
Computer Networks 205 (2022) 108744

A
1

Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier.com/locate/comnet

NemesisGuard: Mitigating interrupt latency side channel attacks with static
binary rewriting
Majid Salehi a,∗, Gilles De Borger a, Danny Hughes a, Bruno Crispo b

a imec-DistriNet, KU Leuven, 3001 Leuven, Belgium
b University of Trento, 38122 Trento, Italy

A R T I C L E I N F O

Keywords:
IoT security
Side channel attacks
Static binary instrumentation

A B S T R A C T

Internet of Things (IoT) is becoming integrated into nearly every aspect of our modern life. Indeed, exploitation
of such devices can directly lead to physical consequences in the real world. Previous work has shown that
IoT devices can be compromised by exploits in lower software layers such as the Operating System (OS).
Embedded Trusted Execution Environments (TEEs) provide a small Trusted Computing Base (TCB) to protect
sensitive codes and data in such devices. TEEs assume a strong threat model where even a privileged attacker
(e.g. OS) cannot compromise the confidentiality and integrity of the execution. Nevertheless, it has been shown
that side channel attacks make it challenging to keep secrets during application execution.

Interrupt latency side channel attacks (a.k.a. Nemesis) are a novel type of timing attacks that target
embedded TEEs and extract application secrets from them. Nemesis attacks exploit the CPU’s interrupt
mechanism to reveal microarchitectural instruction timings from embedded TEEs. Specifically, the attacker
measures the latency of a precisely timed interrupt to differentiate between secret-dependent branches. In this
paper, we present NemesisGuard, the first mitigation mechanism against such side channel attacks that does
not require a modified compiler or hardware and can protect COTS binaries without access to source code.
NemesisGuard applies a novel static binary instrumentation technique to balance secret-dependent branches
in IoT application binaries. Evaluation of NemesisGuard shows that it mitigates Nemesis side channel attacks
effectively and efficiently.
1. Introduction

Internet of Things (IoT) devices are increasingly used for appli-
cations that can have devastating and immediate consequences if
compromised—including implantable medical devices, automotive, and
industrial control systems. The number of IoT devices is expected to
increase to around 19 billion worldwide by 2022 [1]. However, these
devices increasingly face threats from exploits in lower software layers
such as the Operating System (OS). In order to protect security-sensitive
codes and secrets from these threats, there is an increasing interest in
hardware implementations of primitives for trusted computing such as
ARM TrustZone [2], TrustLite [3], or Sancus [4,5] Trusted Execution
Environments (TEEs).

Indeed, TEEs guarantee the confidentiality and integrity of secrets
and applications without trusting other software components such as
the OS. In order to use TEEs, users partition their applications into se-
cure containers, called enclaves, and encapsulate sensitive application
code and data in them. Created enclaves are completely isolated from
other applications and even from the OS.

∗ Corresponding author.
E-mail addresses: majid.salehi@cs.kuleuven.be (M. Salehi), gilles.deborger@student.kuleuven.be (G.D. Borger), danny.hughes@cs.kuleuven.be (D. Hughes),

bruno.crispo@unitn.it (B. Crispo).

Nevertheless, side channel attacks make it challenging to keep se-
crets during application execution. Side-channel attacks have been used
to infer confidential information from nonfunctional characteristics of
computations such as time [6], memory [7], or power consumption [8].
Particularly popular are timing side-channel attacks that intend to
recover secrets through measuring the execution time behavior of
the algorithm implementation. Indeed, the key idea of these attacks
is based on the assumption that the execution time of an algorithm
implementation depends on the value of secret information. Several
methods [9–12] are proposed to protect against timing side channel
attacks; most of them modify the application code by inserting some
compensation codes to the secret-dependent paths. In other words,
these methods harden application’s control-flow paths to ensure that
their execution time is never secret-dependent.

Recently, Van Bulck et al. [13] introduced the first remotely ex-
ploitable microarchitectural side channel attack, called Nemesis, that
is applicable to embedded TEEs. Nemesis attack exploits the timing
vailable online 11 January 2022
389-1286/© 2022 The Authors. Published by Elsevier B.V. This is an open access a

https://doi.org/10.1016/j.comnet.2021.108744
Received 31 May 2021; Received in revised form 17 December 2021; Accepted 21
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

December 2021

http://www.elsevier.com/locate/comnet
http://www.elsevier.com/locate/comnet
mailto:majid.salehi@cs.kuleuven.be
mailto:gilles.deborger@student.kuleuven.be
mailto:danny.hughes@cs.kuleuven.be
mailto:bruno.crispo@unitn.it
https://doi.org/10.1016/j.comnet.2021.108744
https://doi.org/10.1016/j.comnet.2021.108744
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2021.108744&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Computer Networks 205 (2022) 108744M. Salehi et al.

2

s
e
t
a
m
a

2

o
(
t
a
i

differences in the rudimentary fetch-decode-execute operation of CPUs.
The attacker measures the latency of a precisely timed interrupt (i.e. in-
terrupt latency) to differentiate between secret-dependent branches.
Compared to other timing side channel attacks, Nemesis attack is able
to leak instruction-granular timings from enclaved execution environ-
ments. Consequently, the traditional mitigation methods for timing
attacks are not applicable in the case of Nemesis attacks.

To mitigate Nemesis attacks, Busi et al. [14,15] designed and devel-
oped a novel hardware-based solution that provides an enclave-enabled
microprocessor with secure interruptibility of the enclaves. Specifically,
they modify the fetch-decode-execute operation of CPUs by padding
observable timing differences. However, hardware-based solutions are
not practical for the IoT devices that are already deployed in the field.
Winderix et al. [16] proposed a compiler-based approach that hardens
MSP430 applications with compensation codes against Nemesis attacks.
Compiler-based approaches attempt to lift the code to an Intermediate
Representation (IR) and then apply the hardening procedure on it.
Unfortunately, these approaches are ineffective for Commercial Off-
The-Shelf (COTS) binaries since they require to correctly recover type
information from binary files in order to lift the code to IR for instru-
menting and hardening, a process that remains an open problem [17,
18].

In this paper, we propose NemesisGuard, a novel approach that stat-
ically instruments embedded COTS binaries to automatically mitigate
Nemesis side channel attacks. NemesisGuard provides a static binary
instrumentation method and uses it for instrumenting secret-dependent
branches without any need to lift assembly to a higher-level intermedi-
ate language. NemesisGuard allows to insert compensation codes based
on a novel and efficient algorithm for protecting against leaking secrets
from embedded TEEs using the interrupt latency channel. In summary,
the paper makes following contributions:

• We propose NemesisGuard, the first static-binary-rewriting based
technique to mitigate interrupt latency side channel (a.k.a. Neme-
sis) attacks in embedded binaries. In contrast to the state-of-the-
art, our technique does not require a modified hardware and also
avoids lifting assembly to an intermediate language, a process
which is known to be error-prone [17].

• We have implemented the technique in a full-featured framework
for the ARM architecture which is one of the most widely used
IoT device architectures. To foster further research, we make our
framework prototype available open source.

• We experimentally evaluated the effectiveness of the proposed
framework using 11 real-world IoT application binaries and
demonstrated that it allows mitigation of interrupt latency side
channel attacks. The results also show the efficiency of instru-
mented binaries in practice.

. Background and motivation

In this section, we present a brief overview of TEEs for protecting
ecrets. Furthermore, we describe timing side channel attacks targeting
mbedded TEEs and code instrumentation as an approach to mitigate
hem. We also discuss the limitations of the proposed instrumentation
pproaches to mitigate interrupt latency side channel attacks that
otivate the need to extend and refine binary instrumentation for such

ttacks.

.1. Trusted execution environments

There have been several studies [2–5,19–21] on trusted execution
n untrusted OS. Most of them rely on a Trusted Computing Base
TCB) that protects a shielded memory region against both confiden-
iality and integrity attacks. Indeed, that memory region is safeguarded
gainst external software running on the system regardless of its priv-
lege levels. This security mechanism provides developers with an
2

unprecedented capability to develop security-critical applications and
encapsulate them inside an enclave, achieving strong security guaran-
tees in terms of confidentiality and integrity even under the assumption
of a malicious OS.

TEEs are typically developed based on an execution model that
allows untrusted code to interrupt trusted enclaves. Therefore, since ad-
vanced performance-improving techniques that cause timing variations
such as caches, branch predictors, and out-of-order pipelines are not
present, low-end embedded TEEs are based on CPUs with predictable
instruction execution times. These properties of embedded TEEs, as
demonstrated by Van Bulck et al. [22], results in a noiseless type of
microarchitectural timing side-channels that rely on interrupt latency.

2.2. Timing side channel attacks

Different side channels, like performance, power consumption, tim-
ing, etc. can be used by the attacker to derive useful information about
the victim (e.g., cryptographic keys) and mount the attack. Timing side
channels [23–27] are usually exploited to measure the execution time
of an algorithm implementation; this can be done directly in the device
itself or by interacting remotely with the code over a network [22].

