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Abstract: We explore the use of inverse design methods for the generation of periodic optical
patterns in photonic integrated circuits. A carefully selected objective function based on the
integer lattice method, which is an algebraic technique for optical lattice generation, is shown to
be key for successful device design. Furthermore, we present a polychromatic pattern generating
device that switches between optical lattices with different symmetry and periodicity depending
on the operating wavelength. Important links are drawn between optical coherent lattices and
optical potentials, pointing towards practical applications in the fields of quantum simulations
and computing, optical trapping, and bio-sensing.
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1. Introduction

Structured interference patterns of coherent waves, known as coherent lattices, play a key role
in a wide range of applications. In particular, coherent lattices are prominent in structured
illumination microscopy [1–3], fabrication of microstructures such as photonic [4] or plasmonic
crystals [5], optical trapping in the life sciences [6] and quantum research [7,8]. Typically,
an optical lattice is formed by the interference of counter-propagating laser beams, creating a
spatially periodic pattern of focal spots. In our recent work we established a theoretical framework
for generating diffraction limited multi-focal spot arrays with arbitrary periodicity, based on an
integer lattice method [9]. This framework is particularly suitable for implementations in planar
systems such as Photonic Integrated Circuits (PICs), which in recent years have come to the
forefront as the platform of choice for novel photonics applications. However, the theoretical
framework requires coordination of parallel wavefronts over a possibly large slab waveguide area
where the pattern will be generated. Obtaining a parallel, i.e. non-diffracting, slab wavefront is
nontrivial. Typically a large design footprint is required by e.g. linear tapers [10]. Thus, both the
realization of the interference patterns and the attempt to keep the PIC design routing footprint
small, pose a challenge.

Inverse design (InvDes) methods are a novel solution in the PIC community that allows to
specify performance targets and manufacturing constraints in order to generate devices with
arbitrary geometry, yet extremely small footprint and high efficiency [11–15]. Current InvDes
strategies focus on making existing individual photonic components more compact, efficient and
tolerant against manufacturing defects. Examples include compact planar waveguide tapers [16],
beamsplitters [17] and vertical incidence grating couplers [18]. Starting from a general device
blueprint and several design constraints, the method can automatically find optimal geometries
that fulfill the specified performance criteria. In this work, we apply the InvDes method to the
design of a PIC device capable of generating a coherent optical lattice (Fig. 1(c)) with minimal
footprint. The structure shown in Fig. 1(d) is the three-dimensional render of such a device,
demonstrating its compactness compared to a classical taper design.
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Fig. 1. Generation of optical lattices in a PIC using the integer lattice method. The
wavevector components for the specific pattern are selected from concyclic points in the
triangular integer lattice (a). Associating each wavevector with an input laser beam (b)
produces the optical interference pattern in the overlapping region (c), denoted by a red
dashed circle. The resulting device when setting the interference pattern as the target for
the InvDes optimization (d) is shown to be more compact compared to the straight-forward
linear taper design. The 12 plane wave inputs provided by the linear tapers are encoded in
the InvDes device such that a mere 4 input waveguides suffice to generate the desired optical
lattice.

We perform a gradient-based optimization of the PIC device using the adjoint method [19,20].
This technique allows the gradient of an objective function to be computed with respect to a
large number of degrees of freedom, which is ideal for the design challenge at hand. Our key
finding is that deriving the objective function from the electric field distribution (Fig. 1(c))
obtained from the integer lattice method for generating coherent optical lattices [9] is paramount
for the convergence of the optimization to the final device design (Fig. 1(d)). The carefully
selected objective function and subsequent tuning of the hyperparameters of the InvDes algorithm
produces device designs that have the desired optical pattern and have a routing footprint that is
nearly 100 times more compact than a conventional design approach.

All patterns are achieved without changing the topology of the central interference region
(dashed red circles in Fig. 1(b,d)), such that it remains flat and homogeneous and could serve
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as a platform for placing particles or other samples. In that case, the evanescent field of the
optical lattices could enable bio-sensing or play the role of a trapping potential. We then also
demonstrate that for successful design of PIC components that would produce optical coherent
lattices a description of the underlying physics is crucial. This stands in contrast to the InvDes
ethos of being able to directly design performant devices, not by having full understanding of the
system, but by an optimization algorithm.

