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Abstract—Ultra wideband positioning systems typically use
techniques such as two way ranging (TWR) or time difference
of arrival (TDoA) to calculate the position of mobile tags. TDoA
techniques require the transmission of only a single packet by the
mobile tag, thus providing better scalability, higher update rates
and less energy consumption than TWR techniques. However,
the TDoA performance degrades heavily when a subset of the
anchors are in non-line-of-sight (NLOS) conditions with the tag
or with each other. To remedy this, we propose and compare
different algorithms to select a subset of anchor pairs before
calculating the TDoA position in 3 different conditions: LOS
conditions between all devices, NLOS conditions between tag
and anchor nodes and NLOS conditions between anchors and
between tag and anchor nodes. We use an experimental setup
with 1 tag and 8 anchor nodes to compare the accuracy gains
obtained by using both simple algorithms and more complex
machine learning (ML) based algorithms applied on the channel
impulse responses of anchor pairs. By selecting the best anchor
combinations our algorithms can reduce the positioning error by
75% (assuming perfectly known ground truth), by 19% using
realistically low complexity algorithms and by 38% for ML based
algorithms.

Index Terms—ultra wideband (UWB), indoor localization,
Time Difference of Arrival (TDoA), Machine Learning (ML),
non-line-of-sight (NLOS)

I. INTRODUCTION

Indoor localization applications are gaining popularity in
numerous application domains: ultra wideband (UWB) is used
in applications for sports player tracking [1], [2], warehouse
inventory taking [3], [4] and industry 4.0 autonomous naviga-
tion [5], [6]. These advancements are all supported by the
recent rush to commercialization of the UWB technology.
Major smartphone manufacturers incorporated the technology
in their flagship phones (e.g. the iPhone 11, Galaxy Note
s20) bringing the UWB localization technology to everyone’s
pocket.

UWB utilizes a large transmission bandwidth to provide a
high resilience against multipath fading [7], a high temporal
resolution and a low transmission power. This accurate timing
resolution is exploited to accurately calculate positions using
a variety of localization techniques such as two way ranging
(TWR), active/passive time difference of arrival (TDoA) and
angle of arrival (AoA). (i) TWR techniques calculate the
distance between devices using the time of flight between two
nodes (requiring at least two packets per distance calculation),
making these techniques robust against clock drift errors and

avoiding the need for synchronization between anchors. (ii) In
contrast, active TDoA techniques calculate the position of the
mobile tag based on only a single UWB transmission from the
tag [8], [9]. In this case, the position is calculated using the
difference in arrival time between different anchor pairs. The
advantage of TDoA positioning is the better scalability and
low energy consumption of the mobile tag, as battery powered
mobile tags only need to transmit a single packet and the fixed
anchors handle all other overhead, e.g., clock synchronization
to compensate clock drift errors. This synchronization can
be done wired or wireless. The authors of [10] present a
TDoA positioning system with a mean error of 15-20 cm
in a simple environment when the tag was placed in the
middle of the room. In passive TDoA localization, only the
anchor nodes are transmitting UWB pulses. The mobile tags
listen to packets from the anchors and calculate their position
based on these arrival times, allowing an unlimited number
of tags and better privacy of their position. (iii) Finally, AoA
techniques predict the angle between 2 nodes based on the
arrival time of the packet at different antenna elements. AoA
is less resilient to reflected signals but knowing 2 angles is
sufficient to calculate the position. Due to limited hardware
availability this technique is currently less widespread. Hybrid
forms with combination of TWR, TDoA and AoA are also
possible.
The main innovations of this paper are as follows.

• The accuracy of TDoA UWB localization systems in
different scenarios (including line-of-sight (LOS) and
non-line-of-sight (NLOS) conditions) is evaluated.

• Six algorithms to select a subset of anchor pairs are
proposed, including simple heuristics and more complex
machine learning based algorithms.

• The paper experimentally evaluates the accuracy gains
as well as the complexity trade-offs for the different
algorithms in different scenarios.

The remainder of this paper is structured as follows. Related
work on UWB NLOS detection and anchor selection is
discussed in Section II. In Section III we discuss relevant
background information on the localization system, the mea-
surement methodology and the dataset collection. The different
anchor pair selection algorithms are introduced in Section IV,
followed by the machine learning model in Section V. In



Section VI, the influence of numbers of anchor pairs is in-
vestigated for the TDoA localization system. The results from
the anchor pair selection algorithms are presented in Section
VII. Finally, in Section VIII conclusions are formulated.

