number of micro-service instances allocated and the
expected E2E latency are shown, respectively. As expected, policy B requires
a small number of nodes active and when policy A is applied, it will reallocate
micro-service instances to reduce latency. For example, even for a small migration
factor of 0.3, the expected E2E latency can be reduced from 57 ms to 13.8 ms
by deploying on average 4 more micro-service replicas, which increases the node
utilization rate from 20% to 66.6%. For higher migration factors, policy A can
reduce the expected E2E latency per user between 9 and 10 ms at a cost of a high
node utilization rate and a high number of deployed micro-service instances. It
should also be noted that for a migration factor of 1.5, the results are similar to the
joint use case for the same number of user requests, which was expected.

In summary, this scenario corresponds to a real-world use case where service real-
locations may be needed when provisioning strategies are changed. The evaluation
has been carried out to quantify what the differences are in terms of service allo-
cation by restricting the MILP model with different migration factors. As shown,
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significant differences can be achieved. Service providers must decide which allo-
cation strategy is suitable for their services and at what time a different allocation
strategy should be applied. The evaluation proved that ILP-based solutions can
provide the optimal solution, however, at the expense of significant execution time.
Depending on the problem complexity, several hours might be needed to find the
optimal allocation scheme. Nevertheless, service providers can adopt the model
as a reference benchmark for their allocation algorithms and they may even calcu-
late the optimal scheme depending on the current network demand. For instance, if
they want to change their allocation policy between the two evaluated provisioning
strategies, they can use the model to calculate the optimal scheme and then apply
it in their network. It might be worth waiting a few hours and properly allocate all
resources for this new policy than just quickly change everything and end up with
a sub-optimal scheme. Results showed that to change between the two evaluated
provisioning strategies a substantial percentage of service migrations are required
to find the optimal allocation solution (higher than 70%). Clear trade-offs have
been presented between optimizing energy efficiency and minimizing latency. The
model not only allocates service chains, but also deals with sensor’s data trans-
fer times and bandwidth requirements which impact the E2E service quality. The
model can be executed weekly or even daily depending on the expected demand.

B.7 Conclusions

In this appendix, a MILP formulation for the IoT service provisioning problem
is presented, which takes SFC concepts, different LPWAN technologies and mul-
tiple optimization objectives into account. In recent years, the need for resource
provisioning strategies for Fog Computing is increasing due to the deployment
of IoT use cases. Billions of connected devices are expected which will make it
impractical for current network architectures to support this massive growth since
services will be requested on-demand simultaneously by multiple devices at dif-
ferent locations. Cloud providers will need proper service allocation solutions to
minimize infrastructure costs and maximize QoS. The proposed MILP model con-
siders not only cloud requirements but also characteristics stemming from wireless
aspects to deal with these demanding requirements. The model considers multiple
objectives, such as the acceptance of user requests, user latency reduction or in-
creasing gateway efficiency. To the best of our knowledge, the work goes beyond
the current state-of-the-art by providing a complete E2E resource provisioning in
Fog-cloud environments while considering both cloud and wireless requirements.
Evaluations have been performed to assess the proposed MILP formulation for
Smart City use cases. Results show clear trade-offs between the different applied
strategies. Cloud providers must decide which allocation strategy is suitable for
their services and at what time a different strategy could be applied. Service mi-
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grations must also be considered as an important factor in the service allocation.
Obtained results show that to change between provisioning strategies a substan-
tial percentage of service migrations are required to find the optimal allocation
solution (higher than 70%). The result of the work can serve as a benchmark
in research covering IoT provisioning issues in Fog-cloud environments since the
model approach is generic, considers several cloud and wireless aspects and can
be applied to a wide range of IoT use cases. Future heuristics can be evaluated
based on the measured execution times (e.g. latency-aware algorithms vs the MIN
UL objective). As future work, the MILP model will be validated through real
service deployments. Additionally, dynamic user demands will be studied, which
will allow the approach to learn from network behavior.
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C
Towards low-latency service delivery

in a continuum of virtual resources:
State-of-the-art and Research

Directions

This appendix extends the conclusions discussed in Chapter 6 by addressing open
challenges and future directions regarding low latency service delivery in next-
generation networks. It presents a comprehensive review of ongoing research on
low latency service delivery and proposes a taxonomy and specific evaluation cri-
teria to classify research across different domains. Emerging applications (e.g.,
Virtual Reality (VR), autonomous cars) add even more stringent requirements to
the infrastructure, calling for considerable advancements towards cloud-native ar-
chitectures. The state-of-the-art has been reviewed to identify the most promising
trends that will impact the applicability and performance of next-generation ap-
plications. Thus, the main contributions of this appendix are the taxonomy for low
latency service delivery, the comprehensive review of current literature, the dis-
cussion of open challenges and future directions alongside lessons learned, and
prospects on emerging use cases.

⋆ ⋆ ⋆
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Abstract The advent of softwarized networks has enabled the deployment of chains
of virtual network and service components on computational resources from the
cloud up to the edge, creating a continuum of virtual resources. The next genera-
tion of low latency applications (e.g. Virtual Reality (VR), autonomous cars) adds
even more stringent requirements to the infrastructure, calling for considerable
advancements towards cloud-native micro-service-based architectures. This ap-
pendix presents a comprehensive survey on ongoing research aiming to effectively
support low latency services throughout their execution lifetime in next-generation
networks. The current state-of-the-art is critically reviewed to identify the most
promising trends that will strongly impact the full applicability and high perfor-
mance of low latency services. This appendix proposes a taxonomy as well as
specific evaluation criteria to classify research across different domains address-
ing low latency service delivery. Current architectural paradigms such as Multi-
access Edge Computing (MEC) and Fog Computing (FC) alongside novel trends
on communication networks are discussed. Among these, the integration of Ma-
chine Learning (ML) and Artificial intelligence (AI) is introduced as a key research
field in current literature towards autonomous network management. A discussion
on open challenges and future research directions on low-latency service delivery
leads to the conclusion, offering lessons learned and prospects on emerging use
cases such as Extended Reality (XR), in which novel trends will play a major role.

C.1 Introduction

The deployment of high-bandwidth and low latency 5G network infrastructures
has been driving the digital transformation of network services in Industry 4.0,
Smart Cities, Healthcare and connected vehicles. Founded on the principles of
Software-Defined Networking (SDN) [1] and Network Function Virtualization
(NFV) [2], programmable networks interconnect virtual cloud, fog, and edge re-
sources, which help to bring low latency services to reality. These technological
advancements pave the way to support high reliability and low latency services
in 5G such as Ultra-Reliable Low-Latency Communication (URLLC) services re-
quired for autonomous driving and factory automation use cases. The massive
growth of the Internet of Things (IoT) is pushing the boundaries of network archi-
tectures by transforming everyday objects into smart connected devices. To over-
come the hurdles to arrive at truly end-to-end (E2E) services, which meet the even
more stringent requirements (e.g. higher bandwidths, lower latencies) of future ap-
plications, next-generation (6G) networks [3] have to provide distributed orches-
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tration and management functionalities to integrate a continuum of virtual com-
puting resources with a wide variety of ultra-broadband (radio access and core)
and high-precision network links. Bandwidth requirements for Extended Real-
ity (XR) or Holographic Type Communication (HTC) applications will rise well
above 1Tbps, while their interactive experiences require sub-millisecond latencies
[4]. Pervasive and ambient connectivity (billions of devices per km2 in the Internet
of Everything (IoE) with ultra-low latency, near-proximity communication) and
autonomous service delivery (with levels up to 99.99999% reliability, even at high
speeds of users or Unmanned Aerial Vehicles (UAVs) [5]) add further stringent
requirements, as shown in Table C.1. Supported by pervasive network telemetry
and analytics, Artificial Intelligence (AI) capable of dynamically meeting the real-
time requirements of cloud-native applications will be brought into play as well.
Distributed learning at both the network and application levels will contribute to
the development of smart, highly interactive and reliable environments, allowing
for a high Quality of Experience (QoE) to end-users. On the business side, in-
creasingly more stakeholders will be involved in the E2E service chain, requiring
very dynamic service contracts and relationships beyond mere network connectiv-
ity, expanding towards control and management aspects. Extensions to the ETSI
NFV MANO model [6] should incorporate these micro-operators, their interfaces,
roles and templates to accelerate network slice setup.
To ensure low E2E service latency for all emerging use cases, current network ar-
chitectures need to drastically change. Several improvements are currently being
implemented at the Radio Access Network (RAN) and core alongside novel net-
working systems incorporating SDN, NFV and caching concepts. Multiple steps
in the service execution causing increased delays have to be recognized as po-
tential barriers to low latency service delivery. Distributed (hierarchical) SDN
architectures are considered better candidates than current centralized approaches
[7]. However, further research is needed to understand how such architectures can
incorporate local or global network measurements and analysis to steer the mes-
sage routing, and how service-level objectives can be enforced in the network. In
the network path, fog-cloud infrastructures need to be set up to execute several
micro-services of a service chain, enabling flexible deployments [8]. Moreover,
the integration of intelligence at the edge will lead to ML-driven networks able
to support highly dynamic management updates under varying network circum-
stances, meeting the requirements of cloud-native applications and services over
the continuum of virtual resources. This appendix revisits several aspects of the
state-of-the-art on low latency service delivery in next-generation networks. The
contributions of the appendix can be summarized as follows:

• Present up-to-date research and novel trends in low latency service delivery
by conducting a comprehensive review of the current literature.

• Propose a taxonomy on low latency service delivery by considering different
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aspects of next-generation networks that will impact the applicability and
performance of low latency services.

• Provide specific evaluation criteria to classify research across different do-
mains based on the presented taxonomy.

• Identify current open challenges and future directions.

• Provide lessons learned and prospects of emerging use cases such as Smart
Cities and XR.

Despite the importance of low latency services in next-generation networks, to the
best of our knowledge, a comprehensive and detailed survey on novel trends for
low latency service delivery is still missing. The close interplay between comput-
ing and networking is key to support low latency 6G services in the future. The in-
tegration of AI/ML at the edge will also play a major role in enabling autonomous
networks. This appendix presents valuable insights for the industry and research
community into ongoing research and novel trends pushing towards distributed
cloud-native infrastructures capable of supporting low E2E service latency. The
next section outlines how our survey differs from the current state-of-the-art and
presents the taxonomy on low latency service delivery.

Table C.1: Requirements for emerging use cases [3, 4].

Use Case Latency Reliability Throughput
E-Health < 1 ms 99.99999% 1 - 100 Mbps

Smart Cities 10ms - 1s > 99.999% 1 - 100 Mbps
UAV services 1 - 10 ms 99.99999% 1 - 10 Mbps
Industrial IoT 1 - 10 ms 99.99999% 1 - 10 Mbps

Extended Reality < 1 ms 99.99999% > 1 Tbps
Self-driving cars < 1 ms 99.99999% 1 - 10 Mbps

C.2 Survey Methodology

This section starts by introducing the existing surveys and tutorials in the literature
related to low latency services. Second, our literature review is explained followed
by a taxonomy on low latency service delivery. Then, the evaluation criteria used
to classify research across different domains is introduced. Finally, the appendix
structure is presented.
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C.2.1 Existing Surveys & Tutorials

Several surveys and tutorials on 5G networks are available in the literature. In [9],
architectural paradigms and emerging technologies are presented. 5G research
projects are also briefly introduced. In [10] and [11], SDN and NFV concepts
for 5G networks are addressed. Both surveys highlight how SDN and NFV com-
plement each other and discuss the key role both technologies will play on next-
generation networks. In [12], the integration of Multi-access Edge Computing
(MEC) in 5G systems is assessed. It highlights the deployment of applications
and services at the edge as one of the main benefits of MEC. Service migration
and mobility support in MEC are also addressed in [13]. In [14], RAN, core net-
work and caching concepts for 5G are discussed in detail, while in [15] resource
management for 5G RAN systems is considered. Recently, in [16], service place-
ment in Fog Computing (FC) is discussed while a comprehensive taxonomy for
FC is proposed in [17]. The classification of FC applications based on ML is also
presented in [18]. Hardware-accelerated platforms and infrastructures (e.g. Field-
Programmable Gate Arrays (FPGAs), microprocessors) are also covered in [19],
highlighting relevant studies for the softwarized execution of network services.
Furthermore, a few surveys have already been published on 6G networks focused
on architectures [20, 21] and wireless access networks [22]. Regarding applica-
tions, surveys and tutorials on emerging use cases exist such as Smart Cities [23],
Autonomous cars [24], Augmented Reality (AR) [25] and Industrial IoT (IIoT)
[26].

Low latency has also been addressed in recent surveys. Previous work [27] dis-
cusses latency reduction techniques by comparing their advantages with their over-
head in implementation and deployment. The authors focus on communication
protocols and how these techniques impact the latency perceived by end-users.
Novel architectures and emerging applications fall out of their scope. Design prin-
ciples and enabling technologies to deploy low-latency wireless communication
networks have been analyzed in [28]. The authors reflect on how to meet the strin-
gent requirements of future use cases while discussing the trade-offs between low
latency and traditional performance metrics. Other surveys related to low latency
exist in the current literature, but their scope is limited [29] or focused on a spe-
cific use case [30]. These surveys do not assess each contribution in the presence
of specific criteria, as it is performed in this appendix. An exhaustive literature
review is also missing, especially considering novel trends on low latency service
delivery. In contrast, this appendix comprehensively reviews recent research and
novel trends focused on enabling services that require low E2E latency in next-
generation networks while proposing a taxonomy on low latency service delivery.
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Figure C.1 Overview of the surveyed research.

Figure C.2 Search occurrence of keywords based on the proposed taxonomy on
low latency service delivery in Google Scholar.
(a) Architecture. (b) Network. (c) Orchestration.

(d) ML/AI. (e) Security & Privacy (f) Application.
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C.2.2 Literature Review

The literature on low latency service delivery encompasses several domains, thus
structuring and classifying the most relevant research is not a trivial task. Fig. C.1
shows the proposed taxonomy. Based on an exhaustive literature search, six main
categories have been identified: Architecture, Network, Orchestration, Security
& Privacy, ML / AI and Application. These six domains have been identified as
crucial for the full applicability and high performance of emerging low latency
services in next-generation networks. The review of research contributions on all
six domains allows us to identify open issues relevant for several areas and ag-
gregate reviewed work under these main categories. Efforts on radio and wireless
access networks have been excluded from our survey since these topics are usually
covered in dedicated surveys [31, 32]. Nevertheless, the importance of improv-
ing current access networks is acknowledged. Efforts focused only on SDN and
NFV paradigms have also been excluded since these topics have been thoroughly
addressed in the literature [33].
After performing various reiterative fine-tuned search processes based on multiple
keywords, several research domains have been recognized under the six main cat-
egories. By dividing the main category into different domains, readers can easily
access references addressing a specific issue. Within the first main category, Archi-
tecture, four research domains have been identified: MEC, FC, Micro-services and
Hardware acceleration. These domains have been perceived as important enablers
towards fully cloud-native infrastructures in next-generation networks. Research
related to Cloudlets [34] has been left out since both MEC and FC are emerging in
the last few years and are the main alternatives in this domain. Regarding the sec-
ond category, Network, four research domains have been distinguished: Network
Slicing (NS), Service Function Chaining (SFC), Intent-based Networking (IBN)
and Segment Routing (SR). Within the third main category, Orchestration, four
domains have been identified: Resource allocation, Auto-scaling, Performance
monitoring and Caching. These areas demonstrate the importance of efficient
management practices in the life-cycle of service components. The fourth cate-
gory, Security & Privacy, addresses three research domains: BlockChain (BC),
CyberSecurity (CS) and Trusted Computing (TC). Recent security guidelines fo-
cused on data protection, trust and authentication/authorization mechanisms have
been identified since security aspects are commonly left out in current literature.
This appendix tackles this gap in the state-of-the-art by reviewing novel security
trends. Three domains have been recognized in the fifth main category, ML /
AI: Deep Learning (DL), Reinforcement Learning (RL) and Federated Learning
(FL). These emerging areas in ML/AI research are being investigated in the con-
text of distributed clouds towards autonomous management. Finally, within the
sixth category, Application, four research areas have been identified: Smart Cities,
Self-driving cars, XR and IIoT. These application domains represent emerging use
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cases in next-generation networks, where low latency is crucial for the proper ser-
vice operation and end-user satisfaction.
Concerning the literature review, keywords based on the presented taxonomy have
been searched on two publication databases, Google Scholar and IEEE Xplore.
The number of occurrences in Google Scholar for all keywords is shown in Fig. C.2.
For example, the search term used to determine the number of occurrences of FC
has been Architecture “Fog Computing”. Similar keywords have been used for
the other research domains in our taxonomy. Some domains were still unknown
in 2017 until a significant increase occurred in 2019, especially regarding IBN
and DL research. Some topics are still largely unexplored in academia as FL and
IBN, while BC and DL had a tremendous increase over the last three years. Based
on these graphs, research published between January 2017 and December 2020
has been examined. Table C.2 shows the number of publications reviewed in this
appendix per main category and correspondent domain. Publications have been
organized per chronological order on each domain subsection to improve read-
ability since several works fall under different criteria. Moreover, works incorpo-
rate concepts falling in different categories, thus, the corresponding percentages
are derived accordingly. For instance, for Architectural paradigms, eight papers
(15.8%) have been analyzed in the context of MEC, six papers for FC (13.3%)
while four papers have been reviewed for both Micro-services (5.8%) and Hard-
ware acceleration (4.1%). The inclusion of research is based on the overall quality
of the publication (i.e. number of citations, journal indexed in Web of Science).
Only peer-reviewed works have been considered and short conference papers (typ-
ically between 2-4 pages) have not been included. Based on these principles, 120
publications have been selected to be thoroughly analyzed in the context of this
appendix. The next subsection describes in detail the evaluation criteria applied to
classify research on low latency service delivery.