2. Formulation

Before setting up the InvDes problem for the photonic device, we will describe the device geometry
used to generate optical lattice patterns in two-dimensions (2D) and define the constrains on
the pattern selection posed by the algebraic integer lattice method [9]. In general, multiple
input beams entering a central dielectric slab region will generate a 2D optical pattern due
to interference (Fig. 1(b)). Any pattern generated in this way extends in the lower refractive
index environment above the slab region as an evanescent electromagnetic field. Structuring this
evanescent field is the key element in unlocking new integrated photonic device applications.

The integer lattice method relies on plane wave interference, where each plane wave light beam
is associated with a wavevector. We restrict the discussion to a 2D geometry, which is suitable
for PIC devices. We further assume that all input beams have transverse-electric polarization,
which have only nonzero out-of-plane field components, and have equal relative intensity. The
time-averaged intensity I of the electromagnetic field E is given by

I ∝ |E |2 =
|︁|︁|︁|︁|︁|︁E0

∑︂
kj ∈Kn

e−ikj ·r

|︁|︁|︁|︁|︁|︁
2

, (1)

where r is the position vector in two dimensions, E0 is the overall field strength and Kn is a set of
wavevector orientations which determine the optical pattern. In order to obtain optical lattices
with specific symmetry and periodicity, Kn must be chosen carefully.

In Ref. [9], we demonstrated using a number theoretical approach that a planar (quasi-)periodic
optical lattice can be constructed from the following set of wavevector orientations:

P(n) = {N(α) = n | α ∈ Z[ζm]}, (2)

where the ring Z[ζm] = {a + bζm | a, b ∈ Z} determines the symmetry of the system fixed by
choice of integer m in ζm = e2πi/m. The corresponding field norm N(α) = αᾱ = n then selects
only specific wavevectors with an integer magnitude n. However, the set P(n) in Eq. (2) contains
only complex numbers (Fig. 1(a)) and therefore, to give physical meaning to these elements, here,
we establish the set

Kn =
2π
λ

vec
(︃
P(n)√

n

)︃
, (3)

where vec : x + yi ↦→ (x, y) simply converts the complex number to vector notation. Thus,
concyclic points P(n) in the complex plane (Fig. 1(a)) can be translated to orientations of the input
beams (Fig. 1(b)), which in turn produce an optical lattice in the overlapping region (Fig. 1(c)).
Note that the points P(n) are normalized to have unit length and are subsequently scaled by the
wavelength λ.

Setting the symmetry by choosing m and selecting a set Kn will result in an interference pattern
according to Eq. (1). These are the coherent optical lattices and will be labeled Λm(Kn).

Choice of Objective Function – When performing inverse design of a photonic device, the
optimization over the parameter space relies on a good choice of a figure of merit (FOM) that
characterizes the performance of the device while other system parameters are being varied. In
our case, the spatial distribution of the electromagnetic field needs to match a target probe optical
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lattice under variation of the material’s dielectric constant. This also implies that a successful
optimization will strongly rely on the initial choice of the geometry and the parameterization of
the geometry, such that the FOM can be defined on the device.

For each device, we seek to maximize the FOM with respect to the permittivity distribution
within a fixed design region. Since the optical lattices have rotational symmetry, the natural
choice for the design region D is a annular shape surrounding the center slab region C (Fig. 2(a)).
Next, we note that each optical lattice Λm(Kn) is formed by a unique set of wavevectors Kn,
which correspond to orientations of the input beams. Directly copying these orientations to
determine the source positions for any non-trivial patterns would result in a large number of input
waveguides being attached to the design region. For example, K7 is a set of 12 wavevectors, as
illustrated in Fig. 1(b). Instead, we can rely on the InvDes optimization to shape the permittivity
distribution in the design region, routing the required wavevector components to form the desired
pattern in the central slab region. To ensure that the radiation is distributed evenly with a
manageable number of sources, we place four input waveguides around the design region, as
shown in Fig. 2(a). By aligning these sources with the simulation coordinate grid, we gain the
additional benefit of preventing any numerical errors in computing the mode residing in the input
waveguides.

