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Abstract. Automatic cardiac MRI segmentation, including left and right
ventricular endocardium and epicardium, has an essential role in clini-
cal diagnosis by providing crucial information about cardiac function.
Determining heart chamber properties, such as volume or ejection frac-
tion, directly relies on their accurate segmentation. In this work, we
propose a new automatic method for the segmentation of myocardium,
left, and right ventricles from MRI images. We introduce a new archi-
tecture that incorporates SERes blocks into 3D U-net architecture (3D
SERes-U-Net). The SERes blocks incorporate squeeze-and-excitation op-
erations into residual learning. The adaptive feature recalibration abil-
ity of squeeze-and-excitation operations boosts the network’s representa-
tional power while feature reuse utilizes effective learning of the features,
which improves segmentation performance. We evaluate the proposed
method on the testing dataset of the MICCAI Automated Cardiac Diag-
nosis Challenge (ACDC) dataset and obtain highly comparable results
to the state-of-the-art methods.
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1 Introduction

Cardiovascular diseases (CVDs) cause major health complications that often
lead to death [19]. An evaluation of cardiac function and morphology plays an
essential role for CVDs’ early diagnosis, risk evaluation, prognosis setting, and
therapy decisions. Magnetic resonance imaging (MRI) has a high resolution, con-
trast and great capacity for differentiating between types of tissues. This makes
MRI the gold standard of cardiac function analysis [2]. Delineations of the my-
ocardium (Myo), left ventricle (LV), and right ventricle (RV) are necessary for
quantitative assessment and calculation of clinical indicators such as volumetric
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measures at end-systole and at end-diastole, ejection fraction, thickening mea-
sures, as well as mass. Semi-automatic delineation is still commonly present in
clinical practice. That is often a laborious, and time-consuming process, prone
to intra- and inter-observer variability. Hence, accurate, reliable, and automated
segmentation methods are required to facilitate cardiovascular disease diagnosis.

Various image processing methods have been proposed to automatize seg-
mentation tasks in the medical field [21,4,10]. While some of these approaches
use more traditional techniques like level sets [17], registration and atlases [5, §],
fully-automatic methods mostly employ fully convolutional neural networks (FC-
NNs)[6]. Commonly used approaches include structures that consist of a series
of convolutional, pooling, and deconvolutional layers such as U-Net architecture
[22,7]. Generally, various deep learning methods have shown outstanding perfor-
mance on medical images for segmentation purposes [20, 3,14, 13,24, 15, 16, 23,
9]. Promising as they are, the appearance of overfitting on limited training data,
vanishing and exploding gradients, and network degradation are significant con-
cerns for FCNs. The residual learning, introduced in ResNets [11], overcomes the
above problems by enhancing information flow over through the network using
identity shortcut connections. Squeeze and excitation operations, introduced in
SeNets,[12] improve the network’s representational power by modeling interde-
pendencies of channel-wise features and by dynamically recalibrating them.

Motivated by previously described advancements, we propose a 3D U-Net-
based network that incorporates residual and squeeze and excitation blocks
(SERes blocks). We introduce the squeeze and excitation (SE) blocks at 3D
U-Nets’ encoder and decoder paths after each residual block. We provide ex-
perimental results of the proposed network for the task of LV, RV, and Myo
segmentation and show that our proposed approach obtains highly comparable
results to the state-of-the-art.