C.2.3 Evaluation Criteria

Table C.3: The evaluation criteria applied to classify research on low latency service deliv-
ery.

Evaluation criteria Description

Mobility (C1)

Mobility is an important requirement for next-
generation networks where services can be re-
quested on-demand by multiple devices at dif-
ferent locations.

continued on next page. . .
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Table C.3: The evaluation criteria applied to classify research on low latency service deliv-
ery (continued)

Evaluation criteria Description

Scalability (C2)

Millions of devices will be connected to the
network. Cloud-native infrastructures need to
accommodate applications with different la-
tency requirements while adapting to the cur-
rent network demand.

Energy Efficiency (C3)

The number of connected devices and the data
they collect is growing exponentially. If data
is processed centrally by traditional clouds,
it would increase power consumption and la-
tency. Cooperation between the edge, fog and
the cloud will become even more important in
future networks given the increased use of dis-
tributed ML techniques and data processing.

Isolation (C4)
Network slicing enables the efficient execution
of different services on the same infrastructure
with various latency thresholds.

Security & Privacy (C5)

Traditional security solutions are designed to
protect enterprise networks and data centers th-
rough perimeter-based protections. These prac-
tices are no longer adequate for addressing se-
curity challenges in emerging use cases. For
example, distributed malware monitoring ob-
serves low-powered devices to compensate for
their limited security.

Resilience (C6)

Resilience must be an inherent property into
next-generation networks. If failures occur,
networks need to keep offering satisfactory
Quality of Service (QoS) no matter what chal-
lenges they face. Otherwise, time and money
are lost.

Reliability (C7)

Reliability is essential for low latency services
in next-generation networks and will be even
harder to maintain in distributed cloud-native
infrastructures. Devices and end-users can con-
nect from multiple locations with different ac-
cess technologies, causing failures at the edge,
fog, or cloud.

continued on next page. . .
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Table C.3: The evaluation criteria applied to classify research on low latency service deliv-
ery (continued)

Evaluation criteria Description

Heterogeneity (C8)

Devices hold various computing capacities
(e.g. CPU, RAM) and will access the medium
through different technologies (e.g. 5G, Wi-
Fi). Cloud-native infrastructures must ensure
such heterogeneous networks run smoothly.

Throughput (C9)

Future networks need to support low latency
service delivery as well as high bandwidth data
rates. XR is among the most throughput de-
manding emerging applications.

Federation (C10)

Computing resources will be geographically
distributed across the edge, fog and cloud. Sev-
eral domains can be operated via different ser-
vice providers. Federation is required to man-
age and orchestrate services running on differ-
ent providers that compose a complete appli-
cation. Low E2E latency must be guaranteed
under cloud-native federation.

The criteria to evaluate current research on low latency service delivery for next-
generation networks are presented in Table C.3. Although low latency is the main
focus, other requirements are also important to ensure low E2E latency. Several
requirements have been translated into individual criteria. If the work addresses
any of the given criteria in their methodology (e.g. architecture, algorithm), then it
meets the individual criterion. Otherwise, the criterion is unmet when this require-
ment is not considered. The first criterion (C1) is supporting Mobility. Devices
and end-users will request services on-demand at different locations. Without effi-
cient mobility support, service discovery procedures for mobile devices may need
to restart, causing service disruptions and degraded user experience. Mobility is
crucial for low latency services to guarantee service continuity when end-users
or devices are moving in the network, ensuring smooth handover processes. The
second criterion (C2) is Scalability. Cloud-native infrastructures need to support
millions of connected devices for multiple applications. The network demand at
a given time determines the computing resources allocated to each application,
meaning that these systems need to be elastic enough to scale up and down re-
sources according to the current demand. The third criterion (C3) relates to Energy
Efficiency. Latency and energy efficiency are often considered opposing strategies.
If service providers offer low E2E latency, that usually translates into higher en-
ergy bills since more computing resources are allocated to provide lower latency
to all users (limited resource sharing). Users want the best Quality of Service
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Table C.2: The number of publications assessed per category and correspondent research
domains.

Main Category Research Domain
Number of

Publications

Architecture (39.0%)

Multi-access Edge Computing 8 (15.8%)
Fog Computing 6 (13.3%)
Micro-services 4 (5.8%)
Hardware Acceleration 4 (4.1%)

Network (30.7%)

Network Slicing 4 (8.3%)
Service Function Chaining 7 (13.3%)
Intent-based Networking 5 (4.1%)
Segment Routing 6 (5.0%)

Orchestration (27.3%)

Resource Allocation 8 (13.3%)
Auto-scaling 4 (3.3%)
Performance Monitoring 5 (4.1%)
Caching 6 (6.6%)

ML / AI (19.9%)
Deep Learning 5 (7.5%)
Reinforcement Learning 6 (8.3%)
Federated Learning 5 (4.1%)

Security &
Privacy (27.4%)

Blockchain 6 (10.0%)
Cybersecurity 5 (14.1%)
Trusted Computing 4 (3.3%)

Application (24.8%)

Smart Cities 7 (10.8%)
Self-driving cars 4 (4.1%)
Extended Reality 4 (3.3%)
Industrial IoT 7 (6.6%)
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(QoS) for the minimum cost, while service providers want to meet the agreed QoS
level by using a small fraction of their infrastructure, reducing their operational
costs and maximizing their profit. The massive number of connected devices will
generate a huge volume of data that, if processed centrally by traditional clouds,
increases power consumption and latency. Efficient collaboration between edge,
fog and cloud is crucial towards a more efficient and greener cloud-native infras-
tructure [35]. The fourth criterion (C4) reflects on Isolation. In next-generation
networks, resources should be logically separated through slicing, an abstraction
allowing resource sharing among several slices while preventing attacks and faults
on a slice from affecting any other slices in the network. A network slice can be
defined as a set of Network Functions (NFs) and resources (e.g. connectivity, stor-
age) attributed to a specific service. These functions are chained to form a logical
isolated E2E network slice responsible for offering the specified QoS level. NS is
expected to significantly reduce operational costs and guarantee different latency
demands for each supported application.

The fifth criterion (C5) relates to efficient Security and Privacy mechanisms. Se-
curity mainly deals with the integrity and availability of the system, while pri-
vacy concerns data protection and confidentiality. Any security breach can di-
rectly impact the privacy of the company or the individual if unauthorized access is
granted to private data. In the past, security practices protected enterprises through
perimeter-based solutions. Nowadays, data is spread across the network and stored
at different levels (i.e. edge, fog, cloud), making traditional security practices in-
adequate. Security will be key to most emerging use cases since users would only
subscribe to services where their privacy and data are protected. Thus, identify-
ing security and privacy issues in distributed clouds will be the main challenge in
security research for the next coming years. The sixth criterion (C6) concerns Re-
silience. Network resiliency is the ability to self-heal the network after unexpected
failures [36]. Next-generation networks should offer self-healing features to yield
sustained QoS levels under critical situations by predicting or identifying network
failures. Reactive and proactive remedies can ensure service continuity and avail-
ability. The seventh criterion (C7) is Reliability. Reliability is often compared
to availability, but a service can be available and not run properly. High reliabil-
ity will be crucial for low latency services since service providers are expected to
match the agreed QoS levels to satisfy their users. Reliability is also associated
with resilience. Reliability is the goal of service providers, while resiliency con-
tributes to its accomplishment. Services can be reliable since no failures have oc-
curred, but they cannot be considered resilient since such failure-tolerant capabili-
ties have not been tested. The eighth criterion (C8) relates to network Heterogene-
ity. Infrastructure nodes will hold different computing capabilities. For example,
edge and fog nodes possess limited capacity compared to cloud nodes. This hetero-
geneity needs to be considered in resource allocation decisions - where and when
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to deploy service components is essential to manage the network heterogeneity and
ensure services run as expected. The ninth criterion (C9) is Throughput. Emerging
use cases such as XR require not only low latency but also high bandwidth data
rates. Several network functionalities (e.g. data processing, ML operations) are
currently being pushed to the edge to minimize latency and maximize throughput.
Finally, the tenth criterion (C10) is supporting Federation. Cloud-native infrastruc-
tures will be operated via different service providers. Applications following the
recent micro-service paradigm will be separated into multiple service components
that can be deployed over distinct providers in a continuum of virtual resources
from the cloud up to the edge. Cooperation over various network domains ensures
proper management and orchestration of these applications and delivers low E2E
latency.

C.2.4 Appendix Structure

The remainder of the appendix is organized as follows: Section C.3 presents archi-
tectural paradigms such as MEC and FC and respective literature. Section C.4 in-
troduces and reviews recent progress in communication networks. Section C.5 re-
views novel management and orchestration practices followed by recent advances
on ML and AI towards automated management in section C.6. Section C.7 in-
troduces novel security and privacy methods for next-generation networks. Sec-
tion C.8 reviews the most prominent low latency use cases. Section C.9 focuses
on open challenges and future directions while Section C.10 presents the lessons
learned and discusses the prospects of emerging use cases such as Smart Cities and
XR, in which novel trends will play a key role. Concluding remarks are presented
in Section C.11.

C.3 Towards a continuum of virtual resources - Ar-
chitectural paradigms

C.3.1 Overview

The advent of novel architectural paradigms enabled the deployment of service
chains on computational resources from the cloud up to the edge. This brings
several benefits such as low latency and mobility support. This section presents
the key architectural concepts enabling application deployment in a continuum
of virtual resources: MEC, FC, micro-services and hardware acceleration. Then,
related research is discussed, in which the works are categorized based on our
criteria. Table C.4 summarizes the reviewed works.
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Table C.4: Summary of the reviewed works in terms of Architecture.
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C.3.2 Multi-Access Edge Computing (MEC)

Figure C.3 The mobile edge system reference architecture [50].

MEC [59] is an industry initiative from the European Telecommunication Stan-
dards Institute (ETSI). It was launched in 2014 under a different naming: Mobile
Edge Computing focused on bringing the current mobile network to the edge by
adding Virtual Machine (VM) virtualization. In 2017, ETSI incorporated non-
cellular operators’ requirements (e.g. MEC hosts deployed in multiple networks
owned by different providers, edge applications running collaboratively), thus the
name changed to Multi-Access Edge Computing (MEC). The ETSI MEC techni-
cal committee is designing a reference architecture [60] for a mobile edge system
as shown in Fig. C.3. MEC focuses on evolving the mobile network edges to create
a cloud environment close to the RAN that hosts enhanced services provided by
the Mobile Network Operator (MNO) or third parties. Mobile Edge (ME) applica-
tions run on top of a generic cloud infrastructure within the RAN: the Mobile Edge
Host (MEH). The MEH encompasses a Mobile Edge Platform (MEP) responsible
for executing ME applications on an NFV Infrastructure (NFVI), which provides
computing, storage and network resources for the provisioning and consumption
of ME services [60]. The envisioned use cases include IoT, AR, optimized caching
and video analytics.
MEC aims to improve the mobile architecture to support low latency services, but
a few challenges persist: services may need to be reallocated quickly, thus ser-
vice migration and mobility support present an enormous challenge. In [37], Liu,
X., et al. have proposed a mobility-aware coded probabilistic caching scheme for
MEC-enabled small cells. The authors aim to maximize throughput by incorporat-
ing user mobility (C1) and distributed storage in their scheme. Results have shown
that their scheme outperforms conventional probabilistic methods, attaining higher
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throughput (C9) under different degrees of user mobility, content popularity and
backhaul capability. In [38], Ma, L., et al. have presented an edge architecture sup-
porting seamless migration (C1) of offloading services while keeping moving users
connected to their nearest edge server. Docker container migration has been recog-
nized as an important challenge in the literature. The authors propose to leverage
the layered nature of the Docker storage system to reduce file system synchroniza-
tion overhead. Their framework provides an isolated (C4) running environment
for the offloading service via two layers of the system virtualization hierarchy.
It also minimizes security risks (C5) posed to offloading services running on the
edge servers. The authors state that isolation between different services provides
a degree of security. The authors have evaluated the performance of container mi-
gration based on several metrics, such as latency, file compression and throughput
(C9). Both works are promising, however, no clear strategy or guidelines have yet
been defined on how to support mobility in future networks.

Recent works have also focused on providing intelligence at the edge and in the
interoperability between wireless and wired networks or different networking com-
ponents. In [39], Hsieh, H. et al. have studied virtualized MEC (vMEC) infras-
tructures to provide intelligence at the edge while reducing latency and increasing
the available capacity. Their vMEC infrastructure applies container-based virtu-
alization as an IoT gateway for flow control mechanisms and performance analy-
sis. Results demonstrate that latency can be reduced up to 30%, maintaining high
bandwidth for most services. The flow control mechanism has been introduced
to reduce the CPU usage of the vMEC platform, reducing energy consumption
(C3). Their approach not only reduces latency but also enhances user experience
by improving service quality, which relates to reliability (C7). The authors have
also focused on adjusting the throughput capacity with their flow control mech-
anism to avoid network congestion (C9). In [40], Liu, J., et al. have proposed
an integrated networking scheme for MEC and fiber-wireless (FiWi) access net-
works. Their approach focuses on the dynamic orchestration of network, storage,
and computing resources to meet diverse application demands, addressing the im-
portance of mobility (C1) management. The lack of mobility data has been solved
by collecting user’s mobility information, such as locations and time via Access
Points, Base Stations (BSs), or even sensors. Furthermore, the connectivity pro-
vided by FiWi access networks facilitates the direct communication of edge clouds
without the core network, improving reliability (C7). The dynamically controlled
routing enables efficient VM migration and service transmission link failure to en-
sure high reliability and availability of the services. Evaluations on an integrated
scheme of edge clouds and multiple heterogeneous (C8) networks (e.g. FiWi) have
been performed. Throughput (C9) levels have been verified between the edge and
remote cloud servers. Video streaming services in MEC architectures have also
been investigated in [41]. Yang, S., et al. have implemented a Proof-of-Concept
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(PoC) for a video streaming use case in a MEC-based architecture. It focuses
on assessing MEPs to deploy novel applications at the edge, such as intelligent
video accelerating services that need low latency and high bandwidth. The authors
have developed two ML models for video and radio channel quality prediction to
improve the overall QoE of video streaming users. These mechanisms improve
service reliability (C7) and meet expected QoS levels. Their approach improves
the radio channel quality (and thus the throughput) between mobile devices and
the BS (C9). By deploying the video streaming service at the edge, their approach
guarantees high throughput for most users. In [42], Shah, S., et al. have proposed
the integration of SDN and cloud-native virtualization techniques to facilitate the
orchestration and management of MEHs. Their work focuses on E2E mobility
support to maintain service continuity when users relocate from one MEH to an-
other (C1). Request/reply messaging patterns have been implemented based on the
ZeroMQ protocol for inter-process communication between their SDN applica-
tion and the target MEP. Protocols such as ZeroMQ and MQ Telemetry Transport
(MQTT) have been designed to minimize network bandwidth and ensure reliabil-
ity (C7). A heterogeneous (C8) Radio Access Technology (RAT) deployment has
been considered in the evaluation of their Vehicle-to-Everything (V2X) use case.
Multiple mobile operators and different SDN controllers have also been assessed
(C10). The authors have also proposed an inter-slice resource sharing and federa-
tion model as future work. The authors aim to extend their work to support NS in
their framework for mobility management between heterogeneous network slices
across edge clouds.

Security in MEC is another open challenge that has been studied in [43]. Ra-
naweera, P., et al. propose MEC to enable security-as-a-service features. Experi-
ments have determined the security functions scalability deployed in an MEP (C2).
Security (C5) has also been discussed in detail. Security services are executed in
Docker containers offering application-level isolation. The service deployment
follows the SFC concept to dynamically adapt resources and the auto-scaling of
security functions to accommodate several traffic profiles. The authors have also
considered the inherent heterogeneity (C8) of IoT devices, claiming that the de-
ployment of security services as a third-party solution is needed due to the strict
requirements introduced by IoT. Their approach helps to mitigate security con-
cerns and support heterogeneous mobile services through its flexibility. Lastly,
Ksentini, A., et al. [44] have proposed the integration of both MEC and NS in a
novel scheme compliant with ETSI and 3GPP specifications (the standardization
bodies working on MEC and NS, respectively). A novel orchestration architec-
ture has been presented, incorporating the MEC paradigm as a 5G sub-slice. Two
different models to support NS in MEC have been proposed. On the one hand,
a multi-tenancy model assumes that the MEP is deployed at the edge NFVI and
is shared among the multiple slices. On the other hand, an in-slice deployment
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model considers that the MEP is deployed inside the slice (C4). In both models,
the MEP is deployed as a Virtual Network Function (VNF). Security and privacy
(C5) concerns have also been addressed. The authors state that each slice should
not access the traffic or other information owned by other slices. For example,
slices should not access information about the users of another slice, such as their
location or channel quality. Multi-tenancy has been addressed, which is related
to federation concepts, but from a single provider perspective instead of a multi-
provider one. Cited works are adequate alternatives for security enhancement in
future MEC infrastructures.

C.3.3 Fog Computing (FC)

Figure C.4 High-level view of a Fog Computing environment [50].

