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A B S T R A C T   

Natural fiber composites and fiberboards are essential components of a sustainable economy, making use of bio- 
sourced, and also recycled materials. These composites’ structure is often complex, and their mechanical 
behavior is not yet fully understood. A major barrier in comprehending them is the ability to identify the fibers in 
situ, i.e. embedded in complex fibrous networks such as medium-density fiberboards (MDF). To that end, the first 
step is to separate individual wood fibers from fiber bundles. Modern material studies on real world, dense 
fibrous materials using X-ray microtomography and 3D image analysis were always limited in accuracy. How-
ever, recent machine learning techniques and particularly deep learning may help to overcome this challenge. In 
this work, we compare existing segmentation algorithms with the performance of convolutional neural networks 
(CNNs). We explain the need for network complexity, and demonstrate that our best algorithm, based on the 
UNet3D architecture, reaches unprecedented accuracy. Moreover, it achieves the first segmentation sufficiently 
qualitative to extract morphometric measurements of the fiber bundles and accurately estimate their density. 
Among other applications, the proposed method thus enables the design of more realistic material models of 
MDF, and is a milestone towards the understanding and improvement of this wood-based product.   

1. Introduction 

The past decades, fiber composites have alleviated several material 
limitations that bulk materials encounter, and have been used in many 
innovative applications. With environmental considerations in mind, 
natural fiber composites have further advantages: using the fibers from 
flax, hemp, jute, bamboo, wood, etc., not only ensures renewability and 
biodegradability, but also contributes to the consumption (or storage) of 
CO2 from the atmosphere [1]. In this regard, wood fibers are particularly 
interesting. Wood accounts for up to 80% of the biomass on Earth, and 
roughly half of the wood mass is carbon. Naturally, wood is already 
thought of as a paramount element to fight climate change [2], but as a 
bulk material wood is limited: the resource used to make sawn timber 
requires a form of homogeneity that is not necessarily found in nature. 
By breaking wood into smaller pieces, this limitation can be overcome 
and novel materials can be created, allowing to exploit a larger pro-
portion of the available, naturally-grown biomass. 

Yet, such re-engineering of wood has its limitations. Some wood- 

based panels (WBPs) exhibit exacerbated weaknesses compared to 
solid wood, and these necessitate modern material investigations. 
Making use of the analysis possibilities offered by X-ray micro-
tomography (μCT), several studies already pursued cutting-edge 3D 
material characterizations at the micro-scale [3]. However, these studies 
are limited by the material density, because the advanced image pro-
cessing methods that can be applied at low densities [4,5] fail at material 
densities above ~500 kg m− 3 [6]. And while no current method works at 
high densities (above ~1000 kg m− 3), even the simpler methods do not 
work well at medium-high density [7,8]. 

Medium-density fiberboard (MDF), a wood fiber composite with a 
density of approx. 750 kg ⋅m− 3, embodies these different considerations. 
It is made of mechanically defibrated wood fibers, it is dense, and it 
exhibits a relatively high weakness to water absorption. This creates a 
real need for the investigation and modeling of MDF. Furthermore, it is 
also the second most produced WBP in the world, with applications 
everywhere. To produce it, wood chips are first transformed into indi-
vidual wood fibers by disk refining. The process is fast: around 30 tons of 
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fibers are produced per hour with a thermo-mechanical defibrillator (or 
refiner). The process is similar to the pulp production in the pulp & 
paper sector. However, not all fibers are perfectly defibrated. Specif-
ically, fiber bundles can remain, which preserve some structure and 
properties of solid wood. Eventually embedded in the material, their 
presence is expected to affect the panel’s properties differently than 
single fibers. Their identification is thus pertinent and critical to the 
study of MDF. 

While advanced traditional image processing methods such as the 
tracking of a single fiber’s cross-section [3] are limited by density in 
practice, deep learning has alleviated several technical barriers in 
different areas of image processing [9]. Applied to the study of MDF, 
deep learning could settle new standards in the segmentation accuracy 
of fiber bundles. These features are indeed recognizable by the trained 
human eye. And although there could be some ambiguity in recognizing 
them, supervised learning is therefore promising. 