To describe timing attacks clearly, Fig. 1(a) shows an enclave
application [14], that compares user-provided password in r6, with a
password stored in the enclave, and stores the value in r2 into the
enclave location at store_adrs if the user-provided password is correct.
It is clear that the execution time of two possible control flow paths
for the if-branch in this code is unbalanced (3 cycles for if and 4
cycles for else). Therefore, an attacker can use a cycle accurate timer for
measuring the enclave start-to-end execution time by setting the timer
right before entering to the enclave. By doing so, the attacker will be
able to apply a brute-force attack with the aim of inferring the correct
password [28].

Current countermeasures [29,30] against these types of attacks
attempt to level the timing behavior of both control flow paths by
appending some dummy instructions to the code. Fig. 1(b) shows the
balanced code which is protected against such kind of attacks (4 cycles
for if and 4 cycles for else). However, recently, security researchers
in [13] have shown that even after balancing the branch and re-
moving the dependencies between the execution times of the paths
and password, attackers can still extract the correct secret by a novel
interrupt-based side channel attack called Nemesis. In the following,
we describe the Nemesis attack and its variants in details.

2.3. Nemesis-type interrupt timing attacks

Nemesis attack exploits a subtle timing channel in the CPU’s rudi-
mentary interrupt mechanism. There are three variants of Nemesis
attack which are originally proposed in [13,14]:

Basic Nemesis Attack: Basic Nemesis attack assumes a multi-cycle
instruction set architecture, where interrupt requests are only served
after completing the current executing instruction. This is an assump-
tion which is valid for major embedded instruction set architectures. In
such architectures, interrupt handling mechanism introduces a timing
difference between arrival of the hardware interrupt request and execu-
tion of the first instruction in the interrupt service routine (i.e. interrupt
latency).

Indeed, interrupt latency is increased by the number of cycles
remained to execute if there is an interrupt request during the execu-
tion of a multi-cycle instruction. Therefore, the attacker can request
an interrupt at a specific time during the execution of a multi-cycle
instruction and determine the duration of the interrupted instruction
by observing the timestamp placed on interrupt service routine entry,
enabling him/her to differentiate between secret-dependent branches.

For example, in Fig. 1(b), the attacker can schedule an interrupt to
arrive within the first clock cycle after the conditional jump instruction
at line 6 (beq access_ok). By doing so, either the 3 cycle b end_if



Computer Networks 205 (2022) 108744M. Salehi et al.
Fig. 1. Assembly code of a running enclave example that first loads the enclave password (stored in pwd_adrs) and compares it with the user provided password (stored in r6
register). If the user password is correct, it will store the user provided input in store_adrs.
instruction or 1 cycle nop will be interrupted. Indeed, based on the
branch condition, there is an interrupt latency difference of 2 cycles.
The attacker can measure the interrupt latency and determine the
correctness of individual bytes and finally extract the correct password
value. Basic Nemesis attacks can be mitigated by modifying the in-
terrupt handling mechanism to have a constant time interrupt latency
regardless of the interrupted instruction’s execution time. For instance,
if we use a hardware patch for the interrupt handling mechanism to
always dispatch interrupts in the worst-case interrupt response time,
the interrupt latency would be same for every instruction, causing the
application to be protected against basic Nemesis attack. However, they
are still vulnerable to the advanced types of Nemesis attacks, which are
described in what follows.

Resume-to-end Nemesis Attack: In case the processor has a con-
stant time interrupt latency, the attacker can request an interrupt to
arrive within the first clock cycle after the conditional jump. After
serving the interrupt, the attacker will let the enclave to resume and
measure the time the enclave takes to complete the task without any
additional interrupts. Although there is no difference in the interrupt
latency for the if and else paths, the execution time for completing the
enclave task after serving interrupt is 3 cycles for the if path and 1
cycle for the else path. As a result, the attacker can determine which
path is executed for the current input in order to extract the password
stored in the enclave.

Interrupt-counting Nemesis Attack: As another variant of Neme-
sis attacks (i.e. interrupt counting), the attacker can count the total
number of the times that the enclave execution can be interrupted. The
3

only assumption of this attack is a multi-cycle instruction set, thus it is
also applicable on processors with a constant-time interrupt latency.
Indeed, in such processors, due to the fact that interrupts are handled
on instruction boundaries, it would be possible for the attackers to
count the number of instructions in each branch and determine the
branch that is being executed. For instance, in Fig. 1(b), the attacker
can request new interrupts one cycle after resuming from the previous
one. Specifically, the if path can be interrupted 3 times compared to
the else that can be interrupted 2 time. Therefore, the attacker can
determine the executing path to infer the correct password bytes by
scheduling single-stepping interrupts.

3. Threat model

The attacker’s goal is to extract secret information regarding the
internal state of an enclaved application. In this regard, TEEs have
been specifically proposed to protect sensitive computations on an
untrusted attacker-owned platform, both in an untrustworthy cloud
environment [31,32] and to enforce enterprise right management on
consumer hardware [22,33,34]. Precisely, the aim of the attacker is
to use unprotected parts of the system in order to derive application
secrets from a vulnerable enclave by scheduling interruption of the
enclave. We assume an attacker with an access to the compiled or
source code of the victim application. We also assume that the attacker
has a full control over the unprotected parts of the system by TEE such
as OS; the attacker is able to configure hardware devices (e.g. timer)
and load malicious modules on the system. Indeed, protection against
these types of side channel attacks is much harder than process isolation

mechanisms which consider the OS trusted.



Computer Networks 205 (2022) 108744M. Salehi et al.
Fig. 2. Pipeline of NemesisGuard.
I
b

For instance, a realistic scenario for these properties could be an
embedded device that the attacker and the victim connect to over a
network. Indeed, the victim interacts with the embedded device to
execute a critical application in a TEE. The attacker could infer the
state of the victim program by observing the network and evaluating
the critical application’s start-to-end execution time, communication
patterns, or by deploying a spy module and dynamically manipulating
timers and interrupts to launch a Nemesis attack.

Since we protect against timing side channel attacks, physical side
channel attacks targeting power consumption and electromagnetic radi-
ation are out of scope and orthogonal to our research. Furthermore, side
channel attacks targeting advanced microarchitectural CPU features
such as paging, caching, branch prediction, or out-of-order execution
are out of scope since these CPU features are not available in embedded
devices [22]. Our threat model is consistent with prior research on
Nemesis side channel attacks and protection mechanisms.

In this work, we focus on ARM architecture as the most widely
used architecture for embedded systems [35]. Thus, we consider TEEs
designed for this architecture like ARM TrustZone [2]. Nevertheless, the
conceptual approach can work also with other architectures and TEEs
with extra engineering efforts (see Section 8). Furthermore, we do not
consider any self-modifying or packed binaries (such as self-extracting
compressed application).

4. NemesisGuard

Fig. 2 shows a high-level overview of the NemesisGuard framework.
NemesisGuard takes as input a binary and produces an instrumented
version protected against Nemesis side channel attacks, through bi-
nary instrumentor and balancing modules. In other words, balancing
module leverages binary instrumentor module to immune binary appli-
cation against all variants of Nemesis side channel attacks by aligning
the execution time of corresponding instructions in secret-dependent
branches. The modified binary can be seen as split in two portions: the
instructions considered not sensitive against attacks (i.e. placed in non
secret-dependent branches), which are left unmodified by the process,
and the sensitive ones (i.e. placed in secret-dependent branches), which
are not emitted. In this section, we describe the most important and
challenging aspects of these modules.

4.1. Static binary rewriting

This module carries out the central task, instrumenting the binary to
harden secret-dependent branches. This is done in three main steps: the
static disassembling, the binary instrumentation, and the reassembling.

Static Disassembling. The first step of our framework pipeline
disassembles binary file’s code section using a linear sweep approach.
Specifically, this approach parses the code section from the beginning
to the end and decodes all encountered bytes as instructions. As pointed
out by Andriesse et al. [36], linear sweep outperforms other disassem-
bly approaches such as recursive traversal [37–39] and achieves close
to 100% accuracy for instruction disassembly from compiler-generated
binaries.
4

When given an application disassembly, NemesisGuard will build its
best-effort Control Flow Graph (CFG) starting from the main function
by identifying and adding edges for direct branches. Indeed, Nemesis-
Guard does not require precise recovery of the CFG as indirect calls and
jumps are handled by the instrumentor module at the runtime when
the exact target address of them are known, rather than heavyweight
static analysis. Thus, we generate an over-approximated CFG which
considers the possible target sets for indirect branches. As it is described
in Section 4.2, this over-approximated CFG can be used by Nemesis-
Guard to balance all secret dependent branches, even the ones that are
not actually taken at the runtime. Specifically, we can tolerate false
positives (branches belong to the target sets according to the analysis,
but are not actually taken at the runtime) but not false negatives.