II. RELATED WORK

UWB line-of-sight detection. To improve the localization
accuracy, a first option is to perform LOS/NLOS detection in
TWR systems [11]–[13]. These techniques analyze the UWB
channel impulse response to detect if a signal was received
from a secondary reflection path or received directly. This
allows positioning systems to classify the incoming signals
and to discard unreliable NLOS ranges, thereby reducing the
positioning error. Filtering out the NLOS links improved the
average positioning mean error of UWB systems from 1.93
to 0.59 m for a setup with 3 anchor nodes in [11].
UWB error mitigation. A second approach is to estimate
the error and to use correction techniques to compensate this
error. In [14], the authors used machine learning techniques
on the channel impulse response (CIR) to predict and correct
the TWR error in an industrial environment. They achieved
an increase of accuracy with 266%. Similarly, the authors
of [15] investigated error correction capabilities in LOS, soft
NLOS and hard NLOS conditions and concluded that the
mitigation of the error in LOS conditions is rather limited.
However, a big improvement could be achieved in several
NLOS scenarios. In contrast to the above solutions that focus
on TWR, TDoA accuracy improvements are less studied.
In both TDoA variants, the position is always calculated
using a difference in arrival time between 2 anchors nodes,
therefore making the LOS/NLOS detection algorithms and
error correction approaches designed for TWR, which rely
on a single range, not suitable. To the best of our knowledge,
no machine learning based TDoA error correction has been
proposed before.
Non-UWB based anchor selection for TDOA localization.
In TDoA systems, rather than calculating the position on
all receivers, measurements from a subset of anchor nodes
can be discarded/corrected. Several approaches have been
proposed for non-UWB technologies. In [16], researchers
propose a new TDoA variant with compensation of clock
offset for wireless sensor networks. Each anchor takes a turn
to periodically broadcast synchronization messages to limit
the influence of clock offset and clock skew. The authors of
[17] investigated the number of required anchor stations for a
TDoA approach. The accuracy increases with the number of
anchor stations, but the increase in accuracy for adding new
anchors diminishes for higher numbers of anchors. As the
use of more anchors also has disadvantages, a trade-off exists
between accuracy and scalability. Selecting the best anchors
could improve the systems performance. Finally, selecting a
subset of the sensor devices for passive localization has been
proposed in [18]. In this work, it is presented that the error
for the :-nearest sensors is higher than the error for : smart
selected sensor nodes.

Fig. 1: Measurement setup with 4 anchor nodes and one
mobile tag. All six anchor pairs result in one hyperbola,
representing the difference in distance between the tag and
both anchors, intersecting at the position of the tag.

III. MEASUREMENT SETUP AND BACKGROUND

A. Time Difference of Arrival

This paper focuses on active TDoA systems. Hereby, the
anchors receive one packet, originating from the tag node.
The anchor nodes mark the exact time of reception of this
packet and an edge node calculates the time difference for
each anchor pair (in nanoseconds), based on this difference
and using the well-known propagation speed of the packets,
the difference in distance between the tag and both anchors
can be calculated. The two receiving timestamps therefore
result in one TDoA and a corresponding distance difference of
arrival (DDoA), expressing the difference in arrival in mm. All
possible tag positions with the same distance difference from 2
anchors are resembled by a hyperbola (in 2D) or hyperboloid
(in 3D). If both receiving times are exactly the same, the tag
will be at equal distance from both nodes and the possible
tag positions are represented by a straight line/plane. Figure 1
shows the 2D hyperbolas intersecting around the mobile tag’s
position. The number of possible DDoAs in a cell with =

anchors contributing to the position can be calculated with
following formula:

#��>�B =
=!

(= − 2)! ∗ 2!
(1)

Assuming perfect LOS conditions, only 2 or 3 anchors are
required to determine the position of the tag. As such, in this
case the main accuracy of the system depends on the anchors
geometric configuration and UWB timestamp quality. Com-
plex environments with mixed LOS/NLOS conditions however
also provide erroneous DDoAs, shifting the hyperbolas and
introducing errors in the position approximation. The main
goal of this paper is to detect and filter out the hyperbolas from
these unreliable links to improve the localization accuracy.