Moreover, precisely segmenting the fiber bundles embedded in MDF 
is capital for future studies. Particularly for modeling, it could greatly 
impact the accuracy and thus relevance of mechanical material models 
of MDF [10]. In dynamic experiments, the presence of fiber bundles 
could guide the analysis of strain fields to understand how they affect 
the properties of MDF. In analyses about the additives of MDF (e.g. 
glue), it could permit to assert the performance of the adhesive by 
comparing the glue adherence and penetration in bundles and single 
fibers. Finally, it could even allow single fiber analyses at high densities. 
Since a fiber bundle contains fibers with similar orientations, this in-
formation could be used to isolate each wood fiber in a fiber bundle - 
something that cannot be achieved outside of a bundle at higher mate-
rial densities - and thus retrieve individual fiber measurements. 
Although these measurements would not necessarily be sufficient to 
fully characterize the individual fibers outside of the fiber bundles, they 
could nevertheless bring valuable and so far unique information about 
the wood fibers. 

In this work, we exploit the potential of deep learning for fiber 
bundle segmentation. 2D, pseudo-3D and full 3D network architectures 
were considered, and each method was qualitatively and quantitatively 
evaluated against one another. Eventually, the segmentation results 
achieved enabled a first advanced characterization of fiber bundles in a 
commercial MDF panel. 

2. Materials and methods 

2.1. Dataset 

A 9 mm thick, commercially-available MDF panel (seen on Fig. 1), 
with ~775 kg/m3 density was provided by the manufacturer. We 
extracted a sample of size 2 × 2 × 9 mm3 with a table saw. This was the 

smallest sample we could extract without visible damage to the other-
wise brittle fibrous structure. MDF is a wood fiber composite, with fibers 
sourced from different local wood species. Here, we expect a majority 
(~80%) of fibers to be from Norway spruce (Picea abies). MDF has a 
symmetry with respect to its middle in the thickness direction [6]. 
Therefore only the bottom half of the sample was scanned with μCT. 

The sample was scanned with the in-house built CT system Nano-
wood [11] of the Ghent University Centre for X-ray Tomography (UGCT, 
Ghent, Belgium). 2001 projections were acquired at a tube voltage of 50 
kV, power of 5 W, 1 s exposure, and no filter. The source-detector dis-
tance was about 1000 mm, and the source-object distance was 20 mm, 
resulting in a magnification of ~50. 16-bit volume reconstructions were 
obtained with Octopus Reconstruction [12]. The Feldkamp algorithm, 
based on the filtered-back projection (FBP), was used to reconstruct the 
images. In these images, the approximate voxel pitch was 2.5 μm. With a 
detector panel ~1800 pixels wide, the system’s horizontal field of view 
was about 4.5 mm wide. 

2.1.1. Labeled set 
From the reconstructed volume measuring 1088 × 1686 × 772 

voxels3, two distinct regions of interest (ROI1 and ROI2, of dimensions 
401 × 400 × 267 voxels3 each, centered around a couple of noticeable 
fiber bundles) were extracted. All fiber bundles inside these ROIs were 
manually and individually identified as shown in Fig. 2, to produce so- 
called groundtruths (GND1 and GND2) that could be compared with a 
software prediction of the fiber bundles. As shown in Fig. 2, only (a part 
of) ROI1 would then be used to supervise the training of CNNs. ROI2 was 
only used after the networks have been trained, and allows unbiased 
estimations of the segmentation accuracy. 

Visually, fiber bundles are recognizable from their cross-section. In 
MDF, fiber orientation is mainly horizontal, with random in-plane ori-
entations. This reduced the problem to identifying fiber bundle cross- 
sections in the two orthogonal vertical cross-sections. In Dragonfly 
2020.1 (Object Research Systems, Montreal, Canada - free of charge for 
non-commercial use), we identified the contours of a fiber bundle on 
several 2D slices throughout the depth dimension (1/50 slices). Then, 
we interpolated these sparse 2D cross-sections along the depth direction, 
to retrieve the full 3D segmentation of one single fiber bundle. The result 
of the interpolation was manually refined/cleaned when necessary. The 
operation was repeated for all bundles that could be identified in the 
ROIs. Finally, we combined these manually annotated bundles into a 
single image with a logical “OR”, to retrieve a given groundtruth. A view 
of the GND1 is shown in Fig. 3. 