Binary Instrumentation. At the second step, our framework takes
the disassembled application as an input and inserts compensation
instructions to the secret-dependent branches. Nevertheless, because
of the lack of source-level information, binary instrumentation intro-
duces challenges that are not present when editing source code or
compiler-generated assembly files. More specifically, when instructions
are inserted at the source code level, the compiler will rearrange code
and data in memory and handle references between them. However,
at the linking time, the compiler discards the symbol and relocation
information and hard-codes labels to specific addresses. Therefore,
inserting instructions breaks all references in the binary.

Our framework addresses these challenges by duplicating the code
section in a new section (called .newtext) that contains the rewritten
executable code. It also preserves the old copy of code section (called
.oldtext) serving as a read-only data segment. By preserving .oldtext
and data sections at their original addresses intact, data pointers in the
rewritten code section .newtext continue to behave correctly.

Then, our framework adjusts all the target addresses of code point-
ers while rewriting them in the .newtext section in order to ensure that
they point to their targeted locations. Precisely, direct branches instruc-
tions are statically rewritten to reference their new target addresses.
Indirect branch instructions have multiple possible targets and their
exact target addresses are only known at runtime. Unlike many prior
efforts [40–42], we observe that although it is challenging to statically
determine exact target addresses of indirect branches, we can instead
apply an efficient dynamic lookup at runtime.

Indeed, our framework adds a level of indirection to solve the indi-
rect branches problem, our static phase translates all indirect branches
from .oldtext section into the alternative instructions in the .newtext
section that dynamically detects and re-points old pointers to new
target addresses at runtime. Specifically, our framework generates a
mapping table containing each possible target address in the .oldtext
section mapped to the corresponding address in the .newtext section.
For instance, as depicted in Fig. 3, the framework rewrites original
instructions from the .oldtext section along new inserted instructions
in the .newtext section with new base address 0x8200000. It translates
every indirect branch (blx r2) into the mov and direct call instructions.
n fact, the mov instruction moves the original target address of indirect
ranch (0x804816c) into register r0 and the direct call (bl mapping)

goes to the mapping routine to search for the offset corresponding to



Computer Networks 205 (2022) 108744M. Salehi et al.

b
t
a

t
T
b
t
i
t
i
t
t
r

b
a
e
a
b
(

t

Fig. 3. The binary instrumentor module redirects all indirect branch instructions
(e.g., blx r2) to the mapping routine which looks for new offset (0x81d0) corresponding
to the old target address (0x804816c) in the mapping table.

the old target in the mapping table (0x81d0). If the search succeeds,
mapping routine returns new translated target address (0x8200000 +
0x81d0 = 0x82081d0) for jumping (ldr pc, [sp, #-4]) to it accordingly.

Reassembling. In the reassembling step, our framework takes the
instrumented assembly code and reassembles it as a working binary
using off-the-shelf assemblers.

4.2. Balancing specification

We already discussed (in 2.2) that it is insufficient for security to
naively add instructions in order to balance branch’s total execution
time. The balancing specification determines which exact instructions
should be instrumented by NemesisGuard. It tries to add compensation
codes to the secret-dependent branches such that the execution times
of the instructions that have a same distance from a common secret-
dependent branch instruction always be equal to each other. It is
worth mentioning that inserted compensation codes should preserve
the original application characteristics such as control flow and register
and memory access patterns.

For instance, in Fig. 1(C), NemesisGuard adds two compensation
instructions to the secret-dependent branch (i.e. beq access_ok): str r0,
[sp, #-4] instruction1 in access_fail branch and b temp_label in access_ok
ranch. By doing so, the execution time of every corresponding instruc-
ions in access_fail and access_ok are aligned; it is not possible for the
ttacker to extract secrets by applying Nemesis attacks.

Secret-dependent branches can be identified automatically through
he methodology proposed in SelectiveTaint [43]. Indeed, Selective-
aint proposes an efficient selective taint analysis framework for x86
inary executable. SelectiveTaint scans taint sources of interest in
he binary, utilizes value set analysis (VSA) to decide whether an
nstruction operand will be involved in taint analysis, and then selec-
ively taints the instructions of interest. We refer readers interested
n a detailed explanation on the different aspects of SelectiveTaint
o its original paper since the aim of this work is not to advance
he state-of-the-art in taint analysis, and we consider this orthogonal
esearch.

We apply a same static taint analysis approach upon our static
inary instrumentor module by assigning a security level to function
rguments and tracking them as they propagate along the application
xecution path. Finally, branch instructions with operands that are
ssigned sensitive value, i.e. branches dependent on sensitive data, can
e considered sensitive, and thus subject to binary instrumentation
i.e. balancing).

1 We are storing r0 at sp-4 memory address in order to avoid overwriting
he stack values.
5

After identifying secret-dependent branches, we aim to balance
them by satisfying Nemesis-sensitive property. Pouyanrad et al. [44]
introduces the Nemesis-sensitive property to formally guarantee the
absence of all types of Nemesis vulnerabilities in an application:

Definition 1. Considering application 𝐴’s extracted CFG, 𝐴 satisfies
Nemesis-sensitive property if and only if:

∀𝐼𝑃 𝑖 ∈ 𝐵𝐵𝑡ℎ𝑒𝑛(𝐼𝑃 ) ∶ ∀𝐼𝑃 𝑗 ∈ 𝐵𝐵𝑒𝑙𝑠𝑒(𝐼𝑃 ) 𝑠𝑢𝑐ℎ
𝑡ℎ𝑎𝑡 𝑖 = 𝑗 ∶ (𝑠𝐼𝑃 𝑖

t
←←←←←→ 𝑠𝐼𝑃 (𝑖+1) ) ∧ (𝑠𝐼𝑃 𝑗

t’
←←←←←←←→ 𝑠𝐼𝑃 (𝑗+1) ) ⇔ 𝑡 = 𝑡′

where two functions BBthen(IP) and BBelse(IP) capture the set of instruc-
tion points (IP) belonging to the if and else basic blocks respectively.
The number of instruction points captured by BBthen(IP) and BBelse(IP)
should be same. IPi is an instruction points at depth 𝑖 of its own basic
block. Symbol 𝑡 is defined as the time of transition from one instruction
point to another one.

Definition 2. An instruction point IP is said to be at depth 𝑛 in basic
block BB if there is a path from the entry point of the BB to IP with
length 𝑛.

Definition 3. Basic block BB is said to be at level 𝑙 in CFG if there is
a path from the root of the CFG to BB with length 𝑙. Indeed, since it is
possible that there are multiple paths with different lengths to a node,
BB can be at multiple levels.

As a result, NemesisGuard instruments instructions in
secret-dependent branches with the aim of satisfying Nemesis-sensitive
property. By doing so, it would not be possible for an attacker to apply
Nemesis attacks and extract secrets from TEE enclaves by measuring
interrupt latency. In what follows, we describe details of balancing
algorithm for satisfying Nemesis-sensitive property.

Balancing Algorithm. Algorithm 1 depicts NemesisGuard’s balanc-
ing algorithm. In this algorithm, the nodes (i.e. basic blocks) of the
secret-dependent branch’s CFG are balanced in a level-wise manner.
Our balancing algorithm assumes that all paths to a given node have
the same length. In other words, every nodes in the secret-dependent
branch’s CFG is at no more than one level. In the case that there are
some nodes with more than one level value, NemesisGaurd first follows
the equalizing procedure which will be described later to equalize
branches. Thereafter, as shown in AlignCFG procedure in Algorithm 1,
NemesisGuard iterates over all the levels of the graph and balances the
nodes found at that level. In fact, additional instructions are inserted
into nodes to ensure that corresponding instructions in a same depth
have the same latency.

The core of the balancing process consists of repeatedly selecting a
reference instruction from one of the nodes in a specific level and insert-
ing instructions into the other nodes in that level such that the latencies
match (i.e. AlignNodes procedure in Algorithm 1). The node from
which the reference instruction is selected is called the reference node.
The reference node can change throughout the algorithm. Because an
instruction is potentially added to each node that is not the reference
node, the reference node needs to have at least as many instructions as
the node with the largest number of instructions. This ensure that at
some point all nodes have the same number of instructions.

Specifically, let 𝑛𝑚𝑎𝑥 be the number of instructions in the longest
node. The set of candidate nodes then consists of all nodes that have
𝑛𝑚𝑎𝑥 instructions. Then, by applying the algorithm shown in function
SelectReferenceNode in Algorithm 1, the reference node is selected from
this set of candidates. An index variable is used to keep track of the
position of the reference instruction. This variable is initially zero and
is incremented every iteration. Any instructions that have an index
smaller than this variable are balanced. The reference instruction is
selected by first selecting the reference node and then selecting the
instruction in this node that has an index equal to the index variable.
However, reference instruction cannot be a branching instruction, un-

less during the very last iteration of the algorithm. This is due to the



Computer Networks 205 (2022) 108744M. Salehi et al.

