
����������
�������

Citation: Xiao, Y.; Guo, Z.; Veelaert,

P.; Philips, W. General Image Fusion

for an Arbitrary Number of Inputs

Using Convolutional Neural

Networks. Sensors 2022, 22, 2457.

https://doi.org/10.3390/s22072457

Academic Editor: Zahir M. Hussain

Received: 14 February 2022

Accepted: 17 March 2022

Published: 23 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

General Image Fusion for an Arbitrary Number of Inputs Using
Convolutional Neural Networks

Yifan Xiao * , Zhixin Guo, Peter Veelaert and Wilfried Philips

Department of Telecommunications and Information Processing, IPI-IMEC, Ghent University,
9000 Ghent, Belgium; zhixin.guo@ugent.be (Z.G.); peter.veelaert@ugent.be (P.V.); wilfried.philips@ugent.be (W.P.)
* Correspondence: xiao.yifan@ugent.be

Abstract: In this paper, we propose a unified and flexible framework for general image fusion tasks,
including multi-exposure image fusion, multi-focus image fusion, infrared/visible image fusion,
and multi-modality medical image fusion. Unlike other deep learning-based image fusion methods
applied to a fixed number of input sources (normally two inputs), the proposed framework can
simultaneously handle an arbitrary number of inputs. Specifically, we use the symmetrical function
(e.g., Max-pooling) to extract the most significant features from all the input images, which are
then fused with the respective features from each input source. This symmetry function enables
permutation-invariance of the network, which means the network can successfully extract and fuse
the saliency features of each image without needing to remember the input order of the inputs. The
property of permutation-invariance also brings convenience for the network during inference with
unfixed inputs. To handle multiple image fusion tasks with one unified framework, we adopt contin-
ual learning based on Elastic Weight Consolidation (EWC) for different fusion tasks. Subjective and
objective experiments on several public datasets demonstrate that the proposed method outperforms
state-of-the-art methods on multiple image fusion tasks.

Keywords: image fusion; multiple inputs; permutation-invariant network; continual learning

1. Introduction

Image fusion creates a composite image by merging multiple source images from
different modalities or different camera settings of the same scene. It contains a series of fu-
sion tasks, such as multi-focus image fusion, multi-exposure image fusion, multi-modality
medical image fusion, and infrared/visible image fusion. Image fusion helps to obtain
better visual performances for the fused image. For example, the multi-exposure image
fusion produces a high dynamic range (HDR) image by combining a series of low dynamic
range (LDR) images, breaking the limitation of the camera exposure range. Multi-focus
image fusion extends the field-of-view for optical cameras by fusing defocused images to
an all-in-focus image with clear content. Besides, image fusion also helps to obtain richer
information from different sensors, which benefits some particular applications. For in-
stance, multi-modal medical image fusion integrates different tissues information from
the Magnetic Resonance Imaging (MRI) images and Positron Emission Tomography (PET)
images to assist the clinical diagnosis of doctors. In addition, fusing visible images with
infrared images in night vision can acquire enhanced and more detailed scene information,
which benefits the detection and tracking.

Existing literature on image fusion can be roughly categorized into traditional framework-
based image fusion methods and deep learning-based image fusion methods [1]. Most
traditional framework-based methods concentrate on two techniques for image fusion, namely
image activity level measurement and fusion rule design. The activity level represent the
important degree of each pixel in the source images, such as the saliency of pixels in in-
frared/RGB images [2] or the focused degree of pixels in defocused images [3], etc., as shown
in Figure 1. Usually, the measurement accuracy of the activity level determines the quality

Sensors 2022, 22, 2457. https://doi.org/10.3390/s22072457 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22072457
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-9040-6394
https://orcid.org/0000-0003-4746-9087
https://doi.org/10.3390/s22072457
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22072457?type=check_update&version=1


Sensors 2022, 22, 2457 2 of 22

of the fusion image. Various powerful signal processing tools have been used to measure
the activity level, such as the multi-scale decomposition and sparse representation. However,
we place higher demands on the image representation ability of the algorithm to get more
accurate activity level measurement. Deep learning (DL) has shown potent feature extraction
and representation capability than classical algorithms. Therefore, the DL-based methods are
now widely explored in image fusion tasks [4]. The DL-based methods construct specialized
neural networks for each fusion application. They often generate high-quality fused images,
such as Densefuse [5] for infrared/visible image fusion, DRPL [6] for multi-focus image fusion,
and DeepFuse [7] for multi-exposure image fusion. Despite better fusion performance, a chal-
lenge exists in DL-based fusion methods: existing DL-based methods only support a fixed
number of inputs (typically two inputs). Due to their structural immutability, neural networks
require the same number of inputs during inference as in the training process. When handling
more than two inputs, most DL-based methods fuse the images recursively, which losses the
unified consideration of all input images and is time-consuming [8]. However, many fusion
tasks, such as multi-focus image fusion and multi-exposure image fusion, usually contain an
unfixed number of inputs. To solve the problems mentioned above, we present a novel general
image fusion method capable of different fusion tasks with an arbitrary number of inputs. We
name it IFANI, i.e., general Image Fusion method for an Arbitrary Number of Inputs. Several
advantages of the proposed IFANI are highlighted in the following:

• Unified. Different from the specialized frameworks designed for one specific fusion
task, this is a generic fusion framework that can handle a diversity of fusion tasks by a
single model trained with a continual learning strategy.

• Flexibility. The flexibility of the framework is embodied in two aspects: (1) It can han-
dle an arbitrary number of inputs, which differs from DL-based methods designed for
fixed inputs. (2) It is a permutation-invariant fusion network that can effectively fuse
the informative details without remembering the order of the input images. To achieve
that, we adopt the symmetry function max-pooling, which can fuse a variable number
of inputs into one output feature map without considering the order of inputs and
enable permutation-invariant of the network. The max-pooling is repeatedly used
in different stages of the network to aggregate salient information among all the in-
puts. The fused image is reconstructed through convolutional layers from the output
pooled feature map. Additionally, skip connections aid the reconstruction of details at
different scales.

• Trainable. Due to the lack of large multi-focus images training datasets, we propose a
simulation method for arbitrary focus-complementary images to generate adequate
training data for the multi-focus image fusion task.

• Quality. We subjectively and objectively conduct experiments on four tasks, including
medical image fusion, infrared/visible image fusion, multi-exposure image fusion,
and multi-focus image fusion. The experimental results show that our fused images
have comparable or better quality than the state-of-the-art while being more widely
applicable by not requiring retraining.

(a) (b) (c) (d)

Figure 1. The source defocused images (a,c) and the corresponding activity level measurements (b,d).

The remainder of this paper is organized as follows. In Section 2, we give a survey
about image fusion methods and introduce the permutation-invariance of the network.
Section 3 describes the proposed image fusion method in detail. Section 4 gives the
experimental results and the ablation study. Section 5 concludes this paper.
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2. Related Work

Existing fusion methods can be generally categorized into two types: traditional image
fusion methods and deep learning-based image fusion methods. We will first review these
two types of fusion methods, then introduce basic knowledge about the permutation-
invariant networks related to our work.