2.2. Structure tensor approach 

A method to segment fiber bundles had been proposed before, based 
on morphological properties derived from the structure tensor T [8]. The 
eigenvalues and corresponding eigenvectors of the structure tensor 
provide information about the local gradient directions. Specifically, we 
may derive in every voxel a strength parameter ξ:= log(λmax/λmin), from 
the extremal eigenvalues λmax and λmin of T [10]. Previous studies have 
shown that ξ is high at points of strong directionality [13]. We might 
therefore use it to automatically detect the presence of fiber bundles, 
because fibers in a fiber bundle share the same orientation. Conse-
quently in sufficiently large neighborhoods, the average strength 
parameter should highlight the presence of fiber bundles. Thus, after 
locally smoothing ξ in cubes of side 60 μm (24 voxels in our dataset - or 
about 3–4 contiguous full wood fibers assuming a diameter of 15–20 μm 
[14]), we manually adapted a threshold to obtain a plausible binary 
segmentation of fiber bundles in the entire volume. This approach was 
implemented in Python, primarily using the scikit-image package [15]. 

2.3. Deep learning 

Deep learning segmentation was carried out in Dragonfly 2020.1. A 

Fig. 1. Left: MDF panel samples of different thicknesses. These are standard 
line-production panels cut for promotional purposes. Out of such panels, mil-
limetric samples were extracted for X-ray tomography. Right: 2 mm-wide, 9 mm 
thick MDF sample mounted on a carbon stick for X-ray CT scanning. 
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few corresponding slices from ROI1 and GND1 were used as a learning 
set to train a convolutional neural network (CNN). Specifically, every 
50th slice in the depth direction of ROI1 was extracted. Hence, the 
resulting learning set had dimensions 9x400x267 voxels, corresponding 
to 2% of the ROI in volume. This unique learning set was used to train all 
network architectures. The three deep learning approaches are sche-
matized in Fig. 4, and described below. 

2.3.1. UNet2D 
At first, a standard UNet architecture for image segmentation was 

considered (later referred to as UNet2D). It was parametrized with 32 
layers, and totaled 2 ⋅ 107 nodes. Input to this network, were 2D patches 
of 400 × 400 pixels, organized in batches of a single patch each epoch. 
These extremal settings followed two considerations. First, the fiber 

bundles are rather large features that should be markedly different from 
their surroundings. Second, it is advised by the developers of the UNet 
architecture to use maximal (as GPU memory permits it) patch sizes, at 
the cost of minimizing the batch size [16]. The network was trained in 
250 epochs, but had stabilized in a little more than 100. 

2.3.2. Bilateral UNet2D 
Because of the variability of the 2D network’s predictions throughout 

the volume’s depth (see section 4.3.1), a second strategy was tried. The 
network -that was already trained-would be applied twice, along two 
orthogonal axes in the horizontal plane. This strategy is later referred to 
as Bilateral UNet2D. It is simply an extension of the UNet2D strategy, by 
complementing its result with a segmentation of orthogonal slices from 
the same 3D dataset. The two segmentations were merged with a logical 

Fig. 2. Diagrams of the experiment. Top: creation of two groundtruths from the full volume (vol.). Bottom: supervised training of a convolutional neural network 
(CNN) from a subset of GND1, and its possible predictions. 

Fig. 3. Raw MDF structure (left) and manually annotated fiber bundles (right) in ROI1. One grid square is 100 μm2. The vertical direction corresponds to the panel 
thickness direction: fibers bundles and fibers thus lay in the horizontal plane. 
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“OR”. 

2.3.3. UNet3D 
Finally, a more complex UNet3D architecture [17] was tested. The 

first layer counted 32 filters, and the network was organized in 5 levels, 
which resulted in a network weighing 3 ⋅ 108 nodes. Patches were 128 ×
128 × 5 voxels3, where the smallest dimension was taken along the 
ROI’s depth direction. The batch size was once again 1. This network 
was trained in 200 epochs (completed in half a day on a NVIDIA Quadro 
P5000), but had stabilized in just 75. 