F

Algorithm 1: Balancing Secret-dependent Branches
Procedure AlignCFG(g: CFG, v: Node)

subgraph ← ExtractSubGraph(g, v)
pathLengths ← ComputeDistanceFromNode(subgraph, v)
levels ← { l | 𝑢 ∈ Nodes(subgraph) ∧ pathLengths[u] = l }
forall l ∈ levels do

levelNodes ← { 𝑢 | 𝑢 ∈ Nodes(subgraph) ∧ pathLengths[u] = l }
AlignNodes(subraph, levelNodes)

end
Procedure AlignNodes(g: CFG, ns : NodeSet)

index ← 0
while True do

nodeLengths ← { node: CountInstructions(node) | node ∈ Nodes(g) }
candidates ← {n | 𝑛 ∈ Nodes(g) ∧ nodeLengths[n] = Max(nodeLengths) }
referenceNode ← SelectReferenceNode(candidates)
referenceInstruction ← GetNodeInstruction(referenceNode, index)
forall node ∈ {n | n ∈ Nodes(g) ∧ n ≠ referenceNode } do

if index < nodeLength[node] ∧ Latency(GetNodeInstruction(node, index)) = Latency(referenceInstruction) then
continue

if IsBranch(referenceInstruction) then
newInstruction ← GetBranchInstruction()
InsertInstruction(node, newInstruction)

else
reg ← SelectRegister()
newInstruction ← GetNOPInstruction(Latency(referenceInstruction), reg)
InsertInstruction(node, newInstruction)

end
end

unction SelectReferenceNode(candidates: NodeSet, index: Integer)
for n ∈ candidates do

candidateInstruction ← GetNodeInstruction(n, index)
if ¬ (IsBranch(candidateInstruction) ∨ IsReturn(candidateInstruction)) then

return n
end
return candidates[0]
fact that inserting branching instructions into the node, if it is not the
last instruction, will miss the execution of following instructions in that
node, corrupting the normal operations of the node.

Given a reference instruction, the algorithm iterates over all nodes
that are not the reference node and verifies if the corresponding in-
struction has the same latency. If the two latencies are not equal, or
if the node has no corresponding instruction, then a new instruction is
inserted into the node at the index equal to the index variable. Once
this has been done for all nodes then all instructions with an index
smaller than or equal to the index variable will be balanced and the
index variable can be incremented.

Equalizing Branches. Considering the CFG of secret-dependent
branch, there are three cases that the aforementioned algorithm can-
not be applied on. The first such structure occurs when the secret-
dependent branch contains some sequences of instructions that are only
executed if a condition is true, e.g. Fig. 4(A). In this structure, there will
be two different paths with different lengths to one node. One path will
contain the node that corresponds to the conditional instructions, while
the other path will not contain this node. Since the paths have some
overlapping nodes and the paths have different lengths, it is impossible
to balance their latencies by inserting compensation instructions. In
fact, inserting instructions in one of the paths will also insert instruc-
tions into the other path. If these paths start at a secret-dependent node,
it is therefore impossible to ensure that the Nemesis-sensitive property
holds.

The second challenging structure occurs when one of the branches
is shorter than the other one, as shown in Fig. 4(A). In such cases
there will be some nodes in one branch that have no corresponding
nodes in the other branch, making it infeasible to balance them. The
6

third challenging case includes loops in the secret-dependent branch,
e.g. Fig. 5. Any node in a loop will be at infinite number of levels since
there are infinite number of paths to it. The Nemesis-sensitive property
entails that it is challenging for a secret-dependent branch to satisfy the
property if one of these three structures occurs in its branches.

To remedy the first two challenging cases, NemesisGuard first equal-
izes all path lengths and branches before starting the above balancing
algorithm. NemesisGuard inserts empty nodes into the graph to ensure
that all paths to any given node are always with the same length
(See Fig. 4(B)). Furthermore, in order to handle loops in a CFG,
NemesisGuard first unwinds the graph, removing any cycles present.
In particular, for a given loop, let the first node in the loop be the node
closest to the root, and the last node the node furthest from the root.
A new node is created identical to the first node in the loop. The edge
that connects the last and the first nodes is removed and replaced by
a new edge from the last node to the newly created copy of the first
node (See Fig. 5). After the graph is balanced, the same procedure is
executed in reverse in order to recreate the cycle. During balancing,
any operation performed on the original node is also performed on the
copy to ensure they are identical at all times.

Constructing NOP Instructions. For each latency class, a NOP
instruction template has been determined. The instruction can be au-
tomatically inserted into the application as-is if it has no effect on
the application state, i.e. it does not modify the original control flow,
register values, and memory access patterns. Indeed, binary-only tools,
unlike compiler-based ones, do not have the advantage of relying on
virtual registers and letting the compiler allocate physical registers;
instead, they must choose their own physical registers. Furthermore,
the instrumentation process should not corrupt the application state,
such as registers because this could cause unforeseen consequences,

such as crashes or inconsistencies that are difficult to debug. If the



Computer Networks 205 (2022) 108744M. Salehi et al.
Fig. 4. NemesisGuard equalizes branches before applying balancing procedure—Left:
two different cases of non-equalized CFGs that cannot be balanced. Right: Equalized
instances of the left CFGs that are generated by inserting empty nodes.

instruction needs to modify a register, the algorithm selects a registers
that can safely be used. This needs to be a register that is not in use at
the time of execution of the instruction.

The function is statically analyzed to determine which registers
are free to use for this purpose. Saving all state before entering in-
strumented code and restoring the saved state before departing is the
safest option. This is, however, too expensive. Therefore, NemesisGuard
applies an intra-function liveness analysis to discover all registers that
are live (in-use) at instrumentation locations to save overhead from pre-
serving application state. Specifically, before allocating live registers,
NemesisGuard guarantees that non-live (free) registers are allocated
first. Any allocated live register is also automatically saved and restored
before and after instrumentation.

There are two types of free registers. A register can be free if its
current value is no longer used, i.e. it is overwritten at some later point
without being read first. Alternatively, a register can be free if it is not
used anywhere in the current function. In the latter case, however, it
is possible that the register is in use by the caller, since there is no
guarantee that the caller stored all the registers it uses.

If a register of the first type exists then it can be used as the operand
of the NOP instruction and the resulting instruction can be inserted
as-is into the node. If no such registers exists, a free register of the
second type is selected, and additional instructions are inserted into
the application to ensure that the original value of the register is not
lost. In the root of the CFG, additional instructions are inserted to
push the register value onto the stack, while in every leaf, instructions
are inserted that pop the value from the stack. If there are no free
registers available, any register is arbitrarily selected. Then, additional
instructions are inserted before and after the NOP instruction to push
and pop the register value. To ensure the nodes are still balanced, these
push and pop instructions are inserted across all nodes of the current
level.

5. Implementation

We have implemented a proof-of-concept of NemesisGuard for the
ARMv7-M architecture [45], which covers a large share of micro-
controllers (i.e., Cortex-M3/4/7) for embedded platforms [35]. The
following outlines the technical details of the implementation based on
the design described in the previous section.

5.1. Static binary instrumentation module

We have implemented the static binary instrumentation module on
top of Capstone disassembler framework [46], spanning 1950 SLOC in
Python programming language. This module leveraged pyelftools [47]
7

Fig. 5. Unwinding loops procedure.

Table 1
IoT applications, their targeted MCUs, their used peripherals, and NemesisGuard
effectiveness in satisfying Nemesis-sensitive property verified by our static analysis tool.

IoT Application MCU Peripherals NemesisGuard

Audio-Playback STMF479I-Eval Clock, GPIO, USB, I2C ✓

LCD_Display STMF479I-Eval Clock, GPIO, SD-CARD, DSI ✓

LCD_Animate STMF479I-Eval Clock, GPIO, SD-CARD, DSI ✓

FatFs_uSD STMF407G Clock, GPIO, SD-CARD ✓

TCP_echo_Client STMF479I-Eval Ethernet, Clock, GPIO, EXTI ✓

TCP_echo_Server STMF479I-Eval Ethernet, Clock ✓

UDP_echo_Client STMF479I-Eval Ethernet, Clock, GPIO, EXTI ✓

UDP_echo_Server STMF479I-Eval Ethernet, Clock ✓

Camera-USB STMF479I-Eval Clock, GPIO, USB, DSI ✓

mbed-TLS STMF401RE Ethernet, Clock, GPIO, EXTI, DSI ✓

PLC STMF479I-Eval Clock, Timer, WiFI, UART, SPI ✓

open source framework to parse the ELF data structures. It also utilizes
LIEF framework [48] for editing the header of application ELF file
and creating a new code segment containing the .newtext section and
mapping routine. It also used pwntools [49], an open-source binary
analysis framework, as the platform for reassembling the instructions.

5.2. Balancing module

We have implemented our balancing module on top of the binary in-
strumentor module with 870 SLOC in the Python language. Implement-
ing binary-level balancing module on instrumentor module requires
CFG recovery and instrumenting secret-dependent branches. The CFG is
recovered as a part of NemesisGuard’s disassembling procedure using
angr [50,51]. After extracting CFG and determining secret-dependent
branches based on the policy described in Section 4.2, we store them
in the balancing specification file. Then, the binary instrumentor in-
terprets the balancing specification file in order to balance all these
branches with compensation codes.