B. Wireless clock synchronization

To compensate for clock drift errors in the anchor nodes
[10], [19], the receiving times of all anchors will be translated
to the time reference of the anchor 0 node. This anchor 0 node
will periodically send an UWB pulse. Every other anchor that



Fig. 2: System architecture with mobile tag node, fixed anchor
nodes and one edge node. UWB pulses are transmitted from
the tag for localization and from the anchor 0 for synchroniza-
tion. The localization algorithm is at the edge node.

receives this pulse will calculate his relative clock skew d to
this anchor 0 reference time with following equation [19]:
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at time j.

C. Positioning system and hardware

The global system architecture is shown in Figure 2. The
system that was deployed utilizes wireless synchronization
between anchor 0 and the other anchor nodes. All DDoA
data is wirelessly transmitted to a server node using sub-GHz
radios, making the system represent the most generic use case
whereby no cabling is required at all during the installation
of the system [3]. The position of the tag is calculated at
the edge server, which can send these again to the mobile
node if required by its preferred communication technology.
In general, the solution presented in this paper can also be
applied to wired synchronization system, as well to situations
in which the positions are estimated by the mobile unit itself.

The measurements are performed with 9 Wi-Pos devices
[7] (Figure 3b). These devices support both UWB (DW1000)
and a wireless sub-GHz (CC1200) backbone for MAC
synchronization, scheduling and reporting of the timestamps.
The 8 anchors are mounted at fixed positions in a cuboid
setup in the IIoT-lab (Figure 3a) [20]. The open measurement
space is indicated on the map in Figure 3c. All data is
collected using one fixed UWB PHY setting: channel 5, a
bitrate of 850 kpbs, a 64 MHz PRF and 512 symbols of
preamble.

(a) The iiot lab.

(b) Used hardware platform

(c) Map of the lab and environment space. Accurate Mocap
ground truth is available within the red square.

Fig. 3: The measurements were performed in the open space
area of the iiot-lab

D. Data collection

Together with the collection of the UWB data, the ground
truth is acquired by a Qualisys motion capturing system with
mm-accuracy ground truth [21]. During the data collection,
3 different scenarios were evaluated (see Figure 4a). For the
first scenario: LOS, all anchors and the tag are in LOS condi-
tions with no obstructions. The second scenario, NLOS tag,
introduces NLOS between the tag and some of the anchors.
In the third scenario, NLOS tag + anchor, extra obstructions
between anchor 0 and the other anchors are added. In total
6987 different positions on 62 different locations were evalu-
ated. Outlier DDoAs with wrongly synchronized clocks were
filtered from the dataset before applying any algorithm. The
NLOS was introduced with moving carts, placed at random
locations on the path between the nodes. The use of random
locations ensures a more general conclusion for use in other
environments as the algorithm doesn’t know this. The behavior
(attenuating and blocking of the signal) of the moving carts is
similar to fixed walls in challenging environments.

IV. ANCHOR PAIR SELECTION ALGORITHMS

Anchor pair selection is performed on the data sets using
post-processing on the edge server. All algorithms are eval-
uated on the same dataset to limit the influence of physical
differences between 2 runs. To have a generalized approach,
no environment information is taken into account when select-
ing subsets. The different proposed approaches are discussed
below and an overview of all evaluated algorithms is given in
Figure 4b.

A. General / All anchors algorithm

This positioning algorithm calculates the position using a
linear least-squares algorithm by equally weighting the input



(a) Three different scenarios were evaluated.

(b) Six anchor selection algorithms are proposed.

Fig. 4: Multiple algorithms are proposed to improve localiza-
tion and compared in different scenarios.

from all anchors. No measurements are filtered out. Since this
is the default approach in most TDoA systems, this algorithm
will be used to benchmark against other algorithms.

B. Ground truth based

The first two algorithms use two sets of inputs: the available
DDoA measurements and the actual ground truth position of
the tag as obtained by the Motion capturing (Mocap) system.
Although this ground truth information is not available in real
environments, this set of algorithms provides insights on the
potential improvement limits that can be gained using anchor
pair selection.

1) Smallest error: With the ground truth position origi-
nating from the Mocap system and both anchor positions, it
is possible to calculate the theoretical timestamp difference.
This theoretical difference in timestamps is compared to the
measured difference in timestamp and the introduced error,
caused by physical influences on arrival times at both re-
ceivers, is ordered. The best : anchors pairs, with lowest error,
are selected to determine the position with a linear least square
algorithm.