2.4. Post processing 

2.4.1. Binary cleaning 
First, binary “holes” in the fiber bundle phase smaller than 107 voxels 

were removed. Second, it was smoothed by binary opening with a 
spheroidical structuring element. We implemented this structuring 
element after identifying that given the fiber bundles aspect, we were 
expecting to retrieve “flat” shapes. This suggested the use of a prolate 
structuring element. A grid search on the vertical and horizontal radii 
nevertheless resulted in choosing these as 11 and 13 voxels, respectively. 
Finally, the fiber bundle phase was cleaned of objects smaller than 106 

voxels, as a fiber bundle should always be large. 

2.4.2. Measuring performance 
Having a 3D groundtruth, we could measure the performance of a 

given method with Matthew’s correlation coefficient (MCC) [18]. The 
MCC, which can be used even if the cardinality of each segmented class 
varies, ranges from − 1 (inverse prediction) to 1 (perfect prediction). 
0 indicates an average random prediction. 

2.4.3. Labeling 
Given fiber bundles are disconnected in the labeled set, we could 

directly proceed to labeling. However, in case of contiguous bundles in 
the CNN prediction, we chose to perform a watershed transform. This 
made the separation of different fiber bundles more robust. An 
Euclidean distance map was computed, and mean-thresholded, to pro-
duce the watershed transform markers. 

2.4.4. Shape descriptive metrics 
After labeling, it becomes possible to count and measure the fiber 

bundles. In that endeavor, we defined the (normalized) surface to vol-
ume ratio as SA:V := S

V⋅req, where req is a bundle’s equivalent radius, S its 
surface (adapted from Ref. [19]), and V its volume. The surface to vol-
ume ratio, which would be 3 for a sphere and 6 for a cube, illustrates a 
general shape of the identified fiber bundles. Additionally, the aspect 
ratio was defined as the ratio of a bundle’s longest semi-axis length over 
its smallest semi-axis length, both calculated from the extremal eigen-
values of the inertia tensor, with the principal axis theorem. This second 
ratio suggests a form factor, which could intuitively be interpreted as the 
elongation of the bundle. 

2.4.5. Horizontal orientation 
Finally, labeled 3D objects could be analyzed to retrieve their hori-

zontal orientation. For each object, its 3D inertia tensor was computed, 
and reduced to its non-vertical components. The resulting 2 × 2 tensor 
was diagonalized, and the eigenvector corresponding to its largest 
eigenvalue indicated its horizontal orientation. This value, in the range ] 
0, 180] degrees, was then mapped onto the binary fiber bundle seg-
mentation for visualization. As other post-processing steps, computing 
the horizontal orientation for each fiber bundle in the volume was not 
particularly computationally demanding (the full volume of 1088 ×
1686 × 772 voxels3 was processed in ~5 min on an Intel Xeon W-2133 
CPU @ 3.6 GHz). 

3. Results 

3.1. Segmentation 

The performance of each algorithm is presented in Table 1. While it 
shows that the prediction quality improved with the CNN complexity, it 
also highlights that the simpler CNNs already vastly outperformed the 
morphometric methods on either test ROI. Two significant jumps in 
prediction accuracy were performed; the first from ST3D to UNet2D; the 
second from UNet2D to UNet3D. 

The prediction of selected algorithms (ST3D, UNet2D and UNet3D) 
are overlaid on the groundtruth GND1 on 3 of its slices, in Fig. 5. For 
comparison purposes, these 3 slices were selected to correspond to the 
maximal, median, and minimal MCC score/slice of the UNet3D 
segmentation. 

In short, the ST3D segmentation lacks homogeneity and complete-
ness; UNet2D is plausible, but seems to miss part of the fiber bundles 
along the depth direction, and may completely fail to recognize fiber 
bundles orthogonal to it; UNet3D, while not perfect either, largely al-
leviates UNet2D’s shortcomings: even in the worst MCC slice, the bundle 
phase is close to the groundtruth. 