2 Method

2.1 Squeeze and excitation residual block

The SERes block takes the advantages of the squeeze and excitation operations
[12] for adaptive feature recalibration and residual learning for feature reuse [11].
The 3D SERes block can be expressed with the following expression:

X" = oy (X) 1)

where X refers to the input feature, X"® is the residual feature, and F,..4(X) is
residual mapping that needs to be learned. The squeeze function which groups
channel-wise statistics and global spatial information using global average pool-
ing can be expressed with:
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where p = [p1, p2, ..., Pn] and p,, is the n—th element of p € R", where, Lx HxW
is the spatial dimension of F"**, z7¢s € RL*HXW represents the feature map of
the n —th channel from the feature X"®*, and NV referst to the residual mapping
channels’. Scale values for the residual feature channels s € R can be expressed
with:

s = Feo(P,W) = 0(W20(W1p)) 3)

where F,, is the excitation function which generates them. It is parameterized
by two fully connected layers (FCNs) with parameters W, € R**N and W, €
RN X%7 the sigmoid function o, the ReLU function § and has reduction ration
determened with r. The multiplication between feature map and learned scale
value s,, across channel can be expressed with:

o TES

X = scale(X:LeS, Sn) EXE Xzes’ c RH*XWXL (4)

n

Finally, applying the squeeze and excitation operations obtains the calibrated
residual feature, which can be expressed with:

o TES oTES I TES o Tres

X :[Xl , X a-~'7Xn] (5)

The output feature Y after the ReLU function § is obtained as:

S

Y=6X"+X) (6)

where ()NCTGS + X)) refers to element-wise addition and a shortcut connection.
An illustration of the 3D ResNet block and 3D SERes block is shown in
Figure 1.

2.2 3D SERes-U-Net architecture

Our proposed network architecture is based on the standard 3D U-Net [7] which
follows encoder-decoder architecture. The encoder or contracting pathway en-
codes the input image and learns low-level features, while the decoder or ex-
panding pathway learns high-level features and gradually recovers original image
resolution.

Like 3D U-Net, our contracting pathway consist of three downsampling lay-
ers. We replace initially used pooling layers in the original 3D U-Net with con-
volutional layers with stride equal to 2. Instead of plain units, we adopt SERes
blocks consisting of squeeze and excitation operations followed by a residual
block, as described in 2.1, to accelerate convergence and training. Each residual
block inside the SERes block has two convolutional layers that are followed by
ReLU activation, and batch normalization (BN) as shown in Figure 1(b). Simi-
larly, three SERes blocks are used in the expanding pathway. This pathway has
three up-sampling layers, each of which doubles the size of the feature maps,
and are followed by a 2 x 2 x 2 convolutional layer. The network can acquire
the importance degree of each residual feature channel through the feature re-
calibration strategy. Based on the importance degree, the less useful channel
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Fig. 1. An illustration of used residual blocks. (a) The original 3D ResNet block and
(b) structure of the 3D SERes block

features are suppresed while useful features are enhanced. Therefore, by mod-
eling the interdependencies between channels, the 3D SERes block performs
dynamic recalibration of residual feature responses in a channel-wise manner. In
this way, the network can capture every residual feature channel’s importance
degree, which improves its representational power. SERes-U-Net architecture is
presented in Figure 2.

3 Implementation Details

3.1 Dataset and Evaluation Metrics

The Automated Cardiac Diagnosis Challenge (ACDC) dataset consists of real-
life clinical cases obtained from an everyday clinical setting at the University
Hospital of Dijon (France). The dataset includes cine-MRI images of patients suf-
fering from different pathologies, including myocardial infarction, hypertrophic
cardiomyopathy, dilated cardiomyopathy, abnormal right ventricle, and normal
cardiac anatomy. Dataset has been evenly divided based on the pathological
condition and includes 100 cases with corresponding ground truth for training,
and 50 cases for testing through an online evaluation platform. Clinical experts
manually annotated LV, RV, and Myo at systolic and diastolic phases, for which
the weight and height information was provided as well. Images are acquired
as a series of short-axis slices covering the LV from the base to the apex. The
spatial resolution goes from 1.37 to 1.68 mm? /pixel, slice thickness is between
5-8 mm, while an inter-slice gap is 5 or 10 mm.
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Fig. 2. Illustration of SERes-U-Net architecture for LV, RV, Myo segmentation.