6. Evaluation

This section presents the evaluation of various aspects of Neme-
sisGuard. First, we demonstrate the effectiveness of NemesisGuard for
mitigating Nemesis side channel attacks in IoT binaries in 6.2. Second,
we evaluate the correctness of the instrumentation method against our
dataset of IoT binaries in 6.3. Finally, we measured the runtime and
space overhead of our instrumented and mitigated binaries in 6.4.

6.1. Experiment setup

As shown in Table 1, we collected 11 IoT applications for the
experiments based on the following criteria: (1) The application in
the experiment must be realistic, full-fledged, and deployed in mar-
ket devices. (2) The application must be diversified in functionality.



Computer Networks 205 (2022) 108744M. Salehi et al.

M
f
p
a
N
s
v

p
m
b
N
N
f
s

6

t
r
i
o

o
c
.

6

t
a
a
a
i
e
t
t
T

G
c
t
s
p
f

7

a
m

(3) Applications in the experiments must cover the use of various
peripherals such as Ethernet, camera, LCD display, serial port, SD
card, and microphone to represent realistic interactions of IoT de-
vices. Our collected applications collectively cover ARM Cortex-M3 and
Cortex-M4 microcontrollers. These applications are provided with the
development boards and written by STMicroelectronics [52].

In what follows, we provide a brief description of each application.
Audio-Playback is an application developed for playing audio files
by reading data from USB device and sending it to the audio codec.
LCD_Display is an application for reading bitmap pictures from an SD
card and displaying them on the LCD display. LCD_Animate creates the
effect of animation by displaying multiple layers of bitmap images. In
order to create animated pictures, the application displays an images
sequence with a determined frequency on the LCD. Camera_USB appli-
cation leverages the camera module to display pictures in a continuous
mode on LCD and save them in a USB device. FatFs-uSD application im-
plements a FAT file system on an SD card. TCP/UDP-Echo-Client/Server
are four applications for running TCP/UDP echo client/server applica-
tions over Ethernet based on LwIP, which is a popular TCP/IP stack
for IoT devices. mbed-TLS is an SSL client application that implements
mbedTLS crypto library and LwIP TCP/IP stack on IoT devices. PLC
(Programmable Logic Controller) is a family of IoT devices that has
been designed and adapted for the control of manufacturing processes
such as robotic devices. Our PLC application implements a PLC that
executes uploaded ladder logic programs. The ladder logic program is
uploaded to the microcontroller from an Android application via WiFi
(ladder logic is a common PLC programming language).

As described in Section 4.2, it is developer’s task to specify which
function parameters are secret in the application. Then, our taint anal-
ysis tool can utilize those information to determine secret-dependent
branches. However, in this section, we randomly chose 10 branches
as secret-dependent branches in each IoT application described above
for conducting experiments. Our experiments are performed on STM32-
Nucleo F401RE [53], STM32F479I-Eval [54], and STM32F4Discovery
[55] development boards featuring an ARM Cortex-M4 CPU and
STM32-Nucleo L152RE [56] featuring an ARM Cortex-M3 CPU.

6.2. Effectiveness

We developed a static analysis tool to verify, for a given appli-
cation, whether or not the application satisfies the Nemesis-sensitive
property as specified in Section 4.2. We developed this tool inspired
by SCFMSP [44]. SCFMSP defines a formal operational semantics for

SP430 instructions set that reflects execution time and information
low; it is then used as basis for proposing a security type system. The
roposed security type system is leveraged to statically analyze MSP430
ssembly codes to detect the possibility of information leakage through
emesis side channel attacks. Inspired by SCFMSP, we developed our

tatic analysis tool for ARMv7-M architecture and then used that to
erify the effectiveness of our approach in mitigating Nemesis attacks.

We instrumented the selected secret-dependent branches in ap-
lication binaries in our dataset using the NemesisGuard balancing
odule and then applied our static analysis tool on instrumented

inaries. As shown in Table 1, the static analysis tool verifies that
emesis sensitive property holds for all instrumented binaries and
emesisGuard mitigates all Nemesis side channels without the need

or a modified compiler or hardware as required by the state-of-the-art
olutions [14–16].

.3. Feasibility and correctness

We performed an evaluation on the feasibility and correctness of
he static binary instrumentation module and its applicability to large
eal-world IoT applications by comparing the output of the original and
nstrumented binaries. Specifically, we executed the instrumented and
riginal applications with the test suite shipped with the original one
8

a

Fig. 6. Performance impact of NemesisGuard over the IoT application binaries.

to verify that all instrumented applications produce identical output to
the original.

Table 2 also presents the modifications made by NemesisGuard’s
instrumentation module to our application dataset. The column Dir.
Inst. in the table represents the number of direct call and jump instruc-
tions that are statically rewritten by adjusting their target addresses.
Also, column Ind. Inst. represents the number of indirect call and
jump instructions redirected to the mapping routine for obtaining new
targets dynamically. Additionally, data reports that NemesisGuard has
an acceptable impact on binary size when delivering balancing instru-
mentation. Column Size Inc. represents the incurred size expansion on
the code sections of instrumented application binaries. This overhead
is positively correlated with the number of indirect branch instructions
because NemesisGuard instruments them with mapping instructions.
We do not include the mapping table in .newtext column in the table
wing to the fact that it is always four times larger than the .oldtext
olumn: mapping table keeps 4-byte data for every single byte in
oldtext.

.4. Efficiency

In order to evaluate the impact of NemsisGuard instrumentation on
he efficiency of IoT applications, we compare the execution time of an
pplication with its instrumented version. Indeed, we start profiling all
pplications just before the main function begins execution and stops at
hard-coded point. Twenty runs of each application were averaged and

n all runs the standard deviation was less than 2%. For example, we
xecuted FatFS-uSD original and balanced application for formatting
he SD card, creating a file, writing 2,048 bytes to the file, and verifying
he contents of the file twenty times. Fig. 6 depicts the efficiency results.
he average runtime overhead for the balanced application is 42%.

Furthermore, in Fig. 7, we illustrated how long it takes Nemesis-
uard to instrument and mitigate IoT applications against Nemesis side
hannel attacks. Indeed, large applications such as mbed-TLS take more
ime to be processed by NemesisGaurd. On average, NemesisGuard
pends 304 s on applications in our dataset. We interpret this as a
romising result which makes our framework a tool totally practical
or mitigating Nemesis side channel attacks in the large-scale.

. Related work

In this section, we discuss related work that are both complementary
nd orthogonal to our work including static binary instrumentation
ethods, software-based and microarchitectural side channel attacks,
nd the proposed methods for detecting and mitigating them.



Computer Networks 205 (2022) 108744M. Salehi et al.

7

e
f
e
c
i
f
n
b
i
f
p
f
d
t
e
o
m
l

f
m
s
a
s
i
i
i
i
a

Table 2
Statistics of IoT application binaries instrumented by NemesisGuard.

IoT Application MCU Dir. Inst. Ind. Inst. .oldtext (KB) .newtext (KB) Size Inc. (%)

Audio-Playback STMF479I 5290 259 110 473 330
LCD_Display STMF479I 2107 103 30 98 226
LCD_Animate STMF479I 2097 103 30 97 223
FatFs_uSD STMF407G 1654 79 21 48 128
TCP_Echo_Client STMF479I 3728 132 52 172 230
TCP_Echo_Server STMF479I 3566 132 51 173 239
UDP_Echo_Client STMF479I 3471 132 49 172 251
UDP_Echo_Server STMF479I 3381 130 48 176 266
Camera-USB STMF479I 2906 161 41 137 134
mbed-TLS STMF401RE 8256 341 116 416 258
PLC STMF479I 1451 190 22 60 172
Fig. 7. NemesisGuard processing time for the IoT application binaries.

.1. Static binary instrumentation

There are a number of static methods that transform binaries before
xecution. These methods differ from each other in how they trans-
orm binaries without breaking their functionality and semantics. For
xample, Uroboros [42] and Ramblr [41] present a set of heuristics to
onvert a binary into their own internal representations and perform
nstrumentation on those. However, heuristics-based approaches suffer
rom false positives and negatives that result in broken reassembled bi-
ary. RetroWrite [17] and Egalito [57] instrument executable binaries
y leveraging relocation information which is only available in position
ndependent codes. Unfortunately, this is not an applicable solution
or IoT firmware that are mostly statically linked. Multiverse [58]
roposes a new disassembling technique by disassembling instructions
rom every offset of code section to create a superset of all possible
isassemblies. Multiverse binary rewriter is built upon this disassembler
o instrument all superset instructions. As pointed out by Miller et
l. [59], superset disassembly technique incurs a substantial code size
verhead (763% on SPECint 2006 benchmarks). In addition, experi-
ental results [57] show that Multiverse does not support statically

inked binaries.
RevARM [40] is the only static binary rewriter that provides support

or ARM architecture. However, RevARM is proposed for instrumenting
obile applications, not IoT applications which have significant re-

ource constraints. Furthermore, RevARM uses unsound heuristic-based
pproach for rewriting binaries statically. Indeed, RevARM leverages a
imilar approach to Uroboros [42] for recognizing pointer-like data and
dentifying code pointers, an approach which is proved to be unsound
n [41]. Moreover, RevARM instruments applications at a higher-level
ntermediate representation (IR). Lifting disassembly to a higher-level
ntermediate language requires precise modeling of instruction set
9

rchitecture (ISA), which is an error-prone process.
7.2. Software-based side channel attacks

Ge et al. [23] conducted a comprehensive survey of attacks based
on microarchitectural timing channels. However, all of these attacks
are designed and developed for the modern processors with deployed
advance mechanisms such as virtual memory addressing, caches and
branch predictors. Thus, they are not practical for the embedded de-
vices with limited resources and features [60]. Van Bulck et al. [13]
were the first to propose remotely exploitable controlled-channel (i.e.
Nemesis) for low-end embedded TEEs.