Once a visually convincing fiber bundle segmentation was reached 
with UNet3D, i.e. when the algorithm was able to recognize the same 
bundles that a human operator had, with shapes resembling fiber bun-
dles, case-specific image processing routines could be applied to smooth 
the segmentation. A comparison of the bundle phase before and after 
post-processing is shown in Fig. 6. Clean bundles can furthermore be 
color-coded with their properties (e.g. volume, orientation, length, etc.). 
In Fig. 6, the fiber bundles in GND1 are colored based on the angle 
associated to their horizontal orientation. 

Fig. 4. Visualization of the different machine learning strategies.  

Table 1 
Measured performance of different fiber bundle segmentation methods.  

Segmentation MCC|ROI1  
MCC|ROI2  

ST3D 0.435 0.506 
UNet2D 0.589 0.554 
Bilateral UNet2D 0.625 0.577 
UNet3D 0.723 0.602 
Post-processed UNet3D 0.748 0.705  
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3.2. Fiber bundle analysis 

Overall, 3 segmentations (GND1, the post-processed UNet3D seg-
mentation of ROI1, and the post-processed UNet3D segmentation of the 
entire scanned volume) were labeled and analyzed. Several properties of 
the labeled fiber bundles were computed for each of these 3 segmenta-
tions, and presented in Table 2. 

Comparing the metrics obtained from the groundtruth with those 
obtained from the UNet3D segmentation of the same ROI gives an 

insight into the final, unverifiable results of the full volume segmenta-
tion. The automatic segmentation of ROI1 yielded an appropriate esti-
mate of the amount and density of fiber bundles, but tended to 
underestimate their volume, possibly by failing to capture them along 
their entire length (as the median aspect ratio is lower in automatically 
segmented fiber bundles), while overestimating their width (since the 
bundle density is correctly estimated). 

The labeled fiber bundles in the entire MDF volume, color-coded for 
their horizontal orientation, are shown in Fig. 7. Alongside, the binary 

Fig. 5. Selected slices for different ROI1 segmentations: ST3D, UNet2D and UNet3D. In blue, the groundtruth; in yellow, an automatic segmentation. (For inter-
pretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 6. Post-processing the UNet3D segmentation results in a smoothed and rounder phase, without the small irregularities that could not constitute a fiber bundle. 
After labeling, horizontal orientations can be determined for each individual bundle. One grid square corresponds to 100 μm2. 
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prediction capabilities of the network are displayed by comparing them 
with details of the input image, selected through the sample. 

4. Discussion 

4.1. Evaluating performance 

To quantitatively evaluate different algorithms, we must first address 
the quality of the groundtruths. Due to the material’s nature, it is 
intricate to identify fiber bundles manually. Since the defibrating pro-
cess (during which solid wood chips are separated into fibers) is not 
perfect, “bundles” with 2–100 fibers can remain. However, there is no 
unambiguous geometrical definition of a processed, natural and hollow 
fiber in such images as ours. Natural fibers, with different sources, come 
in different shapes. For MDF production, they are furthermore heavily 
processed, which alters the shapes that can be observed, various ex-
amples of which can be found in Ref. [20]. Therefore, we chose to focus 
on the larger bundles, whose geometrical shape is less determinant than 
their size, and which are expected to have the largest impact on the 
mechanical properties of the material. A minimal bundle size - based on 
surface area - had already been an identification criterion before [6]. 
Yet, it is possible that our algorithm would be capable of picking up the 
smaller bundles like it does the bigger ones, without the discerning 
power to reject the firsts. This would create a surge in observed false 

positives. Besides, an imperfect groundtruth could confuse a CNN’s 
training. Although this is out of the current scope, we therefore 
recommend a more elaborate manual segmentation performed by mul-
tiple independent operators, as is done in other fields [21]. Following 
this methodology may enable extremely detailed studies on the fiber 
bundles, as the segmentation accuracy increases. 

4.2. Structure tensor approach 

The structure tensor method aims to find homogeneities in the 
orientation field, and corroborate these with the presence of fiber bun-
dles. This sound approach was validated in various materials, e.g. 
Ref. [8] or [22]. However, since the source code was not available, we 
had to re-implement it. Fixing parameters was done to the best of our 
ability with the given information, to produce the highest quality seg-
mentation possible. Nonetheless, it is possible that our implementation 
does not reproduce the optimal implementation of this algorithm. In the 
worst case scenario, the ST3D accuracy could be underestimated due to 
our implementation. Notwithstanding, we believe that the improve-
ments achieved with CNNs render any ST3D implementation obsolete. 