2) Closest DDoA: All DDoAs are ordered depending on
their relative distance to the position measured with the Mocap
system. The best : anchors pairs are selected to determine the
position. Anchor combinations with bad geometric constella-
tion, e.g., anchors on top of each other, are therefore less likely
to be included in the subset in this algorithm.

C. Low complexity algorithms

The next set of algorithms do not rely on ground truth
information and require only the values of the DDoAs to be
available at the edge node for position estimation.

1) Spatial DDoA outlier removal: First, all DDoAs are
collected on the edge device and used to calculate a likely
position 1 using a linear least-square algorithm (similar to the
all anchors algorithm). Next, the algorithm assumes that there
exist a minority of outlier DDoAs that originate from NLOS
conditions and negatively impact the position estimation. To
detect and remove these, all DDoAss are sorted according
to their relative distance to position 1. Finally, the closest :
DDoAss are assumed to be from LOS conditions, and the
least-square algorithm is run a second time using only these
: DDoAss resulting in the final position estimate.

2) Temporal DDoA outlier removal: In harsh environments,
NLOS will typically have less stable DDoA distributions
over time. This time based selection algorithm will take into
account the recent history of the previous DDoAs from all
anchor pairs and select the : anchors pairs with the smallest
standard deviation. The time window for comparing with
previous samples is set to be very short to limit the influence
of fast moving tags on the DDoA standard deviation.

D. Machine Learning

Albeit more computationally complex to implement on
embedded devices, machine learning (ML) algorithms accu-
racy improvements have been applied to the channel impulse
responses obtained from UWB TWR systems to reduce the
positioning error. However, in TDoA environments a DDoA
is dependent on the channel impulse responses from 2 anchors,
hence requiring a different approach. We consider two machine
learning-based approaches, which are described more in details
in the next Section.

1) ML error mitigation: Machine learning is used to predict
DDoA errors and to correct the individual DDoAs based on
the CIR input from both anchors. These corrected DDoAs will
be used to calculate a position based on all anchor pairs.

2) ML anchor pair selection: In this algorithm, machine
learning is also used to predict the error. However, rather than
correcting the error, in case sufficient high-quality DDoAs are
present only the best : DDoAs are selected to calculate the
position.

An overview of the different algorithms is given in Table I.
The ground truth based algorithms are considered non-feasible
as they require a more accurate position source for their
decision making. They are included to illustrate the maximum
obtainable impact of anchor pair selection. Machine learning
approaches require CIR data which has to be transmitted to
the edge server, thus requiring a high-throughput backbone.
The computation itself will introduce a small extra latency,
but can be done on e.g., a resource-constrained edge node
[14]. Table I also discusses the suitability of the algorithms
for different use cases. Non-moving targets are handled well
by all algorithms. Some algorithms are designed to estimate
one position using prior information and are hence less suited
for fast moving objects. Finally, a complexity analysis of each
algorithm is added. By selecting a subset of : anchor pairs
out of the =! combinations with = anchors, the complexity of
the localization calculations are reduced drastically.



all anchors Smallest Closest spatial DDoA temporal DDoA ML error ML anchor
Error DDoA outlier removal outlier removal mitigation pair selection

Subset 3 3 3 3 3
Feasible 3 3 3 3* 3*

Moving targets** 3 3 3
Static targets** 3 3 3 3 3 3
Complexity low low low low low high high
Calculation time O(n!) O(k) O(k) O(n!+k) O(k) O(2*n!) O(n! + k)

TABLE I: High level parameters of the algorithms. The com-
plexity of the algorithms is shown as a function of the number
of available anchors = and subset size : . *if high throughput
links from anchor to edge server are present. **assumed in
challenging NLOS environment.