3.2 Network Training

To overcome high intensity irregularities of MRI images, we normalize each vol-
ume based on the standard and mean deviation of their intensity values. The
volumes were center-cropped to a fixed-size and zero-padded to provide fine ROI
for the network input. For data augmentation, we apply random axis mirror flip
with a probability of 0.5, random scale, and intensity shift on input image chan-
nel. We use L2 norm regularization with a weight of 10~° and employ the spatial
dropout with a rate of 0.2 after the initial encoder convolution. We use Adam
optimizer with initial learning rate of ag = 10~* and gradually decrease it ac-
cording to following expression:

0.9
a—a0*<1—£> (7)

where T, is a total number of epochs and e is an epoch counter. We employ
a smoothed negative Dice score [18] loss function, defined with:

N
2 21:1 pigi +1
N N (8)
Zz’:l p; + Zi=1 gi +1
where p; is probability of predicted regions, g; is the ground truth classifica-
tion for every i voxel.

Dloss = -
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We use 80%-20% training and validation split, respectively. Final segmenta-
tion accuracy testing was done on an online ACDC Challenge submission page
on 50 patient subjects [1]. The total training time took approximately 34 hours
for 400 epochs using a two NVIDIA Titan V GPU, simultaneously.

4 Results

To evaluate the segmentation performance of the proposed method, we observe
distance and clinical indices metrics. Distance measures include calculation of
Dice score (DSC) and Hausdorff distance (HD) which provides information of
similarity between obtained segmentations for LV, RV, and Myo with their ref-
erence ground truth. The 3D Res-U-Net network achieves an average DSC for
LV, RV and Myo at end diastole of 93%, 86, 80 respectively. The addition of
squeeze and excitation operations, i.e., use of proposed SERes blocks, improves
DSC and HD for 2%, 4% and 3%, respectively. Similarly, the 3D Res-U-Net net-
work achieves an average DSC for LV, RV and Myo at end systole of 86%, 77, 81
respectively. The addition of squeeze and excitation operations, i.e., use of pro-
posed SERes blocks, improves DSC and HD for 0.2%, 6% and 4%, respectively.
Therefore, obtained results using proposed 3D SERes-U-Net shows significant
improvements in DSC in comparison to network without squeeze and excitation
operations (3D Res-U-Net). Detailed qualitative results are shown in Table 1 and
Table 2 while Figure 3 provides visual example of obtained segmentation predic-
tions. Clinical metrics include calculation of the most widely used indicators of
hearts’ function, including volume of the left ventricle at end-diastole (LVEDV),
volume of the left ventricle at end-systole (LVESV), left ventricles’ ejection frac-
tion (LVEF), volume of the right ventricle at end-diastole (RVEDV), volume
of the right ventricle at end-systole (RVESV), right ventricles’ ejection fraction
(RVEF), myocardium volume at end-systole (MyoLVES), and myocardium mass
at end-diastole (MyoMED).

Table 1. The segmentation accuracy results for LV, RV and Myo expressed in Dice
score (DSC) and Hausdorff distance (HD) for the proposed method at end diastole for
3D Res-U-Net and proposed 3D SERes-U-Net.

ED
Methods LV RV Myo
Dsc Hg Dsc Hy Ds. Hy
3D Res-U-Net 0.93 38.2 0.86 52.9 0.8 32.95
(0.0636) (4.8721) (0.0919) (12.4414) (0.0636) (5.6003)
3D SERes-U-Net 0.95 11.53 0.9 23.41 0.83 13.77

(0.0071) (0.4101) (0.0212) (12.3571) (0.0071) (1.9871)
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Fig. 3. An example of obtained results. (a) Top row: original MRI image at end diastolic
phase of cardiac cycle. Middle row: Obtained segmentation. Bottom row: an overlay of
original image and obtained segmentation prediction. (b) Top row: original MRI image
at end systolic phase of cardiac cycle. Middle row: Obtained segmentation. Bottom
row: an overlay of original image and obtained segmentation prediction.