4.3. Deep learning 

4.3.1. Weakness in the depth direction 
Segmenting fiber bundles requires 3D algorithms: even the best 2D 

predictions would indeed be varying in the third dimension, from one 
slice to the next. This is shown in Fig. 8, which presents a 2D slice normal 
to the panel thickness. The obvious inconsistencies in the depth direc-
tion lead to a sharp decrease in prediction accuracy. 

For this reason, we first considered using pseudo-3D methods, such 
as combining UNet2D predictions in two orthogonal directions. How-
ever, our bilateral UNet2D method had noticeable shortcomings; the 
variability of UNet2D in the depth direction was arguably too large to 
satisfyingly compensate. Instead of exploring smarter ways of 
combining several non-coplanar segmentations than with an “OR”, we 
chose to use a fully 3D method, based on UNet3D. As a drawback, a 3D 

Table 2 
Measured properties of the segmented fiber bundles.  

Property GND1 ROI1 

(UNet3D) 
Full volume 
(UNet3D) 

Bundle count 8 7 141 
Bundle density [%] 21 20 12 
Median bundle volume 

[μm3] 
1.2 ⋅ 107 5.6 ⋅ 106 3.8 ⋅ 106 

Median surface to volume 
ratio 

9.8 8.6 8.7 

Median aspect ratio 2.7 1.6 1.8  

Fig. 7. Left panel: full volume segmentation by UNet3D, post-processed, and colored by horizontal orientation. Right panel: details of the post-processed seg-
mentation overlaid on the MDF structure. 

P. Kibleur et al.                                                                                                                                                                                                                                  



Composites Science and Technology 221 (2022) 109287

7

algorithm is sooner bottlenecked by computational resources than a 2D 
one. In our case, this meant limiting the patch size to 128 × 128 × 5 
voxels3. We could thus question the performance of UNet3D using 
deeper patches, e.g. 128 × 128 × 128 voxels3. Although aside from 
computational resources, this generates another limitation in the 
amount of training data that can be considered by the network before 
overfitting. Specifically in each of our manually-annotated ROIs, we 
could extract over 500 non-overlapping 128 × 128 × 5 voxels3 patches, 
but only 20 non-overlapping 128 × 128 × 128 voxels3 patches. 
Furthermore, if overfitting was a worry for UNet2D, it would be easy to 
generate more learning data: one would simply have to label extra 2D 
slices. In 3D, the same augmentation is much more demanding. 

4.3.2. Learning process 
In machine learning, overfitting is a risk. In our case, using a learning 

set to train CNNs that is included in ROI1, which we partly used for 
validation, could raise concerns. The learning set is a small subset of the 
ROI1 (~2% of it). Yet, these 2% are equally distributed within ROI1, and 
we could argue that they fully represent its variability, as such not 
leading to overfitting. During preliminary investigations, a sensitivity 
analysis on porosity (i.e. analyzing the evolution of segmented air in a 
cubic ROI of side L, as a function of L) showed that a ROI’s variability 
would stabilize beyond ~100 μm3. ROI1 is much larger (its smallest side 
is larger than 500 μm), while although discontiguous, the learning set is 
much smaller in equivalent volume. However, we were concerned that 
the segmentation accuracy could be slightly overestimated on a ROI that 
was not completely novel to the network’s weights. Therefore, we 
applied the same methodology to a second ROI of the same size as ROI1, 
located elsewhere in the scanned volume. The results shown in Table 1 
revealed that UNet3D’s accuracy was lower on ROI2 than on ROI1. 
However, the prediction accuracy of morphological methods also 
differed by about the same amount between the two ROIs. Furthermore, 
the CNN accuracies remained significantly higher also in ROI2. There-
fore, we were able to prove that the high prediction accuracy achieved 
on ROI1 does not correspond to an overfitting artifact, but to the real 

prediction accuracy of the network. Differences inherent to the fiber 
bundles inside each ROI would explain the variability of the algorithms’ 
prediction accuracies. 