2.1. Traditional Image Fusion Methods

In traditional image fusion methods, the key factors include how to measure the pixel
activity level of each source image and to design a suitable fusion strategy to obtain the
fused image. According to the way to measure the pixel activity level, the traditional image
fusion methods can be categorized into transform domain methods, spatial domain meth-
ods, and hybrid methods combining these two. The transform domain methods measure
the image activity level by the coefficients in a transformational domain such as pyramid
transform [9], wavelet transform [10], edge-preserving decompositions [11], and Shearlet
transform [12]. The fused image is reconstructed by the inverse transform based on the
fused coefficients. Also, based on the transform domain, the sparse representation method
can efficiently represent the saliency information of the original images with the sparse
coefficients but at the price of higher computational complexity [13,14]. Different from
transform domain methods, spatial domain methods directly compute the image activities
without transferring to other domains [15]. The activity level of images can be computed
at the pixel [16], block [17] or region [18] level. These methods are efficient but may lead
to block effects or halo edge for the reconstructed image. The hybrid methods integrate
the strengths of different transform or spatial domain methods. For instance, Liu et al. [19]
proposed a hybrid image fusion method by combining multi-scale transform and the sparse
representation. Experiments show that the combined method usually performs better
than using the individual technique. Even so, manual feature extraction methods are still
insufficient to represent the subtle details of the images, leading to inaccurate activity
level measurement.

2.2. Deep Learning-Based Image Fusion Methods

Convolutional neural networks (CNNs) show high performances on various fusion
tasks [4]. Intuitively, a CNN can be used as the feature extractor to obtain the activity
level measurement results of the source images [5,20]. But an end-to-end deep learning
framework integrating both activity level measurement and fusion rule has become the
tendency for image fusion recently. Various end-to-end models have been proposed to
deal with multi-modal image fusion, such as infrared/visible image fusion. For instance,
FusionGAN [21] takes advantage of the generative adversarial network (GAN) to obtain a
fused image with infrared intensity and visible details. Xu et al. [22] extend FusionGAN
with two discriminators to preserve more meaningful information of the source images,
while Li et al. [23] enhance the fusion ability of the network by designing the coupled GAN.
GAN-based method [24] is also applied to the fusion of multi-focus images, while more
DL-based multi-focus image fusion methods adopt a classification model or a regression
model for their frameworks [3]. In the classification strategy, the focused pixels and
defocus pixels are defined as two different categories. The CNNs discriminate between
these two categories and fuse the pixels belonging to the focused category to obtain the
all-in-focus image. Tang et al. [25] and Liu et al. [26] train the network with simulated
blur/clear image patches and output the focus maps of corresponding source images.
Amin-Naji [27] and Ma et al. [28] improve the classification accuracy by ensemble learning
and consistency verification techniques and generate the all-in-focus image with refined
focus maps by post-processing. Li et al. [6] directly convert the whole image into a binary
mask without any patch operation and obtain the fused image by multiplying the sources
and the corresponding binary masks. This method integrates focus map generation and
all-in-focus image fusion together and avoids complex post-processing. Such an end-to-end
regression model is also applied in [29], where the U-net improves the ability of feature
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extraction and fuses the all-in-focus image with a clear boundary. As for the multi-exposure
images, DeepFuse [7] is the first DL-based multi-exposure image fusion method. It extracts
features from the low-exposure image and the high-exposure image with two branches
of the encoder. These features are then fused to reconstruct the HDR image by a decoder.
In this framework, an ingenious non-reference metric designed for the multi-exposure
images fusion, MEF-SSIM [30], is applied as the loss function to guide the convergence of
the model. Ma et al. [31] speed up the fusion process by a down-sampling/up-sampling
process. They first feed a low-resolution version of the input sources to a fully CNN for
weight map prediction, then jointly up-sample the weight maps by a guided filter and
obtain the fused image by a weighted fusion. Although the above methods achieve good
performance, they are specially designed for a single fusion task and usually can not apply
for another fusion task.

Some researchers have proposed to use one framework to handle different fusion
problems. IFCNN [32] trains end-to-end neural networks on a large-scale RGB-D dataset
that provides ground truth fused images. It can conduct inferences on various fusion
tasks, such as medical, infrared/visible, multi-focus, and multi-exposure image fusions.
However, IFCNN only trains multi-focus images synthesized by the RGB-D dataset, lacking
knowledge about other fusion tasks. FusionDN [33] and U2Fusion [8] conduct continual
learning on several fusion tasks. They adopt the elastic weight consolidation [34] to preserve
information from the previous task when training on the new task, which also inspires our
work. However, they can only handle two inputs. When there are three or more inputs,
they need to recursively fuse a new input with the previously fused image, ignoring the
global vision for all images. This recursive fusion extracts the feature of the previous fused
image repetitively, which is time-consuming and does not suit a larger number of inputs.
In reality, fusion tasks such as multi-exposure and multi-focus image fusion always contain
more than two images. To handle the above challenges, we propose an end-to-end CNN
framework that can fuse an arbitrary number of inputs at once for different fusion tasks.
Our method takes the permutation-invariance of the network. It does not need to remember
the specific order of different inputs but efficiently fuses distinct and important information
of different images. Such permutation-invariance makes it possible for our network trained
with M inputs to be applied for N inputs (M, N ≥ 2 and M 6= N). Before introducing our
proposed method, we first introduce the concept of permutation-invariance of networks.

2.3. Permutation-Invariant Networks

For most neural networks, the order of inputs is a part of the information, which means
switching the order of inputs usually changes the outputs. For example, the recursive neural
network understands the sentence meaning through the order of words, and switching
the order of words usually changes the meaning of the sentence. However, there is a type
of problem concerning unordered sets, for which changing the order of the items should
not change the result. One typical example is the point clouds. Point clouds have the
property of unordered that each point position has its set of Cartesian coordinates. Any
global properties computed from cloud points should not depend on their input order but
the coordinates data. Without specialized design, a CNN will attribute some meaning to
the input order, which is unfavorable. Researchers proposed various methods to enforce a
network to be permutation-invariant for unordered inputs to handle this problem.

Zaheer et al. [35] theoretically define the characteristics of permutation-invariant
functions and define a family of functions with permutation-invariant properties, termed as
symmetry functions. They also prove through theory and experiment that max-pooling and
sum-decomposition operations effectively solve the permutation-invariance problem of
the neural networks. Accordingly, Qi et al. [36] construct a permutation-invariant network
PointNet using max-pooling to handle the tasks of object recognition and scene semantic
word parsing. Herzig et al. [37] add sum-decomposition to the hidden layer to make the
network meet the permutation-invariance and successfully achieve new state-of-the-art
results on the Visual Genome scene-graph labeling benchmark. Aittala et al. [38] design
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a permutation-invariant network by symmetrical max-pooling to denoise a sequence of
Burst images.