Having set the geometry of the optimization problem, our objective is to maximize the overlap
integral of the generated electric field E and a target probe field Eprobe within the central region
C, representing a dielectric slab region where the desired pattern would be formed:

max
ϵr

(FOM) = max
ϵr

∫
C
|E∗Eprobe |dr, (4)

where ϵ r is the relative permittivity distribution in the design region D. For the optimization
process, we use the finite-difference frequency-domain (FDFD) method to solve for the electric
field distribution in the structure determined by a relative permittivity distribution. Then, we
use a gradient ascent algorithm to perform updates of the design variables such that the integral
in Eq. (4) is maximized with respect to ϵ r in the design region. This procedure is repeated
until convergence on a final structure is reached. Having specified the device design and the
objective function (Eq. (4)), what remains is to define the representation of the device in terms of
a parameterization scheme.

Device parameterization – Starting from the initial design (Fig. 2(a)), the device is parame-
terized by a 2D array of density values ρ. As described in detail in Refs. [21,22], low-pass spatial
filtering and projection techniques are typically applied during optimization to create binarized
final structures with large, smoothed features that can be adjusted for nanofabrication constraints.
The spatial low-pass filter is achieved by convoluting the density ρ with a disk-shaped blurring
kernel f(σ) with radius σ. Subsequently applying a projection function to the filtered density
results in a 2D array with values varying between 0 and 1, called the projected density

ρ̄ =
tanh(βη) + tanh(β[f(σ) ∗ ρ − η])

tanh(βη) + tanh(β[1 − η]) , (5)

where η is the mid-point of the projection (typically chosen to be 1/2), and β controls the strength
of the projection, as illustrated in Fig. 2(b). The permittivity is recreated from the projected
density by adjusting for the minimum and maximum permittivity (ϵmin and ϵmax respectively)

ϵ r = ϵmin + (ϵmax − ϵmin)ρ̄ . (6)

We can also employ the density distribution to further demote the formation of small disjoint
structures that would complicate fabrication. To accomplish this, we modify our original FOM in
Eq. (4) by including a penalization term when small features form. The penalty term is typically
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Fig. 2. Illustration of the important steps in the InvDes optimization. Pre-optimization
blueprint of the device (a) with C the central interference region and D the design region
being optimized. The four single mode input waveguides are indicated by arrows. (b) Plot
of the projection function for binarization of the material. (c) β-parameter scheduling for
each of the number of passes through the optimization steps (epochs) N. Scheduling the
binarization into a weak and a strong phase shows an improvement in FOM maximization
rate (red curve).

chosen to be proportional to the L2-norm of the raw density array. The new objective function is
then given by

max
ϵr

∫
C

(︁ |E∗Eprobe | − s|ρ |)︁ dr, (7)

where s a number specifying the strength of the penalization. The exact implementation of the
above steps can be found at the code repository we have made publicly available [23].

3. Results

To demonstrate the capabilities of our design approach, we solve the inverse design problem for
prime examples of optical lattices with varying periodicity and symmetry. The starting structure
for optimization consists of a central circular probe region and a surrounding ring-shaped design
region with four input waveguides, as illustrated in Fig. 2(a). The single mode input beams
with wavelength λ = 1.5 µm are injected into a Si structure with permittivity ϵSi = ϵmax = 12,



Research Article Vol. 30, No. 7 / 28 Mar 2022 / Optics Express 11389

while the surrounded structure is Air, i.e. ϵmin = 1. The size of both the probe and the design
region can be selected on a case-by-case basis, with the caveat that larger devices take longer to
simulate. For numerical accuracy, the grid resolution is chosen to be smaller than λ/40 for the
smallest wavelength considered, ≈ 25 pixels per wavelength inside the highest index medium.
For convenience, we have not used full field 3D simulations in the optimization sweeps. For a
specific PIC technology platform, this can be done but is beyond the scope of the current work.

In order to have a good starting condition for the final binarization of the density, we split
the optimization process into a weak binarization stage and a strong binarization stage. This
technique is often used to knead the design region into a smooth precursor density distribution so
as to promote faster convergence once the full design constraints are enabled [24,25]. In our
case, this is done by scheduling the value of the β parameter in Eq. (5) during optimization. For
example, splitting a 600 epochs optimization into a β = 50 weak binarization for 300 epochs and
β = 100 binarization for the remaining 300 epochs shows significant improvement in convergence,
as shown in Fig. 2(c).

It is worth noting that even though the theory of integer lattices relies on plane wave harmonic
analysis, the simulated patterns were obtained using a fully vectorial method. This means that
the inverse designed devices, in fact, generates plane wave components in the central region.