Similar to our work, there are a number of techniques that transform
application codes for mitigating side channel attacks. For instance,
SC-Eliminator [9] is a compiler-based method which takes a list of
secrets in the code, and utilizes tag propagation to transform LLVM
IR into its constant-time equivalent. Particularly, it mitigates cache
timing channels by enforcing constant execution time for all secret-
dependent operations. Molnar et al. [10] proposed a program counter
security model in order to mitigate control-flow-based timing attacks.
Precisely, this security model removes secret-dependent control flows
by transforming application code through a modified compiler. Along
similar lines, there are other approaches [11,12,16] proposed to miti-
gate timing side channel attacks by modifying a compiler to eliminate
control-flow dependencies on secrets.

Unfortunately, above compiler-based approaches are impractical
for COTS binaries and have not yet been widely adopted. This is
mainly due to the fact that these approaches lift assembly code to a
higher-level IR for rewriting; this process is known to be error-prone
since it requires precise modeling of the Instruction Set Architecture
(ISA) [17,18]. In other words, the process of lifting from disassembly
to an IR is based on instruction semantics and needs to be implemented
on a per-architecture basis. However, NemesisGuard does not need
to lift disassembly code to a higher-level IR and works directly on
disassembly generated from any off-the-shelf disassembler. Thus, in
contrast to the previous approaches, NemesisGuard is a sound and
complete approach for mitigating timing and interrupt latency side
channel attacks. Additionally, NemesisGuard can be extended to sup-
port multiple architecture with small engineering efforts, which is not
the case for previous proposed works.

Busi et al. [14,15] proposed a novel interrupt handling mechanism
for Sancus TEE based on MSP430 architecture with the aim of miti-
gating Nemesis attacks. However, this method requires modifications
to the hardware which is impractical for the devices that are actually
deployed on the field. Pouyanrad et al. [44] designed and developed an
automated tool to detect Nemesis vulnerabilities in MSP430 binaries.
However, this mechanism is orthogonal to our work since it is only
proposed for detecting Nemesis vulnerabilities and is not appropriate
for mitigating them (see Table 3).

8. Discussion

Although NemesisGuard mitigates Nemesis side channel attacks

effectively, there are still some challenges for future improvements. In



Computer Networks 205 (2022) 108744M. Salehi et al.
Table 3
A subjective comparison between NemesisGuard and state-of-the-art methods proposed
for detecting and mitigating Nemesis side channel attacks- M: MSP430, A: ARM.

Objectives Bu
si

et
al

.[
14

]

Po
uy

an
ra

d
et

al
.[

44
]

W
in

de
rix

et
al

.[
16

]

N
em

es
isG

ua
rd

Architecture M M M A
Mitigation ✓ ✗ ✓ ✓

Detection ✗ ✓ ✗ ✗

Binary Support ✓ ✓ ✗ ✓

w/o Hardware Modification ✗ ✓ ✓ ✓

this section, we discuss the existing limitations in the current design
and explore how they could be handled in the future.

The current design of NemesisGuard framework relies on static
binary instrumentation to balance secret-dependent branches and mit-
igate Nemesis side channel attacks. Consequently, like other static
binary instrumentation methods, NemesisGuard does not support dy-
namically loaded binaries. Indeed, support for instrumenting such bina-
ries requires dynamic instrumentation methods which are orthogonal to
this paper. In addition, NemesisGuard implementation is presently com-
patible with ARM architecture as the most widely used architecture for
embedded systems [35]. However, since NemesisGuard is a platform-
independent framework, it can support IoT applications developed for
other architectures (e.g. x86) with a small extra engineering effort. As
an instance, in order to support x86 architecture for instrumentation
and balancing, it is mainly required to change the assembly language
of the rewritten and inserted instructions and the mapping function.

The process of generating a precise CFG [38,61–64] can improve
the performance of balancing procedure since the current design of
NemesisGuard generates an over-approximated CFG to balance all se-
cret dependent branches. Thus, having a more precise CFG removes the
branches that are not actually taken at the runtime, making the bal-
ancing procedure faster. Nevertheless, NemesisGuard does not follow a
precise recovery of the CFG as it is still an open problem and current
solutions for this recovery may have false negatives (i.e. branches do
not belong to the target sets according to the analysis, but are actually
taken at the runtime). For effectively mitigating all Nemesis vulnera-
bilities in a binary, NemesisGuard can tolerate false positives but not
false negatives. However, advancing the CFG generating procedure is
out of scope of this paper, and we will leave them for future work.

Furthermore, NemesisGuard only mitigates interrupt latency side
channel attacks (i.e. Nemesis) targeting IoT devices. Indeed, other
instrumentation algorithms can be developed on top of NemesisGuard
static binary instrumentation module for mitigating more types of
software-based side channel attacks. However, mitigating other side
channel attacks are out of scope of this paper, and we will leave them
for future work.

9. Conclusion

Interrupt latency side channel attacks can lead to significant damage
on IoT devices that are increasingly intertwined with critical industrial
and medical processes. In this paper, we have proposed the first static
binary instrumentation solution (called NemesisGuard) to automat-
ically mitigate such attacks in IoT devices. NemesisGuard balances
the execution time of corresponding instructions in secret-dependent
branches by instrumenting them with compensation codes. In contrast
to the state-of-the-art, NemesisGuard is a practical approach for COTS
IoT binaries deployed in the field as it does not require a modified com-
piler or hardware. NemesisGuard framework is available as open-source
at https://github.com/pwnforce/NemesisGuard.
10
Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

This research is partially funded by the Research Fund KU Leuven,
Belgium, and by the Flemish Research Programme Cybersecurity. We
are grateful to anonymous reviewers for assisting us with their helpful
comments and criticisms.

References

[1] Ericsson, Internet of things forecast, 2019, https://www.ericsson.com/en/
mobility-report/internet-of-things-forecast. (Accessed February 2021).

[2] T. Alves, D. Felton, TrustZone: Integrated hardware and software security, ARM
White Pap. 3 (4) (2004) 18–24.

[3] P. Koeberl, S. Schulz, A. Sadeghi, V. Varadharajan, TrustLite: A security architec-
ture for tiny embedded devices, in: European Conference on Computer Systems,
2014, pp. 1–14.

[4] J. Noorman, P. Agten, W. Daniels, R. Strackx, A. Van Herrewege, C. Huygens, B.
Preneel, I. Verbauwhede, F. Piessens, Sancus: Low-cost trustworthy extensible
networked devices with a zero-software trusted computing base, in: USENIX
Security Symposium, 2013.

[5] J. Noorman, J. Van Bulck, J. Tobias Mühlberg, F. Piessens, P. Maene, B. Preneel,
I. Verbauwhede, J. Götzfried, T. Müller, F. Freiling, Sancus 2.0: A low-cost
security architecture for IoT devices, ACM Trans. Priv. Secur. 20 (3) (2017)
1–33.

[6] P. Kocher, Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and
other systems, in: Annual International Cryptology Conference, Springer, 1996,
pp. 104–113.

[7] P. Kocher, J. Jaffe, B. Jun, Differential power analysis, in: Annual International
Cryptology Conference, Springer, 1999, pp. 388–397.

[8] S. Jana, V. Shmatikov, Memento: Learning secrets from process footprints, in:
IEEE Symposium on Security and Privacy, SP, IEEE, 2012, pp. 143–157.

[9] M. Wu, S. Guo, P. Schaumont, C. Wang, Eliminating timing side-channel leaks
using program repair, in: ACM SIGSOFT International Symposium on Software
Testing and Analysis, ACM, 2018, pp. 15–26.

[10] D. Molnar, M. Piotrowski, D. Schultz, D. Wagner, The program counter security
model: Automatic detection and removal of control-flow side channel attacks,
in: International Conference on Information Security and Cryptology, Springer,
2005, pp. 156–168.