As max-pooling is a popular choice for symmetric functions, below, we will introduce
how max-pooling is used in CNN to enable permutation-invariance. The pipeline is
illustrated in Figure 2. Mathematically speaking, given an unordered set X ∈ RM with
items of x1, x2, . . . , xM, we say that a function f defined on the set M is max-decomposable
via Z if there are functions φ : R→ Z and γ : Z → R such that:

f (X) = γ(maxi φ(xi)) , (1)

where we refer to Z as the latent space and the max is taken over each dimension inde-
pendently in the latent space. Since max is permutation-invariant, a max-decomposition
is also permutation-invariant [39]. In terms of neural networks, φ and γ can be realized
by multilayer perceptrons. This framework firstly extracts features of every element in an
unordered input set individually. Then, these features are pooled by evaluating the maxi-
mum value of each feature across the members. After the pooling operation, the original
representations of the input individual are discarded, while the pooled feature illustrating
the most vital information of the inputs are maintained and are processed by subsequent
networks. Finally, the neural network outputs the desired image or probability distribution
by the last multilayer perceptrons. From the above, we can see that max-pooling plays
the role of feature fusion. Because of its permutation-invariance, the network’s output has
nothing to do with the order of the inputs. In our fusion task, the network should output
high-quality fused images regardless of the number or order of the input images. Thus, we
adopt the symmetry function max-pooling to achieve the permutation-invariance of our
network. Compared with sum-pooling, max-pooling is efficient in extracting distinguishing
features of each input; however, it is sensitive to outliers. Considering this problem, we
take a concatenate strategy to mitigate the effects of outliers of the network, which will be
introduced in the succeeding section. Experiments also prove the efficiency of max-pooling
than sum-pooling in our framework for the image fusion (Section 4.5.1).

𝑀ax 𝑓(𝑥1, 𝑥2, … , 𝑥𝑀)

𝑋 ∈ ℝ𝑀 𝑋 ∈ ℝ𝑁×𝑀 𝑋 ∈ ℝ𝑁 ℝ

𝑥1

𝑥𝑀

𝜙(𝑥1)

𝜙(𝑥𝑀)

Input Output

z

Figure 2. Model structure proposed in related work for representing permutation-invariant functions.
The Max operation enforces permutation-invariance for the model. φ and γ can be implemented by
multilayer perception, and Z is latent space.

3. Proposed Method

Our method aims at fusing an arbitrary number of images for different fusion tasks
by a unified model, breaking the limitation of existing DL-based fusion methods designed
for a fixed number of images. We introduce the permutation-invariance to our neural
network, which enables the network to extract and fuse informative features without
deliberately remembering the order of input images. This section presents the network
architecture, the training data generation method, the continual learning method, and the
implementation details.
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3.1. Network Architecture

The overall architecture of IFANI is presented in Figure 3. Our IFANI adopts a
symmetrical structure, containing 4 fusion blocks in the first and second phases, respectively.
Besides, a bottleneck connects the first and second phases and the tail part outputs the final
fused image. Suppose there are N input images (N ≥ 2). In the first fusion block of the
first phase, the network extracts the features of each image by a Conv process composed
of a convolutional layer, a Rectified Linear Unit (ReLU), and a batch normalization layer.
The feature extraction is realized by a batch-mechanism operation, which can be seen as one
Conv module sequentially processing N inputs, or N identical Conv modules processing N
inputs in parallel. No matter which implementation is used, it essentially learn one filter
kernel instead of N different kernels. This batch-mechanism operation is applied for all
subsequent Conv modules. Then, the N feature maps are pooled by max-pooling to obtain
the most prominent features among them. We concatenate the original N feature maps
with this pooled feature so that every feature map gains information from other feature
maps, which plays a role in information fusion. The concatenated feature maps are fed to
the next fusion block, and we repeat the same operation until the end of the first phase (the
4-th fusion block). The second phase is composed of 4 similar fusion blocks. The difference
is that feature maps in the first phase will be reused through skip connections for feature
map concatenation, preventing the network from losing low-level details of the input
images. A bottleneck module composed with two Conv plus one more convolutional layer
connects the firs and the second phases. After the 8-th fusion block, we feed the last group
of concatenated feature maps into a Conv module to reduce their channels from 96 to 32.
Then we apply the max-pooling to obtain the last fused feature map, which reconstructs
the fused image through the last Conv module. The filter size and trainable parameters of
each layer are illustrated in Table 1.
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c=32c=32
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N inputs
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Fusion block (1) Fusion block (2)

Fusion block (8) Fusion block (7)
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Figure 3. Framework of the proposed IFANI for multiple image fusion tasks. Here we take multi-
exposure image fusion, for example. The inputs contain N frames of images, which are processed by
a Conv process to get N corresponding feature maps with c channels in each. The network has eight
fusion blocks, each of which aggregates the most informative information among N feature maps by
max-pooling and fuses this aggregated feature map with the N respective feature maps. The Conv
module in each fusion block is composed of a convolutional layer, a ReLU, and a batch normalization
layer, where the size of all convolutional kernels is 3× 3.
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Table 1. List of network architecture information and their trainable parameters, where N is the
number of input images.

Fusion
Block

Network
Architecture

Layer
Type

Filter
Size

Input
Channel

Output
Channel

Number of
Parameters

1 Conv. ConvLayer+ReLU+BN 3× 3 1 32 352
Pool MaxPool 1× 1 32N 32 -

2 Conv. ConvLayer+ReLU+BN 3× 3 64 32 18,496
Pool MaxPool 1× 1 32N 32 -

3 Conv. ConvLayer+ReLU+BN 3× 3 64 32 18,496
Pool MaxPool 1× 1 32N 32 -

4 Conv. ConvLayer+ReLU+BN 3× 3 64 32 18,496
Pool MaxPool 1× 1 32N 32 -

Bottleneck
Conv. ConvLayer+ReLU+BN 3× 3 64 32 18,496
Conv. ConvLayer+ReLU+BN 3× 3 32 32 9280
Conv. ConvLayer 3× 3 32 32 9248

5 Conv. ConvLayer+ReLU+BN 3× 3 32 32 9280
Pool MaxPool 1× 1 32N 32 -

6 Conv. ConvLayer+ReLU+BN 3× 3 96 32 27,712
Pool MaxPool 1× 1 32N 32 -

7 Conv. ConvLayer+ReLU+BN 3× 3 96 32 27,712
Pool MaxPool 1× 1 32N 32 -

8 Conv. ConvLayer+ReLU+BN 3× 3 96 32 27,712
Pool MaxPool 1× 1 32N 32 -

Tail
Conv. ConvLayer+ReLU+BN 3× 3 96 32 27,712
Pool MaxPool 1× 1 32N 32 -

Conv. ConvLayer+ReLU+BN 3× 3 32 1 321

The ideal method of image fusion is processing the source image by assigning them
preferences according to their characteristics. However, it requires the same number and
order of images during training and inference, making it inconvenient when the inputs are
unfixed. Our IFANI acquires the property of permutation-invariance by the max-pooling,
which means the order of inputs does not affect the fusion performance so that network
does not need to remember the order of different inputs. In addition, the batch-mechanism
operation helps the network process a variable number of images. Therefore, even trained
with M images, the network can be also applied for N images fusion. Moreover, the skip
connection between the first and second phases helps maintain image details in the fused
images. Although without remembering the order of input images, experiments in Section 4
prove that our method outperforms others.

