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Point-spread functions (PSFs) are non-stationary signals
whose spatial frequency increases with the radius. These
signals are only meaningful over a small spatial region
when being propagated over short distances and sampled
with regular sampling pitch. Otherwise, aliasing at steep
incidence angles leads to the computation of spurious fre-
quencies. This is generally addressed by evaluating the PSF
in a bounded disk-shaped region, which has the added bene-
fit that it reduces the required number of coefficient updates.
This significantly accelerates numerical diffraction calcula-
tions in, e.g., wavefront recording planes for high-resolution
holograms. However, the use of a disk-shaped PSF is too
conservative since it only utilizes about 78.5% of the total
bandwidth of the hologram. We therefore derive a novel, to
the best of our knowledge, optimally shaped PSF fully uti-
lizing the bandwidth formed by two bounding hyperbola. A
number of numerical experiments with the newly proposed
pincushion PSF were performed, reporting over three-fold
reductions of the signal error and significant improvements
to the visual quality of computer-generated holograms at
high viewing angles.
© 2022 Optica Publishing Group under the terms of the Optica Open
Access Publishing Agreement
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Computer-generated holography (CGH) represent a class of
algorithms for digitally generating holographic interference pat-
terns for many different applications, such as beam shaping [1],
optical trapping [2], neural photo-stimulation [3], particle imag-
ing [4], and electro-holographic display systems [5]. Because
CGH models diffraction, local features positioned in space
will emit outwardly propagating waves that can affect objects
everywhere, including all hologram pixels. CGH is therefore
calculation intensive, which is why developing computationally
efficient and physically accurate CGH algorithms is challenging
[6], making it an ongoing research problem.

CGH algorithms come in many kinds, encoding 3D objects
and scenes using point clouds [7], polygons [8], layers [9],
surface elements [10], or ray tracing [11]. Moreover, many
acceleration techniques have been proposed, such as leverag-
ing sparsity [12,13], optimizing caching [14], look-up tables
[15], and, more recently, deep learning [16]. We will focus on

the characteristics of the point-spread function (PSF) (or Fresnel
zone plates) used primarily in point-cloud algorithms.

When computing the PSF at short distances, the finite sam-
pling rate needs to be considered. As the PSF’s instantaneous
spatial frequency increases outwardly with its radius, and spatial
frequencies are proportional to the incidence angle, evaluating
the hologram samples illuminated at too steep angles will cause
aliasing, leading to artifacts. A valid evaluation of PSFs can
be obtained by determining the maximum PSF radius of influ-
ence that will not cause aliasing, leading to a disk-shaped PSF.
Aside from eliminating aliasing, this procedure has the impor-
tant added benefit that it significantly reduces the number of
pixels that need to be evaluated, leading to important gains in
calculation speed. This principle was initially proposed in Ref.
[12], computing the wave field in an intermediate plane close
to the point cloud, denoted a wavefront recording plane (WRP),
followed by a fast convolutional diffraction operation.

This disk-shaped PSF (or circular zone plate) has been con-
sistently used in many works since [7,17–19], sometimes even
using the inscribed square to that disk. However, these widely
used shapes are sub-optimal: at least 21.5% and 50% of the
available bandwidth is discarded, respectively. In this Letter, we
propose an optimal PSF shape, which is a hyperbolic square,
or pincushion. We obtain the shape and its bounds analytically,
derive a geometric model, show that the new shape reduces the
error by a factor of ≈ 3, and show how this improves the visual
quality of holograms rendered with a ray-tracing-based CGH
algorithm [11].

The PSF P of a point with coordinates (x0, y0, z0) on the
hologram plane z = 0, centered at the origin, is

P(x, y) =
exp (ikr(x, y))

r(x, y)
, (1)

where r(x, y) =
√︁
(x − x0)

2 + (y − y0)
2 + z2

0 is the radial distance,
i is the square root of minus one, k = 2π/λ is the wavenumber,
and λ is the wavelength. In this expression we assume that the
diffraction integral is shift-invariant, so henceforth we will set
the point coordinates to (0, 0, d) when analyzing the PSF for
notational simplicity without loss of generality.

