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Abstract: Road weather conditions such as ice, snow, or heavy rain can have a significant impact on
driver safety. In this paper, we present an approach to continuously monitor the road conditions in
real time by equipping a fleet of vehicles with sensors. Based on the observed conditions, a physical
road weather model is used to forecast the conditions for the following hours. This can be used
to deliver timely warnings to drivers about potentially dangerous road conditions. To optimally
process the large data volumes, we show how artificial intelligence is used to (1) calibrate the sensor
measurements and (2) to retrieve relevant weather information from camera images. The output
of the road weather model is compared to forecasts at road weather station locations to validate
the approach.

Keywords: vehicle data; smart sensors; artificial intelligence; machine learning; road safety; road
weather conditions; road weather models; road weather services; nowcasting; weather warnings

1. Introduction

Weather conditions have a significant impact on the accident risk on road networks [1].
These accidents can lead to traffic jams, increased pollution, material costs, and person
injuries. Visibility on the road can be affected by fog or rain showers. The road surface is
also affected by weather conditions; for example, snow or freezing rain can cause slippery
road conditions. These types of conditions can cause dangerous situations for drivers.
Furthermore, they can also impact advanced driver assistance systems [2]. The technologies
designed for self-driving vehicles also have a varying performance under different weather
conditions [3].

To forecast dangerous road weather conditions, various dedicated road weather mod-
els (RWM) have been developed in the past [4-9]. These models are usually run for specific
locations with fixed road weather stations (RWS) that provide the necessary observations
such as the road surface temperature. RWS do not always cover the entire the road net-
work: when sparsely scattered, they might miss very local phenomena. RWMs can be
integrated into intelligent transport systems to increase safety and tackle growing emission
and congestion problems [10,11]. In this work, we explore the potential improvement that
a vehicle fleet, equipped with sensors, can bring to road weather models. Previous research
has shown potential with regard to the assimilation of mobile road surface temperature
observations [12]. Various vendors have developed mobile sensors for this purpose [13].
Accurate forecasts of dangerous road conditions allow the distribution of real-time warn-
ings to nearby vehicles to alert drivers or to inform road management authorities, who can
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take preventative measures such as salting roads or measures such as snow removal after an
event. The Finnish Meteorological Institute recently introduced a system to distribute road
weather data amongst vehicles [14], and in [15], the potential of floating car data was also
addressed. The potential of vehicles-based observations is continuously increasing [16].
The value of the connected car market has tripled between 2012 and 2019 [17]. It is ex-
pected to grow further towards $212.7 billion by 2027 [18]. A fleet of smart connected
vehicles could provide us with fine-grained observations, allowing the prediction of local
road weather conditions and the generation of real-time warnings. Furthermore, these
observations have the potential to improve numerical weather prediction (NWP) model
forecasts [19,20].

A group of industrial stakeholders and researchers consisting of more than twenty part-
ners from seven countries (Belgium, France, Portugal, Romania, Spain, Turkey, and South
Korea) initiated the real-time location-aware road weather services composed from multi-
modal data (SARWS) project [21]. The SARWS project aims to enable real-time weather
services using data originating from large-scale vehicle fleets. This paper is written by the
Belgian consortium, which aims to utilise vehicle-fleet observations for real-time local road
weather condition detection.

Local measurements are gathered around the city of Antwerp in Belgium from a fleet
of postal vans [22]. The vehicles are equipped with various external sensors. The collected
data are first centralised and (pre-)processed in the car at the In Car Smart Sensor Node
(ICSSN) before being further distributed to the cloud. To obtain relevant information from
the large data volumes, machine learning techniques are leveraged. In this paper, we
create a convolutional neural network (CNN) to obtain information about the visibility
and precipitation from the camera images and explore how neural network can be used
to calibrate the sensor measurements. We also demonstrate how the collected data can be
used to enhance the road weather model of the Royal Meteorological Institute of Belgium
(RMI) at a high resolution.

The next section presents the different materials and methods that are used and some
corresponding state-of-the-art. The results are presented in Section 3 and finally, in Section 4,
the conclusions are presented.

2. Materials and Methods
2.1. Detection of Precipitation Type and Visibility from Camera Images

As described in Section 1, the ICSSN contains several sensors, which cover different
complementary types of perception, to enhance road weather services. To detect precipi-
tation, and more specifically precipitation type (e.g., rain, snow, ...), and visibility (fog),
visual perception is considered and investigated as an important sensor. Our approach
to this multi-task problem of detecting precipitation type and visibility is a smart sensor,
WeathercAlm, consisting of a combination of a camera with edge artificial intelligence (Al)
computer vision (CV) processing. This smart sensor is part of the ICSSN and processes the
camera images locally.

