
Learning Self-Supervised Task Progression Metrics:
a Case of Folding Clothing

Andreas Verleysen∗ Matthijs Biondina∗ Francis wyffels∗

Abstract

An important challenge for smart manufacturing systems is finding
relevant metrics that capture task quality and progression for process
monitoring to ensure process reliability and safety. Data-driven pro-
cess metrics construct features and labels from abundant raw process
data, which incurs costs and inaccuracies due to the labelling process.
In this work, we circumvent expensive process data labelling by distill-
ing the task intent from video demonstrations. We present a method
to express the task intent in the form of a scalar value by aligning a
self-supervised learned embedding to a small set of high-quality task
demonstrations. We evaluate our method on the challenging case of
monitoring the progress of people folding clothing. We demonstrate
that our approach effectively learns to represent task progression with-
out manually labelling sub-steps or progress in the videos. Using case-
based experiments, we find that our method learns task-relevant fea-
tures and useful invariances, making it robust to noise, distractors and
variations in the task and shirts. The experimental results show that
the proposed method can monitor processes in domains where state
representation is inherently challenging.

1 Introduction
Modern manufacturing systems are becoming increasingly complex due to
high requirements on process quality and economical incentives [1]. In order
to ensure the reliability and quality of the outcome of industrial processes,
process monitoring techniques are utilized [2]. Among process monitoring5

methods, data-driven process monitoring methods are a popular approach
as they do not require modelling complex physical processes and can con-
veniently be collected with sensors and cameras. Additionally, monitoring
metrics can serve as a learning signal to automate parts of the production
process using learning-based approaches such as reinforcement learning.10

∗IDLab-AIRO – Ghent University – imec, Technologiepark-Zwijnaarde 126, 9052 Zwi-
jnaarde, Belgium
Corresponding author: andreas.verleysen@ugent.be

1
This version of the article has been accepted for publication, after peer review (when applicable) and is
subject to Springer Nature’s AM terms of use, but is not the Version of Record and does not reflect
post-acceptance improvements, or any corrections. The Version of Record is available online at:
https://doi.org/10.1007/s10489-022-03466-8

https://doi.org/10.1007/s10489-022-03466-8

A significant problem with data-driven process monitoring is the re-
quired labelling process associated with generating the data. For example,
if the task consists of a robot or human worker folding clothing for pack-
aging, a process monitoring system needs to perform state estimation of
the cloth. However, cloth has an infinite amount of configurations due to15

its deformations [3]. The deformations also cause parts of the cloth to be
occluded, making state estimation even more difficult. Additionally, some
problems do not lend well to manually constructing a quality metric. In the
given example, it is non-trivial to map the number of wrinkles to a quality
measure. Implementing such quality systems to monitor task progression is20

non-trivial: it requires a significant engineering effort and process knowledge
in order to capture many ill-defined components, some of which are hard to
measure.

A solution to capture the many required details involved in capturing
task progression can be found in how humans and animals acquire new25

skills. Primates and humans are known to possess a neuron mirror system
that is at the basis of mirroring actions and behaviour of other individu-
als [4]. This idea has been transferred to the field of robotics [5] in which
a robot can acquire new skills by imitating the behavior of the demonstra-
tor. However, learning to solve a task from experts is suspect to copying30

the exact manipulations of the demonstrator. This is due to the learning
agent not understanding the essence of the task. Moreover, no guidance
is available when the agent arrives in unseen areas of the state space. A
final problem preventing transferring expert demonstrations across actors is
the correspondence problem [6]: the embodiment of the demonstrator often35

differs from the learning actor. For example, the kinematic chain of a delta
robot differs significantly from a human arm. Consequently, learning from
demonstrations requires a mapping between different morphologies. Hence,
a task progression metric needs to be invariant to the actor executing the
task (i.e., the correspondence problem) and needs to be able to generalize40

to unseen situations.
In order to construct process monitoring metrics from demonstrations

that capture the task intent, we need to (1) learn task-relevant representa-
tions, (2) solve the correspondence problem, and (3) translate the represen-
tation to a metric that indicates task progression and solution quality. This45

task progression metric can then be used for process monitoring. Addition-
ally, this metric can be used as a reward function in a reinforcement learning
setting such that the task can be learned from environment interaction.