Numerically evaluating P requires discretization, which will
typically be done using a regular pattern. We assume that the
samples are spaced by a sampling pitch p, which is also called the
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pixel pitch, generally matching the actual pixel pitch of a holo-
graphic display; we will use both terms interchangeably. The
classical disk-shaped PSF radius w can be found by determin-
ing the maximum diffraction angle θ, given by the relationship
sin(θ) = λ/2p. Using the geometrical relationships as described
in Refs. [10,12], we get

w = |d | tan(θ) = |d | tan
(︃
sin−1 λ

2p

)︃
=

|d |λ√︁
4p2 − λ2

= |d |ξ, (2)

using the identity tan(sin−1 u) = u/
√

1 − u2 and the constant ξ =
λ/

√︁
4p2 − λ2. Whenever p<λ/2, w is undefined and the PSF

is unbounded, so no size restriction is possible (or needed).
However, this derivation assumes circular symmetry and does
not take into account that the sampling density is not isotropic
due to the chosen sampling pattern.

For a hologram sampled regularly on an axis-aligned square
lattice with sampling pitch p, signals with frequencies surpassing
the Nyquist bound 1/2p along the main axes will cause aliasing.
Because the PSF P has a well-defined unique instantaneous fre-
quency ν in every point, we can establish the non-aliased region
by determining for what points this frequency does not surpass
the Nyquist bound. The instantaneous frequency components νx
and νy are given by

νx(x, y) =
1

2π
∂

∂x
∠ (P(x, y)) =

x
λ · r(x, y)

, (3)

νy(x, y) =
1

2π
∂

∂y
∠ (P(x, y)) =

y
λ · r(x, y)

, (4)

where ∠(·) is the complex argument (or angle, phase). We can
find all the valid points by solving the inequalities

|νx | ≤
1
2p

⇐⇒
|x|

r(x, y)
≤
λ

2p
⇐⇒ |x| ≤ ξ

√︁
y2 + d2, (5)

|νy | ≤
1
2p

⇐⇒
|y|

r(x, y)
≤
λ

2p
⇐⇒ |y| ≤ ξ

√
x2 + d2. (6)

By setting y = 0 in the last equality of Eq. (5), we obtain the
original relationship as found for the WRP PSF; cf. Eq. (2).

If we take the square of the last inequalities of Eqs. (5) and (6),
we get an expression for two bounding hyperbolas, as shown in
Fig. 1.

The origin of the pincushion shape can also be understood
geometrically. We can represent the propagating point emit-
ter wavefront by a sphere, where all points on its surface will
correspond to an instantaneous frequency proportional to the
incidence angle of the corresponding wave vector at that point
with the hologram plane. We can demarcate the valid frequencies
by making an orthogonal projection of the bandwidth, repre-
sented by a square in Fourier space, onto the sphere, as shown in
Fig. 2(a). The relative size of the square will be inversely propor-
tional to p. Then, we only consider points on the hologram plane
whose rays traversed the projected square from the center of the
sphere, also known as a gnomonic projection, since only those
rays (or wave vectors) will correspond to frequencies below the
Nyquist bound. The resulting shape will be a pincushion, as
shown in Fig. 2(b).

The disk-shaped PSF will only induce frequencies up to mag-
nitude 1/2p, which will map to a disk with radius 1/2p in Fourier
space; but since the hologram is sampled using a square lattice,
its actual bandwidth is a square with side length 1/2p. Therefore,

Fig. 1. Example of pincushion PSF: the optimal PSF is bounded
by two hyperbola, horizontally (in red) and vertically (green). This
area is always strictly larger than the conventionally used PSF shown
within the disk demarcated by the circle with radius w (shown in
blue).