Besides, densifying a sparsely annotated dataset (as we have done in 
ROI1) is common practice, and happens to be the first suggested use of 
UNet3D [17]. The same authors expected that by training on just two 
distinct datasets, the network could be generalized to a third. We do not 
claim generalization yet, as we currently focus on dynamic experiments 
and models involving only one sample. Generalization could be explored 
in future, although a non-generalizable network will also be a valuable 
asset for distinct future research with transfer learning. 

Finally, the learning set was extracted along the single depth direc-
tion. Because fibers are oriented randomly in the horizontal plane, we 
assumed that the information present in vertical cross-sections would be 
qualitatively independent of rotation. 

4.4. Fiber bundle morphometry 

Only our best segmentation was post-processed, because specifics 
can widely vary from one image to another. Although standard, this 
process reflected on the subsequent morphometric analysis. Particularly, 
we notice in Table 2 that compared to the manually-annotated bundles, 
automatically annotated and post-processed bundles are less elongated. 
This is likely aggravated by the binary opening with a large, almost 
spherical structuring element. In Fig. 6, we can indeed see that a thinner 
bundle at the top of the ROI is processed into 3 smaller and rounder 
ones. Despite such undesirable effects, post-processing still positively 
impacts the bundle segmentation overall, as shown in Table 1. 
Furthermore, it is not yet expected to have perfectly segmented fiber 
bundles: in Fig. 7, we notice that parts of the bundles - particularly edges 
- are missed. Yet for all applications previously mentioned (modeling, 
dynamic experiments, etc.), having a first reliable estimate of the bun-
dles location and density is already a major achievement. The current 
segmentation achieves this reliability for the first time at high density. 
Where previous segmentations methods at such densities resulted in 
segmented fiber bundles with incomplete shapes [8], the bundle shapes 
presented in this work resemble the realistic shapes traditional methods 
could segment at low density [4]. 

Moreover, we remark that while the raw UNet3D segmentation 
contains false positives (Fig. 6) and false-negatives alike, post-processing 
mainly removes false positives, by grinding away the bundle phase. The 
bundle density reported in Table 2 is therefore a slight underestimate of 
the real bundle density. Before post-processing, the bundle density in the 
entire volume (Fig. 7) was 16%, which was reduced to 12%. We expect 
the true value in between 12 and 16%, yet closer to the lower value. 
False positives are indeed noticeable, while the post-processed bundle 
density in the ROI was close to the groundtruth’s (20 vs 21%). These 
proportions are in line with those previously reported by manual seg-
mentation in different MDF panels [8]. 

Finally, the discrepancy in fiber bundle density between ROI1 and 
the full volume can be logically explained: ROI1 was selected to contain 
fiber bundles. It is therefore no surprise that it contains slightly more, 
and slightly larger fiber bundles than the entire volume would. 

5. Conclusion 

We investigated morphological and deep learning algorithms to 
automatically segment fiber bundles in MDF using μCT scanning. Using 
Matthew’s correlation coefficient with two manually-annotated 
groundtruths, we showed that these algorithms had varying degrees of 
accuracy, the best one being UNet3D. We demonstrated that the 
complexity of this architecture is necessary. We then analyzed the 
morphometry of the identified fiber bundles. Results obtained on the 
groundtruths and on automatically segmented data showed satisfactory 
correspondence, although this could be improved depending on the 
needs of subsequent applications. Because of its unprecedented 

Fig. 8. While plausible on 2D slices (Fig. 5), a volume segmentation with 
UNet2D shows depth (bottom to top) variability too important to satisfactorily 
post-process. The groundtruth (GND1) is shown in blue, while the UNet2D 
segmentation is shown in yellow. (For interpretation of the references to color 
in this figure legend, the reader is referred to the Web version of this article.) 
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performance, our method opens several paths for future. Moreover, 
because it was developed on an extremely challenging material at higher 
density than is generally investigated, we believe that this method could 
be applied to several other natural fiber composites with similar or 
better results. 

Data availability 

The data, code, and trained networks are available to download from 
10.528 1/zenodo.4898 996. 
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