To address the challenge of unsupervised learning of task intent, we pro-
pose a method to learn a task progression metric from human demonstra-50

tions. We do this in a self-supervised way that does not require manually
labelling video frames. Central is the idea of contrastive learning in which
pairs of observations that are semantically similar are close in the embed-
ding space compared to dissimilar observations. This can be achieved by

2

using time as a supervisory signal, for example, Time-Contrastive Networks55

(TCN)[7]. TCNs produce task-relevant features, which we then align to a
small set of expert demonstrations using a modified version of Dynamic Time
Warping (DTW). Finally, we distil a scalar progression metric by querying
the ensemble of experts for predicting task progress.

The contributions of this paper are:60

• A novel method to generate task progression metrics from video with-
out labelling data:: We propose an integrated approach to overcome
expensive data labelling in data-driven process monitoring in order to
generate self-learned task progression metrics. Our approach also al-
lows decoupling reward and policy learning in reinforcement learning.65

• The first solution for tracking cloth folding progression: We provide
the first results for the challenging case of quantifying cloth folding
progression.

• In-depth, case-based robustness analysis: We demonstrate the robust-
ness of our approach with adversarial cases to test the use-cases and70

limits of our proposed method.

The remainder of this paper is organized as follows. We first discuss
related work in Section 2. Section 3 introduces our work by providing a high-
level overview of the proposed method. Then, we explain our methodology
in-depth in Section 4. We present the results on learning the task progression75

for folding clothing in Section 5. Finally, we discuss how these results are
applicable for monitoring process quality and learning policies from crowd-
sourced demonstrations in Section 6. We conclude our findings and future
work in Section 7.

2 Related work80

2.1 Data-driven process monitoring in smart manufacturing
systems

Smart manufacturing systems allow collecting data in enterprises at high vol-
umes and frequencies [8]. The availability of this data enables data-driven
methods to train models for process monitoring and fault detection [1]. Ma-85

chine learning methods, in particular, have been used to discover valuable
patterns in manufacturing data by manually constructing features [9]. This
way, virtual sensors can be trained to estimate product quality and pro-
cess metrics based on historical measurements of easy-to-measure process
variables. For example, in [10] the quality metric of a paper pulping pro-90

cess is inferred from chemical process features constructed from surrounding
sensors. To avoid the need of manually engineering features, deep learning

3

methods are becoming increasingly popular for fault diagnosis [11]. In [12],
they show that a deep neural network can outperform traditional process
monitoring methods on three widely-used datasets. Other work looks at di-95

rectly inputting process images to the neural network. For example, in [13]
flame images of a furnace are used for monitoring the combustion process.
In [14] infrared thermal videos are used as training data for a deep neural
network to estimate the health conditions of rotating machinery. In [15]
raw manufacturing data is converted to latent features learned by an au-100

toencoder neural network. In practice, many of these applications assume
the availability of process experts in order to carefully label the data [16].
However, this is costly and ambiguous to do for some domains. To avoid
labelling data, existing work [17] uses semi-supervised learning to exploit
both labelled and unlabelled data for predicting wafer quality during semi-105

conductor manufacturing. Another work [18] avoids the need of labelling the
remaining useful lifetime of industrial machines by compressing the input
sensor data to a latent space using a recurrent neural network autoencoder.
By reconstructing the latent space to a machine health index, they can
match the resulting time series and use the reconstruction error to compute110

the health index used for estimating the system remaining useful lifetime.
However, their method still requires finding example health index curves.
We utilize a similar idea to leverage data under nominal operating conditions
while borrowing insights from the learning from demonstration research in
order to learn a task progression metric.115

2.2 Learning from demonstrations
Learning from demonstrations is a prevalent domain in the robotics learning
community. In the learning from demonstration survey of [5], a distinction
is made between giving demonstrations and imitation learning depending on
whether an embodiment mapping exists. In case the teacher executions are120

demonstrated, an embodiment mapping is implicit. In contrast, imitation
implies that the correspondence problem needs to be solved. These defini-
tions place our work as imitation learning from external observations: sen-
sors external to the executing entity are used to train a learning agent that
can have a different morphology. One instance of learning from demonstra-125

tion is behavioural cloning, in which supervised learning is used to predict
the actions an expert would do in a given state [19]. However, behavioural
cloning methods are known to copy end-effector trajectories instead of un-
derstanding how actions relate to task performance. Moreover, errors ac-
cumulate when an agent takes a wrong action, which pushes him into an130

unseen part of the state space. A more general way to force the agent to
attend to which actions increase task performance, is to learn the reward
from demonstrations instead of the policy.