3.2. Continual Learning on Multiple Image Fusion Tasks

We implement our IFANI for four image fusion tasks, including multi-modal medical
image fusion (task 1), infrared/visible image fusion (task 2), multi-exposure image fusion
(task 3) and multi-exposure image fusion (task 4). The intuitive idea of handling multiple
image fusion tasks by one model is to mix all training data into a large training set and
train the network on this big dataset. However, these tasks contain four types of source
image sets, which are diverse and have different data distributions. If we change the type
of input image at every iteration during training, the parameters of the network will change
drastically, and the training will be difficult to converge. To make the network learn from
every task and converge quickly, our IFANI is sequentially trained from task 1 to task 4
with a continual learning mechanism based on the Elastic Weight Consolidation [40], which
will be introduced in Section 3.2.2. The training procedure is shown in Figure 4.
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For four fusion tasks, the loss function comprises the image quality assessment (IQA)
function and the loss function used for continuous learning, in which the IQA metric includes
reference-based measurement and non-reference measurement, as formulated below:

Ln = λ1Lref + λ2Lnref + λ3Lewc . (2)

We mark the n-th task as Tn, then Ln is the loss function used in Tn. Lref and Lnref
represent the reference-based IQA and non-reference-based IQA, respectively. Lewc is the loss
function based on Elastic Weight Consolidation [40], which overcomes catastrophic forgetting
of the previously trained tasks when training on a new task. The weight λ for each loss function
balances the penalty between the IQA loss and the loss of continual learning.

Train task 1 Train task 2 Train task 3 Train task 4

Infrared/visible image pairs PET/MRI image pairs Multi-exposure image sequences Multi-focus image sequences

Ω𝑖 Ω𝑖 Ω𝑖

Network NetworkNetwork Network

Ω𝑖

data flow
parameter flow

Figure 4. Continual learning for four different fusion tasks. The solid lines below represent the data
flow. The thick solid lines represent the data used to train the network. The thin solid lines represent
a small subset of data used to calculate the importance parameter Ωi. The dotted lines indicate that
the network parameters are passed to the training of the next task.

3.2.1. Loss Function of Image Quality Assessment

We adopt a widely used loss function, mean absolute error, as the reference-based IQA
to evaluate the quality of the fused image:

LMAE(Y, Ŷ) =
1

whc ∑
x,y,k
|Yx,y,k − Ŷx,y,k| , (3)

where Y and Ŷ are the fused image and the reference ground truth. w, h, and c represent
the image’s width, height, and the number of channels. x, y, and k are pixel coordinates.

For fusion tasks such as medical image fusion and infrared/visible image fusion,
their training data lack the reference ground truth for supervision. Therefore, direct use of
the similarity index measure (SSIM) is impossible, which requires a single perfect quality
reference image. A non-reference IQA function is commonly used for quality measurement
of the fused image. To guide the network to fuse meaningful structures and details from
every source image, we adopt MEF-SSIM [30] as the non-reference IQA loss function. MEF-
SSIM is proposed based on the principle of the structural similarity (SSIM) [41] approach
as well as a novel measurement of patch structural consistency between multiple source
images and the the fused image, which is firstly used to assess the image quality of the
multi-exposure image fusion. Different from the SSIM, MEF-SSIM does not need the ground
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truth image as reference. If a fused image integrates more structured information from
the source images, it has a higher MEF-SSIM score. MEF-SSIM gets the assessment results
that match the subjective judgements well and is therefore widely used on unsupervised
learning of multi-exposure fusion networks [7,31]. MEF-SSIM is also used in the objective
quality comparison of other fusion tasks, such as infrared/visible fusion [5], and shows
consistency with the subjective measurements. The loss function based on MEF-SSIM is
defined as:

LMEF-SSIM(X, Y) = 1−MEF-SSIM(X, Y) , (4)

where X represents source images and Y is the fused image.

3.2.2. Loss Function of Elastic Weight Consolidation

To handle different fusion tasks with one unified model, we take advantage of the
redundancy of network parameters and integrate characteristics of different tasks by contin-
ual learning. When sequentially training multiple tasks, we expect the learned knowledge
from the previous task Tn−1 can boost the learning of current task Tn. Also, we hope the
model will not lose the knowledge from task Tn−1 after the training of task Tn. Continuous
learning by Elastic Weight Consolidation [40] provides a solution that accumulates knowl-
edge over tasks and overcomes catastrophic forgetting about previous knowledge by the
regularization-based method on the parameters of the network. Specifically, the model
parameters trained with the previous task Tn−1 and current task Tn are marked as θ∗ and θ,
respectively. When a new task Tn to be learned, we have in addition to the new task loss
Ln(θ), a regularizer Lewc that penalizes changes to parameters that are deemed important
for the previous task

L(θ) = Ln(θ) + Lewc

= Ln(θ) + η ∑
i

Ωi(θi − θ∗i )
2 , (5)

with a penalty factor η that sets how important the old task is compared to the new one.
θi represents the i-th parameter in the network. Ωi is the importance degree of each old
parameter θ∗i , which guides the network to change the parameters that are not important
to the previous task (low Ωi) but limit the change of important parameters (high Ωi).
The importance matrix Ω can be computed based on any available data considered most
representative for test conditions. Here we follow the importance measurement approach
in [40], which is based on Fisher information matrix, and the Ωi is estimated by:

Ωi =
1
N ∑

d∈D∗

∂L(d, θ∗)2

∂θ∗
, (6)

where d represents the elements in dataset D∗ of the previous task and the total elements is
N. The EWC loss in the current task should be

Lewc = η
1
N ∑

i
∑

d∈D∗

∂L(d, θ∗i )
2

∂θ∗i
(θi − θ∗i ) . (7)

Note that Ωi is calculated once the previous task has been trained, and the training
of the current task does not require the data of the old task. Besides, for several tasks,
the importance degree Ωi will accumulate along with the tasks. As shown in Figure 4,
a small subset dataset in the current dataset is used to calculate the importance degree for
the next task. Take task 3 for example, Ωi in task 3 are calculated by Formula (6), where D∗

are subsets data from task 1 and 2. θ∗ are parameters in network trained by task 2.
Overall, if the fusion task has ground truth for training (such as multi-exposure and

multi-focus image fusion tasks in our papers), its loss function can be formulated as:

L = λ1LMAE + λ2LMEF-SSIM + λ3Lewc , (8)
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where we use both reference and non-reference quality metrics to measure the fused image.
In the training process the parameters λ1 and λ2 are set to 0.5 so that the contribution of the
two losses would be roughly balanced. Since the value of Lewc is much smaller than LMAE
and LMEF-SSIM, the order of magnitude of λ3 is particularly important, which is defied at
104 after the investigation. We also notice that the results are not significantly sensitive
for λ3 varying from 1× 104 to 3× 104 but will drop down when λ3 is bigger than 3× 104.
Therefore, we finally set the weight for EWC loss λ3 to 2× 104. In contrast, if there is no
ground truth for training (such as MRI/PET and infrared/visible image fusion tasks in our
papers), its loss function is formulated as:

L = λ1LMEF−SSIM + λ2Lewc , (9)

where λ1 = 1 and λ2 is set to 2× 104. Particularly, as the first trained task, we set λ2 = 0 for
infrared/visible image fusion, which means there is no importance degree measurement
for it.