[11] B. Coppens, I. Verbauwhede, K. De Bosschere, B. De Sutter, Practical mitigations
for timing-based side-channel attacks on modern x86 processors, in: IEEE
Symposium on Security and Privacy, SP, IEEE, 2009, pp. 45–60.

[12] J. Agat, Transforming out timing leaks, in: ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, ACM, 2000, pp. 40–53.

[13] J. Van Bulck, F. Piessens, R. Strackx, Nemesis: Studying microarchitectural
timing leaks in rudimentary CPU interrupt logic, in: ACM SIGSAC Conference
on Computer and Communications Security, CCS, ACM, 2018, pp. 178–195.

[14] M. Busi, J. Noorman, J. Van Bulck, L. Galletta, P. Degano, J. Mühlberg, F.
Piessens, Provably secure isolation for interruptible enclaved execution on small
microprocessors, in: Computer Security Foundations Symposium, CSF, IEEE,
2020, pp. 262–276.

[15] M. Busi, J. Noorman, J. Van Bulck, L. Galletta, P. Degano, J. Mühlberg, F.
Piessens, Provably secure isolation for interruptible enclaved execution on small
microprocessors: Extended version, 2020, Preprint available at arXiv:2001.10881.

[16] H. Winderix, J. Mühlberg, F. Piessens, Compiler-Assisted Hardening of Embedded
Software Against Interrupt Latency Side-Channel Attacks.

[17] S. Dinesh, N. Burow, D. Xu, M. Payer, Retrowrite: Statically instrumenting
cots binaries for fuzzing and sanitization, in: IEEE Symposium on Security and
Privacy, SP, IEEE, 2020, pp. 1497–1511.

[18] A. Altinay, J. Nash, T. Kroes, P. Rajasekaran, D. Zhou, A. Dabrowski, D. Gens, Y.
Na, S. Volckaert, C. Giuffrida, H. Bos, M. Franz, BinRec: dynamic binary lifting
and recompilation, in: European Conference on Computer Systems, EuroSys,
2020, pp. 1–16.

[19] Intel, Intel software guard extensions programming reference, 2013,
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf.
(Accessed May 2021).

[20] Samsung, Samsung KNOX, 2013, https://www.samsungknox.com/en. (Accessed
May 2021).

[21] F. McKeen, I. Alexandrovich, A. Berenzon, C.V Rozas, H. Shafi, V. Shanbhogue,
U.R. Savagaonkar, Innovative instructions and software model for isolated
execution, HASP 10 (1) (2013).

https://github.com/pwnforce/NemesisGuard
https://www.ericsson.com/en/mobility-report/internet-of-things-forecast
https://www.ericsson.com/en/mobility-report/internet-of-things-forecast
https://www.ericsson.com/en/mobility-report/internet-of-things-forecast
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb2
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb2
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb2
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb3
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb3
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb3
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb3
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb3
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb4
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb4
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb4
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb4
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb4
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb4
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb4
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb5
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb5
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb5
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb5
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb5
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb5
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb5
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb6
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb6
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb6
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb6
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb6
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb7
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb7
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb7
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb8
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb8
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb8
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb9
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb9
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb9
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb9
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb9
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb10
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb10
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb10
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb10
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb10
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb10
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb10
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb11
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb11
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb11
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb11
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb11
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb12
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb12
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb12
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb13
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb13
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb13
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb13
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb13
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb14
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb14
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb14
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb14
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb14
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb14
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb14
http://arxiv.org/abs/2001.10881
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb17
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb17
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb17
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb17
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb17
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb18
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb18
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb18
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb18
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb18
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb18
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb18
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://www.samsungknox.com/en
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb21
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb21
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb21
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb21
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb21


Computer Networks 205 (2022) 108744M. Salehi et al.
[22] J. Van Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci, F. Piessens, M.
Silberstein, T. F. Wenisch, Y. Yarom, R. Strackx, Foreshadow: Extracting the keys
to the intel {sGX} kingdom with transient out-of-order execution, in: USENIX
Security Symposium, 2018, pp. 991–1008.

[23] Q. Ge, Y. Yarom, D. Cock, G. Heiser, A survey of microarchitectural timing
attacks and countermeasures on contemporary hardware, J. Cryptogr. Eng. 8 (1)
(2018) 1–27.

[24] D.A. Osvik, A. Shamir, E. Tromer, Cache attacks and countermeasures: the case
of AES, in: Cryptographers’ Track at the RSA Conference, Springer, 2006, pp.
1–20.

[25] C. Percival, Cache missing for fun and profit, in: BSDCan, 2005.
[26] F. Liu, Y. Yarom, Q. Ge, G. Heiser, R.B. Lee, Last-level cache side-channel attacks

are practical, in: IEEE Symposium on Security and Privacy, SP, IEEE Computer
Society, 2015, pp. 605–622.

[27] C. Maurice, M. Weber, M. Schwarz, L. Giner, D. Gruss, C. A. Boano, S. Mangard,
K. Römer, Hello from the other side: SSH over robust cache covert channels in
the cloud., in: Network and Distributed System Security Symposium, Vol. 17,
NDSS, 2017, pp. 8–11.

[28] T. Goodspeed, Practical attacks against the MSP430 BSL, in: Chaos
Communications Congress, 2008.

[29] J.V. Cleemput, B. Coppens, B. De Sutter, Compiler mitigations for time attacks
on modern x86 processors, ACM Trans. Archit. Code Optim. (TACO) 8 (4) (2012)
1–20.

[30] P. Puschner, R. Kirner, B. Huber, D. Prokesch, Compiling for time predictability,
in: International Conference on Computer Safety, Reliability, and Security,
Springer, 2012, pp. 382–391.

[31] A. Baumann, M. Peinado, G. Hunt, Shielding applications from an untrusted
cloud with haven, ACM Trans. Comput. Syst. (TOCS) 33 (3) (2015) 1–26.

[32] F. Schuster, M. Costa, C. Fournet, C. Gkantsidis, M. Peinado, G. Mainar-Ruiz, M.
Russinovich, VC3: Trustworthy data analytics in the cloud using SGX, in: 2015
IEEE Symposium on Security and Privacy, IEEE, 2015, pp. 38–54.

[33] M. Hoekstra, R. Lal, P. Pappachan, V. Phegade, J. Del Cuvillo, Using innovative
instructions to create trustworthy software solutions, in: HASP@ ISCA, Vol. 11,
2013, pp. 2487726–2488370.

[34] G. Noubir, A. Sanatinia, Trusted code execution on untrusted platforms using
intel SGX, Virus Bull. (2016).

[35] C.H. Kim, T. Kim, H. Choi, Z. Gu, B. Lee, X. Zhang, D. Xu, Securing real-time
microcontroller systems through customized memory view switching, in: Network
and Distributed System Security Symposium, NDSS, 2018.

[36] D. Andriesse, X. Chen, V. Van Der Veen, A. Slowinska, H. Bos, An in-depth
analysis of disassembly on full-scale x86/x64 binaries, in: USENIX Security
Symposium, 2016, pp. 583–600.

[37] T. Bao, J. Burket, M. Woo, R. Turner, D. Brumley, { BYTEWEIGHT }: LEarning
to recognize functions in binary code, in: USENIX Security Symposium, 2014,
pp. 845–860.

[38] J. Kinder, H. Veith, Jakstab: A static analysis platform for binaries, in: In-
ternational Conference on Computer Aided Verification, Springer, 2008, pp.
423–427.

[39] B. Schwarz, S. Debray, G. Andrews, Disassembly of executable code revisited, in:
Working Conference on Reverse Engineering, IEEE, 2002, pp. 45–54.

[40] T. Kim, C.H. Kim, H. Choi, Y. Kwon, B. Saltaformaggio, X. Zhang, D. Xu,
RevARM: A platform-agnostic ARM binary rewriter for security applications, in:
Annual Computer Security Applications Conference, ACSAC, 2017, pp. 412–424.

[41] R. Wang, Y. Shoshitaishvili, A. Bianchi, A. Machiry, J. Grosen, P. Grosen, C.
Kruegel, G. Vigna, Ramblr: Making reassembly great again., in: Network and
Distributed System Security Symposium, NDSS, 2017.

[42] S. Wang, P. Wang, D. Wu, Reassembleable disassembling, in: USENIX Security
Symposium, 2015, pp. 627–642.

[43] S. Chen, Z. Lin, Y. Zhang, SelectiveTaint: Efficient data flow tracking with static
binary rewriting, in: USENIX Security Symposium, 2021.

[44] S. Pouyanrad, J. Mühlberg, W. Joosen, SCFMSP: static detection of side channels
in MSP430 programs, in: International Conference on Availability, Reliability and
Security, ARES, 2020, pp. 1–10.

[45] ARM, ARMV7-M architecture reference manual, 2021, https://static.docs.arm.
com/ddi0403/eb/DDI0403E_B_armv7m_arm.pdf. (Accessed May 2021).

[46] Capstone, Capstone: The ultimate disassembler framework, 2020, http://www.
capstone-engine.org/, (Accessed May 2021).