4

2.3 Inverse Reinforcement Learning
Reinforcement Learning (RL) is a domain that shares similar semantics with135

process monitoring: both require metrics indicating task progression and
quality. In RL, the task progression metric is known as the reward function.
This signal guides the learning agent towards task solutions. A sub-domain
known as inverse RL [20] deals with learning reward functions from demon-
stration. In inverse RL, an outer loop learns the reward function while the140

inner loop executes a learning procedure for finding an optimal policy given
the current reward function. Recent methods have looked at integrating
deep neural networks as a representation layer in inverse RL [21, 22, 23].
However, much computational power is required for training due to the two
loops taking place. Speeding up the training process with kinesthetic teach-145

in and updating instead of optimizing the reward function is explored in [21].
Unfortunately, manually moving the robot’s end-effector proves to be un-
feasible for tasks with difficult dynamics like knot tying or folding clothing.
Other methods [22, 23] leverage expert demonstrations based on adversarial
training. In these setups, the goal is to learn the task directly and not infer a150

reward function. In contrast, we aim to learn a reward function completely
decoupled from policy optimization. This way, it can be used for multiple
purposes, such as learning and process monitoring.

2.4 Self-supervised learning
An emerging method for sample-efficient learning of task-relevant features155

is self-supervised learning. Self-supervised learning exploits the structure
present in a dataset to learn rich representations used for a downstream
task such as image classification. Both natural language processing and
computer vision has seen large leaps in self-supervised methods with, for
example, BERT [24]. The general idea is to provide an artificial task to160

learn meaningful representations. Example tasks are learning to colourize
images [25], reconstructing the original input [26] and predicting the relative
position of two random patches [27]. An instance of self-supervised learning
is contrastive learning, in which representations are learned by providing
contrasting examples. In the case of video demonstrations, time can be165

used as a supervisory signal to provide contrasting examples. The goal then
becomes to recover the temporal coherence of a video. One of the firsts
works leveraging time as contrastive signal [28] inputs a sequence of frames
and classifies whether the frames are in the correct order. Later work [29,
30] also frames self-supervised learning as a classification task in which the170

correct temporal order has to be determined. Several prior works construct
reward functions, or equivalently process monitoring metrics, in latent spaces
trained with time as a supervisory signal. In [31], they construct a reward
function based on an image classifier trained on successful goal states reached

5

by teleoperating the robot towards the end state. In [32], time is used as175

a learned distance function for assigning environment rewards. However,
their approach requires human intervention in order to select the desired
goal states. [33] also uses time as a supervisory signal in videos of expert
demonstrations to learn an optimal trajectory of states. However, they
assume that visually removing the end-effector from the scene is not possible180

for all tasks. Other work [34] looks at expressing the reward function as
the distance in latent space between the current state and the goal state.
However, this is not possible when there is a trajectory in latent space that
has to be followed in order to execute the task.

In this work, we leverage TCNs [7], which uses multi-perspective video185

demonstrations as input and time as a supervisory signal. It has already
been shown that TCNs learn meaningful semantic embeddings, which can
be used for robotic pose imitation of humans. This is done by aligning video
frames using nearest neighbours in embedding space. This is problematic
if a particular state machine or trajectory in embedding space has to be190

followed to solve the task. In [35], TCNs are trained over multiple input
frames such that the network is able to encode the position and velocity of
objects in the scene. Although TCNs are shown to be capable of robotic
imitation of human poses, there is, to the best of our knowledge, no work
that distils process monitoring metrics from self-supervised representations195

trained on video demonstrations.