3.3. Training Data Preparation

It is challenging to get ground-truth all-in-focus images when training for the multi-
focus image fusion task. Thus the synthetic data is usually served as the training data.
A typical approach is applying the Gaussian filtering with different covariance on a clear
image by the defined mask patterns to generate a complementary pair of defocused images.
The original clear image is used as the ground truth for comparison with the fused image [6].
However, this method can only provide two defocus images, which is insufficient for more
than two images. Therefore, we proposed a pattern-based data synthetic approach to
generate multiple defocused images for multi-focus image fusion training.

Here, we take the dataset DIV2k [42] as the raw images to synthesize the defocused
images. The DIV2k dataset contains 1000 high definition high-resolution images with a large
diversity of contents. We generate a series of binary masks to decide the out-of-focus area of
defocused images. The number of binary masks decides the number of defocused images
in each set. To generate such binary complimentary masks, we design two groups of masks
in advance. The first group is basal masks, including 4 binary masks as shown in Figure 5a,
which separate a 128× 128 patch into 1, 2, 3 and 4 parts, respectively. The other group
includes 213 binary masks of various shapes with the size of 128× 128, called shape masks
(Figure 5b). The complementary masks can be defined by one basal mask and a chosen
shape mask with AND-operation. Figure 6 gives an example of the binary complementary
masks Pi(i = 1, 2, . . . , n). We take the high-resolution image from the DIV2k dataset and
crop a 128 × 128 image patch as the raw clear image, denoted as Iclear. The Gaussian
filtering with a standard deviation between 1 and 2 is applied to get the blurred image Iblur.
Then the i-th defocused image Di is generated by the following operation:

Di(x, y) = Iclear(x, y)Pi(x, y) + Iblur(x, y)(1− Pi(x, y)) , (10)

where M denotes the total number of defocused images, x and y are pixel coordinates.
In this way, we prepare 3000 multi-focus image sets, each containing 2 to 8 defocused
images and a ground truth all-in-focus image with the size of 128× 128 for training.
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(a)

(b)

Figure 5. Four basal masks and some examples of shape masks. (a) Basal masks, (b) Shape masks.

Basal mask

&

Complementary 

masks

Defocused 

images

Shape maskRaw image

Figure 6. Generation of the defocused images.

3.4. Implementation Details

We collect 220 pairs of MRI/PET images on Havard Medical School (https://www.
med.harvard.edu/aanlib/home.html (accessed on 13 February 2022)) from different med-
ical cases of illness and divide them into a training set (200 pairs) and test set (20 pairs).
As for infrared/visible image fusion, we adopt RoadScene (https://github.com/jiayi-ma/
RoadScene (accessed on 13 February 2022)) for training. This dataset contains 221 aligned
infrared/visible image pairs containing rich scenes. In addition, we use datasets from [43]
for multi-exposure image fusion training, which provides multi-exposure sequences of
589 scenes with 3 to 18 exposure levels as well as corresponding high-quality reference
images. The reference HDR image is the best fusion image manually selected from the
fusion results of 13 recently developed MEF and HDR algorithms that are used as ground
truth during training. The training data for multi-focus image fusion is generated according
to Section 3.3. All source images are cropped to image patches with a size of 128× 128.
The filters size of the network are set to 3× 3.

Images in different fusion tasks have different color channels. For instance, the multi-
exposure images can be all RGB images or gray-scale images. In contrast, the infrared/visible
images usually contain an RGB visible image and a gray-scale infrared image. As we all
know, the image structural details are present in the luminance channel, and the brightness
variation is prominent in the luminance channel than in chrominance channels. It is a
popular method to handle image fusion in YCbCr color space [7]. To unify the input color
channel for all fusion tasks, we convert all RGB images into the YCbCr format and only
feed the Y channel (brightness) into the CNN since the Y channel carries almost all detailed

https://www.med.harvard.edu/aanlib/home.html
https://www.med.harvard.edu/aanlib/home.html
https://github.com/jiayi-ma/RoadScene
https://github.com/jiayi-ma/RoadScene
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information of images. Then the chrominance information Cb (or Cr) of the output fused
image is generated by the weighted sum of input chrominance channel values [7,44]:

C f =

 ∑N
i Ci(|Ci−τ|)
∑N

i (|Ci−τ|) , ∑N
i (|Ci − τ|) 6= 0

τ, otherwise
, (11)

where N is the number of input images, Ci denotes Cb (or Cr) channel of the i-th image
and C f is the fused channel. τ = 128 represents the mid-intensity value for the 8-bit image,
and C f is defined as 128 when all Ci = 128.

Our IFANI is implemented by PyTorch on the CPU of Intel Core i7-8086k 195 of 32 GB
RAM and the GPU of NVIDIA GTX 1080Ti. We use the Adam method with β1 = 0.9
and β2 = 0.99 for optimization. These four tasks orderly train for 300, 200, 270 and
3 epochs with batch size of 1. The learning rate starts at 1× 10−4 and reduces to half after
every 5× 104 iterations.

4. Experiments

In this section, we conduct objective and subjective experiments on four fusion tasks
to demonstrate the effectiveness of our method. Furthermore, we perform a set of ablation
studies to explore the effect of different elements of the proposed IFANI.

4.1. Multi-Modality Medical Image Fusion

Test data of MRI/PET images come from Harvard Medical School. We compare our
method with four state-of-the-art methods, including a traditional fusion method [45] and
three DL-based fusion methods, PMGI [46], FusionDN [33] and U2Fusion [8]. Table 2
presents the quantitative comparison results between our method and the other state-of-
the-art methods based on the sum of the correlations of differences (SCD) [47], the average
structural similarity (SSIM) [41], MEF-SSIM [30], the visual information fidelity (VIF) [48],
and the mutual information (FMI) [49]. Note that all metrics are designed based on gray
images, so we compute them in the luminance channel, and the same goes for the other
fusion tasks that follow.

Table 2. Comparison results of MRI/PET images fusion on Harvard dataset, with the best result in
bold and the second-best result underlined.

Method SCD SSIM MEF-SSIM VIF FMI

GFF [45] 0.850 0.764 0.873 0.414 0.559
PMGI [46] 1.096 0.248 0.874 0.387 0.376

U2Fusion [8] 0.283 0.226 0.837 0.232 0.336
FusionDN [33] 0.520 0.255 0.864 0.331 0.353

Proposed 1.117 0.746 0.938 0.467 0.405

In Table 2, our IFANI achieves the highest SCD, MEF-SSIM, and VIF results among all
the methods. Our method also gets the second-best performance in terms of SSIM and FMI.
Figure 7 visualizes the fused results using different methods for MRI/PET pairs. It shows
that PMGI and FusionDN fused the black pixels into gray pixels, which means they have
limited fusion ability for such a special situation. Trained with MRI/PET images, this
problem also appears in U2Fusion in less severe. In contrast, our method reconstructed
the fused image with clearer tissue structures and can successfully handle the black areas.
Moreover, our method maintains more details from the PET images than GFF and more
structures from the MRI images than U2Fusion.