Convergence condition – Optical lattices are always accompanied by complex interstitial
patterns (see e.g. the optical lattice in Fig. 1(c)). From the theory of the integer lattice
method, only specific optical lattice configurations have diffraction limited spots with enough
sideband suppression to be sufficiently distinct from the background interference pattern [9].
In mathematical set notation we can say that the (unique) optical lattices Λm(Kn) are ordered
according to values of the field norm n. For triangular lattices (m = 6), the first few lattices are
ordered as follows:

{(1,Λ6(K1)), (2,Λ6(K7)), (3,Λ6(K13)), . . .} . (8)

Suppose one requires an application specific periodicity of high intensity spots (red on the
scalebar in the figures), one could simplify the target probe field Eprobe to consist only of high
intensity gaussian spots at the desired positions, hoping that the optimization algorithm converges
to form the target pattern. However, even if the target lattice is setup by arranging gaussian
spots in a grid, the resulting optical interference pattern is not guaranteed to form a lattice with
discernible spots. This is to say, for example, a lattice generated from K5 cannot be constructed
to have periodicity between Λ6(K1) and Λ6(K7) in expression (8). This can be easily verified by
noting that the diophantine equation in Eq. (2) cannot be fulfilled, i.e. a2 + ab + b2 = 5 has no
integer solutions.

Since the FOM is simply a value that the gradient ascent algorithm optimizes for, and by no
means guarantees convergence to a resolvable optical lattice, an auxiliary quality score must be
employed. To assess the similarity of the pattern formed by the resulting device and the ideal
lattice of gaussian spots we can introduce an arbitrary similarity index. The Haar wavelet-based
perceptual similarity index (HaarPSI) is a measure for images that aims to correctly assess the
perceptual similarity between two images with respect to a human viewer [26]. The HaarPSI
estimates local similarities between two images by computing coefficients obtained from a Haar
wavelet decomposition. This similarity index was chosen based on its excellent performance for
quantifying similarities between distorted images, as we have in our case.

When determining the HaarPSI index of optimized designs for increasing Eprobe periodicity,
we observe particular resonances for which the HaarPSI index shows better visual matching
between the generated and target pattern. Each point in Fig. 3(e) starts from the same initial
geometry (Fig. 2(a)), with the only variable being the distance d (i.e. periodicity) between spots
in the target probe pattern (inset in Fig. 3(e)). The devices in Fig. 3(a-c) show convergence for the
first three lattices according to expression (8). Devices targeting off-resonance periodicities do
not converge to the desired pattern after an identical number of epochs (example pattern shown
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in Fig. 3(d). For successful convergence of the optimization algorithm on the desired optical
lattice, we found that the objective function should compute the overlap of the simulated electric
field distribution and a chosen optical lattice as obtained by the integer lattice method.
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Fig. 3. Successful InvDes convergence to the target optical lattice is observed only for
lattice periodicities that are a solution of the algebraic integer lattice method. Scanning
the periodicities 𝑑 of a grid of gaussian spots (inset (e)) reveals resonance peaks in the
similarity index (HaarPSI) (e) exactly at the periodicities for the first three unique
triangular optical lattices calculated using the integer lattice method (a-c). The inset
arrow diagrams show the corresponding set of wavevectors to generate the target lattice.
For lattices that have unfavorable periodicity, the optimization algorithm could not
converge to the target (d). A gaussian fit to highlight the resonance locations is plotted
(red lines (e)). Each data point represents an optimized device after 600 epochs
(𝑁 = 600 in Fig. 2(c)).
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Fig. 3. Successful InvDes convergence to the target optical lattice is observed only for
lattice periodicities that are a solution of the algebraic integer lattice method. Scanning the
periodicities d of a grid of gaussian spots (inset (e)) reveals resonance peaks in the similarity
index (HaarPSI) (e) exactly at the periodicities for the first three unique triangular optical
lattices calculated using the integer lattice method (a-c). The inset arrow diagrams show
the corresponding set of wavevectors to generate the target lattice. For lattices that have
unfavorable periodicity, the optimization algorithm could not converge to the target (d). A
gaussian fit to highlight the resonance locations is plotted (red lines (e)). Each data point
represents an optimized device after 600 epochs (N = 600 in Fig. 2(c)).