Fig. 2. Geometric illustrations of PSF shape: (a) orthographic
projection of a square on a sphere, representing the hologram band-
width; (b) gnomonic projection of an outwardly propagating PSF
to a pincushion shape on top (in red), representing all pixels whose
incidence angle does not surpass the maximum diffraction angle θ.

only the frequencies within the inscribed circle of that square
are used, constituting only of π/4 ≈ 78.5% of the total available
bandwidth.

When efficiently implementing the PSF calculation in soft-
ware, it is useful to know the bounding box of the proposed
PSF, i.e., the circumscribed axis-aligned square to the pincush-
ion shape. We can find these bounds by finding out where
the two hyperbola intersect. Since one intersection will hap-
pen on the half-diagonal x = y>0, we can find the x-coordinate
by substituting it in the last equality of Eq. (5):

x = ξ
√︁

x2 + z2 ⇐⇒ x =
|d |λ√︁

4p2 − 2λ2
, (7)

which gives us a square bounding box of size (2|d |λ)/
√︁

4p2 − 2λ2,
provided that p>λ/

√
2; otherwise the hyperbola do not intersect,

so there will not be a bounding box.
This also shows that the precise pincushion shape depends on

the ratio p/λ. To illustrate, the PSF shape is plotted for various
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Fig. 3. (a)–(e) Example proposed pincushion PSFs sampled at different pixel pitches p, for λ = 660 nm, depth d = p2/λ2 · 0.313 mm,
resolution = 1024 × 1024. Only the real part is shown; unevaluated values beyond the aliasing limit lie outside of the pincushion shapes
(shown in light purple). Note how the PSF shape approaches a w × w square for larger p, becoming a circumscribed square to the PSF disk
with radius w.

ratios in Fig. 3. As the ratio gets smaller, the hyperbola recede,
making the pincushion shape more pronounced, back to a point
when they do not intersect anymore; the PSF is then unbounded,
because the maximally allowed frequency will never be reached
along some directions. Conversely, as the ratio gets larger, the
PSF increasingly approaches the shape of the circumscribed
square. This is consistent with the quadratic Fresnel approxi-
mation valid for small diffraction angles θ ≈ sin(θ), using the
approximated PSF

PF(x, y) = exp
(︃
πi
λz0

[︁
(x − x0)

2 + (y − y0)
2]︁ )︃ , (8)

where the expression has become separable in x and y. Note
that this PSF does not match the inscribed PSF as used, e.g., in
Ref. [17], which has less than half of the optimal surface area.
Because the circumscribed square is strictly contained within
the pincushion, this shape is a recommended alternative to the
disk-shaped PSF for relatively larger pixel pitches.

In the first series of experiments, we evaluated the increased
accuracy of the pincushion PSF. To do so, we calculated
4096 × 4096 pixel test holograms with λ = 660nm and variable
p of a single PSF, from a laterally centered point at a distance
p2/λ2 = 0.2mm from the hologram plane. This variable dis-
tance d was chosen to obtain roughly constant PSF sizes along
the x/y axes, as shown in Fig. 3. The corresponding respective
reference holograms were computed each time at the maximum
sampling rate of λ/2, i.e., the resolution of the reference holo-
gram increased by a factor of 2p/λ to match the resolution of
the respective test holograms. Then the reference holograms
were down-sampled to the matching 4096 × 4096 pixel resolu-
tion using a sinc filter (i.e., by cropping the 4096 × 4096 center
frequencies in the Fourier domain and normalizing).