The average running times of GFF, PMGI, FusionDN, U2Fusion and the proposed
IFANI are around 0.023, 0.057, 4.506, 1.052 and 0.068 s respectively.
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(a) MRI Image (b) PET Image (c) GFF (d) PMGI (e) FusionDN (f) U2Fusion (g) Proposed

(a) (b) (c) (d) (e) (f) (g) (a) (b) (c) (d) (e) (f) (g)

Figure 7. Fusion results for PET/MRI images on Havard dataset of our proposed method and four
image fusion methods: GFF [45], PMGI [46], FusionDN [33] and U2Fusion [8]. The zoom-in patches
of corresponding images (a–g) are shown in the black box.

4.2. Infrared/Visible Image Fusion

For the task of visible and infrared image fusion, we take image datasets TNO (https:
//figshare.com/articles/dataset/TNO_Image_Fusion_Dataset/1008029 (accessed on 13
February 2022)) (20 pairs) and RoadScene (20 pairs) for testing. The comparison methods
include a traditional fusion method GFF [45], a specialized infrared/visible image fusion
method Densefuse [5] and three general DL-based methods IFCNN [32], PMGI [46] and
U2Fusion [8].

As can be seen in Table 3, we measure the fusion results on 4 metrics: edge information
preservation (QM) [50], weighted SSIM (QY) [51], pixel intensity correlation (QAB/F) [52],
and MEF-SSIM. Our method outperforms other methods on the TNO dataset, ranking first
for all metrics. Besides, it achieves the highest scores on RoadScene in terms of QAB/F

and MEF-SSIM and the second-ranking for QM and QY. GFF [45], as a traditional im-
age fusion method, fuses images with high quality, which gets two first-rankings and
4 second-rankings on two datasets. In Figure 8, we visualize the fused images using differ-
ent methods. Usually, the infrared images can help recognize humans, especially when the
luminance condition of the scene is poor. In contrast, the visible image contains more infor-
mative environment details than infrared images. From Figure 8 we can see our method can
fuse clear pedestrians and informative environment details for 4 different scenes. On the
contrary, GFF captures more information from the infrared images, losing environment
textures in the RoadScene dataset. The same problems happen to PMGI. The specialized
infrared/visible image fusion method Densefuse shows outstanding reconstruction ability
for the daylight sky, but it loses the environment information in the night scene (3rd line).
In comparison, our method has good fusion performance for images of day scenes and
night scenes.

Moreover, the average running times of GFF, IFCNN, Densefuse, PMGI, U2Fusion and
the proposed IFANI are around 0.093, 0.046, 0.725, 0.301, 2.034, and 0.129 s, respectively.

https://figshare.com/articles/dataset/TNO_Image_Fusion_Dataset/1008029
https://figshare.com/articles/dataset/TNO_Image_Fusion_Dataset/1008029
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(a)  Visible (b) Infrared (c) GFF (d) PMGI (e) IFCNN (f) Densefuse (g) U2Fusion (h) Proposed

(a) (b) (c) (d) (e) (f) (g) (h) (a) (b) (c) (d) (e) (f) (g) (h)

Figure 8. Infrared and visible image fusion results of our proposed method and other five methods
(GFF [45], PMGI [46], IFCNN [32] and Densefuse [5]). Images in the top two rows come from the
TNO dataset, and images in the bottom two lines come from the RoadScene dataset. The zoom-in
patches of corresponding images (a–h) are shown in the black box.

Table 3. Comparison results of infrared/visible image fusion on TNO and RoadScene datasets,
with the best results in bold and the second-best results underlined.

Dataset Method QM QY QAB/F MEF-SSIM

TNO

GFF [45] 2.921 0.739 0.440 0.826
IFCNN [32] 2.915 0.709 0.418 0.910

Densefuse [5] 2.898 0.664 0.388 0.862
PMGI [46] 2.884 0.617 0.331 0.842

U2Fusion [8] 2.882 0.655 0.356 0.901
Proposed 2.928 0.836 0.539 0.929

RoadScene

GFF [45] 2.931 0.930 0.594 0.905
IFCNN [32] 2.906 0.828 0.559 0.906

Densefuse [5] 2.883 0.756 0.528 0.860
PMGI [46] 2.871 0.750 0.468 0.903

U2Fusion [8] 2.872 0.780 0.499 0.886
Proposed 2.922 0.846 0.611 0.929

4.3. Multi-Exposure Image Fusion

In the multi-exposure image fusion task, we compare our method with four image fu-
sion methods, including the specialized multi-exposure image fusion method FMMEF [53]
and three general image fusion methods: GFF [45], IFCNN [32] and U2Fusion [8]. The com-
parison is implemented on 17 multi-exposure image sets in [30]. All sets contain at least
three input images captured from underexposed to overexposed cases. We measure the
quality of the fused images by the information-based metric called MEF-VIF [54] as well as
MEF-SSIM [30]. Here, the MEF-VIF and MEF-SSIM metrics are widely used to measure the
perceptual quality of fused images of the multi-exposure image fusion task and apply for
multiple source images.

As shown in Table 4, our method achieves the highest average scores on MEF-SSIM
and VIF-SSIM and outperforms other fusion methods on most sets. GFF and FMMEF
achieve the second good average scores on VIF-SSIM. U2Fusion gets lower average scores
than other fusion methods on both MEF-SSIM and VIF-SSIM. We believe that the fusion
strategy is one of the reasons for the poor fusion results, which will be further explored in
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the oblation study. The subjective comparisons in Figure 9 show consistent results with the
objective results. As can be seen, we fuse 3 multi-exposure image sets that have 4, 6, and 9
low dynamic range images in each set (first row). U2Fusion loses several details of the
outdoor scenes for 3 sets, while our method can preserve them successfully. GFF, IFCNN,
and IFMEF fuse images from set 1 with non-ideal shadow. In contrast, the fused images
from our method have vivid color.

Table 4. Comparison results of multi-exposure fusion by MEF-SSIM [30]/MEF-VIF [54], with the
best results in bold and the second-best results underlined.