Recent research on weather detection from images applies both classical CV ap-
proaches as—with the rise of deep neural networks (DNNs) and especially CNNs for
CV tasks-DNN based methods [23,24]. DNN-based methods have the advantage of in-
creasing the accuracy with the amount of data available. In recent years, street-level images
in combination with DNN have shown the potential of Al for weather detection [23-27].
These related works are mainly theoretical, whereas we also deploy the WeathercAlm
in an actual vehicle fleet and tackle the problem together with the more practical side
and constraints.

From the practical side, one of the important aspects for the WeathercAIm design
is where to deploy the Al model: in the cloud or locally on the ICSSN. Sending images
frequently over the data (radio) network to be processed in the cloud would massively
increase the network communication traffic. The bandwidth needed would drastically
limit the scalability to large vehicle fleets. Moreover, to comply with the General Data
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Protection Regulation (GDPR), sending and storing data that could contain privacy sensi-
tive information in the cloud should be avoided. With these constraints, i.e., optimising
communication and keeping privacy in mind, the choice for edge Al where the images are
immediately processed locally on the ICSSN is evident [28-31]. There is no need for the
images to be stored, not even locally. The available computing resources, e.g., processing
power and memory, on edge platforms are typically lower than in the cloud [29,30,32].
Thus, edge Al has its implications on the Al model that can be used as it puts tighter
constraints on the computing resources. Larger or complex Al architectures, e.g., using
multiple parallel or cascaded CNNs and/or combined with other DNNSs as in [23,25,26],
could make the solution too computationally heavy or memory hungry to fit on an edge
platform. The inference—detection processing—time will also take longer for more com-
plex Al architectures. Another specific of the SARWS project is that a prediction is desired
for every road segment of 50-250 m. This puts an extra timing constraint on the inference
time. Complex Al architectures will likely take too long to comply to these constraints on
an edge platform.

The proposed design of WeathercAlm is a camera connected to the ICSSN. The ICSSN
also runs the precipitation type and visibility AI model besides running and processing all
other vehicle sensors. The camera is a Basler puA1920-30uc [33]. This is a low-cost compact
and low-weight area scan camera. The camera is placed behind the windshield close to the
rear-view mirror. For the machine learning (ML) model, a supervised learning approach
is used for multiclass classification, using a classifier based on a CNN that has proven
its merits in the computer vision field. We use a single CNN handling both precipitation
type and visibility detection. The current implementation is the well-known, seasoned
ResNet50v2 [34] backbone and a dense layer as the classification head. This was chosen as
it was considered a reference for image classification with a good balance between learning
capabilities, accuracy, needed compute resources, and inference time. It has been studied
extensively in the literature [32,35] and shown to be working and even used as a reference
benchmark on edge platforms [31,36,37]. So, it was likely to also comply to the constraints
discussed above and deployable in the field on the ICSSN edge platform, which made it a
sensible choice. The CNN is trained via transfer learning, with the backbone network pre-
trained on ImageNet [38]. Cross-entropy is used as loss function, and different optimisers
(stochastic gradient descent (SGD) and Nadam) are evaluated. To counter overfitting,
image augmentation, i.e., rotation, horizontal flip, translation, and zoom, regularisation
and dropout layers are used. The CNN is implemented in Keras/TensorFlow. For the
inference and deployment on the actual target/ICSSN, TensorFlow was compiled from
source to be able to run on and use the target specific processor (Intel Atom x7-E3950)
optimisations for optimal performance.

To train and validate ML models, having enough good data, and in the case of
supervised learning good, labelled data, is vital. The better the dataset represents the data
in production, the better the performance of the ML model. The data weather classes/labels
of interest to enhance the road weather services and which need to be represented in the
dataset are:

*  Precipitation: rain, melting snow, snow, hail, no precipitation;
*  Visibility: fog, normal (no fog)

To gather a representative dataset, images were collected during the beginning of
the data-gathering campaign, the so-called development phase, with the first 3 ICSSN
equipped vehicles between 23 October and 31 May 2021. We also performed a dataset
survey to search for relevant publicly available weather-related datasets to build an initial
model. Finally, the “Adverse Weather Dataset” (AWD) [39] was used for the first validation
of the approach as it covers most dataset requirements (except for the lack of hail). In
addition to the weather classes of interest, the dataset also contains other classes such as
dusk, overcast, and sunny. These were merged to the weather classes of interest; e.g., if
classified as just sunny, this corresponds to no precipitation, see the AWD weather class
frequency distribution plots in Figure 1.
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Figure 1. AWD weather class frequency distributions.