The error between the reference and test holograms was
computed with the normalized mean square error (NMSE):

NMSE(R, T) =
∥R − T ∥2

∥R∥2 , (9)

where R is the reference signal, T the test signal, and ∥·∥2 the
Frobenius matrix norm. The results are reported in Table 1
and an example is displayed in Fig. 4. The error is the highest
for small pixel pitches, where the optimum pincushion shape
deviates the strongest from the disk. As p increases, the error
reduces to being almost three times more accurate. This means
that, making this change to the PSF shape, CGH methods using,
e.g., WRPs can be made about three times more accurate. In
Fig. 4, the pincushion shape naturally emerges by utilizing the
sinc filter. Note that the signals are still substantially different

at the PSF edges: while the proposed PSF has a sharp tran-
sition to zero, the reference PSF transition is much smoother,
with considerable high-frequency signals extending beyond the
PSF shape border. Higher accuracy could possibly be achieved
with a modified PSF expression with more complex boundary
conditions, but this will affect more pixels, probably at a higher
computational cost.

For the visual quality experiments, we use the “photorealistic
CGH” algorithm using ray tracing, detailed in Ref. [11]. This
algorithm will sample the 3D scene into a point cloud, whose
zone plates are spatially modulated using ray tracing, accounting
for occlusion and complex lighting effects. The original paper
uses a disk-shaped zone plate (i.e., PSF), which we compare with
an amended version using our proposed pincushion-shaped PSF
instead. We generate a hologram for each PSF shape to compare
the effect on the perceived views.

The virtual scene is based on the wooden Cornell box from
[11] with both a square area ceiling light and a front-facing
light source, several detailed textured models, showing specular

Table 1. Error Comparison between Newly Proposed
and Disk-shaped PSFs, for Different Pixel Pitch Sizesa

p/λ Disk (NMSE) Proposed (NMSE) Gain (ratio)

0.75 0.585 0.162 3.61
1.00 0.512 0.157 3.27
1.50 0.483 0.158 3.06
3.50 0.469 0.159 2.95
5.00 0.467 0.159 2.93

aThe error reduction is stronger for smaller pixel pitches.

Fig. 4. Comparison between ground-truth and proposed pincush-
ion PSF: (a) the reference signal was oversampled at p = λ/2,
followed by down-sampling to match the pixel pitch and resolution
of (b) the target PSF, with p = λ only non-zero at points satisfying
Eqs. (5) and (6).
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Fig. 5. Orthographic views extracted from two holograms gener-
ated with different PSFs, all generated with numerical simulations.
(a), (b) As expected, no difference is visible in the center views.
(c), (d) The corner views are markedly different: using (c) a disk
PSF will degrade the visual quality, resulting in a significant loss of
detail and ghosting, while (d) the proposed PSF gives a sharp view;
(e) and (f) are enlarged views taken from (c) and (d), respectively.

highlights, soft shadows, and global illumination. We generated
holograms using 2 million point samples with a wavelength
of λ = 660nm, a pixel pitch of p = 2µm and a resolution of
16384 × 16384 pixels. The algorithm ran on a machine with
an Intel Xeon E5-2687W v4 processor @ 3 GHz, 256 GB of
RAM, with a NVIDIA TITAN RTX running on Windows 10
OS. The program was implemented in C++17, with CUDA 11.3
and OptiX 7.3. The calculation took ∼ 6 h per hologram. Both
a central view and a top-left corner view were extracted from
each hologram using a 2048 × 2048 pixel aperture in the Fourier
domain. The views are shown side-by-side in Fig. 5.

The chosen shape of the zone plate or PSF has a significant
effect on signal accuracy and visual quality, reducing the error
by about three times and better encodes high-frequency signals.
This novel PSF shape can easily be integrated in many CGH
algorithms using PSFs, such as WRPs, analytical methods, look-
up tables, and ray tracing CGH. Moreover, this finding can have
uses beyond CGH for holographic displays utilizing numerical
diffraction models or circular zone plates, including applications
at non-optical wavelengths.

Funding. Research Foundation – Flanders (FWO) (12ZQ220N,
G024715N).

Disclosures. The authors declare no conflicts of interest.

Data availability. Data presented in this paper are available in Ref. [20].