Image Set GFF [45] IFCNN [32] U2Fusion [8] FMMEF [53] Proposed

Balloons 0.896/0.891 0.873/0.868 0.803/0.450 0.876/0.886 0.927/0.918
Belgium house 0.921/0.906 0.877/0.888 0.837/0.667 0.830/0.878 0.917/0.926

Lamp1 0.894/0.880 0.876/0.843 0.802/0.611 0.856/0.883 0.894/0.887
Candle 0.844/0.866 0.898/0.872 0.236/0.830 0.914/0.871 0.897/0.836
Cave 0.929/0.937 0.889/0.895 0.246/0.793 0.852/0.933 0.939/0.976

Chinese garden 0.945/0.953 0.882/0.834 0.530/0.835 0.868/0.948 0.938/0.978
Farmhouse 0.948/0.955 0.875/0.906 0.746/0.699 0.858/0.952 0.913/0.983

House 0.869/0.900 0.869/0.853 0.811/0.703 0.861/0.898 0.895/0.912
Kluki 0.894/0.927 0.845/0.870 0.834/0.758 0.886/0.915 0.936/0.934

Lamp2 0.849/0.799 0.793/0.844 0.320/0.729 0.771/0.820 0.850/0.832
Landscape 0.915/0.934 0.809/0.810 0.677/0.885 0.925/0.944 0.956/0.989
Lighthouse 0.877/0.821 0.870/0.763 0.767/0.845 0.918/0.863 0.939/0.851

Madison capitol 0.908/0.914 0.877/0.886 0.780/0.626 0.885/0.928 0.939/0.952
Memorial 0.889/0.886 0.888/0.894 0.130/0.838 0.853/0.858 0.939/0.928

Office 0.906/0.953 0.832/0.870 0.825/0.772 0.899/0.957 0.935/0.972
Tower 0.935/0.947 0.851/0.868 0.568/0.763 0.904/0.943 0.941/0.986
Venice 0.895/0.897 0.835/0.853 0.587/0.740 0.842/0.899 0.921/0.922

Average 0.901/0.904 0.861/0.860 0.618/0.738 0.870/0.904 0.922/0.928

(a) GFF (b) IFCNN (c) FMMEF (d) U2Fusion (e) Proposed

Set 1 Set 2 Set 3

(a) (b) (c) (d) (e) (a) (b) (c) (d) (e) (a) (b) (c) (d) (e)

Figure 9. Multi-exposure image fusion results of four image fusion methods (GFF [45], IFCNN [32],
FMMEF [53], U2Fusion [8]) and our proposed method. The zoom-in patches of corresponding images
(a–e) are shown in the black box.

As introduced in Section 3, our method is permutation-invariant for multiple inputs
and can fuse a set of images at once, as illustrated in Figure 10b. It treats all images without
distinction and has a global measuring ability. However, other DL-based methods such as
IFCNN and U2Fusion are designed for two inputs; they adopt a recursive fusion strategy
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to get the fused image. More specifically, they initially fuse two of these source images,
and then the intermediate result is fused with another source image (Figure 10a). That
means the third image is only compared with the intermediate fused image rather than the
source images, resulting in the lack of global measurement for the network for all inputs.
We will further explore the impact of different fusion strategies in Section 4.5.2.

The average running times of GFF, IFCNN, U2Fusion, FMMEF and the proposed
method are about 0.202, 0.323, 10.661, 0.086 and 0.292 s, respectively. Obviously, U2Fusion
and IFCNN using the recursive fusion strategy are time-consuming.

A B

F1 C

F

A B C

F

(a) Recursive fuse strategy (b) Our fuse strategy(a)

A B

F1 C

F

A B C

F

(a) Recursive fuse strategy (b) Our fuse strategy(b)

Figure 10. Two fusion strategies for more than two input images. Our method takes one-shot fusion
strategy to fused the image. (a) Recursive fusion, (b) Our fusion.

4.4. Multi-Focus Image Fusion

We evaluate our proposed method for the multi-focus image fusion task on two image
datasets. The first one is the Lytro (https://mansournejati.ece.iut.ac.ir/content/lytro-multi-
focus-dataset (accessed on 13 February 2022)) dataset that contains 20 pairs of color multi-
focus images and four series of color multi-focus images with 3 sources. The second one is
the grayscale multi-focus dataset used in [55], which contains 8 pairs of grayscale images.

Our proposed method is compared with five image fusion methods, including the spe-
cialized multi-focus image fusion method SESF [28] and four general fusion methods GFF [45],
IFCNN [32], PMGI [46] and U2Fusion [8]. We take assessments based on image entropy (EN),
mutual information (MI), structure similarity (MEF-SSIM) [30] and pixel intensity correlation
QAB/F. As shown in Table 5, we compare the fusion results of the 20 pairs on the Lytro dataset
and find our proposed method outperforms other fusion methods on most assessment metrics
except for MEF-SSIM, while GFF and SESF achieve the highest scores on MEF-SSIM. As for
the grayscale dataset, our method ranks first for all metrics.

Table 5. Comparison results of multi-focus image fusion on the Lytro and the grayscale datasets,
with the best results in bold and the second-best results underlined.

Dataset Method EN MI MEF-SSIM QAB/F

Lytro

GFF [45] 7.535 15.069 0.994 0.564
IFCNN [32] 7.534 15.068 0.993 0.684

SESF [28] 7.534 15.067 0.994 0.536
PMGI [46] 7.517 15.034 0.958 0.539

U2Fusion [8] 7.288 14.575 0.970 0.638
Proposed 7.539 15.077 0.991 0.716

grayscale

GFF [45] 7.255 14.510 0.989 0.500
IFCNN [32] 7.245 14.489 0.986 0.656

SESF [28] 7.243 14.486 0.988 0.432
PMGI [46] 7.207 14.414 0.959 0.548

U2Fusion [8] 7.090 14.180 0.974 0.618
Proposed 7.260 14.520 0.989 0.682

We subjectively compare these fusion methods in Figure 11. We also compare the
multi-focus sets with 3 images in Lytro (set 2). In the third row of Figure 11, PMGI and
U2Fusion fuse the multi-focus images to a blurred image, where the words are unclear on
the plate. However, our method fuses the image with clear background and foreground,

https://mansournejati.ece.iut.ac.ir/content/lytro-multi-focus-dataset
https://mansournejati.ece.iut.ac.ir/content/lytro-multi-focus-dataset


Sensors 2022, 22, 2457 17 of 22

and the words on the plate are clear. It confirms that our method can fully use all defocused
images to fuse a clear all-in-focus image.

The average running times of GFF, IFCNN, SESF, PMGI, U2Fusion and the proposed
method are 0.106, 0.064, 0.347, 0.159, 3.087 and 0.288 s, respectively.

Set 1 Set 2 Set 3

(a) GFF (b) IFCNN (c) SESF (d) PMGI (e) U2Fusion (f) Proposed

(a) (b) (c) (d) (e) (f) (a) (b) (c) (d) (e) (f) (a) (b) (c) (d) (e) (f)

Figure 11. Multi-focus image fusion results of the proposed IFANI and other five image fusion
methods (GFF [45], IFCNN [32], SESF [28], PMGI [46], and U2Fusion [8]) on the Lytro and the
grayscale datasets. The zoom-in patches of corresponding images (a–f) are shown in the black box.

4.5. Ablation Study

In this section, we explore the effect of different elements in the pipeline of the pro-
posed IFANI by a sequence of controlled experiments.

4.5.1. Symmetry Function

There are mainly two symmetry functions for achieving the permutation-invariance of
the network, including sum-pooling and max-pooling. The sum pooling adds all features
of every input image together, while the max-pooling selects the most significant features
among them. We take the comparisons of different symmetry functions on the multi-
exposure image fusion task. Note that all network settings and training procedures are
the same for the two networks except for the pooling strategies. As shown in Table 6,
images fused by max-pooling have higher average MEF-SSIM and MEF-VIF than images
fused by the sum-pooling, which is consistent with the subjective results (Figure 12).
The fused image by the max-pooling network (Figure 12c) has uniform brightness and clear
contrast. In addition, it preserves more details than the image fused by the sum-pooling
network (Figure 12b). Therefore, the proposed IFANI chooses the max-pooling to enable
permutation-invariance.
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(a)

(b) (c)

Figure 12. Multi-exposure image fusion results for networks with sum-pooling and max-pooling.
(a) Multi-exposure image set, (b) Sum-pooling fused image, (c) Max-pooling fused image.