Although the AWD classes seem quite balanced, in reality, the occurrence of no
precipitation is much higher than the precipitation types (especially the rarer types such
as hail or fog). So, we decided to keep and split the no-precipitation class into subclasses,
e.g., overcast, sunny, to avoid class imbalance issues during modelling. A simple rule-based
system is used after the CNN to map these extra no-precipitation classes to the classes
of interest.

The results presented in Section 3.1 are from the initial model experiments on the
public AWD dataset.

2.2. Calibration of Sensor Measurements

The need for the calibration of low-cost measurements is presented by Williams et al. [40].
The authors state that regular calibration can improve data believability, but manual
calibration can be costly. Previous research has been done to calibrate mobile sensors
using machine learning regarding urban air quality [41]. Furthermore, mobile sensor
calibration using sensor fusion and mixed models for road weather predictions has proven
its value, as shown by Lovén et al. [42]. In this paper, we investigate a complete data-driven
calibration of our low-cost sensor measurements. We are currently collecting observations
from 15 postal vans. These measurements are environmental observations such as the
ambient temperature. Every time the Global Positioning System (GPS) is updated (on
average 2-3 s), the sensor measurements are collected and sent to the cloud. These sensors
provide the input for our applications. Table 1 gives an overview of the external sensors.
The camera is mounted behind the windscreen together with the GPS, the thermal image
sensor is mounted at the front of the vehicle and aimed at the road surface, and other
sensors are placed in a sensor box on top of the vehicle. These measurements are validated
by comparing the observations by our mobile sensors to meteorological forecasts. This
is a continuation of our previous research [22,43]. Given the large amounts of generated
data, artificial intelligence and machine learning are perfectly suited to improve the sensor
accuracy [15]. The accuracy of data-driven approaches rises with the amount of data
available, outperforming statistical methods. For this, we use a fully connected neural
network. These networks take a certain number of inputs and convert them with trainable
parameters to construct the output.

As discussed later in Section 3.3, the measurements of the sensors differ from the
RWS. For example, this can be caused by sensor placement or vehicle speed. Our mobile
sensing fleet covers a large area. However, we cannot calibrate using only fixed weather
stations, as they are sparsely spread. We do have the output from weather forecasts at a
high resolution of 10 min and on a 1 km x 1 km grid. We use these outputs as pseudo
labels for our calibration model. These outputs might not be the real ground truth but are
expected to indicate trends where our measurements are incorrect. As we have a lot of
data, we explore the possibilities of data-driven calibration. Our model consists of three
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fully connected layers with 10 neurons, 64 neurons, and 1 neuron. The first two layers
have a Rectified Linear Unit activation function to allow for sparse activation, which can
be useful to give less attention to outliers. The input of the model is the measured T2M,
RH, and GPS velocity. Two models are created; the output is either the forecasted T2M or
RH. Our model is trained using the Adam optimiser and the mean absolute error as loss
function. The model is trained for 20 epochs and a batch size of 500.

Table 1. External sensors mounted on the vehicle fleet.

In Car Sensor Box
GPS-module Gyroscope
Camera Accelerometer
Thermal imaging sensor Temperature sensor

Humidity sensor

2.3. Road Weather Model

The Royal Netherlands Meteorological Institute developed an RWM [44] that was
used as a basis for the RWM of the RMI. Within this model, further referred to as the
“classic RWM”, the road is modeled up to a depth of 30 cm and is divided into 20 asphalt
layers. The RWM computes the energy balance at the surface of the road where incoming
and outgoing radiation, atmospheric, and ground heat fluxes are considered. Changes
of state (evaporation, melting, etc.) are also taken into account. Several parameters can
be fine-tuned to better match the modeled RST with observations, with the possibility
of factoring in environmental conditions such as a sky-view factor and the presence of
bridges [44]. The initial conditions are updated by performing a data assimilation of RWS
observed road surface temperature (RST). The observed air temperature (T2M) and dew
point temperature (TD2M) are also used to correct the NWP forecast at the RWS location.