V. MACHINE LEARNING MODEL

To employ a data-driven machine learning model, we have
implemented a convolutional neural network (CNN) archi-
tecture, which has shown great success in previous works
related to TWR error correction [14]. The input of the neural
network consists of two CIRs for each anchor pair. We have
pre-processed each CIR in such a way to only focus on
relevant samples concerning direct path and reflected paths of
the UWB signals. These CIRs contain information about the
environment and potential NLOS signal characteristics, which
provides the ML model the possibility to discover errors made
by the on chip leading-edge algorithm. An overview of this
pre-processing step is provided in Figure 5. First, for each CIR
the first path is gathered and used to center the CIR. With
this CIR alignment we try to induce the first path index as a
feature, so the CNN knows where the leading-edge algorithm
positioned this first path, as this is not always logged in the
same position. Additionally, we keep only 80 samples, 20
before the first path and 60 after. This allows the CNN to learn
the noise floor before the first path and multipath components
after. The architecture of the CNN is shown in Figure 6. The
model consists of 4 convolutional layers with 32, 16, 8 and 4
filters respectively. The first three are 1D to convolute only
in the time dimension, while the last one convolutes over
the second dimension as well to extract features from the
combined anchor CIRs. Following the convolutional layers,
there are 4 dense fully connected (FC) layers and 1 output
layer, with one neuron. This last neuron outputs the predicted
error. Furthermore, we have experimentally determined that
adding batch-normalization after the first convolutional layers
and before the FC layers improve accuracy, as well as adding
dropout of 25% and l2 regularizes in the convolutional layers.
The model is trained in a supervised fashion by traditionally
updating the weights using back-propagation. More specifi-
cally, the weights are optimized using Adams gradient descent
algorithm which minimizes a mean absolute error loss function
with a batch size of 256.

VI. OPTIMAL NUMBER OF ANCHOR PAIRS

First, we study how the number of anchor pairs impacts
the overall accuracy. The number of anchor pairs and their
corresponding error is shown in Figure 7 for the smallest
error algorithm in all the different scenarios. Initially, for small
numbers of considered anchor pairs, the accuracy of the TDoA
system increases significantly by adding more.

Fig. 5: The model uses the channel impulse responses from 2
anchors to determine the error between for that anchor pair.

Fig. 6: The CNN model for DDoA classification

After including 8 anchor pairs, the accuracy is actually
slightly increasing in the LOS scenario and the NLOS tag
scenario up to the level of the general algorithm for the
temporal DDoA outlier removal algorithm. Reducing the
number of anchor pairs further has a minor influence on the
accuracy, with a higher gain in complexity and speed for
calculating the final position. For the NLOS tag + anchor
scenario, the error is minimal for smaller subsets and adding
extra (erroneous) anchor pairs actually increases the error.

VII. RESULTS

Now that we know the impact of reducing the number of
anchor pairs, this section analyses which algorithms are best
suited for the actual anchor pair selection. To compare the
algorithms we utilize three evaluation criteria: mean absolute
error (MAE), 75th percentile error and 95th percentile error.
In case many outliers are present, the MAE could be relatively
high. In these cases the 75th percentile is useful to consider as
well as mostly the highest errors influence the performance of
the system. The cumulative distribution function (CDF) of the
different algorithms can be found in Figure 8a and detailed
outcomes are shown in Table II.

A. Scenario 1: LOS

For this first scenario, we measured 6 locations in the open
space environment (Figure 3c). In total, 961 transmitted UWB
pulses originating from the tag are collected for this scenario.

1) General / All anchors algorithm: The general algorithm
was able to determine the tag’s position with a 2-dimensional
mean error of 97 mm with a 75th and 95th percentile of 119
and 153 mm respectively.
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(a) Scenario 1: LOS
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(b) Scenario 2: NLOS tag
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Fig. 7: The mean error initially decreases when adding anchor
pairs for both demonstrated algorithms, but the accuracy
gains for adding additional anchor pairs shows diminishing
returns. Selecting a good subset might be recommended in all
scenarios.

2) Ground truth based algorithms: The smallest error
algorithm has a mean error of 24 mm with and 75 and
95 th percentiles at 29 mm and 64 mm. This algorithm is
on average 75% better than the typically used all anchor
algorithm, demonstrating the importance of correct anchor
pair selection even in LOS conditions. The closest DDoA
algorithm with positions based on 8 DDoAs has a MAE, 75
and 95th percentile of 89, 119 and 167 mm respectively. This
algorithm does improve the mean positioning error but with the
negative side that it increases the higher percentile compared
to the general algorithm.

3) Low complexity algorithms: The spatial DDoA outlier
removal algorithmic approach, increases mean (121 mm), 75th
(154 mm) and 95th (199 mm) percentile. The second low
complexity algorithm is the temporal DDoA outlier removal
algorithm. The mean error increases significantly to 167 mm
(+70 mm). The mean absolute error is close to the 166 mm of
the 75th percentile, showing that some far outliers influence
the results. As such, both algorithms negatively influence the
accuracy in LOS conditions.