Cisco has introduced the FC paradigm [61] in 2012 as an extension of cloud com-
puting to provide resources on network edges to handle the massive growth of
connected devices. Fig. C.4 presents a high-level view of a hierarchical FC ar-
chitecture. In contrast to a centralized cloud, fog nodes are distributed across the
network to act as an intermediate layer between end devices and the cloud. These
so named fog nodes or edge locations are essentially small cloud entities that bring
processing power, storage, and memory capacity closer to devices and end-users.
This enables local operations, crucial for most IoT use cases to reduce the amount
of data that needs to traverse the entire network up to the cloud. By deploying
services at the network edge, FC can also provide lower latency than traditional
clouds. FC and MEC are close concepts [62] differing in the considered interac-
tions (i.e. between edges and cloud): MEC deploys services close to end-users
to reduce latency and avoid congestion in the network core, while FC considers
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bi-directional communications between edges and cloud due to the hierarchical
architecture.

Novel FC architectures have been recently proposed, as in [45]. Sookhak, M.,
et al. have introduced a novel concept named Fog Vehicular Computing (FVC)
to expand the computation and storage capacity of FC architectures. The authors
describe a complete cross-layer architecture for FVC and introduce several compo-
nents alongside a decision-making process for task scheduling. A Shopping Mall
FVC use case has been evaluated, demonstrating the effectiveness of the proposed
architecture. The feasibility of extending FC towards vehicles has been studied
(C1). The evaluation has shown that deploying resources on vehicles could en-
hance a standard FC architecture. The authors state that their FVC architecture
aims to improve the scalability of an FC infrastructure (C2). Different hardware
capacities have been considered for fog nodes, which satisfies heterogeneity (C8).
Throughput (C9) has also been evaluated in the context of communication costs at
the fog layer. Their work compares an FC and their FVC architectures. The authors
intend to focus on user security and privacy as future work, especially in terms of
secured data access control and data encryption in FVC. In [46], Moreno-V., R.,
et al. have presented a Hybrid Fog and Cloud (HFC) framework to optimize the
automated provisioning of virtual networks to connect geographically distributed
fog and cloud sites. The approach adopts an agent-based solution allowing in-
teraction with different cloud providers and fog infrastructures while providing
scalability, security and multi-tenancy. The authors state that L2 overlay networks
present advantages over L3 overlay networks, including native support for mobility
(C1) and migration. Hosts in different sites will share a common overlay address-
ing scheme, enabling host migrations with minimal reconfiguration. Their HFC
framework supports different topologies (e.g. tree or mesh), enabling the addition
or removal of a fog or cloud location with minimal configuration (C2). The authors
have also stated that it is necessary to guarantee data privacy and integrity in a hy-
brid environment (where the interconnection of different cloud and fog sites runs
over public networks) by implementing the overlay networks over secure commu-
nication channels (C5). The authors remark that the reliability (C7) of the overlay
network can be increased if HFC agents are deployed in a high-availability cluster
that shares a common routing public IP. The authors support their HFC framework
stating that tenants can deploy a virtual network over heterogeneous fog infras-
tructures and clouds (C8). A PoC of the HFC framework has been implemented
to assess the throughput (C9) of L2 and L3 overlay networks. The HFC frame-
work has also been designed to support multiple application providers and tenants
(C10). Each provider can instantiate its applications and virtual networks to pro-
vide services to its end-users. Both works propose suitable FC-based architectures
to manage a large number of connected devices and support low latency services.

Several works have also studied the integration of SDN concepts into FC to over-
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come scalability issues. In [47], Sharma, P. K., et al. have presented a distributed
cloud architecture based on SDN and BC for secure and on-demand access to IoT
services. The authors adopt SDN and BC to design a highly scalable architecture
for IoT (C2). Leveraging BC technology, user privacy can be assured since third-
party entities do not access or control user data (C5). Each user manages its own
security keys, and each node stores only encrypted fragments of user data. Simula-
tions have evaluated the accuracy of their architecture in detecting and mitigating
saturation attacks at the edge of the network. Moreover, the authors state that if
nodes fail, the computation should continue on another node to maintain resilience
(C6) levels. The authors have also implemented a scheduling algorithm to match
users’ preferences, with reliability (C7) as a decisive factor. In the evaluation,
nodes with different computing capacities have been considered (C8). Evaluations
have assessed the delay, response time, throughput (C9), and the ability to detect
real-time attacks of their approach. Results have shown that their approach pro-
vides higher throughput than traditional cloud infrastructures. The authors propose
to focus on energy-efficient communications for edge devices as future work. In
[48], Bruschi, R., et al. have discussed an SDN-based slicing scheme for multi-
domain fog-cloud services. The approach has been designed with high scalabil-
ity (C2) in mind, minimizing the number of OpenFlow (OF) rules in the overlay
implementation. Their SDN scheme implements NS to provide service isolation
(C4). Heterogeneity (C8) has often been addressed (e.g. nodes geographical distri-
bution, different QoS requirements). Solving scalability concerns will definitively
help adopting these novel architectural paradigms.

IoT and Smart City services have been thoroughly studied in the FC domain. In
[49], Baccarelli, E., et al. have proposed to integrate FC and IoE, describing the
main building blocks of a Fog of Everything (FoE) platform. The authors state
that fog nodes should be arranged into spatial clusters to serve mobile devices
through single-hop links to deal with high mobility patterns (C1). The authors
state that the fog layer of the FoE platform should handle resource scalability
(i.e. computing, storage, and network) of most big data applications (C2). The
authors suggest that inter-device communications should occur through Device-
to-Fog (D2F) links in place of Device-to-Device (D2D) links to reduce energy
consumption (C3). The performance of the FoE architecture in terms of delay and
energy, compared to a typical D2D architecture, has been evaluated. Results have
shown that FoE achieves lower delays and higher energy efficiency. The authors
also propose to implement Transmission Control Protocol (TCP) NewReno [63] to
guarantee reliable E2E connections, even when facing network congestion or link
failures (C7). Heterogeneous devices and network topologies have been assessed
(C8). The energy assessment of the FoE architecture has also been made based
on the average throughput (C9) of all established connections (e.g. F2D). Lastly,
in [50], an FC framework for autonomous management and orchestration in 5G-
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enabled Smart Cities has been proposed. The approach follows the guidelines of
ETSI NFV MANO, extending it with software components towards a fully inte-
grated fog node management system. A Peer-to-Peer (P2P) fog protocol has been
presented to exchange application service provisioning information between fog
nodes. The work also follows guidelines defined by ETSI oneM2M [64] to mon-
itor mobility patterns (C1) and provide proper device management and security
(C5) functionalities. FC enables distributed malware monitoring tools to compen-
sate for IoT devices’ limited security and detect threats and attacks on time. Energy
efficiency (C3) has also been discussed in the context of resource-constrained IoT
devices and proper resource allocation. A distributed anomaly detection approach
for FC has also been introduced to avoid transmissions of incorrect information
and improve network reliability (C7). This anomaly detection scheme has been
evaluated based on a heterogeneous (C8) fog-cloud environment. The cited works
address important challenges for low latency service delivery by focusing on IoT
concerns: mobility support, network reliability and interoperability between het-
erogeneous devices and environments.

C.3.4 Micro-services

Figure C.5 An example of a Surveillance camera use case based on the micro-
service architecture.

Recently, micro-service patterns [65] have gained tremendous attention. Container-
based services revolutionized the way developers build their applications. An ap-
plication is decomposed into a set of loosely coupled services that are developed,
deployed and maintained independently. Each service is responsible for a sin-
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gle task and communicates with the other services through lightweight protocols.
These services can be developed in different programming languages and even us-
ing different technologies. Containers are currently the most promising alternative
to the traditional monolithic application paradigm, mostly centralized and code-
heavy. Containers are the main alternative to conventional VMs due to their low
overhead and high portability. Fig. C.5 presents a high-level view of a Surveillance
camera use case envisioned for Smart Cities based on the micro-service paradigm.

Security has been a major concern in micro-service architectures. In [51], Brenner,
S., et al. have focused on integrating trusted execution based on Intel Software
Guard Extensions (SGX) into micro-services. Their approach increases privacy
and data confidentiality to sensitive applications deployed through micro-services
(C5). By integrating SGX into the micro-service toolkit, the authors achieve higher
levels of security. Results have proved the feasibility of their approach while show-
ing low-performance overheads. Response time and throughput (C9) evaluations
demonstrate equivalent throughput levels between secured micro-services and reg-
ular ones. In [52], Guija, D., et al. have proposed a 5G platform with integrated au-
thentication and authorization features for micro-services in an NFV environment.
Their architecture adopts the NFV-based SONATA Service Platform, which offers
continuous integration and management of the entire VNFs life cycle. Keycloak
[66], an Identity and Access Management open-source tool, has been proposed to
isolate each sub-component in their architecture and ensure higher scalability (C2).
The authors note the importance of sub-component isolation (C4) while proposing
several authentication and authorization mechanisms (C5). A user management
module has been presented to handle identities, permissions, and authorizations,
allowing or denying operations to users or internal components. Cited works show
that micro-services can efficiently secure and isolate future applications.

Architectural enhancements have been addressed in [53]. Xu, R., et al. have
presented a BC-based decentralized architecture named BlendMAS for IoT-based
public safety systems. Authentication and access control models have been trans-
coded into smart contracts deployed on private BC networks. All security mech-
anisms aim to improve system security and offer higher scalability (C2) and flex-
ibility. The authors state that leveraging BC technologies establishes secure user
relationships over computer networks (C5). A PoC of the BlendMAS architec-
ture has been evaluated based on a surveillance use case where micro-services
are deployed on distributed edge and fog nodes. A distributed network environ-
ment with a large number of heterogeneous (C8) devices (i.e. cameras, laptops,
desktops, Raspberry Pis) has been considered. In [54], Debauche, O., et al. have
presented an edge-based architecture to deploy AI algorithms and models for IoT.
The architecture has been implemented in Kubernetes [67], a well-known con-
tainer orchestration platform. Their architecture provides several benefits such as
lower latency and higher scalability (C2) than traditional cloud infrastructures. It
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also supports several different types of micro-services, enabling ML features at
the edge (C8). The authors propose studying cluster federation as future work.
Micro-services promise to relieve the burden of costly service deployments from
traditional VMs.

C.3.5 Hardware Acceleration

Hardware acceleration [68] has become a promising research field to mitigate per-
formance degradation and latency introduced by network softwarization. Soft-
warized NFs have revolutionized network infrastructures by providing higher flex-
ibility, higher portability, and reconfigurability. However, migrating conventional
hardware functions towards softwarized VNFs is challenging. Recent works ad-
dress current barriers to meet the flexibility and scalability demands of modern
communication networks. In [55], Zhang, X., et al. have designed a hardware-
based approach for NFV. It provides high scalability (C2) and programmabil-
ity while supporting hardware-level parallelism and reconfiguration. The authors
state that it is important to install each software component into a VM to isolate
(C4) customized NFs. Their platform consists of heterogeneous (C8) middleboxes
adopting both FPGAs and microprocessors to implement NFV operations, dynam-
ically customizing specific network flow needs. Latency and throughput (C9) of
both FPGA and VM module implementations have been evaluated.
Recently, hardware-accelerated platforms have focused on Neural Networks (NNs).
In [56], Umuroglu, Y., et al. have presented Finn, a framework for building fast and
flexible FPGA accelerators. The authors adopt binarized NNs to achieve higher
performance in Tera Operations per second (TOPS) on FPGAs. Their evaluation
demonstrates the performance and energy efficiency (C3) of binarized NNs for
image classification. A heterogeneous (C8) streaming architecture has been de-
signed, in which a custom architecture is built for a given topology rather than
scheduling operations on top of a fixed architecture. Separate compute engines
are dedicated to each layer, communicating via on-chip data streams. Results have
shown benefits in classification throughput (C9), FPGA resource usage and power
consumption. In [57], Cai, R., et al. have proposed VIBNN, an FPGA-based
accelerator for bayesian NNs. A deep pipelined architecture achieving high scal-
ability (C2) and efficient memory access has been designed. Results have shown
that VIBNN can reduce energy consumption (C3) while attaining high throughput
(C9) levels. Lastly, Owaida, M., et al. [58] have explored an FPGA-based acceler-
ator to improve the overall performance of data processing pipelines. The authors
focus on decision tree ensemble methods, a common approach to score and clas-
sify search systems. Results have proved the high scalability (C2) and throughput
(C9) of their approach. Hardware impacts the performance of softwarized NFs.
All cited works show adequate enhancements to support future VNFs.
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C.3.6 Summary

Section 4.5 introduces novel research on architectural paradigms enabling the de-
ployment of service chains on a continuum of virtual resources. ETSI MEC
has been designing a reference architecture for future mobile networks, creat-
ing a cloud environment close to the RAN while FC is placing resources at the
edge to meet the strict requirements of IoT. Micro-services are transforming ser-
vice deployments from a traditional monolith to loosely-coupled containers, while
hardware-based accelerators are pushing the boundaries of hardware platforms to
support softwarized NFs. The literature review has shown differences in the evalu-
ation criteria. MEC and FC mainly discuss Mobility (C1), while FC, micro-service
and hardware acceleration focus on Scalability (C2). Mobility support and service
migration are open challenges in MEC and FC. Without efficient migration strate-
gies, low latency service delivery cannot be achieved. Energy efficiency (C3) and
Isolation (C4) are unexplored in MEC and FC, while Security (C5) is the main fo-
cus of micro-service research. Micro-services establish security guarantees while
offering flexible service deployments. Resilience (C6) is unexplored in all do-
mains, while FC and MEC address Reliability (C7). All domains address Het-
erogeneity (C8), while Throughput (C9) is more noticeable in FC and hardware
acceleration. Hardware-based platforms improve the performance of softwarized
NFs, supporting high throughput levels while attaining low latency. Federation
(C10) concepts are unexplored, though authors acknowledge their importance.

C.4 Recent advances on communication networks
for low-latency services

C.4.1 Overview

Novel networking paradigms have opened several possibilities for improving net-
work performance, including higher flexibility and scalability. Recent trends bring
software-based automation to current networks: NS, SFC, IBN and SR. Table C.5
presents a summary of the reviewed works.

C.4.2 Network Slicing (NS)

NS [91] implements independent E2E logical networks on top of physical infras-
tructures. A slice is a virtual network implemented on top of physical nodes, cre-
ating the illusion of operating its dedicated physical network. NS allows high
flexibility, improved resource allocation and increased service isolation by phys-
ically separating network resources. NS has gained significant attention with the
advent of 5G. In [69], Campolo, C., et al. have designed 5G network slices for
V2X services, addressing mobility (C1) management for V2X slices. The authors
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Table C.5: Summary of the reviewed works in terms of Network.
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state that mobility prediction models help to optimize caching strategies for vehi-
cles. Isolation (C4) strategies have been discussed, such as intra-slice and inter-
slice V2X isolation. The authors remark that life cycle management configuration,
adaptation, and monitoring are essential to meet slice isolation constraints and
QoS levels. Retransmissions are handled locally by each vehicle in autonomous
driving slices to match high-reliability and ultra-low-latency requirements (C7).
Heterogeneity (C8) has been satisfied through different requirements (e.g. latency,
bandwidth) for different slice types (e.g. URLLC, xMBB). Throughput (C9) has
been discussed for distinct slices. The authors state that large Transmission Time
Intervals (TTIs) (e.g. 1 ms) should be used for throughput-demanding applica-
tions, while short TTIs (e.g. 0.125 ms) can be used for fast retransmissions in
teleoperated driving slices. In [70], Ksentini, A., et al. have proposed a framework
to enforce NS in RAN. It focuses on separating network traffic towards the appro-
priate core and uses a two-level scheduler to adapt the resource allocation policy
according to the slice’s needs. Their architecture shares the usage of logical chan-
nels and their mapping to Evolved Packet System (EPS) bearers with legacy LTE.
The main difference lies in abstracting physical resource blocks through a slice re-
source manager responsible for allocating resources for each User Equipment (UE)
belonging to its slice (C4). The authors state two important factors for resource
allocation in URLLC slices: latency and reliability (C7). To maximize the latter,
the authors suggest adapting the modulation and coding scheme used by UEs to
improve robustness to channel errors. Thus, robust modulations should be favored
over high data rate modulations. Heterogeneity (C8) has also been studied through
different slice requirements (e.g. latency, bandwidth, reliability). Throughput (C9)
has also been evaluated. Results show that Extreme Mobile Broadband (xMBB)
slices achieve the highest throughput while URLLC slices achieve the least levels
since this slice focuses on maximizing reliability. The authors propose to study the
scalability of the two-level scheduler as future work.

5G use cases have been customized based on NS. In [71], Taleb, T., et al. have
personalized mobile networks at different granularity levels (e.g. application, net-
work, group of users). An architecture named PERMIT has been presented, con-
sidering user mobility (C1), usage behavioral patterns, and underlying dynamics of
the infrastructure for service customization. The authors state that users are aggre-
gated in the same slice when sharing a service or behavior due to scalability (C2)
reasons, and to isolate (C4) usage profiles and avoid security (C5) breaches. In
[72], Popovski, P., et al. have studied non-orthogonal sharing of RAN resources in
uplink communications from a set of enhanced Mobile Broadband (eMBB), mas-
sive Machine-Type Communication (mMTC), and URLLC devices to a common
BS. NS has been investigated for RAN access (C4). A communication-theoretic
model has been presented, considering heterogeneous requirements for the three
services (C8). The reliability diversity concept has also been introduced as a de-
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sign principle that leverages reliability requirements across all services, ensuring
the performance of non-orthogonal RAN slicing (C7). Reliability and throughput
(C9) levels have been evaluated. 5G has encouraged academia and industry to
implement NS for future use cases, allowing service personalization and isolation.