In order to use the SARWS data to their full potential, we developed an enhanced
version of the classic RWM, named after the project: RWM_SARWS. This enhanced RWM
not only uses weather observations from the Flemish Road and Traffic Agency RWS but also
the near real-time SARWS car sensor data aggregated at the road segment level (~50 m).
These observations are available for the region of Antwerp and are aggregated by Be-Mobile.
In addition to the observations, RWM_SARWS uses weather input from an NWP model,
which can be selected by the RMI forecasters based on the expected accuracy in given
meteorological conditions. This NWP model output is combined with the output of RMI's
operational nowcasting system INCA-BE (Integrated Nowcasting through Comprehensive
Analysis Belgium). INCA-BE is an adapted and extended version of the INCA system [45]
developed at the national meteorological service of Austria. It generates high-resolution
short-term forecasts integrating observational data from weather radars, synoptic stations,
and other official networks. Due to the importance of precipitation nowcasts for road
weather warnings, we ingest the INCA-BE precipitation information at a high resolution of
10 min in RWM_SARWS.

Every 20 min, RWM_SARWS forecasts are performed for each road segment in
Antwerp and its surroundings, which corresponds approximately to 140,000 road seg-
ments. Each of these has a length of about 50 m. Since the SARWS project focuses on
nowecasting, the forecast range is limited to two hours. RST, T2M, TD2M, and road surface
condition as well as the amounts of liquid water, ice, and snow on the road are provided
as output.

RWM_SARWS makes use of the observed RST, T2M, and TD2M from RWS and car
sensors, with the same correction methods employed as for the classic RWM. A new
version of RWM_SARWS is currently under development that will make use of car wiper
information and the predictions from the WeathercAIm. When rain is deduced from the
car sensor observations, the RWM road surface status can be updated to wet, which can
then be taken into account in the forecast for that road segment. This information can be
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validated when the car is close to the RWS, which measures road surface status and rain
state (rain occurring yes/no).

3. Results
3.1. Detection of Precipitation Type and Visibility from Camera Images

We present our experiments to validate our approach by training and testing an initial
WeathercAIm model with the Adverse Weather Dataset [39] before deployment. The consid-
ered weather classes are fog, dusk, overcast, rain, sleet, snow, and sunny. The dataset was
split in a training and validation set according to an approximate 80/20 grouped stratified
split on drive sequence for each weather class. Except for fog, which was present during
only one drive sequence, which was then split taking the first 80% samples for training
and the last 20% for validation. The experiments were run with different hyperparameters
for the CNN to train and tune the network: learning rate, dropout rate, batch size, and
whether the pre-trained backbone layers should be fixed or fine-tuned. A selection of the
results are presented in Table 2 for multiclass weather classification on the 7 classes defined
in the dataset with different performance validation metrics (accuracy, area under the ROC
curve (AUC), and F1 score), for different hyperparameters.

Table 2. WeathercAIm validation classification metrics for different training parameters.

Optimiser Learning Rate Dropout Rate Batch Size Loss Accuracy AUC F1

sgd 1x1076 0.5 64 0.838 0.949 0.997 0.988
sgd 1x1076 0.5 16 0.866 0.932 0.9% 097

sgd 1x1077 0.2 16 0.89 0.928 0.996 0.98

nadam 1x10°° 0.6 16 0921 0.897 0991 0.992
nadam 1x107® 0.7 16 0.907 0.889 0.988 0.988
nadam 1x10°° 0.8 16 0921 0.889 0984 0.969
nadam 1x107® 0.9 16 0952 0.878 0982 0.962

Using data augmentation, a pre-trained backbone with fine tuning and SGD (with
momentum 0.9) as optimiser gave the best results in our experiments. These results reveal
that the WeathercAIm CNN can learn the weather classes with a good accuracy based on
the given dataset.

The model was also deployed on the ICSSN in vehicles in the field. Initial results from
the field test development phase—running from 23 October 2020 to 31 May 2021—reveal
that there is still room for improvement in accuracy on real-life production data. One
of the main observations is that the resolution of the camera does not allow for a high
performance in changing lighting conditions, producing lesser quality images than the
camera images from the AWD dataset:

¢  Automatic gain functions take time to settle on initial captures and on big lighting
changes e.g., coming out of a tunnel.

*  Over/underexposure in certain outside conditions

* A lot of image noise in low lighting conditions, e.g., during the night (which the
WeathercAIm model seems to confuse with rain/snow, as also a human could).