Polychromatic Optical Lattices – As a final demonstration of the utility of the InvDes
approach, we present the design of a device with wavelength-dependent generation of optical
lattices. Specifically, we will target a bichromatic device that, depending on the input wavelength,
toggles between a triangular and a rectangular optical lattice. To achieve such a device, the
objective function needs to be modified to optimize for both target optical lattices with electric
field distribution Eprobe,1 and Eprobe,2. It suffices to add the overlap integral for both wavelengths
λ1,2 such that the objective function becomes

max
ϵr

∫
C

(︁ |E∗(λ1)Eprobe,1 | + |E∗(λ2)Eprobe,2 |
)︁
dr, (9)

where we left out the material penalty term (as in Eq. (7)) to save computational time.
In our specific example, a triangular optical lattice is formed when the input beams have

a wavelength λ = 1.5 µm, and a square lattice for λ = 1.3 µm. The resulting device after
optimization is shown in Fig. 4. We therefore show that it is possible to design devices that can
generate optical lattices with both wavelength dependent symmetry and periodicity.

The number of patterns generated on a single device can be expanded, adding more colors to the
FOM. However, the maximum number of simultaneous optical lattices that can be optimized for
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Fig. 4. Inverse design demonstration of a polychromatic optical lattice generating
device. The final permittivity distribution after optimization is shown (center). When
changing the operating wavelength in the four input waveguides, the generated optical
lattice symmetry switches from square at _ = 1.3µm (left) to triangular at _ = 1.5µm
(right). The inset diagrams show the corresponding set of wavevectors to generate the
target optical lattices. The devices were obtained after an optimization for 2000 epochs.
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Fig. 4. Inverse design demonstration of a polychromatic optical lattice generating device.
The final permittivity distribution after optimization is shown (center). When changing the
operating wavelength in the four input waveguides, the generated optical lattice symmetry
switches from square at λ = 1.3 µm (left) to triangular at λ = 1.5 µm (right). The inset
diagrams show the corresponding set of wavevectors to generate the target optical lattices.
The devices were obtained after an optimization for 2000 epochs.

Fig. 5. Functional bandwidth of the optical pattern generating device. Wavelengths outside
a 6 nm bandwidth showed significant degradation of the target pattern (regions shaded red).
The quality threshold was set to FOM >2.6 based on a visual inspection of the device quality
(intensity plots on the right).
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depends on the available spectral band of the material platform. For example, in the 1.2 − 2.4 µm
transparency range of the SOI platform, given a 0.2 µm buffer bandwidth per pattern as was set in
the bichromatic example above, it is theoretically possible to fit 6 different optical lattice patterns.
Squeezing in more patterns can be achieved by relaxing the optimization constraints, but this will
likely interfere with the fabrication process ruleset.

Bandwidth analysis – It is important to analyze the robustness of the device w.r.t. the change
in the operating wavelength. The functional bandwidth is determined to be ∼ 6 nm by varying
the input mode wavelength for a single device (Fig. 5). The functionality is much more sensitive
compared to linear tapers (inputs in large structure in Fig. 2(d)), which can be broadband.
Nevertheless, the device should be robust against variations in wavelength of an operating laser
unit, and can thus be designed for the operational bandwidth.

4. Conclusion

In summary, we have shown that inverse design provides a practical means of efficiently designing
compact PIC devices for the generation of structured illumination, and specifically optical lattices.
For successful convergence of the optimization algorithm on a performant device, we found
that the objective function should compute the overlap integral of the simulated electric field
distribution and a chosen optical lattice that is a solution of the integer lattice method. Using
our approach for silicon-on-insulator PIC devices, a wide range of optical lattice configurations
were shown to be possible to design for. Next to triangular and square optical lattices, we also
demonstrated polychromatic multi-pattern generation for a single device. The generated devices
are designed to have a routing footprint 100 times more compact than the conventional linear
taper approach.

The β and the penalty function in the FOM promote the binarization of the devices and
constrain feature sizes, respectively. However, optimization may require additional sophisticated
level-set methods for fabricable devices because the device is sensitive and resonant. For the
given examples on SOI, the smallest feature sizes are in the range of tens of nanometers which
can be achieved using e.g. electron beam lithography.

Our results continue the promising trend seen in the use of the inverse design approach to
photonic device design, further illustrating the potential of these techniques to enable novel
PIC applications. For example, the devices we presented can serve as optical trapping arrays
for molecules or atoms at the high-intensity spot sites, and find applications in biosensing and
PIC-based microscopy.
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