C.4.3 Service Function Chaining (SFC)

Figure C.6 An example of a service chain deployment [92].

SFC [93, 94] has been studied in network management over the last few years.
A service chain concerns proper service ordering. Fig. C.6 shows how each user
has to traverse the service chain to access a network service. The circles rep-
resent different services while the arrows show how traffic is steered in the net-
work. User requests are routed through the service chain following a service
graph, which aims to improve resource allocation and application performance.
SFC is a flexible and reliable alternative to dynamically reconfigure softwarized
services without replacing hardware. SFC has been recently applied to reduce
latency in softwarized VNFs. In [73], Qu, L., et al. have proposed a reliability-
aware provisioning approach with delay guarantees for NFV-enabled Data Center
(DC) networks. A Mixed-Integer Linear Programming (MILP) formulation opti-
mizes VNF placement and traffic routing focused on maximizing reliability and
reducing E2E delays. A heuristic has also been introduced to overcome the MILP
complexity and consequent high execution time (C2). Several constraints satisfy
reliability (C7) guarantees considered by the authors. Throughput (C9) has been
evaluated for both methods. Results have shown that their heuristic outperforms
existing schemes in average E2E delays and reliability at the expense of additional
bandwidth and resource usage. In [74], Zhang, L., et al. have designed and imple-
mented network coding as an NF in VMs for geo-distributed cloud DCs, propos-
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ing efficient algorithms for deploying and scaling network coding functions. The
authors aim to improve network reliability (C7). Results have shown increased
throughput (C9) and higher robustness of multicast sessions. Also, SFC concepts
have been adopted in SDN-based approaches as in [75]. Trajkovska, I., et al. have
proposed an SDN-based SFC mechanism with performance and scalability (C2) in
mind, designed to ensure tenant isolation (C4). A prototype has been evaluated in a
real DC, where the impact of heterogeneous (C8) environments has been assessed.
Throughput (C9) levels have been evaluated for distinct chain scenarios based on a
video traffic use case. Low latency SFC is essential for future applications. Cited
works have developed adequate mechanisms to ensure SFC performance and scal-
ability.

Another challenge is SFC allocation and placement. In [76], Jang, I., et al. have
studied optimal SFC allocation and flow routing. A multi-objective MILP model
has been proposed to maximize the acceptable flow rate and to minimize energy
costs for multiple service chains. A polynomial-time algorithm based on linear
relaxation has also been presented to approximate the optimal solution provided
by the MILP model. The energy cost minimization has been modeled as one of
the objectives (C3). Results have shown that their polynomial algorithm obtains
near-optimal performance and increases the acceptable flow rate (i.e. throughput
(C9)) and service capacity compared to other algorithms. In [77], Bhamare, D.,
et al. have presented an ILP model for SFC allocation in a multi-cloud scenario.
An Affinity-based approach (ABA) has been proposed for large networks. De-
ployment costs have been considered in the formulation, leading to energy savings
(C3). Their heuristic has been compared to greedy algorithms. Results have shown
that the ABA algorithm outperforms greedy heuristics in total delays and total re-
source cost. The evaluation assesses traffic loads (C9) and considers multi-cloud
environments (C10). In [78], Hawilo, H., et al. have proposed a MILP model
and a heuristic algorithm for VNF placement. The authors study the carrier-grade
nature of NFV applications and the minimization of E2E delays in service chains.
Their evaluation considers scalability (C2) requirements. The authors state that if
delay constraints are violated, the scalability and the traffic offloading capacity of
the service chain are affected. The approach enhances the reliability (C7) and the
QoS of the service chain by maximizing the number of participating members in
a functional group of a VNF instance. Heterogeneity (C8) has also been satisfied
through heterogeneous VNF structures and distinct placement requirements (e.g.
scalability, E2E delay). SFC has also been studied for latency reduction in future
use cases, such as Tactile Internet in [79]. Xiang, Z., et al. have investigated the
feasibility of NFV concepts to offer low latency for Tactile Internet. The authors
have designed a management framework for distributed SFC in MEC, implement-
ing multiple VNFs in parallel to evaluate its scalability (C2) and flexibility. Their
framework considers a virtualized networking overlay on top of the physical in-
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frastructure, where multiple VMs are connected to and isolated from each other
(C4). The authors adopt encryption methods to ensure data confidentiality and
integrity (C5). Heterogeneity (C8) has been addressed through different network-
ing components (e.g. physical networks, virtual overlays). The trade-off between
per-packet latency and throughput (C9) has been evaluated. Their approach re-
duces packet throughput to achieve shorter per-packet latency, required for typical
Tactile Internet applications with a 1 ms round-trip delay budget. Efficient SFC
placement and routing is currently the main challenge. Solving these issues will
lead to flexible service deployments supporting low latency services throughout
their execution.

C.4.4 Intent-based Networking (IBN)

IBN [95] has been recently proposed to communicate intents to the network. In-
tents are policies written in high-level operational or business objectives that a
system should meet. The main idea behind IBN is to communicate to the system
how it should behave without detailing how it could achieve the objective. The
intent is enforced in the infrastructure by the system, free from human interven-
tion. An Internet Engineering Task Force (IETF) working group has been defining
concepts, specifications and functionalities of IBN [96]. IBN aims towards au-
tonomous networks, simple to manage with minimal human intervention powered
by ML and AI. IBN concepts have been recently incorporated into management
and orchestration practices, including SDN-based platforms. In [80], Cerroni, W.,
et al. have proposed a reference architecture and an intent-based Northbound Inter-
face (NBI) for E2E service orchestration across multiple domains. The scalability
(C2) of the NBI response time has been assessed at the Virtual Infrastructure Man-
ager (VIM) implemented in ONOS [97], an open-source SDN controller. Two QoS
features have been evaluated: low latency and high reliability (C7). The approach
has been validated in a heterogeneous (C8) multi-domain (C10) testbed (i.e. IoT,
OpenFlow, and cloud) based on an IoT use case. In [81], Arezoumand, S., et
al. have presented an intent framework named MD-IDN for multi-domain cloud
infrastructures. Compilation algorithms have been proposed to achieve high scal-
ability (C2) in multi-domain networks. The authors remark that isolation (C4) is
crucial in multi-domain environments, thus, intent frameworks must avoid cross-
contamination of intents requested by different tenants. Their algorithms have
been assessed over heterogeneous (C8) and multi-domain (C10) networks. Dis-
tinct infrastructural nodes have been considered (e.g. VMs, FPGAs, and GPU
servers). Results have shown that the MD-IDN framework outperforms current
practices that compile intents over a flat network topology. In [82], Szyrkowiec,
T., et al. have presented an architecture for automatic intent-based provisioning
of security services through a multi-layer SDN Orchestrator. Their orchestrator
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defines a lightweight NBI, specifying application needs focused on security (C5)
configurations. Encryption layer properties have been analyzed regarding latency,
throughput (C9), flexibility, and protocol transparency. Cited works show that IBN
revolutionizes orchestration practices, enabling highly automated networks.
IBN concepts have also been combined with NS in [83]. Abbas, K., et al. have
designed an IBN slicing system to manage core and RAN resources. Users can
set intents and their system configures the network accordingly. A DL model for
resource management has also been presented. NS has been applied together with
IBN to efficiently handle RAN and core resources in 5G networks (C4), consid-
ering different slices (i.e. eMBB, IoT, and URLLC) (C8). The uplink and down-
link throughput (C9) achieved by the three slices have been assessed. Lastly, pri-
vacy concerns have been addressed in [84]. Wang, Y., et al. have presented an
intent prediction-based approach named LocJury to preserve location privacy in
Internet-of-Vehicles (IoV). Their method estimates the intent of location access
and restricts malicious attempts. Mobility (C1) plays a major role in preserving
location information in IoV. LocJury applies ML and IBN to learn the motivation
behind location accesses and restrain suspected malicious attempts. Results have
shown that LocJury preserves vehicles’ location privacy (C5).

C.4.5 Segment Routing (SR)

SR [98] leverages the source routing paradigm. A node steers a packet through
an ordered list of instructions, named segments. A segment can be composed of
any type of instruction (e.g. topological or service-based information), which is
then placed as path state information into a packet header at an ingress node. Sev-
eral segments create unconstrained network paths represented by segment lists.
Information flows from packet headers, making nodes stateless and significantly
reducing forwarding tables complexity, simplifying traffic engineering and man-
agement across network domains. SR is highly responsive to network changes,
making networks more agile and flexible. SR has already been explored in SDN
and multi-domain scenarios. In [85], Pang, J., et al. have presented a collaboration
method of multipath TCP (MPTCP) and SR to address resource consumption in an
SDN-based DC Network (DCN). The authors combine MPTCP and SR to reduce
forwarding rules required in SDN-based MPTCP solutions. The authors prove that
their approach cannot meet the increasing transmission demand in highly scalable
scenarios (C2) in a single-controller mode due to the packet header size limitation
in SR. In contrast, it can significantly reduce storage, minimizing energy consump-
tion (C3). Simulations have shown that high throughput (C9) is achieved while
reducing flow completion time and improving link resource usage in SDN-based
DCNs. The authors propose to investigate multi-controller environments as future
work. In [86], Giorgetti, A., et al. have focused on two relevant SR use cases:
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dynamic traffic recovery and traffic engineering in multi-domain networks. The
scalability (C2) of the segment list depth has been assessed. The experiments con-
sider a multi-domain (C10) heterogeneous (C8) testbed exploring an SDN-based
implementation of SR.

Performance and scalability are major concerns in SR. In [87], Cianfrani, A., et
al. have faced the challenge of transitioning from a pure IP network to a full SR
system while optimizing network performance. The authors have proposed an ar-
chitecture named SR Domain (SRD) to ease the coexistence between IP routers
and SR nodes. A MILP formulation has been introduced for the SRD design prob-
lem by reducing congestion. Their performance study has shown that the SRD
approach can reduce the maximum link usage and increase system stability. Con-
sequently, higher scalability (C2) is achieved. Heterogeneity (C8) has also been
studied in hardware routers (IP routers and SR nodes). In [88], Desmouceaux,
Y., et al. have presented the concept of 6LB, a load balancer running exclusively
within the IP forwarding plane. It applies IPv6 SR to direct data packets from
a new flow through a chain of candidate servers. The authors propose a consis-
tent hashing algorithm and an in-band stickiness protocol to reliably distribute
6LB across several instances for scalability purposes (C2). Simulations have as-
sessed the consistent hashing algorithm resiliency (C6). By adopting the power of
two choices [99], 6LB significantly increases reliability (C7) compared to single-
choice approaches. Packet-forwarding performance assessment shows that higher
fairness comes at a negligible cost of CPU overhead. Throughput (C9) levels have
been compared to single choice load-balancing approaches. In [89], Chunduri, U.,
et al. have designed the Preferred Path Routing (PPR) concept to overcome SR
limitations. PPR minimizes the data plane overhead (e.g. packet processing) by
extending it for IP data planes without replacing existing hardware or even upgrad-
ing the data plane. PPR allows dynamic path QoS reservations by providing de-
terministic queuing latency. Scalability concerns (C2) have been discussed since
PPR requires a separate PPR-ID for every possible path. The authors state that
they do not expect deployment issues in a practical setting since the total number
of preferred paths can be easily supported by network devices. The authors also
propose studying fast rerouting and path resiliency schemes as future work. In
[90], Aubry, F., et al. have introduced Robustly Disjoint Paths (RDPs): pairs of
paths that remain disjoint even after an input set of failures, with no external in-
tervention. The authors have designed efficient algorithms to compute SR-based
RDPs. Evaluations on real network topologies have shown that RDPs achieve high
scalability (C2) and reliability (C7) in large ISP networks. Fault tolerance (C6) has
been assessed through single and multiple link failure experiments. Novel routing
paradigms aim to improve the reliability and resilience of current networks. Cited
works prove that SR is suitable for addressing multi-domain challenges in future
networks.
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C.4.6 Summary

Section C.4 presents novel research paradigms on communication networks. NS
enables higher levels of flexibility and isolation, while SFC optimizes resource
allocation through proper service ordering. IBN communicates intents to the net-
work, thus, enforcing rules without detailing how the system should obtain them.
SR revolutionizes the routing paradigm since it leverages the source routing para-
digm to move information in the network in packet headers, making nodes state-
less. The literature review shows that NS discusses Mobility (C1), while SFC fo-
cuses on Scalability (C2) and Energy efficiency (C3). NS also deals with Isolation
(C4). Both NS and SFC are important for low latency service delivery. On the one
hand, NS allows the setup of different QoS levels for distinct applications. On the
other hand, SFC brings high degrees of flexibility and reconfiguration, optimizing
service placement and traffic flow. IBN addresses Security (C5) concerns, while
SR studies Resilience (C6). SR and IBN enable network automation features that
will ensure proper management and orchestration of multi-domain environments.
Both concepts enable high automation but also attain high performance and scal-
ability, fully supporting low latency services. Reliability (C7) has been explored
in NS, SFC and SR, while Heterogeneity (C8) has been discussed in NS, SFC and
IBN. SFC also focuses on Throughput (C9). Federation (C10) is still unexplored in
these research domains, but authors acknowledge its importance in multi-domain
environments.

C.5 Towards efficient orchestration in cloud-native
infrastructures

C.5.1 Overview

Cloud-native infrastructures have imposed strict specifications on management
functionalities. This section presents trends on orchestration: resource alloca-
tion, auto-scaling, performance monitoring and caching. Table C.6 summarizes
the reviewed works.

C.5.2 Resource Allocation

Resource allocation, also known as resource provisioning, has been studied for
years in the network management domain [123, 124]. It concerns the provision-
ing of computing, network and storage resources required to instantiate services
requested by users and devices over the Internet. Recently, cloud providers and
users have been working together towards an efficient allocation of computing re-
sources. Users expect the best QoS at the cheapest rate while cloud providers aim
to increase their revenue and respect the agreed QoS level. With the advent of
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Table C.6: Summary of the reviewed works in terms of Orchestration.
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IoT and low latency services, resource allocation has become even more impor-
tant. Delay-sensitive services (e.g. connected vehicles, XR) require latency in the
order of milliseconds that centralized infrastructures cannot support, thus, requir-
ing efficient allocation in a continuum of virtual resources. Allocation strategies
for vehicular networks and IoT contexts have been studied. In [100], Liang, L.,
et al. have investigated spectrum sharing and power allocation for D2D vehicular
networks. The authors state that fast channel variations caused by high mobility
(C1) in a vehicular environment need to be considered in allocation scheme design.
Also, different QoS requirements for Vehicle-to-Infrastructure (V2I) and Vehicle-
to-Vehicle (V2V) links have been studied. The authors state that high link capacity
is desired for V2I connections, while safety-critical information of V2V connec-
tions places greater emphasis on link reliability. Their scheme includes reliability
(C7) guarantees for D2D users. The heterogeneous (C8) performance of V2I and
V2V links for resource allocation purposes has been studied. The maximization
of the overall V2I link throughput (C9) has been included as an optimization ob-
jective. In [101], Arkian, H. R., et al. have presented a fog-based scheme named
MIST for cost-efficient resource allocation of crowdsensing applications in IoT.
Firstly, the authors propose a Mixed-Integer Nonlinear Programming (MINLP)
model. To tackle its inherent high computational complexity, the MINLP model
has then been linearized into a MILP formulation. The authors have studied the
joint optimization of data consumer association, task distribution, and VM place-
ment issues towards minimizing the overall cost (C3) while satisfying QoS levels.
Heterogeneity (C8) has been satisfied through distinct fog nodes (e.g. routers, ac-
cess points) and different wireless connectivity (e.g. 4G and Wi-Fi). In [102],
Santos, J, et al. have presented an ILP formulation for IoT service placement. The
model considers multiple optimization objectives, such as low latency and energy
efficiency (C3). Smart City use cases with different placement requirements and a
fog-cloud infrastructure with distinct hardware capabilities have been considered
(C8). In [103], Yao, J., et al. have addressed the joint optimization of resource
allocation and power control in FC to minimize the overall system cost while sat-
isfying QoS requirements. The authors have formulated the problem as an MINLP
model and then presented an approximation algorithm to solve it. The authors dis-
cuss mobility (C1) management in IoT when maintaining QoS levels. To manage
device mobility in fog-aided networks, the authors state that its transmission power
can be adapted and that handovers between different IoT gateways and VM migra-
tions should be performed to meet QoS requirements. Simulations have evaluated
power control and system cost (C3), based on multiple applications with different
QoS requirements (C8).