In addition, the different environmental setting, e.g., camera placement, different
urban scenes compared to the used dataset will play a role. Another observation was that
special (non-weather) cases are encountered in real life that are not present in the training
dataset and need special attention, like tunnels, vehicle in garage, etc. To handle these
special cases, in principle an extra task could be added by creating extra classification
classes that can be added to the WeathercAIm CNN classifier. To further process these
special cases, the rule-based system can be used and updated as they are likely to occur
only rarely. These observations confirm the need for (re-)training on actual captured images
from the field development phase to improve the WeathercAIm model.
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3.2. Calibration of Sensor Measurements

In our first experiment, we compare the measured T2M to the forecasted T2M by
INCA-BE. First, we preprocess the data by splitting the dataset into training and testing
with the last 25% as the test set. The data are scaled using MinMax scaling. In total, around
4.5 million samples are used as training data and 1.5 million are used as evaluation. To make
our results interpretable, we use the daily average on our metrics. These metrics consist
of the mean absolute error, mean squared error, and mean bias. As shown in Table 3, our
model can correct the temperature. However, the error on our training set is still significant
after training. This can be explained by our use of pseudo labels. The period of the labels
is 10 min, while our measurements are on a 3—4 s interval. This difference will result in
a fixed error as the real weather changes based on the situation in space (e.g., effects of
traffic, sunlight, etc.). As we improved using the correction algorithm, there is still a bias
present in the testing set. This might be caused by using the last months as evaluation data.
As ambient conditions are seasonally bound, evaluation on a different season can lead to a
fixed bias. Figure 2 illustrates the error between our predictions and labels as well as the
error between the original measurements and labels. In this figure, we can see that our
correction has a positive effect on accuracy. The largest error occurs around 23 January 2021.
This can be caused by our sensors that are still operating while the vehicle is for example in
a depot. In such a case, the measurements occur indoors while the label is the forecasted
temperature outside. A possible solution could be to filter out values when the vehicle
is standing still. However, as our fleet consists of postal delivery vehicles, frequent stops
occur too much to remove these valuable measurements.
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Figure 2. Overview of corrected and original T2M measurements in comparison to the forecasted
T2M by INCA-BE.

In a second experiment, we train the same architecture to correct the humidity mea-
surements. The data used in this experiment include every measurement after July 2021
until September 2021. In July, we made a change to the sensor box, creating ventilation
holes to improve the humidity measurements. These data are preprocessed in the same
way as the T2M but with random sampling between training and testing with a 25% split
as the testing set. We make use of random sampling to have better coverage on our limited
dataset. Figure 3 illustrates the error between the corrected signal and our pseudo labels as
well as the original measurements and the labels of the testing set. Results are shown in
Table 3. Here, we can see the accuracy is improved overall. The difference between training
and testing is very small, meaning our model has a good generalisation.
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Table 3. Results of corrections on measurements.

Mean Squared Error Mean Absolute Error Mean Bias
Train Test Train Test Train Test

Temperature original ~ 3.680 °C?  3.360 °C? 2916°C  3.023°C  -2.780°C —3.003 °C
Temperature corrected  1.695 °C2  1.705°C? 1.285°C  1.409 °C 0.100 °C 1.077 °C

Humidity original 7248 %2 7.259 %%  5.718% 5.732% 1.167% 1.176%
Humidity corrected 5.644 %> 5561 %2  4.262% 4.265% 0.172% 0.182%

v
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Average daily error [%]
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Figure 3. Overview of corrected and original humidity measurements of the testing set in comparison
to forecasted humidity by INCA-BE.

3.3. Road Weather Model

The SARWS data, aggregated by BeMobile for each road segment, are displayed in
Figure 4. This figure clearly shows that various types of roads have been covered by the cars
of the project, which means that weather information from several types of environments
were collected, e.g., on highways and in the city center.