REFERENCES
1. T. Dresel, M. Beyerlein, and J. Schwider, Appl. Opt. 35, 6865

(1996).
2. K. C. Neuman and S. M. Block, Rev. Sci. Instrum. 75, 2787 (2004).
3. A. R. Mardinly, I. A. Oldenburg, N. C. Pégard, S. Sridharan, E. H.

Lyall, K. Chesnov, S. G. Brohawn, L. Waller, and H. Adesnik, Nat.
Neurosci. 21, 881 (2018).

4. N. Chen, C. Wang, and W. Heidrich, IEEE Transactions on Comput.
Imaging 7, 288 (2021).

5. J.-H. Park, J. Inf. Displ. 18, 1 (2017).
6. D. Blinder, A. Ahar, S. Bettens, T. Birnbaum, A. Symeonidou, H. Otte-

vaere, C. Schretter, and P. Schelkens, Signal Process. Image 70, 114
(2019).

7. P. Tsang, T.-C. Poon, and Y. Wu, Photonics Res. 6, 837 (2018).
8. K. Matsushima and S. Nakahara, Appl. Opt. 48, H54 (2009).
9. N. Okada, T. Shimobaba, Y. Ichihashi, R. Oi, K. Yamamoto, M.

Oikawa, T. Kakue, N. Masuda, and T. Ito, Opt. Express 21, 9192
(2013).

10. A. Symeonidou, D. Blinder, and P. Schelkens, Opt. Express 26, 10282
(2018).

11. D. Blinder, M. Chlipala, T. Kozacki, and P. Schelkens, Opt. Lett. 46,
2188 (2021).

12. T. Shimobaba, N. Masuda, and T. Ito, Opt. Lett. 34, 3133 (2009).
13. H. G. Kim, H. Jeong, and Y. M. Ro, Opt. Express 24, 25317 (2016).
14. D. Blinder and P. Schelkens, Opt. Express 28, 16924 (2020).
15. S.-C. Kim and E.-S. Kim, Appl. Opt. 47, D55 (2008).
16. L. Shi, B. Li, C. Kim, P. Kellnhofer, and W. Matusik, Nature 591, 234

(2021).
17. T. Shimobaba, H. Nakayama, N. Masuda, and T. Ito, Opt. Express 18,

19504 (2010).
18. T. Nishitsuji, T. Shimobaba, T. Kakue, N. Masuda, and T. Ito, Opt.

Express 20, 27496 (2012).
19. T. Nishitsuji, T. Shimobaba, T. Kakue, and T. Ito, IEEE Trans. Ind. Inf.

13, 2447 (2017).
20. Vrije Universiteit Brussel Department of Electronics and Informatics-

ETRO, “CGH dataset: Interfere-V,” Interfere/European Research
Council (2019), http://erc-interfere.eu/downloads.html.

https://doi.org/10.1364/AO.35.006865
https://doi.org/10.1063/1.1785844
https://doi.org/10.1038/s41593-018-0139-8
https://doi.org/10.1038/s41593-018-0139-8
https://doi.org/10.1109/TCI.2021.3063870
https://doi.org/10.1109/TCI.2021.3063870
https://doi.org/10.1080/15980316.2016.1255672
https://doi.org/10.1016/j.image.2018.09.014
https://doi.org/10.1364/PRJ.6.000837
https://doi.org/10.1364/AO.48.000H54
https://doi.org/10.1364/OE.21.009192
https://doi.org/10.1364/OE.26.010282
https://doi.org/10.1364/OL.422159
https://doi.org/10.1364/OL.34.003133
https://doi.org/10.1364/OE.24.025317
https://doi.org/10.1364/OE.388881
https://doi.org/10.1364/AO.47.000D55
https://doi.org/10.1038/s41586-020-03152-0
https://doi.org/10.1364/OE.18.019504
https://doi.org/10.1364/OE.20.027496
https://doi.org/10.1364/OE.20.027496
https://doi.org/10.1109/TII.2017.2669200
http://erc-interfere.eu/downloads.html