Resource allocation has also been investigated in SDN and access control in mobile
networks. Podili, P., et al. [104] have introduced a resource provisioning approach
for virtual networks in SDN focused on E2E delay and bandwidth. Results have
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shown improvements in availability, scalability (C2), and cost-effectiveness (C3).
The authors propose a destination label forwarding mechanism to reduce the num-
ber of flow rules in SDN switches: a unique set of labels is assigned to each virtual
network, thus, ensuring traffic isolation (C4). In [105], Zhang, H., et al. have
studied the problem of energy-efficient user scheduling and power optimization in
Non-Orthogonal Multiple Access (NOMA) networks. The trade-off between data
rate performance and energy consumption (C3) has been assessed for wireless
downlink communications in heterogeneous (C8) NOMA networks. Results have
demonstrated improved energy consumption and user throughput (C9). In [106],
Zhou, Z., et al. have proposed a two-stage access control and resource allocation
algorithm for Machine-to-machine (M2M) communications in industrial automa-
tion. Firstly, a contract-based mechanism motivates delay-tolerant devices to post-
pone their access voluntarily. Then, a long-term cross-layer online resource alloca-
tion model jointly optimizes rate control, power allocation, and channel selection
without prior knowledge of channel states. Results have shown improvements in
sensing rate, queue stability, backlog fluctuation and energy efficiency (C3). The
reliability of M2M communications has also been studied in device battery life
as a long-term average power consumption constraint in their model (C7). Their
scheme has been compared with the snapshot-based throughput optimal algorithm
(as baseline), which maximizes physical-layer throughput (C9) without consider-
ing long-term constraints and sensing rate control. Lastly, mobility management
has been studied in [107]. Farhad, A., et al. have presented a mobility-aware allo-
cation scheme for IoT devices (C1) that enhances the Packet Success Ratio (PSR)
by reducing the impact of interference, retransmissions, and packet loss compared
with the LoRaWAN-based Adaptive Data Rate (ADR). Energy consumption (C3),
PSR and reliability (C7) have been evaluated. Their scheme considers traffic het-
erogeneity (i.e. static and mobile end devices) based on the gateway sensitivity
during the initial deployment phase (C8). Simulations demonstrate the feasibility
of their scheme for IoT mobile applications needing high PSR and reliability with-
out high energy consumption. Cited works tackle resource allocation starting from
different points of view: several use cases and multiple requirements.

C.5.3 Auto-scaling

Distributed clouds have revolutionized resource management. On the one hand,
if services need more resources (i.e. under-provisioning), then they should be
added on-demand so that services keep operating. On the other hand, resources
should be released when they are not fully used (i.e. over-provisioning). Service
over-provisioning wastes resources and increases costs, while under-provisioning
schemes degrade performance and violate Service Level Agreements (SLAs). Thus,
automatic mechanisms should scale up and down resources according to the net-
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work demand without human intervention. This is named Auto-scaling [125],
where resources are dynamically added or removed to meet QoS requirements.
Designing efficient auto-scaling systems is not a trivial task due to limited hard-
ware resources, dynamic workloads, diverse service requirements and complex
infrastructures.
Auto-scaling for web applications has been studied in [108]. Aslanpour, M. S., et
al. have proposed a cost-aware auto-scaling mechanism (C2). Their approach fo-
cuses on executing scale-down commands via the selection of surplus VMs, which
are then quarantined for the rest of their billing period to maximize cost efficiency
(C3). The auto-scaling mechanism throughout has been assessed (C9). Results
have shown reduced costs with improved response time and decreased SLA vi-
olations. In [109], Rahman, S., et al. have proposed an ML-based approach for
VNF auto-scaling focused on dynamic traffic changes. The authors have presented
an ML classifier that learns proactive measures from both past scaling decisions
and temporal traffic behavioral patterns (C2). Results have demonstrated that the
ML classifier improves the overall QoS and reduces costs (C3). SFC concepts and
QoS metrics have been recently investigated in terms of auto-scaling. Lee, D., et al.
[110] have proposed an auto-scaling method using RL for scale-in/out of multi-tier
VNF instances (C2). The authors have defined the observation space based on SFC
compositions while Service Level Objectives (SLOs) have been applied to design
the reward function. Throughput (C9) and response time have been considered as
SLOs. Results have shown an optimal number of VNF instances while minimizing
SLO violation. In [111], Lin, T., et al. have studied the inclusion of network met-
rics into auto-scaling and scheduling mechanisms of cloud management systems.
The authors have proposed an architecture that monitors the QoS (i.e. latency and
bandwidth) of their clients. If QoS levels are violated, the auto-scaling system is
activated, and new service instances are strategically deployed to meet QoS levels
(C2). The authors have implemented a multi-tier and multi-tenant testbed, incor-
porating heterogeneous (C8) devices (e.g. sensors, edge devices, DC locations)
that span across geographically spread regions (C10). Efficient auto-scaling pro-
vides higher autonomy as shown by the adoption of ML-based methods.

C.5.4 Performance Monitoring

Performance monitoring relates to the application’s behavioral analysis. Moni-
toring or tracking applications allows service providers to fine-tune the applica-
tion runtime performance while reducing allocation costs. This subsection surveys
trends in performance monitoring research, discussing existing methods and tools
that help to control the application execution and measure the impact of different
infrastructures on their performance.
Containers, VMs and SDN applications have been a major topic in performance
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monitoring. In [112], Moradi, F., et al. have proposed an automated system
for monitoring network performance of container-based applications named Con-
Mon. It identifies newly instantiated containers and passively observes their traf-
fic. Based on these observations, it configures and executes monitoring functions
inside adjacent containers. Consequently, monitoring is isolated from the appli-
cation and does not require instrumenting the image of the container or running
additional processes inside it (C4). The feasibility and scalability (C2) of Con-
Mon have been validated based on container performance and system resources.
The authors have also assessed the impact of passive monitoring on the applica-
tion’s throughput (C9). In [113], Tangari, G., et al. have presented a decentralized
approach for resource monitoring in SDN. Their proposal supports a wide range
of measurement tasks and requirements regarding monitoring rates and informa-
tion granularity levels. The authors have compared their decentralized system to
a centralized approach based on a realistic use case, where a distributed manage-
ment application coordinates a content distribution service in an ISP network. The
trade-off between application reactivity/accuracy and monitoring scalability/over-
head (C2) has been studied. The evaluation has considered requirements stemming
from heterogeneous (C8) management applications. The average flow throughput
(C9) has also been investigated in their monitoring scheme. In [114], Shah, S. Y.,
et al. have studied runtime dependencies among micro-services to detect anoma-
lous behavior and meet SLAs. The authors have proposed a novel method based
on Long-Short Term Memory (LSTM) recurrent NNs to find those dependencies
in heterogeneous (C8) environments (i.e. public/private clouds). The authors focus
on finding the strongest performance predictors, discovering temporal dependen-
cies, and improving the accuracy of forecasting for a given performance metric.
Results have proved its feasibility compared to existing literature methods, such
as Granger causality and classical statistical time series models. Throughput (C9)
levels have been assessed. In [115], Perdices, D., et al. have presented dPRISMA
(distributed Passive Retrieval of Information, and Statistical Multipoint Analysis),
a passive monitoring system generating statistical models for network measure-
ments and raising alarms in case of anomalous behaviors. dPRISMA implements a
distributed data gathering strategy, a promising approach to improve the scalability
(C2) of monitoring systems. dPRISMA has been validated by correlating measure-
ments retrieved from heterogeneous (C8) data sources (e.g. virtual environments,
real-world data sets). SFC performance has also been analyzed in [116]. Sanz,
I. J., et al. have developed a framework for the performance evaluation of SFC
named SFCPerf. Their framework provides flexibility for experimenting with dif-
ferent NFs and virtualization infrastructures. Isolation (C4) has been addressed in
the context of SFC since micro-service isolation has been applied through packet
encapsulation. The authors adopt the Network Service Header (NSH) concept
to perform packet forwarding in the service chain and isolate micro-services. To
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demonstrate the feasibility of SFCPerf, the authors consider a service chain consti-
tuted by virtual security (C5) functions. A service chain composed of an Intrusion
Detection System (IDS) and a reactive firewall has been assessed concerning la-
tency, throughput (C9) and the number of replied HTTP requests. Cited works
show why monitoring tools are crucial for the orchestration life cycle. Without
proper monitoring, performance decreases since adequate procedures are not em-
ployed.

C.5.5 Caching

With the advent of modern wireless technologies and higher demand for multime-
dia services, new challenges have emerged for the support of multimedia content
in next-generation networks. Caching at the edge is a promising approach to alle-
viate the burden on backhaul infrastructures, reduce data transmissions and min-
imize startup latency for multimedia delivery. The aim is to control data traffic
and keep popular content at the edge close to end-users. Caching research has ad-
dressed mobility management in 5G contexts. Chen, M., et al. [117] have studied
caching placement on small cell BSs and mobile devices by leveraging user mo-
bility (C1), aiming to maximize the cache hit ratio. The authors have focused on
delivering content while reducing energy consumption (C3). Results have shown
that their approach improves cache hit ratio and energy efficiency compared to
existing strategies. In [118], Tantayakul, K., et al. have studied a caching pol-
icy focused on mobility (C1) support in SDN networks. Two policies have been
proposed: an on-off policy and an adaptive mechanism. Both methods have been
analyzed for packet loss, channel occupancy, transmission time, throughput (C9)
and bandwidth fairness. Both policies improve SDN mobility regarding packet
loss. The authors state that the adaptive policy outperforms the on-off policy for
latency-sensitive applications. The on-off policy provides long transmission times,
though attaining enhanced channel occupancy, thus suitable for file transfer or me-
dia applications which download all contents before display. In [119], Zhang, K.,
et al. have proposed a cooperative edge caching architecture for 5G MEC. Their
architecture focuses on mobility-aware hierarchical caching, where smart vehicles
act as collaborative caching agents for sharing content operations with BSs (C1).
Heterogeneous (C8) nodes (e.g. vehicles, mobile devices, BSs) have been consid-
ered as potential cache-enabled devices. In [120], Hao, Y., et al. have introduced
the concept of task caching for MEC, referring to the caching of completed task
applications and their related data in edge-cloud infrastructures. The authors have
studied the joint optimization of task caching and offloading through a MILP for-
mulation. The authors have also proposed a heuristic algorithm that reduces energy
costs compared to other schemes based on their simulations (C3). Heterogeneity
(C8) has been satisfied through different task demands, several data sizes, and
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distinct service requirements. Cited works are promising approaches to support
mobility in edge caching schemes.
Security has also been recently discussed. In [121], Xiao, L., et al. have studied
attack models in MEC by focusing on both mobile offloading and caching pro-
cedures. The authors propose RL-based security solutions for safe offloading to
edge nodes against jamming attacks. The aim is to improve the offloading qual-
ity, such as the Signal-to-Noise-plus-Interference Ratio (SINR) and Bit Error Rate
(BER) of the signals received by edge nodes against jamming and interference to
reduce energy consumption (C3). Their scheme reduces energy consumption and
delay in mobile offloading while increasing the SINR of the signals received by
edge nodes compared to benchmark schemes. The authors have also presented
lightweight authentication and secure caching to preserve data privacy (C5). The
authors state that security and data privacy are bottlenecks of MEC due to its het-
erogeneity (C8) in terms of devices (e.g. mobile, edge) and networks (e.g. phys-
ical, virtual). In [122], Cheng, F., et al. have proposed a novel caching scheme
securing UAV-relayed wireless networks via jointly optimizing the UAV trajectory
and time-scheduling. The authors suggest using UAVs as relay nodes for long-
distance communications since they can be deployed on-demand because of their
high mobility (C1) and agility. The authors state that energy consumption (C3),
access delay, and throughput (C9) are essential factors for proper UAV operation.
The authors propose exploiting energy harvesting techniques, such as solar energy,
to provide sufficient energy supply to UAVs for delay-tolerant applications. The
aim is to maximize throughput in multi-UAV networks while reducing their en-
ergy consumption. Simulations have proved the feasibility and efficiency of their
scheme, showing the improved security of UAV relaying assisted networks (C5).
Improving security in caching schemes will lead to its further acceptance in future
networks.

C.5.6 Summary

Section C.5 presents trends on orchestration and management for next-generation
networks. Resource allocation enables proper resource provisioning, while auto-
scaling mechanisms ensure deployed services handle the current demand. Per-
formance monitoring methods study application behavior, while caching research
focuses on improving content delivery and reducing data transmissions, especially
for fog/edge infrastructures. The literature review shows that resource allocation
and caching address Mobility (C1) support, while Auto-scaling focuses on Scala-
bility (C2). Reducing costs and managing multiple heterogeneous devices are open
challenges of provisioning practices. Efficient provisioning is essential to support
low latency service delivery. Energy efficiency (C3) is more noticeable in resource
allocation and caching, while performance monitoring studies Isolation (C4). Se-
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curity (C5) and data privacy is a major concern in caching schemes. Resilience
(C6) is unexplored in all domains, while resource allocation addresses Reliability
(C7). Heterogeneity (C8) is studied in all domains, while auto-scaling focuses on
Throughput (C9) experiments. Auto-scaling systems capable of dealing with dy-
namic demands is a major future research topic. Federation (C10) concepts are
still unexplored. All domains will play their role in the life-cycle management of
containerized applications in future networks.

C.6 Integrating Machine Learning (ML) and Artifi-
cial Intelligence (AI): towards autonomous net-
works

C.6.1 Overview

Over the past years, ML has become an interesting research field in the networking
domain. ML methods have been adapted to traditional network problems. Due to
the integration of ML / AI in network management, self-driving networks may
emerge as a potential solution for inappropriate human intervention. This section
reviews trends in ML/AI: DL, RL and FL. Table C.7 summarizes the reviewed
research.

C.6.2 Deep Learning (DL)

DL [142] is a subset of ML employing artificial NNs to learn complex problems
from large amounts of data. DL methods learn without human supervision and
from both structured and unlabeled data. Recently, DL has been applied to sev-
eral domains, such as object and speech recognition, language translation, and
computer vision. DL has also been recently adapted to traffic load and conges-
tion prediction as in [126]. Tang, F., et al. have presented a DL-based algorithm
for future traffic load and congestion prediction in an SDN-IoT network. Another
DL algorithm has been proposed for channel assignment to avoid congestion in
SDN-IoT. The authors consider a heterogeneous (C8) SDN-IoT network, where
several devices can hardly cooperate, making it difficult to predict the traffic load
sent by all devices. Simulations have demonstrated that their proposal outperforms
conventional channel assignment algorithms regarding delay and throughput (C9).
DL has also been applied to SFC placement and routing. In [127], Pei, J., et al.
have formulated the VNF selection and chaining problem as a Binary Integer Pro-
gramming (BIP) model to minimize E2E delay. The authors have also presented a
DL algorithm for the SFC routing problem. The evaluation has shown that DL
obtains routing paths for SFC requests while achieving higher scalability (C2)
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Table C.7: Summary of the reviewed works in terms of ML / AI.
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compared to existing approaches. In [128], Jiang, F., et al. have proposed DL-
based algorithms for resource scheduling in hybrid MEC networks. The authors
have presented a large-scale path-loss fuzzy c-means algorithm to predict the opti-
mal positions of Ground Vehicles (GVs) and UAVs that help with offloading tasks
(C1). Their goal is to minimize the energy consumption (C3) of UEs by jointly
optimizing the positions of GVs and UAVs, user association, and resource alloca-
tion. Simulations have shown that their framework achieves similar performance
to heuristic methods while reducing CPU execution time for heterogeneous (C8)
MEC networks. In [129], Siasi, N., et al. have presented a DL algorithm for SFC
allocation in FC. Their scheme predicts the popularity of VNFs, mapping the most
popular ones to High-Capacity Fog (HCF) nodes while linking unpopular NFs to
Low-Capacity Fog (LCF) nodes. The authors remark that their strategy provides
significant advantages since cached VNFs are available on nodes close to termi-
nals. Caching alleviates congestion and saves resources by enhancing network
scalability (C2) and capacity without increasing network cost. The authors have
evaluated several performance metrics, including usage rate, network saturation,
energy consumption (C3) and cost, based on a heterogeneous (C8) architecture
composed of HCF and LCF nodes with different resource capacities. Lastly, Ali,
Z., et al. [130] have presented a resource allocation algorithm for MEC named
Power Migration Expand (PowMigExpand). Their algorithm assigns user requests
to optimal servers and allocates optimal amounts of resources to UEs. Their ap-
proach migrates UE requests to new servers when needed due to user mobility
(C1). A DL algorithm for user request allocation has also been proposed, consid-
ering the varying load of incoming requests. The authors have demonstrated the
scalability (C2) of the PowMigExpand algorithm through simulations evaluating
service rate, utility, and energy consumption (C3). Increased performance for a
different number of ME servers and varying traffic has been obtained. The het-
erogeneity (C8) of user requests has been considered. Cited works highlight the
multiple applications of DL algorithms, presenting them as an alternative to solve
several challenges in the network management domain.

C.6.3 Reinforcement Learning (RL)

In recent years, RL has become an important area in ML research [144]. Fig-
ure C.7 represents a typical scenario in RL. RL has been applied to sequential
decision-making. An agent learns to make better decisions from interacting with
an environment, which represents the problem to solve. In the beginning, the agent
knows nothing about the problem at hand and learns by performing actions in an
environment. For each action taken, the agent receives a reward and a new obser-
vation that describes the new state of the environment. Depending on the goal and
how the agent is performing the given task, the reward can be positive or negative.
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Figure C.7 The representation schema of most RL scenarios [143].