[47] Eli Bendersky, Pyelftools: Parsing ELF and DWARF in python, 2012, https:
//github.com/eliben/pyelftools/. (Accessed May 2021).

[48] Quarkslab, Quarkslab Lief project, 2020, https://lief.quarkslab.com/. (Accessed
May 2021).

[49] Pwntools, CTF framework and exploit development library, 2020, https://github.
com/Gallopsled/pwntools/. (Accessed May 2021).

[50] Y. Shoshitaishvili, R. Wang, C. Hauser, C. Kruegel, G. Vigna, Firmalice-automatic
detection of authentication bypass vulnerabilities in binary firmware., in: Net-
work and Distributed System Security Symposium, Vol. 1, NDSS, 2015, p.
1.

[51] Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino, A. Dutcher, J.
Grosen, S. Feng, C. Hauser, C. Kruegel, G. Vigna, Sok:(state of) the art of war:
Offensive techniques in binary analysis, in: IEEE Symposium on Security and
Privacy, SP, IEEE, 2016.
11
[52] STMicroelectronics, STM32Cube MCU packages, 2021, https://www.st.com/en/
embedded-software/stm32cube-mcu-mpu-packages.html. (Accessed November
2021).

[53] STMicroelectronics, STM32F401RE MCU, 2021, https://www.st.com/en/
evaluation-tools/nucleo-f401re.html. (Accessed May 2021).

[54] STMicroelectronics, STM32f479I MCU, 2021, https://www.st.com/en/
microcontrollers-microprocessors/stm32f469-479.html. (Accessed May 2021).

[55] STMicroelectronics, STM32F4DISCOVERY MCU, 2021, https://www.st.com/en/
evaluation-tools/stm32f4discovery.html. (Accessed May 2021).

[56] STMicroelectronics, STM32L152RE MCU, 2021, https://www.st.com/en/
evaluation-tools/nucleo-l152re.html. (Accessed May 2021).

[57] D. Williams-King, H. Kobayashi, K. Williams-King, G. Elaine Patterson, F. Spano,
Y. Jian Wu, J. Yang, V. Kemerlis, Egalito: Layout-agnostic binary recompilation,
in: Proceedings of the International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS, 2020.

[58] E. Bauman, Z. Lin, K. Hamlen, Superset disassembly: Statically rewriting x86
binaries without heuristics, in: Proceedings of the Network and Distributed
System Security Symposium, NDSS, 2018.

[59] K. Miller, Y. Kwon, Y. Sun, Z. Zhang, X. Zhang, Z. Lin, Probabilistic disassembly,
in: Proceedings of the IEEE/ACM 41st International Conference on Software
Engineering, ICSE, IEEE, 2019, pp. 1187–1198.

[60] M. Salehi, D. Hughes, B. Crispo, Microguard: Securing bare-metal microcon-
trollers against code-reuse attacks, in: IEEE Conference on Dependable and Secure
Computing, DSC, IEEE, 2019, pp. 1–8.

[61] F. Peng, Z. Deng, X. Zhang, D. Xu, Z. Lin, Z. Su, X-force: Force-executing binary
programs for security applications, in: 23rd {USENIX} Security Symposium
({USENIX} Security 14), 2014, pp. 829–844.

[62] C. Kruegel, W. Robertson, F. Valeur, G. Vigna, Static disassembly of obfuscated
binaries, in: USENIX Security Symposium, Vol. 13, 2004, pp. 18–18.

[63] L. Harris, B. Miller, Practical analysis of stripped binary code, ACM SIGARCH
Comput. Archit. News 33 (5) (2005) 63–68.

[64] C. Cifuentes, M. Van Emmerik, Recovery of jump table case statements from
binary code, Sci. Comput. Programm. 40 (2–3) (2001) 171–188.

Majid Salehi is a Ph.D. researcher with the KU Leuven
Computer Science Department, where he is a member of the
imec-DistriNet research group. He received the M.Sc. degree
from Sharif University of Technology, in 2016. His research
interests include Internet of Things (IoT) security. He is
particularly interested in issues concerning memory-based
attacks in bare-metal embedded devices.

Gilles De Borger is an M.Sc. student in Computer Science
at KU Leuven, Belgium, where he is working on IoT sys-
tems security. Other research interests include vulnerability
detection and software testing.

Danny Hughes is a Professor with the Department of
Computer Science of KU Leuven, Belgium, where he is a
member of the imecDistriNet (Distributed Systems and Com-
puter Networks) research group and leads the Networked
Embedded Software taskforce. His current research is on
distributed software systems and the Internet of Things.

Bruno Crispo holds a Ph.D. from Cambridge University, UK.
He is full professor of computer science with the University
of Trento, Italy, and visiting professor with KU Leuven,
Belgium. His research interests include IoT security, network
security, web security, biometric authentication and access
control. He is an associate editor of the ACM Transactions
on Privacy and Security and a senior member of the IEEE.

http://refhub.elsevier.com/S1389-1286(21)00591-0/sb22
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb22
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb22
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb22
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb22
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb22
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb22
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb23
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb23
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb23
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb23
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb23
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb24
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb24
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb24
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb24
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb24
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb25
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb26
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb26
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb26
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb26
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb26
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb27
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb27
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb27
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb27
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb27
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb27
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb27
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb28
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb28
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb28
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb29
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb29
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb29
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb29
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb29
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb30
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb30
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb30
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb30
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb30
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb31
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb31
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb31
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb32
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb32
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb32
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb32
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb32
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb33
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb33
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb33
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb33
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb33
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb34
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb34
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb34
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb35
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb35
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb35
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb35
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb35
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb36
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb36
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb36
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb36
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb36
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb37
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb37
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb37
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb37
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb37
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb38
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb38
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb38
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb38
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb38
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb39
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb39
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb39
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb40
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb40
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb40
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb40
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb40
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb41
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb41
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb41
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb41
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb41
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb42
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb42
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb42
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb43
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb43
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb43
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb44
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb44
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb44
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb44
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb44
https://static.docs.arm.com/ddi0403/eb/DDI0403E_B_armv7m_arm.pdf
https://static.docs.arm.com/ddi0403/eb/DDI0403E_B_armv7m_arm.pdf
https://static.docs.arm.com/ddi0403/eb/DDI0403E_B_armv7m_arm.pdf
http://www.capstone-engine.org/
http://www.capstone-engine.org/
http://www.capstone-engine.org/
https://github.com/eliben/pyelftools/
https://github.com/eliben/pyelftools/
https://github.com/eliben/pyelftools/
https://lief.quarkslab.com/
https://github.com/Gallopsled/pwntools/
https://github.com/Gallopsled/pwntools/
https://github.com/Gallopsled/pwntools/
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb50
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb50
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb50
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb50
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb50
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb50
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb50
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb51
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb51
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb51
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb51
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb51
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb51
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb51
https://www.st.com/en/embedded-software/stm32cube-mcu-mpu-packages.html
https://www.st.com/en/embedded-software/stm32cube-mcu-mpu-packages.html
https://www.st.com/en/embedded-software/stm32cube-mcu-mpu-packages.html
https://www.st.com/en/evaluation-tools/nucleo-f401re.html
https://www.st.com/en/evaluation-tools/nucleo-f401re.html
https://www.st.com/en/evaluation-tools/nucleo-f401re.html
https://www.st.com/en/microcontrollers-microprocessors/stm32f469-479.html
https://www.st.com/en/microcontrollers-microprocessors/stm32f469-479.html
https://www.st.com/en/microcontrollers-microprocessors/stm32f469-479.html
https://www.st.com/en/evaluation-tools/stm32f4discovery.html
https://www.st.com/en/evaluation-tools/stm32f4discovery.html
https://www.st.com/en/evaluation-tools/stm32f4discovery.html
https://www.st.com/en/evaluation-tools/nucleo-l152re.html
https://www.st.com/en/evaluation-tools/nucleo-l152re.html
https://www.st.com/en/evaluation-tools/nucleo-l152re.html
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb57
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb57
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb57
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb57
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb57
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb57
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb57
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb58
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb58
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb58
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb58
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb58
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb59
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb59
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb59
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb59
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb59
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb60
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb60
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb60
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb60
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb60
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb61
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb61
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb61
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb61
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb61
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb62
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb62
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb62
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb63
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb63
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb63
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb64
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb64
http://refhub.elsevier.com/S1389-1286(21)00591-0/sb64

	NemesisGuard: Mitigating interrupt latency side channel attacks with static binary rewriting
	Introduction
	Background and motivation
	Trusted execution environments
	Timing side channel attacks
	Nemesis-type interrupt timing attacks

	Threat model
	NemesisGuard
	Static binary rewriting
	Balancing specification

	Implementation
	Static binary instrumentation module
	Balancing module

	Evaluation
	Experiment setup
	Effectiveness
	Feasibility and correctness
	Efficiency

	Related work
	Static binary instrumentation
	Software-based side channel attacks

	Discussion
	Conclusion
	Declaration of competing interest
	Acknowledgments
	References