4) Machine Learning: In the LOS scenario, the accuracy
improves after applying the ML error mitigation. The mean
positioning error is now only 61 mm, improving the accuracy
by 38%. 75% of the points are within the 83 mm error range
and 95% of the errors are smaller than 115 mm. Selecting
the 8 DDoAs with the ML anchor pair selection algorithm
has relatively little impact on the mean accuracy in LOS
conditions, resulting in a mean absolute error of 97 mm but it
has higher percentiles of 126 and 192 mm.

B. Scenario 2: NLOS tag

In this second scenario, we included 33 locations in the
lab to have a more general dataset for taking conclusions
as the environment (location of the obstructions) also has an
influence. The CDF overview is given in Figure 8b.

1) General algorithm: For the general positioning method,
this scenario is already more difficult. By adding NLOS in
the scenario, the mean absolute error has increased by 91
mm compared to the LOS scenario to 188 mm. The 75 and
95th percentiles are significantly higher at 262 mm and 424
mm, respectively. The algorithm is suffering from less accurate
DDoA measurements.

2) Ground truth based algorithms: In this more challenging
scenario, the smallest error algorithm has a mean error of
57 mm and low percentiles (66 and 187 mm). As such,
the improvements of this algorithm remain stable around
70%. The closest DDoA algorithm now also improves the
performance. The mean error is now 133 mm, the 75th-
percentile 182 mm and the 95th is 289 mm, an improvement
of around 31%.

3) Low complexity algorithms: The low complexity algo-
rithms don’t positively impact the accuracy in this scenario
when compared to the general all anchor node algorithm.
For the spatial DDoA outlier removal algorithm the mean
is slightly higher at 203 mm. The algorithm locates 75% of
the points within 270 mm of the true position and 95% have
errors less then 422 mm, a small improvement compared to the
general algorithm. For the temporal DDoA outlier removal
algorithm, the mean value is 239 mm with high percentiles as
well (255 and 436 mm).

4) Machine Learning: For the machine learning approach,
the ML error mitigation again has a positive impact, low-
ering the mean absolute error to 134 mm, a decrease with
27% compared to localization without correction. 75% of the
positions are within 176 mm and 95% not farther than 330 mm
of the real position. In contrast, the performance of the (ML
anchor pair selection) is much worse, actually increasing the
mean error to 327 mm.

C. Scenario 3: NLOS tag + anchor

The third scenario is the most difficult one since there are
NLOS errors introduced in the calculation of the clock drift
of different anchors and by obstruction of the path between
tag and anchor. The cumulative distribution functions can be
found in Figure 8c. Due to its high complexity, the majority
of the evaluated algorithms significantly improve the accuracy
in this scenario compared to the all anchor node algorithm.

1) General algorithm: Using the standard all anchor node
approach we obtain a very high mean error of 457 mm.
Information from the 75th percentile (524 mm) and 95th
percentile (1230 mm) shows that this high mean error could
be explained by outlier positions with high errors. The other
algorithms will mostly work on filtering the best DDoAs and
improving of this position.
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Fig. 8: Cumulative distribution functions showing the positioning error in the three scenarios. Several algorithms improve the
accuracy in all scenarios (e.g. smallest error, closest ddoa), whereas other algorithms (such as the low complexity algorithms)
positively impact the error in one or two scenarios while negatively impacting the error in other scenarios.

General Smallest Closest spatial DDoA temporal DDoA ML error ML anchor
Error DDoA outlier removal outlier removal mitigation pair selection

number DDoAs 28 8 8 8 8 28 8

LOS
mean 97 mm -75% -8% 25% 73% -38% 0%
75th 119 mm -76% 0% 30% 39% -31% 6%
95th 153 mm -58% 9% 30% 56% -25% 25%

NLOS tag
mean 188 mm -70% -30% 8% 27% -29% 74%
75th 262 mm -75% -31% 3% -3% -33% -8%
95th 424 mm -56% -32% 0% 3% -22% 110%

NLOS tag + anchor
mean 457 mm -62% -51% -9% -19% 2% 16%
75th 524 mm -63% -52% -0% -13% 3% 28%
95th 1230 mm -44% -48% -9% -16% -1% 10%

TABLE II: The mean and percentile error improvements of the anchor pair selection algorithms for the different scenarios.
Among the feasible implementations, the machine learning based approaches outperform the low complexity algorithms in the
LOS and NLOS tag scenarios, meanwhile the low complexity algorithms perform better for the NLOS tag + anchor scenario.