The agent learns to be successful by repeated interaction with the environment,
by determining the inherent synergies between states, actions, and subsequent re-
wards. Ultimately, RL algorithms maximize the total reward an agent collects by
experiencing multiple problem rounds. RL has been recently applied to Auto-
scaling in [131]. Chen, L., et al. have addressed traffic optimization in a DC by
applying Deep RL (DRL) algorithms. The authors have proposed a two-level RL
system named AuTO to solve scalability (C2) problems in DCs. Their experi-
ments have assessed homogeneous and heterogeneous (C8) traffic and measured
flow throughput (C9) levels.
RL research has also focused on resource allocation and traffic control. In [132],
Xu, Z., et al. have investigated the application of DL for model-free control
in communication networks, focusing on traffic engineering. Simulations have
shown that DL significantly reduces E2E delay and offers similar throughput (C9)
to baseline methods. In [133], Li, J., et al. have proposed a DRL approach for com-
putation offloading and resource allocation for wireless MEC. The authors have
formulated the total cost of delay and energy consumption (C3) for all UEs as the
optimization objective. Results have shown a significant reduction in the total cost
compared to other baselines. In [134], Li, R., et al. have studied resource man-
agement for NS based on DRL. Simulations have demonstrated the advantages of
applying RL to radio resource slicing and priority-based slicing (C4). Heterogene-
ity (C8) has been addressed in distinct slices (e.g. video, URLLC). In [135], Ye,
H., et al. have developed a decentralized resource allocation mechanism for V2V
communications based on DRL. The high mobility (C1) of vehicles has been ad-
dressed in their scheme. A vehicle or a V2V link can decide which is the optimal
sub-band and power level of transmission without requiring global information
based on the decentralized nature of their approach. Latency and reliability (C7)
requirements for V2V links have been discussed. Heterogeneous (C8) data (e.g.
link interference, channel information) has been included in the observation space
of the RL environment. The authors state that useful information can be extracted
from heterogeneous data, simplifying optimal policy learning. Lastly, Faraci, G.,
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et al. [136] have proposed the extension of 5G network slices with MEC UAVs.
A system controller has been designed to handle job offloading to UAVs based on
DRL. The authors aim to minimize power consumption (C3) and job loss while
considering the mobility of UAVs (C1). An E2E logical network on top of phys-
ical infrastructures enables service isolation based on NS (C4). RL is still in the
early stages but its applicability has already been proved, improving orchestration
practices for low latency services.

C.6.4 Federated Learning (FL)

FL [145] or collaborative learning is a recent ML technique that trains a model
across multiple decentralized edge devices or servers holding local data samples
without exchanging them. The edge devices download the current model from the
central server and update the model based on their local data. Then, these trained
local models are sent back to the central server, where they are aggregated (i.e.
averaging weights) into a single global model that is sent back to all devices. The
main benefit of FL is supporting decentralized learning since training data is kept
locally without being transferred to central locations. Nevertheless, challenges
persist in FL regarding efficient communications since edge devices need to share
small portions of their training execution with the central server without transfer-
ring the complete data set. FL has been recently applied to wireless networks. In
[137], Tran, N. H., et al. have formulated FL over wireless networks as an opti-
mization problem. The authors have studied how the computation and communi-
cation latency of UEs affect their energy consumption (C3) and both learning time
and accuracy. The authors remark on the benefits of FL concerning data privacy
since local data is not shared (C5). Numerical results have quantified the impact
of UE heterogeneity (C8) on the system cost. In [138], Chen, M., et al. have also
applied FL over wireless networks. In their scheme, wireless users train their local
model using their data samples and transmit the trained model to a BS. The authors
have studied the joint problem of wireless resource allocation and user selection
for running FL algorithms. Their formulation aims to minimize the training loss
while meeting delay and energy consumption (C3) requirements.
Privacy concerns have also been recently addressed. In [139]. Qu, Y., et al. have
proposed a BC-enabled FL scheme for privacy preservation in FC. FL enables
decentralized learning while BC allows end devices to exchange model updates
based on a consensus mechanism without any centralized authority. Their FL ap-
proach achieves learning convergence when data sizes are moderate, proving its
scalability (C2). Their scheme has been assessed regarding privacy protection, ef-
ficiency, and resistance to poisoning attacks (C5). In the evaluation, the authors
consider a throughput (C9) model based on the Shannon capacity with a certain
loss. In [140], Zhou, C., et al. have proposed a privacy-preserving FL scheme for
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FC. In their approach, fog nodes collect data from IoT devices to perform learn-
ing tasks, improving training efficiency and accuracy. Differential privacy mech-
anisms and security aggregation methods have been considered to protect device
data and protect devices from collusion attacks (C5). Mobile networks have also
been discussed in [141]. Kang, J., et al. have presented the concept of reputa-
tion as a metric to discover trustworthy nodes in FL. The authors have leveraged
consortium BC for achieving efficient node management without repudiation and
tampering (C5). Results have shown improved reliability (C7) of FL tasks over
mobile networks. Based on reviewed research, FL has become an adequate solu-
tion for user privacy preservation.

C.6.5 Summary

Section C.6 presents trends in ML research being adopted in network manage-
ment. DL has been applied to networking problems based on large data sets, while
RL has studied how to perform tasks by interacting with an environment without
being given any information beforehand. In contrast, FL enables decentralized
learning where data remains local, and each device runs its copy of the model.
The literature review shows that RL and DL focus on Mobility (C1) and Scalabil-
ity (C2). Energy efficiency (C3) is addressed in all domains, while Isolation (C4)
is discussed in RL. FL focuses on Privacy (C5) preservation. Keeping data pri-
vate is a major challenge in future networks. Users will share their information
(e.g. mobility pattern, application preferences) with service providers to receive
higher QoE. Ensuring privacy and security while improving network performance
is a future research topic. Resilience (C6) is unexplored in all domains, while RL
and FL address Reliability (C7). Heterogeneity (C8) is studied in all domains,
while Throughput (C9) is more noticeable in RL. Federation (C10) is unexplored.
Combining these ML trends can lead to fully automated networks with minimum
human intervention. Self-configuration and self-repairing features will strongly
impact the performance of low latency services.

C.7 Security and privacy mechanisms for
cloud-native infrastructures

C.7.1 Overview

Security and Privacy are crucial enablers of emerging use cases in future networks.
Without proper authentication/authorization mechanisms and data privacy solu-
tions, service providers will not benefit from improved technologies since users
will only subscribe to services that protect their privacy and data. This section
discusses trends in security research: BC, CS and TC. Table C.8 summarizes the
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Table C.8: Summary of the reviewed works in terms of Security and Privacy.
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reviewed works.

C.7.2 BlockChain (BC)

BC [161] is a decentralized digital ledger of transactions distributed across a net-
work of nodes based on P2P topologies. A list of transactions is named a block,
which is then linked with other blocks through cryptographic hashes. Nodes keep
a time-stamped series of immutable data records without a central authority. By
design, BC is resilient to data modification since once a block is recorded, data
modifications cannot happen without altering all subsequent blocks. BC is a po-
tential enabler of efficient and secure sharing of information in next-generation
networks due to its decentralized nature. BC has already been studied for IoT
contexts in [146]. Dorri, A., et al. have proposed a lightweight BC-based archi-
tecture for IoT, eliminating overheads of classic BC methods. The authors adopt
a hierarchical structure employing a centralized immutable ledger to reduce over-
head, increase network scalability (C2), and optimize resource consumption (C3).
Evaluations have demonstrated the robustness of their architecture against several
attacks (C5).
BC resilience has also been studied. In [147], Zamani, M., et al. have presented
RapidChain, a sharding-based public BC protocol, and assessed its scalability (C2)
and security (C5). RapidChain is resilient (C6) to Byzantine faults from up to a
1/3 fraction of its participants. RapidChain employs an optimal intra-committee
consensus algorithm achieving high throughput (C9) levels via block pipelining, a
novel gossiping protocol for large blocks. In [148], Alvarenga, I. D., et al. have
proposed a BC architecture for secure management, configuration, and migration
of VNFs. Their approach ensures the integrity and consistency of VNF informa-
tion while keeping the anonymity of tenants and configuration information (C5).
The authors adopt a consensus protocol that validates every transaction before
storing it in a block to provide resiliency against faulty systems and collusion at-
tacks (C6). The authors consider a federated consensus model where participants
are known, and their asymmetric key pair is certified by a third-party, previously
agreed upon by the federation members (C10). In [149], Dinh, T. T. A., et al.
have presented BLOCKBENCH, a benchmarking framework for understanding
the performance of private BCs against data processing workloads. The authors
have evaluated three major BC systems (i.e. Ethereum, Parity, and Hyperledger
Fabric) regarding scalability (C2), fault tolerance and security (C5), throughput
(C9), and latency. The authors conclude that Ethereum and Parity are more re-
silient (C6) to node failures but more vulnerable to security attacks that fork the
BC. Cited works show that BC architectures can enable adequate resilience for
next-generation networks.
BC architectures also acknowledge the importance of reliability. In [150], Zheng,
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W., et al. have developed a BC-as-a-service platform named NutBaaS, in which
BC services (e.g. smart contracts, system monitoring) are enabled over cloud in-
frastructures. To improve NutBaaS flexibility and scalability (C2), the authors
have adopted Kubernetes to automatically deploy container-based services. The
authors state that NutBaaS helps developers to detect security vulnerabilities by
providing smart contract services, thus avoiding economic losses (C5). The au-
thors have also discussed the reliability (C7) of their NutBaaS platform. In [151],
Qiu, Z., et al. have proposed a Dual Vote Confirmation based Consensus (DVCC)
mechanism for the integration of BC and IoT. Firstly, the authors have adopted a
role division approach to handle limited resources in IoT devices. Then, a dual
confirmation algorithm has been designed to improve the security and fairness of
the consensus. A voting method has also been presented to enhance delay perfor-
mance (C2) and avoid energy waste (C3). Results have shown that DVCC guaran-
tees the security (C5) and fairness of the consensus while achieving notable relia-
bility (C7) and throughput (C9). Both works propose adequate BC-based architec-
tures solving current reliability issues while providing efficient security measures.

C.7.3 CyberSecurity (CS)

CS [162] consists of protecting computer systems, networks and data from mali-
cious attacks or threats. Organizations and enterprises apply security methods to
protect against unauthorized access to their infrastructures. Hardware-accelerated
security practices have been studied in [152]. Varga, P., et al. [152] have intro-
duced an automated method to speed up the reaction lag in SDN-based DCs via
FPGA-based processing units. The authors aim to enhance the security (C5) of
DCNs and large clouds with a new FPGA-accelerated NFV. The authors evaluate
their approach in a DCN with a new security application that detects and mitigates
real-world Distributed Denial of Service (DDoS) attacks, with lags from 430 µs
up to 3 ms - several orders of magnitude faster than traditional approaches (C2).
The authors state that their FPGA-based closed loop achieves higher throughput
(C9) levels and lower latency than conventional methods. Security aspects in Fog
Computing have also been addressed recently. In [153]. Diro, A. A., et al. have
proposed an FC-based publish-subscribe lightweight protocol for IoT and assessed
its scalability (C2) and security (C5). Their scheme provides higher scalability and
less overhead than traditional methods while guaranteeing similar levels of secu-
rity. In [154], Sohal, A. S., et al. have proposed a CS framework to identify mali-
cious edge devices in FC. The authors adopt a two-stage hidden Markov model to
categorize edge devices while a Virtual Honeypot Device (VHD) stores informa-
tion of all identified malicious devices to assist the system, securing it from future
attacks (C5).
Security for SDN has been studied in [155]. Dzeparoska, K., et al. have proposed
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a hierarchical, logically centralized architecture, expressing security policies th-
rough Autonomous Systems (AS) as intents. The authors state that SD Internet
Exchange Points (SDXs) provide flexible and programmable control over wide-
area network traffic delivery. SDX collaboration has addressed scalability (C2)
challenges since security (C5) intents are compiled and installed at the available
SDX closest to the malicious source, effectively protecting against DDoS attacks.
A heterogeneous (C8) topology (i.e. SDXs, SDN controllers) has assessed the
throughput (C9) of their approach. In [156], Joshi, K. D., et al. have presented
PRIME-Q, a privacy-aware E2E QoS framework in Multi-domain SDN. A privacy
(C5) index has been defined to quantify the privacy level of E2E QoS coordina-
tion. Simulations have assessed the scalability (C2) and operational overhead of
PRIME-Q in large multi-domain networks (C10). These works are appropriate
answers to attacks or threats in the coming years.

C.7.4 Trusted Computing (TC)

TC [163] refers to technologies and proposals for solving security problems th-
rough enhancing hardware or modifying software to secure cloud computing and
virtualized systems. In recent years, research has focused on improving hardware
performance. In [157], Aga, S., et al. have proposed InvisiMem, a memory ap-
proach expanding the trust base to include the logic layer in the smart memory to
cryptographic primitives. It allows the secure host processor to send encrypted ad-
dresses over the untrusted memory bus. InvisiMem significantly improves memory
space, energy (C3), and overhead. The authors also state that InvisiMem properly
supports enclave isolation (C4). The authors conclude that InvisiMem ensures
similar security (C5) to Oblivious RAM (ORAM)-based solutions. In [158], Gjer-
drum, A. T., et al. have studied the performance characteristics of SGX technology
to understand how it could enforce privacy policies in cloud-hosted Software-as-
a-Service (SaaS) architectures (C5). The authors also state that developers should
pre-provision enclaves in a disposable pool of resources to prevent reuse between
isolation (C4) domains if before-the-fact usage of enclaves is accurately predicted.
In [159], Coughlin, M., et al. have studied the application of TC to circumvent lim-
itations on encrypted data. Encrypted data introduces an overhead while providing
a limited set of operations since encrypted schemes are not completely homomor-
phic. The authors have studied whether SGX technologies can perform secure
packet processing since SGX provides proper software isolation (C4) and attesta-
tion (C5). A real NFV environment has been evaluated, including throughput (C9)
experiments. In [160], Yin, H., et al. have presented HyperNet, a decentralized
TC and networking paradigm to address control loss over data. The decentralized
trusted connection is based on BC smart contracts enabling secure digital object
management and an identifier-driven routing mechanism (C5). The authors re-
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mark that HyperNet handles data sovereignty and helps to build a Universal Data
object Identifier (UDI)-driven network capable of indexing and routing data. Cited
works show that increasing hardware trust is the first step towards efficient security
in future networks.

C.7.5 Summary

Section C.7 reviews novel security mechanisms enabling data privacy and secure
transmissions in cloud-native systems. BC enables a decentralized trust system,
while CS implements security practices to defend cloud systems from potential
threats. TC focuses on trust and software isolation through hardware-based pro-
tection. The literature review shows that Mobility (C1) is unaddressed, while BC
and CS address Scalability (C2) issues arising when adopting novel security mech-
anisms. Energy efficiency (C3) is more noticeable in BC, while TC focuses on Iso-
lation (C4). As expected, these domains mainly discuss Security and Privacy (C5).
BC also addresses Resilience (C6) and Reliability (C7), while Heterogeneity (C8)
is studied in CS. BC and CS also address Throughput (C9) and Federation (C10).
Securing future networks requires all three domains. A decentralized architecture
fully supports low latency services, as long as efficient security against attacks and
high trust when executing NFs in hardware is guaranteed.

C.8 Emerging Applications for next-generation net-
works

C.8.1 Overview

The emerging cloud-native infrastructures and novel technologies lead to new use
cases requiring even more stringent requirements (e.g. higher reliability, lower
latency). This section presents research focused on four emerging use cases: Smart
Cities, Self-driving cars, XR, and IIoT. Table C.9 summarizes the reviewed works.

C.8.2 Smart Cities

A Smart City [186] applies technology to improve the performance of its urban
services by transforming simple objects into smart connected devices. Sensors are
spread around the city to collect data and then insights are extracted from these
data to improve urban operations and services. Several domains of urban life are
affected by these types of applications, such as waste management, environmental
monitoring, urban mobility, and healthcare. Research has been studying suitable
architectures for IoT services. In [164], Montori, F., et al. have introduced an
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Table C.9: Summary of the reviewed works in terms of Application.
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architecture to handle data sources in IoT. The authors have also proposed crowd-
sensing management functionalities for environmental data, addressing reliabil-
ity (C7). Their approach focuses on the integration of heterogeneous (C8) data
sources. In [165], Cheng, B., et al. have designed and implemented an FC frame-
work for Smart Cities named FogFlow. Message propagation latency, scalability
(C2) and energy consumption (C3) have been assessed based on an anomaly de-
tection use case. The authors state that FogFlow is a reliable (C7) option to handle
multiple IoT brokers in a Smart City environment. The heterogeneity (C8) of
IoT has been considered through different device profiles (e.g. temperature sensor,
alarm) and distinct contexts (e.g. data processing, service management). Through-
put (C9) has also been evaluated. The authors also propose a federated broker to
exchange context information with other federated brokers in a multi-domain en-
vironment (C10). In [166], Ejaz, W., et al. have discussed efficient energy man-
agement in Smart Cities. The authors have addressed energy harvesting in a Smart
City to extend the lifetime of low-powered devices (C3). The heterogeneous (C8)
nature of IoT has also been considered. In [167], the City of Things (CoT) frame-
work has been presented for data collection and analysis and automated resource
provisioning in Smart Cities. The framework has been evaluated on an air quality
monitoring use case by deploying air quality sensors in cars. CoT is a flexible
and scalable (C2) approach for the Smart City ecosystem. Heterogeneity (C8) has
been discussed through different devices and distinct functionalities (e.g. ML al-
gorithms, data operations). In [168], Liu, Y., et al. have designed an IoT-based
energy management system with DRL. An efficient energy scheduling method has
been presented to manage the uncertainty of energy supply and demand in a Smart
City (C3). All cited architectures are appropriate to deal with massive numbers of
connected devices and the stringent requirements of IoT.