Table 2. The segmentation accuracy results for LV, RV and Myo expressed in Dice
score (DSC) and Hausdorff distance (HD) for the proposed method at end systole for
3D Res-U-Net and proposed 3D SERes-U-Net.

ES
Methods LV RV Myo
Dsc Hy Dsc Hg Dsc Hgy
3D Res-U-Net 0.86 29.77 0.77 36.99 0.81 30.29

(0.0283) (1.7748) (0.0424) (5.3952) (0.0283) (1.1031)

3D SERes-U-Net  0.86  11.94 083 2149 085  15.00
(0.1273) (8.4994) (0.0283) (5.7558) (0.0071) (1.9799)

The Pearson correlation coefficient (R) and Bland-Altman and analysis of
the results obtained using proposed methed for LV, RV and Myo are shown in
Figures 5, 6, 4.
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Fig. 4. Comparison of the automatically obtained segmentations and the reference vol-
ume of the myocardium end systolic volume and myocardium mass. The image showns
correlation and Bland-Altman plots to compare automatically obtained segmentation
and the reference values.

5 Conclusion

In this work, a deep neural network architecture named 3D SERes-U-Net was in-
troduced for automatic segmentation of LV, RV, and Myo from MRI images. The
significance of the proposed approach is in the two main characteristics. First,
the approach is based on 3D deep neural networks, which are suitable for volu-
metric medical image processing. Second, the network introduces SERes blocks
which optimizes the deep network and extracts distinct features. By taking ad-
vantage of the 3DSERes block, the proposed method learns the features with
high discrimination capability, which is favorable to identify cardiac structures
from the complex environment.
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Fig. 5. Comparison of the automatically obtained segmentations and the reference
volumes of the MRI scans. The image showns correlation and Bland-Altman plots for
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10 M. Habijan et al.

Right Ventricle End Diastolic

=) .
E 60
>
2
&
z
°
£ a0
5 .
g
& +1.965D
=2 o i ot 2
2 2 = 4T
= I
3 Z .
o >
B ] .
F z
S & 5
5 2 .
]
& 3 . MEAN
& 2 e
< RS
$
£ -20 . =
E o .
] .
2
£ .
£ a5 .. -1.965D
T Ao’ st e i s i T
o . . . . . \ : s - . . . - . :
50 100 150 200 250 300 350 400 50 100 150 200 250 300 350 400
Reference RVEDV [mL] Mean of Reference RVEDV [mL] and Predicted RVEDV [mL]
Right Ventricle End Systolic
2 [ . +1.965
R=0.93 = /
350 7 20
H
3 .
300 g .
3
. £ o
- 7 z . .
2 250 7% 5
= 7 = MEAN
> 7 £ B
) 7 = .
= 7 7 —20 .
& 200 Ny ] . s
3 o 7 z P LI
s NS g ' &
5
£150 2 g g S . o
D/ £ _a0
o, ]
o /7 & .
v < .
100 /v ¢ -1.965D.
.. . H o o o o e o o e o e es
7t 5 e
2’ e
50 /“ 5
£
’ 5 .
o
50 100 150 200 250 300 350 400 50 100 150 200 250 300 350 400
Reference RVESV [mL] Mean of Reference RVESV [mL] and Predicted RVESV [mL]
Right Ventricle Ejection Fraction
100
.
Ay SRS P, AR, - V. -}
w L 28,51
t
80 °
1
L] .
g 20
& .
2 i
= 60 = .
& % . . - .
b & 10 . .
3 g s
£ £ 8 . 3 = MEAN.
3 5 7 0 p 6.19
& 40 & .« .
<
g ° 3
- .
% .
5 % ..
3 -10 ».
£
5
b o o o o o gy e BTSSR,
s “16.1
o
0 2 40 60 E! 100
Reference EF [%] Mean of Reference EF [%] and Predicted EF [%]

Fig. 6. Comparison of the automatically obtained segmentations and the reference
volumes of the MRI scans. The image showns correlation and Bland-Altman plots for
the RV volumes at and diastole and at the end systole as well as ejection fraction.