To assess the quality of the aggregated SARWS data, we compared these with obser-
vations from the RWS, an Automatic Weather Station (AWS), the Vlinder network [46],
VMM (Flanders Environment Agency) stations, and SYNOP stations that are close enough
to the itineraries, that is, less than 500 m. The AWS never meets this criterion and thus is
excluded from the comparisons. Figure 5 shows an example of this comparison for the RWS
of Stabroek and the following variables: RST, T2M, and RH. Verification for this RWS was
first performed in [43] for a shorter verification period. Until 11 March 2021, the SARWS
T2M and RH can originate from the Bpost cars or the INCA outputs. The SARWS and the
RWS data show a high correlation (>0.8 for RST, >0.9 for T2M, >0.7 for RH), although there
is a positive bias of 1.6 °C for RST, 2.3 °C for T2M, and 3.9% for RH. The RMSE is 5.1 °C
for RST, 2.7 °C for T2M, and 11.8% for RH. The correlation (r) between SARWS data and
observations from other weather stations is also generally high (time period: 19 December
2020-1 December 2021, not shown): 12 stations out of 14 with a r > 0.7 for RH, six stations
out of six with a r > 0.9 for T2M. Note that the T2M of these comparisons is not necessarily
observed exactly at 2 m.

To assess the impact of car sensor observation integration into the RWM, we performed
a first validation of RWM_SARWS for the time period 6 May 2021 (the data assimilation
was corrected on this date) to 1 December 2021. RWM_SARWS forecasts for each road
segment are performed every 20 min from H + 0 to H + 2 with a time step of 10 min.
These forecasts are compared to the ones performed at the RWS of Stabroek (with RWS
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observation integration) when the distance between the two forecast locations is less than
or equal to 500 m. In Figure 6, we show the RMSE computed for the RST forecasts between
H + 0 and H + 2, for the time period between 6 May 2021 and 1 December 2021. The median
RMSE is below 2 °C.
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Figure 5. RST (top), T2M (middle), and RH (bottom) between 1 February 2021 and 1 December 2021
at the RWS of Stabroek (black) and from the Bpost cars (red) for nearby road segments (distance to the
RWS of maximum 500 m). The scores include the RMSE, bias, and correlation, which are computed
from the times series binned on an hourly basis. RST values below —30 °C are considered unrealistic
and not used in the computation of the scores.

6

8
B

04

Figure 6. Box and whisker plot of the RMSE between the RWM_SARWS forecasts of RST at the RWS
of Stabroek and at close observed road segments (<=500 m) computed for the whole forecast length
(2 h). The RMSE box extends from the first to the last quartile, while the orange line corresponds to
the median. Each whisker corresponds to a length of maximum 1.5 interquartile range. The time
period ranges from 6 May 2021 to 1 December 2021.
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4. Discussion

In this paper, we presented our research on the use of car fleet sensor data towards real-
time road weather warnings and a higher-resolution road weather model. We demonstrated
two examples of how AI/ML can be leveraged to process data from a fleet of vehicles
and obtain relevant weather information with an improved data quality compared to the
raw measurements. First, we showed how convolutional neural networks can be used
to extract relevant weather information (visibility and precipitation) from raw camera
images. Second, we demonstrated how neural networks can be used to calibrate sensor
measurements to reduce the observation errors and improve the data quality.

An updated version of the road weather model, denoted RWM_SARWS, was presented
that was specifically developed at RMI to enrich the modeling of road weather with the
cars data at a high spatio-temporal resolution. The preliminary results show a median
RMSE below 2 °C between the RST forecasts performed at a RWS and the ones performed
at close observed road segments. This could be partly explained by the errors from the
cars’ sensors. Further improvement is expected in the future, when the demonstrated
ML-based calibration method is used operationally. The extracted information from wipers
and camera images will also be put to use in a next version of RWM_SARWS, which is
expected to further increase the accuracy of the forecasts.
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Abbreviations

The following abbreviations are used in this manuscript:

Al Artificial Intelligence

AUC Area Under (the ROC) Curve

AWD Adverse Weather Dataset

AWS Automatic Weather Station

CNN Convolutional Neural Network

Cv Computer Vision

DNN Deep Neural Network

GDPR General Data Protection Regulation

GPS Global Positioning System
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ICSSN In-Car Smart Sensor Node

INCA Integrated Nowcasting through Comprehensive Analysis
INCA-BE INCA Belgium

ML Machine Learning

NWP Numerical Weather Prediction

RH Relative humidity

RMI Royal Meteorological Institute of Belgium

RMSE Root-Mean-Square Error

ROC Receiver Operating Characteristic

RWM Road Weather Model

RWS Road Weather Station

SARWS Secure and Accurate Road Weather Services

SGD Stochastic Gradient Descent

M Air temperature at 2 m

TD2M Dewpoint temperature at 2 m

RST Road surface temperature

VMM De Vlaamse Milieumaatschappij

ZAMG Zentralanstalt fiir Meteorologie und Geodynamik
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