2.5 Time series alignment
In order to match the latent space trajectory of an expert demonstration to
a learning agent, the latent space progressions must be compared. Given
the presence of a time dimension, a time series alignment problem arises.200

Time series alignment is studied extensively in natural language process-
ing [36], bioinformatics [37] and human activity recognition [38]. Biological
sequence alignment methods arrange the sequences of DNA to identify re-
gions of similarity that may influence functional relationships. Path Simi-
larity Analysis [37] for example, quantifies the similarity and difference be-205

tween protein transition paths. In [39], a differentiable cycle consistency loss
is used to align video frames based on the learned embedding space. They
demonstrate impressive results on aligning video pairs of an action recog-
nition dataset. However, it is unclear how their method behaves on long
video demonstrations containing multiple, possibly suboptimal and heavily210

out-of-phase solutions to achieve the same task. Another broad class of al-
gorithms for comparing a series of values with each other is Dynamic Time
Warping (DTW). In DTW, the time series are assumed to be similar in
amplitude but locally out of phase. DTW was introduced in [40] and had
the goal to find an optimal alignment between sequences by warping the215

time axis iteratively. DTW has been used for a variety of domains such as

6

speech recognition applications [36], sign language recognition [41] and time
series clustering [42]. Although many improvements on the original DTW
algorithm exists [43], we experimentally show that the canonical DTW with
minor adjustments can be used to align the latent space progression between220

expert and learner.

3 Overview of the proposed framework
We define the problem of using multi-perspective images with task demon-
strations to construct a metric indicating task progression and solution qual-
ity. We want the task progression metric to increase on important moments225

when progression is made towards solving the task. Central in our frame-
work is (1) generating a meaningful semantic embedding that indicates task
progression and solution quality and (2) mapping this embedding to a scalar
value. A high-level overview is given in Figure 1. Our method consists of
three main steps. First, we use multi-perspective video frames to train230

an embedding using contrastive learning. This is done by using time as a
self-supervisory signal. This method allows to learn useful invariances and
forces the network to focus on task-relevant properties, as we will show in
Section 5. We take a small sample of the demonstrations which we label
experts as they will be used as a reference for indicating task progression.235

Second, we align the embeddings of the demonstrations to the task execu-
tions of experts using dynamic time warping. Third, we use this alignment
to query the ensemble of experts for predicting task progress.

Our method assumes the availability of task demonstrations with corre-
sponding process metrics. The demonstrations can range from teleoperated240

machinery to sensor recordings external to the executing body. We particu-
larly focus on using recorded process metrics in the form of multi-perspective
camera streams. Our method is deployable for arbitrary processes and tasks
for which example demonstrations are available. These demonstrations are
allowed to contain sub-par solution strategies. The method requires select-245

ing a small part of the data, in our experiments 5%, as a reference for a good
task solution. We focus on task demonstrations given by humans, but any
entity solving the task can be used as input. Our methodology is applicable
in settings where process monitoring is essential for output quality. We ex-
ploit temporal coherence, which requires the process to contain measurable250

inputs along a temporal dimension. For example, multiple cameras film-
ing how human workers are sewing the front and back of a shirt together.
Another major application we target is learning robotic manipulation skills
using RL. This is because the field of RL heavily borrows the concept of
expressing task progression and solution quality in a scalar value called the255

reward function. This reward function is used to learn an agent to solve
a designated task in an unknown environment. Engineering such reward

7

positive

anchor

negative

e
m
b
e
d
d
i
n
g

triplet loss

Learn TCN embedding

Align embedding time series

Extract task progression

Exper t

Quer y

deep
network

all data

expertsquery

video

demonstrations

Figure 1: High-level overview of our methodology.

8

functions is difficult for some domains like folding clothing and autonomous
driving. Our method allows learning a reward function without supervision,
which can be used downstream for a learning agent requiring supervision in260

the form of a scalar value expressing task progression.

4 Generating task progression metrics from multi-
perspective camera images

In Section 3, we gave a high-level overview of our framework to extract task
progression metrics from crowd-sourced RGB images. Here, we discuss the265

framework in detail. We break down the three main steps into separate
subsections.