Seg. and Quant. Using SERes-Net 11

References

1.

2.

10.

11.

12.

2017, A.C.D.C.AM.C.: Post-2017-miccai-challenge testing phase,
https://acdc.creatis.insa-lyon.fr/challenges

Arnold, J.R., McCann, G.P.: Cardiovascular magnetic resonance: appli-
cations and practical considerations for the general -cardiologist. Heart
106(3), 174-181 (2020). https://doi.org/10.1136 /heartjnl-2019-314856,
https://heart.bmj.com/content/106/3/174

Baumgartner, C.F., Koch, L., Pollefeys, M., Konukoglu, E.: An exploration of
2d and 3d deep learning techniques for cardiac mr image segmentation. ArXiv
abs/1709.04496 (2017)

Bernard, O., Lalande, A., Zotti, C., Cervenansky, F., Yang, X., Heng, P.A., Cetin,
I., Lekadir, K., Camara, O., Gonzalez Ballester, M.A., Sanroma, G., Napel, S.,
Petersen, S., Tziritas, G., Grinias, E., Khened, M., Kollerathu, V.A., Krishna-
murthi, G., Rohé, M.M., Pennec, X., Sermesant, M., Isensee, F., Jager, P., Maier-
Hein, K.H., Full, P.M., Wolf, 1., Engelhardt, S., Baumgartner, C.F., Koch, L.M.,
Wolterink, J.M., Isgum, 1., Jang, Y., Hong, Y., Patravali, J., Jain, S., Humbert, O.,
Jodoin, P.M.: Deep learning techniques for automatic mri cardiac multi-structures
segmentation and diagnosis: Is the problem solved? IEEE Transactions on Medical
Imaging 37(11), 2514-2525 (2018). https://doi.org/10.1109/TMI.2018.2837502
Cetin, I., Sanroma, G., Petersen, S.E., Napel, S., Camara, O., Ballester, M.A.G.,
Lekadir, K.: A radiomics approach to computer-aided diagnosis with cardiac cine-
mri. In: Pop, M., Sermesant, M., Jodoin, P.M., Lalande, A., Zhuang, X., Yang,
G., Young, A., Bernard, O. (eds.) Statistical Atlases and Computational Models
of the Heart. ACDC and MMWHS Challenges. pp. 82-90. Springer International
Publishing, Cham (2018)

Cheng, F., Chen, C., Wang, Y., Shi, H., Cao, Y., Tu, D., Zhang, C., Xu, Y.:
Learning directional feature maps for cardiac mri segmentation. In: Medical Image
Computing and Computer Assisted Intervention — MICCAT 2020. pp. 108-117.
Springer International Publishing, Cham (2020)

Click, O., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3d u-
net: Learning dense volumetric segmentation from sparse annotation. CoRR
abs/1606.06650 (2016), http://arxiv.org/abs/1606.06650

Duan, J., Bello, G., Schlemper, J., Bai, W., Dawes, T.J.W., Biffi, C., de Marvao,
A., Doumoud, G., O Regan, D.P., Rueckert, D.: Automatic 3d bi-ventricular seg-
mentation of cardiac images by a shape-refined multi- task deep learning approach.
IEEE Transactions on Medical Imaging 38(9), 2151-2164 (2019)

Habijan, M., Leventié¢, H., Gali¢, 1., Babin, D.: Estimation of the left ventricle
volume using semantic segmentation. In: 2019 International Symposium ELMAR.
pp. 39-44 (2019). https://doi.org/10.1109/ELMAR.2019.8918851

Habijan, M., Babin, D., Gali¢, 1., Leventi¢, H., Romié, K., Velicki, L.,
Pizurica, A.: Overview of the whole heart and heart chamber segmentation
methods. Cardiovascular Engineering and Technology 11(6), 725-747 (2020).
https://doi.org/10.1007 /s13239-020-00494-8, https://doi.org/10.1007/313239-020-
00494-8

He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
pp. 770-778 (2016). https://doi.org/10.1109/CVPR.2016.90

Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition. pp. 7132-7141 (2018).
https://doi.org/10.1109/CVPR.2018.00745



12

13.