Table 6. Average results of MEF-SSIM [30] and MEF-VIF [54] for networks with two symmetry
functions on multi-exposure image fusion task.

Symmetry Function MEF-SSIM MEF-VIF

Sum-pooling 0.902 0.901
Max-pooling 0.922 0.928

4.5.2. Input Order

To investigate the influence of different orders of input images on the proposed IFANI,
we compare our method with U2Fusion [8] on the multi-exposure image fusion task.
As mentioned in Section 4.3, U2Fusion is designed for two inputs. Therefore, it adopts the
recursive fusion strategy to fuse more than two source images (Figure 10a). In contrast, our
method can fuse all source images in one shot(Figure 10b).

In Figure 13, the multi-exposure set contains 3 images with under, middle, and over
exposures. For image order in Figure 13a, U2Fusion first fuses the under-exposure and middle-
exposure images. Then the intermediate output is combined with the under-exposure image
to obtain the final fused image (Figure 13c). This recursive fusion also applies for image order
of Figure 13b,g and for U2Fusion to get fused images Figure 13e,h. Our method handles
these three orders in the same way (Figure 10b) and obtains the corresponding fused images
in Figure 13d,f,i. As can be seen, the fused images of U2Fusion for three input orders have
big differences and have lower quality than our fused images according to MEF-SSIM [30]
assessments. Lacking the global vision of all source images, U2Fusion can not extract the most
important details among all images. By contrast, our method is permutation-invariant that can
process all images in one shot without remembering their orders. It obtains the same and also
high-quality fused images for different input orders. Moreover, our one-shot fusion method is
more time-efficient (0.201 s/set) than the recursive fusion strategy (4.476 s/set).
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(a) Input order: under-exposure to over-exposure (b) Input order: over-exposure to under-exposure

(c) U2Fusion fused (0.8344) (d) Ours fused (0.9324) (e) U2Fusion fused (0.6796) (f) Ours fused (0.9346)

(a) Input order: under-middle-over exposure (b) U2Fusion(0.834) (c) Ours(0.935)

(a) Input order: under-exposure to over-exposure (b) Input order: over-exposure to under-exposure

(c) U2Fusion fused (0.8344) (d) Ours fused (0.9324) (e) U2Fusion fused (0.6796) (f) Ours fused (0.9346)

(d) Input order: over-middle-under exposure (e) U2Fusion(0.680) (f) Ours(0.935)

(a) Input order: under-exposure to over-exposure (b) Input order: over-exposure to under-exposure

(c) U2Fusion fused (0.8344) (d) Ours fused (0.9324) (e) U2Fusion fused (0.6796) (f) Ours fused (0.9346)

(g) Input order: over-under-middle exposure (h) U2Fusion(0.803) (i) Ours(0.935)

Average fusion time (s): U2Fusion 4.476 Ours 0.201

Figure 13. Multi-exposure image fusion results for different sequence orders (a,d,g) by U2Fusion
(b,e,h) and our method (c,f,i). The values in parentheses are MEF-SSIM [30] assessments of fused
images. The average running time of U2Fusion for each input set is 4.476 s, while ours if 0.201 s.

4.5.3. Continual Learning

Our IFANI uses EWC-based continual learning to train multiple tasks. We explore
the effectiveness of continual learning by training with multi-exposure image fusion task
and multi-focus image fusion task on 3 model settings, as shown in Table 7. Model 1 is
only trained with multi-exposure task. Model 2 is first trained with multi-exposure task
and then trained with multi-focus task without EWC-based continual learning. In contrast,
model 3 is continually trained with multi-focus image fusion task based on EWC.

Table 7. Comparison results of multi-exposure and multi-focus image fusions with and without the
continual learning based on EWC.

Model
Task Training Continual Learning Test Results (MEF-SSIM)

Multi-Exposure Multi-Focus w/o EWC with EWC Multi-Exposure Multi-Focus

1 X × × × 0.910 0.932
2 X X X × 0.754 0.979
3 X X × X 0.908 0.988

We compare the fusion results of two fusion tasks by MEF-SSIM. Model 1 obtains the
highest MEF-SSIM (0.910) for the multi-exposure image fusion task but the lowest perfor-
mance (0.932) for the multi-focus image fusion task. That’s because it has no knowledge
about multi-focus images. In contrast, model 2 gets higher MEF-SSIM results than model 1
in multi-focus image fusion. However, without EWC, model 2 losses the knowledge of
the previous task and gets the worst performance for the multi-exposure image fusion
task after training with the multi-focus image fusion task. As for model 3, it achieves the
best performance in the multi-focus image fusion. Simultaneously, its performance for the
multi-exposure image fusion only reduces 0.002 compared with model 1, which means
model 3 remembers most information from the previous task by the EWC-based continual
learning. In addition, model 3 outperforms model 2 on the multi-focus image fusion task,
which means the knowledge of the multi-exposure task also contributes to learning the
multi-focus image fusion. The subjective comparison is in Figure 14. With EWC, model 3
gets the HDR images with more consistent and uniform brightness across the entire image
than that in model 1. Note that model 2 loses the fusion ability for the multi-exposure
image fusion after retraining the multi-focus image fusion task without the EWC; thus, its
fused HDR image suffers severe hole effects. These experiments show that the EWC-based
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continual learning not only maintains knowledge from the previous task but also promotes
the training of the current task.

(a) Set 1 (b) Set 2 (c) Set 3 (d) Set 4

(e) Model 1

(f) Model 2

(g) Model 3

Figure 14. Comparison results of multi-exposure and multi-focus image fusion with and without the
continual learning based on EWC. Sets 1 and 2 are for the multi-exposure task; sets 3 and 4 are for the
multi-focus task.

5. Conclusions

This paper addresses the general image fusion problems with an arbitrary number
of inputs by proposing a novel and permutation-invariant neural network named IFANI.
Different from other deep learning-based image fusion methods that can only apply to
two inputs, our method can fuse multiple inputs in one shot. Specifically, max-pooling
is repeatedly used in different stages of the network to aggregate salient information
among all input features. Since the permutation-invariance of max-pooling, the network is
permutation-invariant so that it can fuse several images regardless of their input orders
and numbers, providing convenience during the inference of networks. The continual
learning based on Elastic Weight Consolidation is adopted to remember the knowledge of
the previous task during the training of the current task. By this means, we can handle four
different fusion tasks with one unified model. Both image quality loss and EWC loss are
used for training. The subjective and objective experiments conducted on several public
datasets demonstrate the high performance of our IFANI on four fusion tasks. The proposed
IFANI mainly works with aligned images or static scenes (e.g., multi-exposure image
fusion), and extending it to dynamic scenes is valuable. However, the lack of ground truth
images and perceptual image quality metrics of dynamic scenes for networks training is
another challenge and worth research in the future.
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