Security mechanisms have also been studied in [169]. Aloqaily, M., et al. have in-
troduced a cloud framework for connected vehicles focused on intrusion detection
mechanisms against security attacks while meeting user QoS levels. The authors
have discussed the future role of connected cars in the electric power grid (C3), by
suggesting the stabilization of the power grid through wirelessly charging batter-
ies. Simulations have shown that their approach significantly mitigates real attacks
(C5). Lastly, in [170], a MILP formulation for IoT service allocation has been pro-
posed, which considers SFC concepts, different Low Power Wide Area Network
(LPWAN) technologies, and multiple optimization objectives. Mobility (C1) has
been addressed since users move around in the network, and the MILP model
considers the impact of service migrations. The scalability (C2) of the MILP for-
mulation has been assessed for several optimization objectives, including energy
efficiency (C3) and E2E latency. The concept of NS has also been included in the
model by adding different slices to multiple applications (C4). Heterogeneity (C8)
has been satisfied through different service requirements (e.g. CPU, RAM) and
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distinct LPWAN technologies (i.e. IEEE 802.11ah and LoRaWAN).

C.8.3 Self-driving cars

Self-driving or autonomous vehicles [187] are cars or trucks in which little to no
human intervention is needed. These vehicles sense the environment and drive
safely through software-based control decisions. Self-driving cars are getting sig-
nificant attention in several research domains. In [171], Maqueda, A. I., et al.
have applied DL for steering prediction in self-driving cars. The authors aim to in-
vestigate whether DL algorithms provide robust steering prediction based on data
samples from event cameras. Their approach produces reliable (C7) steering angle
predictions in challenging situations (e.g. poor lighting, fast motion). In [172],
Chen, S., et al. have proposed an integrated simulation system for self-driving
vehicles. The approach consists of four main components: the vehicle kinematic
model simulation, the multi-sensor simulation, the environment simulation, and
the Electronic Control Unit (ECU) hardware. Several experiments have validated
their platform, showing its performance and reliability (C7).
Security in self-driving cars has also been recently studied. In [173]. Chernikova,
A., et al. have proved that evasion attacks are a threat to steering angle predictions
in autonomous vehicles (C5). The authors have stated that these attacks threaten
the safe applicability of DL in autonomous driving. In [174], Ndikumana, A.,
et al. have proposed infotainment caching in self-driving cars, in which caching
decisions are made based on passenger features obtained through DL. DL predicts
cached contents in autonomous cars or MEC servers attached to roadside units.
The authors state that lower delays for downloading operations are achieved if
autonomous cars select available MEC servers en route since self-driving cars are
delay-sensitive due to their high mobility (C1). In their evaluation, heterogeneous
contents (i.e. movies with different demands and user recommendations) have
been considered and throughput (C9) levels have been assessed.

C.8.4 Extended Reality (XR)

XR [188] refers to all real and virtual environments generated via computers or
even wearables that blend virtual and physical worlds to create fully immersive
experiences. In AR, objects are overlaid into the real world by enhancing the
user experience through AR glasses. XR is one of the emerging use cases for
future networks that will completely revolutionize multimedia service delivery.
MEC-assisted VR has been studied in [175]. Liu, Y., et al. have proposed a
Panoramic VR Video (PVRV) streaming system designed for millimeter-wave
(mmWave) mobile networks in combination with MEC. The authors remark that
adopting MEC servers can improve wireless bandwidth utilization and UE energy



292 APPENDIX C

efficiency (C3). Simulations have shown that their PVRV system improves en-
ergy efficiency and the quality of received viewport over conventional methods.
QoE of VR streaming services has also been addressed in [176]. Doumanoglou,
A., et al. have studied the QoE of real-time 3D media content streamed to VR
headsets for entertainment purposes. The aim is to embed real users within vir-
tual environments of interactive games to provide a fully immersive experience.
The evaluation has considered multiple users under varying network conditions to
assess the overall QoE concerning a range of visual quality and latency param-
eters. The trade-off between latency introduced by a reliable transport protocol
(i.e. TCP) versus frame loss rate has been assessed (C7). In their experiments, lag
issues occurred when using TCP, though the authors claim that a buffering mech-
anism potentially mitigates these issues. Throughput (C9) assumptions for TCP
and User Datagram Protocol (UDP) have been included in their scheme.
VR adaptive streaming has also been investigated. In [177], three research chal-
lenges in immersive streaming have been tackled: viewport prediction, tile-based
rate adaptation and application layer optimizations. A content-agnostic viewport
prediction scheme based on spherical walks alongside a novel rate adaptation
heuristic for tile-based video has been proposed. The advantages of using HTTP/2
server push have been studied since it significantly improves viewport prediction,
video quality, and throughput (C9) compared to existing methods. In [178], HTTP
adaptive streaming of VR content through Point Cloud Compression (PCC) has
been studied. Several rate adaptation heuristics have been presented to decide the
most appropriate quality representation of each VR object. The trade-off between
accurate prediction and resilience (C6) to playout freezes has been discussed. In-
creasing the buffer size results in lower interactivity, prediction accuracy, and video
quality. However, a larger buffer results in higher resilience to playout freezes, a
crucial factor for over-the-top video streaming. Throughput (C9) traces have been
considered in the evaluation. Cited works aim to provide efficient mechanisms
towards maximizing users QoE.

C.8.5 Industrial IoT (IIoT)

IIoT [189] refers to the extension of IoT towards the industrial sector. Sensors
interconnect with manufacturing processes and robots easing data collection to
improve productivity and efficiency of industrial processes. Energy consumption
has been an important subject in IIoT. In [179], Zhou, L., et al. have studied the
performance of different computing methods in IIoT by analyzing the relationship
between data processing and energy consumption (C3). Heterogeneity (C8) has
been discussed in the consumption estimations of data transmissions from multi-
ple sources. In [180], Cheng, J., et al. have proposed a 5G-based IIoT architec-
ture while describing different manufacturing functionalities for three use cases:
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eMBB, mMTC and URLLC. The authors discuss the importance of low-cost and
low-energy consumption in 5G (C3). Data privacy and security (C5) aspects have
been considered alongside reliability (C7) and heterogeneity (C8). The authors
remark that real-time monitoring in IIoT requires a packet loss rate lower than
1 × 10−12. Current 4G technologies cannot meet these requirements, while 5G
wireless communications are promising for URLLC services. In [181], Luvisotto,
M., et al. have assessed the performance of LoRaWAN for typical IIoT use cases,
such as indoor industrial monitoring. The authors discuss how particular parame-
ters can be adapted to increase the performance of their industrial scenario. Sim-
ulations have shown that LoRaWAN is a viable alternative for these applications
since it ensures low energy consumption (C3) and high reliability (C7).

Low latency communications have also been recently addressed. In [182], Hiller,
J., et al. have studied secure low latency communications in IIoT. The authors
propose antedated encryption and fast data authentication with templates, secur-
ing low-powered devices (C3). The authors state that implementing security (C5)
measures on constrained IoT devices adds further latency overhead. Security pro-
cesses execution time increases the perceived latency. Evaluations have quantified
the overhead of their approach focused on latency and energy consumption, show-
ing that IIoT latency requirements are met through antedated encryption and fast
data authentication. In [183], Yang, H., et al. have proposed a heterogeneous Radio
Frequency (RF) / Visible Light Communication (VLC) architecture to satisfy dif-
ferent QoS requirements for URLLC devices. A resource management approach
has also been formulated as a Markov Decision Process (MDP), followed by an RL
algorithm that learns the optimal policy. The authors consider user mobility (C1)
in the RL policy strategy. The heterogeneous (C8) RF/VLC architecture has been
evaluated concerning energy consumption per device (C3), reliability (C7) and
throughput (C9). Results have shown that their approach enables energy-efficient
communications, satisfies URLLC requirements (i.e. high reliability, low latency),
and ensures high data rates at different scenarios in IIoT. Low latency in IIoT is
essential since high delays can have major repercussions (e.g. damaged machines,
injured employees). Both works show promising results to guarantee low latency
communications in industrial scenarios.

BC architectures have been proposed for IIoT. In [184], Niya, S. R., et al. have
proposed a BC-agnostic architecture named BIIT for the IIoT. BIIT aims to re-
duce computational overhead and enhance energy efficiency (C3). The authors
intend to offer higher levels of trust (C5), transparency, and data reliability (C7) by
leveraging BC. Heterogeneity (C8) has been discussed regarding data collection.
The authors have also studied performance issues in their architecture in combi-
nation with LoRa, focusing on throughput (C9) concerns. The authors maximize
throughput while simultaneously providing data integrity through cryptographic
signatures. The authors suggest performing large-scale experiments with BIIT as



294 APPENDIX C

future work, validating the scalability of the system in LoRa and cellular networks.
In [185], Kumar, T., et al. have proposed BlockEdge, a framework combining
edge computing with BC to address the stringent requirements introduced by IIoT.
The feasibility of BlockEdge has been assessed regarding scalability (C2), latency,
power consumption (C3) and network usage compared to non-BC approaches. Re-
sults prove that BlockEdge provides decentralized trust and security (C5) manage-
ment in IIoT without compromising system performance and resource efficiency.
In contrast, the system reliability (C7) is improved. The Heterogeneity (C8) of
IIoT environments has also been addressed. Cited works show that BC supports
reliable communications in IIoT.

C.8.6 Summary

Section C.8 reviews emerging applications for future networks. Self-driving cars
address Mobility (C1) concerns, while Smart Cities and IIoT focus on Scalable
(C2) and Energy-efficient (C3) platforms, acknowledging the importance of low
power consumption in these environments. Few works address Isolation (C4),
while Security (C5) is a major concern in self-driving cars and IIoT. Resilience
(C6) is mostly unexplored, while Reliability (C7) concerns are addressed in self-
driving cars and IIoT. Smart Cities and IIoT address their Heterogeneous (C8)
nature due to IoT, while XR discusses Throughput (C9) since these applications
require high bandwidth data rates, as well as low latency as part of QoE expecta-
tions. Federation (C10) is mostly unaddressed. All these applications are pushing
towards paradigm shifts in architecture, communication, orchestration and secu-
rity. Addressing current hurdles will help next-generation networks to fully sup-
port these applications and deliver low E2E latency. The next section discusses
open challenges and future directions.

C.9 Open Challenges & Future Directions

Table C.10: Summary of revised works on low latency service delivery.

Evaluation
Criteria Relevant reviewed works

Number
of Publications

Mobility (C1)

[37], [38], [40], [42], [45], [46],
[49], [50], [69], [71], [84], [100],
[103], [107], [117], [118], [119],
[122], [128], [130], [135], [136],

[170], [174], [183] 25 (20.8%)

continued on next page. . .
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Table C.10: Summary of revised works on low latency service delivery (continued)

Evaluation
Criteria Relevant reviewed works

Number
of Publications

Scalability (C2)

[43], [45], [46], [49], [48], [47],
[52], [53], [54], [55], [56], [57],
[58], [71], [73], [75], [78], [79],
[80], [81], [85], [86], [87], [88],
[89], [90], [104], [108], [109],

[110], [111], [112], [113], [115],
[127], [129], [130], [131], [139],
[146], [147], [149], [150], [151],
[152], [153], [155], [156], [165],

[167], [170], [185] 52 (43.3%)

Energy
Efficiency (C3)

[39], [49], [50], [56], [57], [76],
[77], [85], [101], [102], [103],

[104], [105], [106], [107], [108],
[109], [117], [120], [121],[122],
[128], [129], [130], [133], [136],
[137], [138], [146], [151], [157],
[165], [166], [168], [169], [170],
[175], [179], [180], [181], [182],

[183], [184],[185] 44 (36.6%)

Isolation (C4)

[38], [44], [48], [52], [55], [69],
[70], [71], [72], [75], [79], [81],
[83], [104], [112], [116], [134],
[136], [157], [158], [159], [170] 22 (18.3%)

Security &
Privacy (C5)

[38], [43], [44], [46], [47], [50],
[51], [52], [53], [71], [79], [82],
[84], [116], [121], [122], [137],

[139], [140], [141], [146], [147],
[148], [149], [150], [151], [152],
[153], [154],[155], [156], [157],
[158], [159], [160], [169], [173],

[180], [182], [184], [185] 41 (34.2%)

Resilience (C6)
[47], [88], [90], [147], [148], [149],

[178] 7 (5.8%)

Reliability (C7)

[39], [40], [41], [42], [46], [47],
[49], [50], [69], [70], [72], [73],

[74], [78], [80], [88], [90], [100],
[106], [107], [135], [141], [150],
[151], [164], [165], [171], [172],
[176],[180], [181], [183], [184],

[185] 34 (28.3%)

continued on next page. . .
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Table C.10: Summary of revised works on low latency service delivery (continued)

Evaluation
Criteria Relevant reviewed works

Number
of Publications

Heterogeneity (C8)

[40], [42], [43], [45], [46], [47],
[48], [49], [50], [53], [54], [55],
[56], [69], [70], [72], [75], [78],
[79], [80], [81], [83], [86], [87],
[100], [101], [102], [103], [105],
[107], [111], [113], [114], [115],
[119],[120], [121], [126], [128],
[129], [130], [131], [134], [135],
[137], [155], [164], [165], [166],
[167], [170], [174], [179], [180],

[183], [184], [185] 57 (47.5%)

Throughput (C9)

[37], [38], [39], [40], [41], [45],
[46], [47],[49], [51], [55], [56],
[57], [58], [70], [69], [72], [73],
[74], [76], [77], [75], [79], [82],

[83], [85], [88], [100], [106],
[105], [108], [110], [112], [113],
[114], [116], [118], [122], [126],
[131], [132], [139], [147], [149],
[151], [152], [155], [159], [165],
[174], [176], [177], [178], [183],

[184] 55 (45.8%)

Federation (C10)
[42], [46], [77], [80], [81], [86],

[111], [148], [156], [165] 10 (8.3%)

To tackle open challenges in low latency service delivery, several works address-
ing different domains need to be combined to meet all criteria shown in previous
summary Tables (i.e. IV to IX). This section discusses challenges not yet fully
addressed by literature and highlights future directions. Table C.10 summarizes
the reviewed works aggregated per evaluation criteria. By combining research
from different domains, readers can easily consult works addressing a particular
criterion of their interest.
Mobility (C1) has been addressed by several works. Nevertheless, no generic ap-
proach has been proposed to ensure service operation when end-users or devices
are moving. MEC (e.g. [37], [38]) and FC (e.g. [45],[46]) address mobility fo-
cused on mobile devices and IoT, respectively. A viable alternative is merging both
domains and provide an integrated solution for the mobility support of different
devices (e.g. end-users, IoT sensors and vehicles). Integrating the mobile and the
cloud domain is a research direction that will certainly help address future mobility
requirements. NS [69], [71] and IBN [84] have also been proposed to handle user
mobility and usage patterns. Mobility and access functionalities can be deployed
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and managed independently. Future research will focus on NS and IBN to offer
mobility alongside high degrees of flexibility and customization. Resource alloca-
tion and caching have also addressed mobility requirements. However, most works
focus only on specific use cases, such as D2D networks [100] or MEC [119]. ML
has also been studied for mobility management in V2V communications [135] or
MEC (e.g. [128], [130]). These methods aim to autonomously manage user mo-
bility, but no clear approach has been yet applied in practice. Emerging use cases
such as autonomous vehicles, IIoT, and in particular, Smart City services would
definitively benefit from enhanced mobility support in future cloud-native infras-
tructures.

Scalability (C2) has been tackled in the revised literature, starting from different
points of view. Novel architectures (e.g. [43], [48]) have been designed to focus
on application scalability or in supporting a high number of connected devices.
Hardware-accelerated platforms have also been studied for performance improve-
ment regarding NFV reconfiguration [55], memory access [57] and data process-
ing pipelines [58]. Their purpose is to enhance the performance and scalability of
hardware-based platforms running softwarized NFs. Several works have addressed
scalability issues in SFC (e.g. [73],[75]), IBN [80],[81] and SR (e.g. [87], [88]).
All these networking paradigms aim to provide higher levels of flexibility and re-
configurability to current networks, but their impact on network scalability needs
to be acknowledged. Future research will focus on implementing novel mecha-
nisms in practical testbeds and assess their scalability and overhead concerning
execution time and resource usage. Auto-scaling (e.g. [108],[109]) and perfor-
mance monitoring systems (e.g. [112],[113]) are usually designed with scalability
in mind. Also, the scalability of ML algorithms is not neglected. A few works
(e.g. [129], [131]) study how scalable ML techniques are compared to existing
methods. In turn, the implementation of novel security practices focuses on in-
creasing network scalability as BC architectures (e.g. [150], [151]) and on how
faster these methods can handle security breaches than traditional approaches (e.g.
[153],[155]). Scalability requirements have also been more noticeable in Smart
Cities (e.g. [165], [167]) and IIoT [185]. A fully scalable system is needed to
fully provide low latency service delivery. All domains will play their part in de-
livering an architecture capable of handling high-demand patterns with efficient
management capabilities that enable scalable deployments of future applications.