14.

15.

16.

17.

18.

19.
20.

21.

22.

23.

24.

M. Habijan et al.

Isensee, F., Jaeger, P., Full, P.M., Wolf, 1., Engelhardt, S., Maier-Hein,
K.H.: Automatic cardiac disease assessment on cine-mri via time-series seg-
mentation and domain specific features. CoRR abs/1707.00587 (2017),
http://arxiv.org/abs/1707.00587

Jang, Y., Hong, Y., Ha, S., Kim, S., Chang, H.J.: Automatic segmentation of lv and
rv in cardiac mri. In: Statistical Atlases and Computational Models of the Heart.
ACDC and MMWHS Challenges. pp. 161-169. Springer International Publishing,
Cham (2018)

Khened, M., Varghese, A., Krishnamurthi, G.: Densely connected fully convolu-
tional network for short-axis cardiac cine mr image segmentation and heart diag-
nosis using random forest. In: STACOM@MICCAT (2017)

Liu, T., Tian, Y., Zhao, S., Huang, X., Wang, Q.: Residual convolutional neural
network for cardiac image segmentation and heart disease diagnosis. IEEE Access
8, 82153-82161 (2020). https://doi.org/10.1109/ACCESS.2020.2991424

Liu, Y., Captur, G., Moon, J., Guo, S., Yang, X., Zhang, S., Li,
C.: Distance regularized two level sets for segmentation of left and
right ventricles from cine-mri. Magnetic Resonance Imaging 34 (12 2015).
https://doi.org/10.1016/j.mri.2015.12.027

Lu, J.T., Brooks, R., Hahn, S., Chen, J., Buch, V., Kotecha, G., Andriole, K.,
Ghoshhajra, B., Pinto, J., Vozila, P., Michalski, M., Tenenholtz, N.: DeepAAA:
Clinically Applicable and Generalizable Detection of Abdominal Aortic Aneurysm
Using Deep Learning, pp. 723-731 (10 2019)

Organization, W.H.: Mortality database (2018), [Online; accessed 19-January-2021]
Patravali, J., Jain, S., Chilamkurthy, S.: 2d-3d fully convolutional neural networks
for cardiac mr segmentation. ArXiv abs/1707.09813 (2017)

Peng, P., Lekadir, K., Gooya, A., Shao, L., Petersen, S., Frangi, A.: A review of
heart chamber segmentation for structural and functional analysis using cardiac
magnetic resonance imaging. Magnetic Resonance Materials in Physics, Biology
and Medicine 29 (01 2016). https://doi.org/10.1007/s10334-015-0521-4
Ronneberger, O., Fischer, P., Brox, T.. U-net: Convolutional networks
for biomedical image segmentation. CoRR abs/1505.04597 (2015),
http://arxiv.org/abs/1505.04597

Vigneault, D.M., Xie, W., Ho, C.Y., Bluemke, D.A., Noble, J.A.: Omega-net
(omega-net): Fully automatic, multi-view cardiac mr detection, orientation, and
segmentation with deep neural networks. Medical Image Analysis 48, 95-106
(2018). https://doi.org/https://doi.org/10.1016/j.media.2018.05.008

Zotti, C., Luo, Z., Humbert, O., Lalande, A., Jodoin, P.M.: Gridnet with auto-
matic shape prior registration for automatic mri cardiac segmentation. In: STA-
COM@MICCALI (2017)