2) Ground truth based algorithms: Similar to the results for
the other two scenarios, we also find an improvement of the
position with the smallest error algorithm. The mean error is
reduced to 174 mm and the percentiles to 196 mm (75th) and
636 mm (95th). For this scenario, the closest DDoA algorithm
also succeeds in lowering the mean error (226 mm) to a
level below both percentiles (250 and 689 mm). The gains for
selecting a subset of 8 DDoAs for the least squares algorithm
for position approximation are again significant.

3) Low complexity algorithms: The low complexity algo-
rithms significantly improve the robustness of the system. For
the spatial DDoA outlier removal algorithm, the mean error
is now 419 mm (-9% compared to all anchors). The gains are
lower for the 75th percentile (-0%, 523 mm). For the 95th
percentile 9% reduction in error could be observed. This 95th
percentile error is at 1117 mm. Also, the temporal DDoA
outlier removal algorithm result in improvement with a MAE
of 373 mm (-19%) and 458 and 1039 mm for both percentiles.

4) Machine Learning: The machine learning algorithms
are trained and applied on the CIRs from the tag’s pulse. By
adding NLOS between the anchors in the same, we expect
difficulties for the machine learning to predict the error in
these cases. By just mitigating the error in the ML error
mitigation algorithm, the MAE increases with 2 percent to

466 mm compared to the general algorithm. The percentiles
are similar to the general scenario at 540 and 1219 mm.
Although these are significant improvements in the other
scenarios, this algorithm isn’t improving positioning. By
selecting a subset of the ranges in the ML anchor pair
selection, the mean error increases to 531 mm, showing
that this approach is also not beneficial in very complex
environments. The percentiles are following the same trend
as the other scenarios (670 mm (75th) and 1356 mm (95th)).

By considering 3 different scenarios for the algorithms,
some clear conclusions are rising. For all three scenarios, the
smallest error algorithm outperforms the other algorithms and
in particular the general algorithm. Smartly selecting a subset
of anchor pairs is therefore recommended for positioning of
TDoA tags. Although, this scenario is ground truth based and
not feasible, the other algorithms improve accuracy in specific
scenarios. The ML error mitigation model improves TDoA
localization in all scenarios where clock synchronization
can be guaranteed, while the low complexity algorithms
are covering this scenario completely and improving the
robustness there. Depending on the use case, the UWB system
designer could make a thorough decision on optimization of
the TDoA localization algorithm.



VIII. CONCLUSIONS

The mean absolute positioning error in time difference of
arrival UWB localization systems increases when a significant
number of NLOS links are present between mobile tag
and anchor nodes. This error can be lowered by selecting
the best subset of anchor pairs. Although anchor selection
has shown to reduce the localization error in TWR UWB
systems, solutions for error reduction in TDoA systems were
still lacking. For this anchor selection 6 new algorithms were
evaluated in 3 different scenarios.

Two ground truth based algorithms for selecting : anchor
pairs were investigated as a benchmark opportunity into the
maximum obtainable error correction gains when using anchor
pair selection. By optimally selecting the 8 best anchor pairs
to use, we found that the MAE can be reduced up to -75% in
LOS conditions and -70% in NLOS conditions, demonstrating
the importance of good anchor pair selection algorithms.

Two simple heuristic algorithms have been proposed that
improved the accuracy in complex scenarios where both
anchors and tag suffer from NLOS links. Especially when an-
chors have wireless synchronization problems due to blocked
channels between the anchor nodes, the algorithms succeed
in lowering the mean absolute error with 9% and 19% for
these 2 algorithms respectively. However, this comes at a
cost of decreased accuracy in LOS conditions. As such, these
algorithms should be used when wireless synchronization
proves difficult (e.g. due to obstacles) or when this situation
can easily be detected.

A final approach relies on applying ML on the channel
impulse responses of both anchors to try to predict the error
of the DDoA. This machine learning based error correction
improves the accuracy in two of the three considered scenarios:
a mean error reduction of 38% in the LOS scenario, 29%
in the NLOS tag scenario. In the third scenario, the biggest
errors were introduced during the clock synchronization due
to NLOS effects. As such, this algorithm is beneficial to
apply in well synchronized conditions, but comes at the cost
of larger data throughput and complexity to collect CIR values.
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