Energy Efficiency (C3) has been addressed in several domains. Trends on archi-
tectural paradigms such as MEC, FC and Hardware acceleration have covered en-
ergy efficiency by reducing power consumption in the infrastructure [39], network
links [49] and the high performance of NNs [56], [57]. Energy-efficient hardware
is a future research direction. Energy savings have also been addressed in SFC
placement [76],[77] and SR performance [85]. Efficient service placement and
traffic routing are also future research directions, in which service providers will
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focus on reducing their deployment costs while providing high QoS. The develop-
ment of container-based service chains and VNFs will focus even more on min-
imizing resources. Works on resource allocation (e.g. [104],[105]) and caching
(e.g. [121],[122]) have also studied energy consumption to deliver more efficient
and greener architectures. Distributed and energy-efficient architectures are an-
other future direction. ML has also been applied to reduce energy consumption
[128], [136]. All connected devices will generate a massive volume of data that,
if not properly handled, leads to slow decision-making and increased power con-
sumption. Distributed ML operations offer an adequate solution to handle massive
amounts of data. In turn, BC architectures aim to enhance performance and avoid
energy waste [146], [151]. Another direction is to further optimize the perfor-
mance of low-powered devices. Regarding applications, current literature focuses
mostly on Smart Cities (e.g. [169], [170]) and IIoT ([181], [182]) scenarios.

Isolation (C4) and NS concepts have also been getting significant attention in the
last few years. However, standard implementations or detailed interfaces are still
missing. Most mobile operators have already implemented PoCs to provide ser-
vice isolation inside their network, but no interfaces or management models have
yet been standardized. The proper administration of slice-based VNFs is still be-
ing defined by ETSI NFV MANO, including operations for the life-cycle control
of slice instances. A few works address the architectural challenges of implement-
ing isolated running environments [38] or adding NS features to their schemes
[44], [48]. Also, NS has been studied mostly for 5G (e.g. [69], [71]), but a ma-
ture design and concrete implementation guidelines are missing. Isolation has also
been investigated in SFC [75],[79] and monitoring [112],[116] contexts, where in-
creased performance has gained notable attention. Isolation offers high levels of
security and TC research has been adopting isolation features to enhance current
hardware platforms (e.g. [158],[159]). Emerging use cases demand QoS-specific
network slices on a per-application basis, in which providers rely on fully cloud-
native infrastructures to provide service isolation and meet QoS levels. Also, NS
in a federation model is still unexplored. Federated slices raise further issues since
multi-domain resource discovery and slice brokering are needed. How to effec-
tively protect and secure network slices in a federation is a future direction.

Security and Privacy (C5) concerns are still commonly left out in most works
unless security is the main focus as in BC, CS, or TC research domains. Other
research fields are also tackling security issues, though no generic approach has
been given. Works on architecture mostly address security risks in service offload-
ing [38], unauthorized access [44] and secure communications [46]. Also, privacy
is even more important in future networks due to the massive gathering of user
data. Taleb, T. et al. [71] have addressed privacy concerns while customizing ser-
vices based on NS. Their work is an adequate solution for user privacy preservation
in future networks. Protect infrastructures in a continuum of virtual resources is
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the main research direction. BC (e.g. [149], [150], [151]) has positioned itself as
the main enabler of security and privacy while providing resiliency and reliability
guarantees. Combining BC concepts with existing approaches within architecture,
network, and orchestration is another future direction. Lastly, research on emerg-
ing applications has studied how to enable security features without compromising
performance, such as in self-driving cars [173] and IIoT (e.g. [180], [182]). With-
out efficient security mechanisms, users do not benefit from these use cases since
safety is their main priority.

Resilience (C6) has been viewed as one of the main features of future architec-
tures, but only a few works address resilience concerns. Sharma, P. K., et al. [47]
have presented a distributed cloud architecture providing service guarantees when
failures occur in the infrastructure. Desmouceaux, Y., et al. [88] have proposed
an SR-based load balancer and its resiliency has been evaluated. Aubry, F., et al.
[90] have introduced the concept of RDP, including a fault tolerance assessment.
Works leveraging BC (e.g. [147], [148]) have also focused on resilience aspects.
SR and BC are promising domains to efficiently provide resilience features in a
cloud-native infrastructure, ensuring service continuity under critical situations.
The integration of SR and BC is a future research direction. Resilience has also
been studied for XR services towards avoiding playout freezes in VR adaptive
streaming [178]. Emerging applications require extremely low latency but also
high resilience guarantees against attacks and unexpected failures.

Reliability (C7) has been viewed as an important enabler of the next evolution
of high-precision services. Research on novel architectures (e.g. [40],[47]) has
studied mechanisms to improve service reliability. However, only simulations or
small-scale scenarios have been evaluated and implementations in practical envi-
ronments are missing. The reliability assessment of these approaches in large-
scale scenarios is a future direction. Literature has also addressed reliability for
URLLC services based on NS (e.g. [70],[72]). Also, works have investigated how
to provide reliability guarantees for SFC deployments (e.g. [74], [78]) and im-
prove network reliability focused on SR [88],[90]. SFC and SR are both future
directions to improve the reliability of next-generation networks. Resource alloca-
tion research has also studied reliability improvements for D2D [100] and M2M
communications [106]. In addition, autonomous cars [171], [172] and UAVs are
pushing the limits of infrastructures to offer at least seven nines of reliability while
precision demanding services, such as XR [176] and IIoT (e.g. [180],[181]) are
stretching current infrastructures to the edge to provide high levels of reliability
and large throughput data rates.

Heterogeneity (C8) has been addressed by several works since the heterogeneous
nature of future networks is widely accepted. Architectures discuss heterogeneity
based on several aspects, such as integrated network schemes [40], IoT support
[43] and different computing capacities [47]. These works aim to support a large
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number of devices while improving network performance. Hardware-based plat-
forms [55], [56] have also addressed heterogeneity concerns. A future direction is
studying the implications of the adoption of these novel architectural paradigms.
NS (e.g. [70],[72]), SFC (e.g. [75], [78]) and IBN (e.g. [81],[83]) have also
addressed the interoperability between different domains and services. Novel or-
chestration practices (e.g. [102], [103],[114]) have also considered the heteroge-
neous nature of services and environments. Caching research (e.g. [119],[120])
has also addressed heterogeneity concerning distinct device (e.g. vehicles, mo-
bile devices, BSs). DL (e.g. [126],[128]) and RL (e.g. [131],[134]) also consider
different networks and architectures. In terms of applications, Smart Cities (e.g.
[166],[167]) and IIoT (e.g. [180], [183]) distinct themselves due to their highly
complex environment encompassing several stringent requirements. The analysis
of heterogeneity implications in these scenarios is a future research direction.

Throughput (C9) is essential for the new range of use cases that evolve beyond 5G.
MEC (e.g. [38], [37]) and FC (e.g. [47], [49]) have tackled architectural challenges
to attain higher throughput under different scenarios. Hardware-accelerated plat-
forms aim to solve performance degradation while maintaining high throughput
levels (e.g. [57], [58]). NS also considers throughput as an application-specific re-
quirement to constitute different slices [69]. SFC research (e.g. [75], [79]) has also
addressed throughput under distinct chain scenarios. The impact of throughput
performance should be acknowledged in future research. Resource allocation (e.g.
[106],[105]) and monitoring operations (e.g. [113],[114]) have become promising
areas to maximize throughput. Efficient allocation attains higher throughput levels
while proper motoring identifies problems faster. ML is also providing automated
allocation and monitoring operations to enhance system performance including
throughput (e.g. [126], [132]). Security research (e.g. [149], [151]) has also stud-
ied how to maintain notable throughput performance while guaranteeing system
security. Regarding applications, throughput requirements are more prominent in
XR since it requires real-time operations in a fully immersive environment and data
cannot be compressed. Throughput requirements are expected to surpass 1 Tbps
due to its data-hungry nature. Current literature (e.g. [177],[178]) has proposed
efficient adaptive streaming mechanisms for VR content to improve throughput
performance.

Federation (C10) is still unaddressed in most works. A potential research direction
is the design of federated models for cloud-native infrastructures focused on the
interoperability between several providers. MEC and FC have addressed architec-
tural challenges based on multiple providers [42], [46]. Efficient SFC placement
in multi-cloud environments has also been studied in [77]. IBN [80], [81] and
SR [86] have also considered multi-domain environments to solve federation chal-
lenges. The design of efficient networking schemes for federated environments
is a future research direction. Auto-scaling and scheduling mechanisms for cloud
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systems across geographically spread regions have also been studied in [111]. De-
veloping efficient orchestration mechanisms for deploying and maintaining appli-
cation components across federated clouds is another research direction. Security
research has also addressed federation concepts in BC architectures [148] or multi-
domain networks [156]. Existing works acknowledge the need for federation and
already mention the intention to address multi-domain environments or federation
concepts as future work. These extensions will lead to future federation research.

C.10 Lessons Learned and Prospects

C.10.1 Lessons Learned

Several lessons have been derived from the literature review relevant to low la-
tency service delivery. Architecture has shown that MEC [37-44] and FC [45-50]
are essential for the evolution of the mobile network to create a cloud-native envi-
ronment where services can be deployed in a continuum of virtual resources. The
integration of MEC and FiWi access networks has been studied in [40], while FC
has been recently extended through connected vehicles [45]. Both works bring
resources even further to the edge. Micro-services [51-54] have also revolution-
ized service deployments and conventional resource-hungry monoliths have been
transformed into small loosely coupled micro-services. Micro-service research
mostly focuses on isolation, security, and scalability aspects. Hardware accel-
eration [55-58] is a promising domain to mitigate performance degradation and
latency introduced by network softwarization. Both [56] and [57] are adequate ap-
proaches for performance improvement of NNs. Migrating conventional hardware
functions towards softwarized VNFs is needed to fully achieve low E2E latency.
Hardware-accelerated NFs further help supporting low latency service delivery.
Communication Networks have proved that novel networking concepts provide
higher levels of flexibility and scalability towards low latency service delivery.
NS [69-72] addresses isolation through the creation of E2E logical slices for each
group of users accessing the same service. NS has even been extended in [69] by
integrating vehicles in the infrastructure. SFC [73-79] has been explored to pro-
vide a complete E2E service chain. SFC allocation has already been addressed for
MEC [128] or FC [129] architectures. Recently, IBN [80-84] has been conceptu-
alized to communicate intents to the network. Enforcing rules without detailing
the system how it should perform is the main purpose of IBN research. It is still
in the early stages, but IBN is an adequate answer to improve network reliability
and scalability. An E2E service orchestration approach across multiple domains
has been presented in [80]. The work discusses low latency challenges but also
reflects on reliability and scalability issues. SR [85-90] deals with scalability con-
cerns but also tackles resilience and reliability. Resilience has been addressed in
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[88]. Results have shown that IBN improves the scalability and throughput perfor-
mance at a negligible cost of CPU overhead. These four networking concepts are
viable alternatives to enable the support of low latency service delivery in future
networks. The combination of these concepts is key to obtain a more integrated
solution.

Orchestration practices for distributed cloud infrastructures are also gaining sig-
nificant attention. Resource allocation [100-107] addresses proper service deploy-
ment, while auto-scaling [108-111] mechanisms guarantee that deployed services
are sufficient to handle current network demand. Efficient provisioning strategies
have been studied for vehicular networks and IoT contexts. Both [101] and [102]
are adequate strategies for massive numbers of connected devices while optimiz-
ing resources in fog-cloud infrastructures. These provisioning strategies need to be
complemented with auto-scaling features, such as [110] and [111], where appro-
priate actions are made based on the current demand. Efficient allocation and auto-
scaling are only possible if proper monitoring [112-116] tools are employed. Both
[113] and [115] are viable alternatives to monitor distributed systems and raise
alerts in case of anomalous behaviors. Caching [117-122] also improves content
delivery and reduces data transmissions if adopted at the fog or edge. Mobility and
security benefit from novel caching strategies as shown in [117] and [121], respec-
tively. All these domains will play their role in next-generation networks. How-
ever, no standardization has yet been accepted in these domains. Current works
continue investigating proper solutions for efficient and cost-aware orchestration
in future networks.

ML and AI have positioned themselves as crucial enablers of autonomous net-
works. DL [126-130] has already been applied to traffic congestion [126] and SFC
placement and routing [127], [128]. DL has achieved high performance compared
to existing methods. Recently, RL [131-136] has been applied to resource alloca-
tion and traffic control [132], [133] and auto-scaling [131], [110]. RL has shown
its potential applicability in these domains due to its performance and scalabil-
ity. Existing methods (e.g. ILP formulations) cannot deal with dynamic demands
and their implementation in practice is difficult due to their high-resolution time.
Developing RL systems capable of reallocating services in the infrastructure by
reacting to sudden network demands is a major research topic in network man-
agement. Also, FL [137-141] provides decentralized learning features for wireless
networks [137], [138] alongside adequate privacy guarantees [139], [140]. All
these domains will help achieve higher levels of independence in next-generation
networks. The combination of these trends can lead to fully automated networks
with minimum human intervention, providing self-configuration and self-repairing
features that will strongly impact the performance of low latency services.

Security and Privacy are gaining even more importance in future networks. Tradi-
tional practices are no longer adequate since data and services are spread around
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in the network and stored at different levels (i.e. edge, fog, cloud). BC [146-151]
provides a fully decentralized architecture capable of providing higher levels of
reliability and resiliency. BC architectures as [150] and [151] have shown promis-
ing performance while mitigating security vulnerabilities. BC is one of the most
promising technologies in the coming years. Novel CS [152-156] practices have
also been introduced to protect infrastructures [150], mitigate attacks [152] and
guarantee user privacy [156]. These works are appropriate answers to attacks or
threats in the coming years. Also, TC [157-160] has been studying hardware en-
hancements focused on security issues. TC addresses trust while increasing hard-
ware performance. All domains will play their role in securing distributed cloud
systems enabling the support of low latency services in next-generation networks.
Emerging Applications are pushing towards more efficient and reliable infrastruc-
tures. Smart cities [164-170] focus mostly on stringent requirements coming from
IoT. Both [165] and [167] are adequate alternatives to handle large volumes of
data in a connected city. Self-driving cars [171-174] have addressed security and
reliability concerns. DL has been adopted in [171] for steering prediction in au-
tonomous cars while evasion attacks have been studied in [173]. Reliability and
security are essential for the support of self-driving cars. Both works have shown
promising results. XR [175-178] focuses on providing fully immersive experi-
ences through AR glasses. XR deployments will revolutionize multimedia service
delivery in future networks. MEC-based systems have already been proposed for
VR content delivery [175] while a few works have studied the optimization of
VR streaming systems [177], [178]. The adoption of novel architectural concepts
in combination with novel streaming mechanisms is the major research direction.
IIoT [179-185] has studied the adoption of IoT in the industrial sector. Low la-
tency communications [182] and security [184] are major concerns. Reliability is
also important, especially for URLLC services [180]. New ambitious and chal-
lenging use cases will emerge in the coming years leading networking innovation
and the creation of new business models in next-generation networks. Prospects
of emerging use cases are discussed next.

C.10.2 Prospects of emerging use cases

All research domains introduced in this appendix will play a major role in en-
abling emerging use cases. Architectural paradigms such as MEC and FC will
reduce latency in the communication between devices and services. Smart City
and IIoT services will benefit the most from these two concepts since services
are deployed at the edge and fog providing lower latency and enabling local op-
erations. Also, micro-services allow flexible low-cost deployments as opposed to
rigid costly VM allocations. Hardware-based platforms will also support efficient
softwarized VNFs aiming to mitigate performance degradation.
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Communication Networks will also play their role. Emerging use cases have di-
verse service requirements. XR requires throughput levels above 1Tbps, while
their interactive experiences need sub-millisecond latency. In contrast, autonomous
cars and UAVs demand seven levels of reliability without necessarily requiring
higher throughput. NS allows setting up specific network slices for each of the
envisioned use cases. Also, SFC allows developers to create service chains of con-
tainerized services for each of their applications. Container-based service chains
for Smart City use cases have already been proposed in [170]. In turn, IBN and
SR will completely revolutionize current networks. IBN enables network manage-
ment through intents while SR provides scalable and flexible routing mechanisms,
simplifying traffic engineering. Both technologies will help achieve the referenced
sub-millisecond latency.
Orchestration practices will adapt. A plethora of allocation and auto-scaling mech-
anisms have been developed to address the stringent requirements of emerging
applications. A trade-off between requirements is crucial for proper service al-
location and scaling. XR requires low latency and high throughput, while IIoT
needs high reliability and high resiliency guarantees. Cost-efficient allocations
have been addressed in [101] while low latency provisioning has been studied in
[102]. Anomaly detection and monitoring operations will be executed close to
end-users, allowing faster responses. These methods will maintain agreed QoS
levels and perform operational adjustments when needed in near real-time. Also,
edge caching schemes will overcome high mobility patterns, especially necessary
for self-driving cars. Cars could then access services while moving as shown in
[174].
ML and AI will automate several tasks currently being solved via human interven-
tion. Resource allocation [128, 130], NS [136] and privacy preservation [140] are
among the most envisioned operations being resolved by these algorithms. Also,
FL will contribute to an enriched collaborative learning experience where devices
train a common model. This is particularly relevant for Smart City and IIoT sce-
narios, where a common model can increase performance and reliability.
Security and Privacy mechanisms will mitigate attacks and avoid service disrup-
tions. Security is crucial for self-driving cars [173] and IIoT [184]. A failure in
these scenarios may have costly repercussions (e.g. damaged machines, car ac-
cidents). TC will also keep hardware secured. Isolation guarantees will ensure
secure packet processing [159]. The close interplay between all domains is key to
fully support low latency 6G services in the future.

C.11 Conclusion

This appendix surveys the literature on ongoing research aiming to support low
latency services in next-generation networks. A taxonomy on low latency service
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delivery has been proposed alongside a specific set of criteria to classify research
across different domains. Open challenges and future directions have been dis-
cussed, while lessons learned have been derived from our literature review. Also,
prospects have been provided with a focus on the role that novel trends will play
in emerging use cases such as XR.
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