4.1 Learning Semantic Meaningful Embeddings using TCNs
Central in the proposed framework is learning task-relevant representations
containing the notion of task progression and solution quality. We use Time-270

Contrastive Networks [7] in which time serves as a supervisory signal. TCNs
are a self-supervised method for training abstract representations of the pro-
gression of a task. The core concept is to push video frames distant in time
away and pull them together when they are near in time. Multiple cameras
are used to capture several perspectives of the same demonstration synchro-275

nised. This principle is shown in Figure 2. Any pair of frames from different
camera angles that co-occurred must be close together in embedding space.
Frames from the same camera angle separated by time are forced to be dis-
tant in embedding space. This principle encourages the network to attend to
high-level features relevant to the task. Attending to irrelevant background280

noise or low-level features would attract negative pairs from the same per-
spective and repulse positive pairs from different perspectives. This way,
the correspondence problem [44] for imitation learning can be solved. In
case the network tries to explain the visual difference between two temporal
distant frames by looking at the demonstrator, it would pull the anchor and285

negative close together, leading to a higher loss. The only way to achieve a
lower loss is by looking at task-relevant features: what is consistently chang-
ing in the scene that cannot be attributed to changes in viewpoint, lighting,
occlusion, and background.

Formally, if the embedding of an input is given by f(x) ∈ Rd, we can
then define the loss between an anchor xai , positive xpi and negative frame
xni as [45]:

∥f (xai)− f (xpi)∥
2
2 + α < ∥f (xai)− f (xni)∥

2
2 ,

∀ (f (xai) , f (xpi) , f (xni)) ∈ T ,

9

with α being the margin enforced between positive and negative pairs. T
represents all possible triplets, i.e. all anchor-positive-negative combinations.
The loss we are trying to minimize then becomes:

N∑
i

[
∥f (xai)− f (xpi)∥

2
2 − ∥f (xai)− f (xni)∥

2
2 + α

]
+
.

To gather the triplets T , we use a semi-hard triplet mining strategy290

with an increasing difficulty level. The goal of this strategy is to guide
the training process to focus on increasingly harder anchor-positive-negative
triplets. We do this by first sampling random anchors and positive frames
from all possible perspectives. Positive frames are temporal neighbours at
a maximum ϵ frames sampled around the anchor. Frames further away are295

labelled as negatives. This principle is visible in Figure 2. For each anchor
during training, we select the most difficult positive, i.e., where the distance
between anchor and positive is the largest. For this anchor-positive pair, we
calculate the distance between the semi-hard negatives and anchor. Semi-
hard negatives are defined as contrastive samples to the anchor which are of300

moderate difficulty: the distance between anchor-negative pair is marginally
larger than the distance between the anchor-positive pair. Intuitively, this
corresponds with pushing the fail-cases out of the minimal distance range
one by one, starting with the easiest. We define the cost function of the batch
as the average loss scores overall anchor frames. We provide the pseudocode305

for our training procedure in Algorithm 1.

Figure 2: Using time as a supervisory signal in TCNs. A randomly
selected anchor frame (in blue) and a nearby temporal neighbour from a
different perspective (in green) are encouraged to be close in the embedding
space compared to the anchor frame and a distant temporal neighbour (in
red). This allows the network to learn to explain changes in the physical
world.

10

Algorithm 1: Training loop of time-contrastive network
Input: training set of videos V,

temporal distance ϵ,
time-contrastive neural network tcn parametrized by θ,
margin α,
mini-batch size k

1 foreach epoch do
2 loss = 0;
3 for 1 to k do
4 select random video demonstration v from V with frames F ;
5 select random anchor a from F ;
6 generate positives P = {p ∈ V : temporalDistance (a, p) ≤ ϵ};
7 find hardest positive p∗ = argmaxp∈P(dist (tcn (a), tcn (p)));
8 generate negatives

N = {n ∈ V : temporalDistance (a, n) > ϵ};
9 generate semi-hard negatives Nsh =

{n ∈ N : dist (tcn (a), tcn (p∗)) < dist (tcn (a), tcn (n)) < dist (tcn (a), tcn (p∗)) + α};

10 find easiest semi-hard negative n∗ with distance ϵ from a
with n∗ = minn∈Nsh

(dist(tcn (a), tcn (n)));
11 loss += dist(tcn (a), tcn (p∗))− dist(tcn (a), tcn (n∗)) + α;
12 end for
13 cost = loss/k;
14 Perform a gradient descent step on cost with respect to the

network parameters θ of the neural network tcn;
15 end foreach

11

4.2 Aligning Expert Video Embeddings with Query Videos
The TCN embedding trained in the previous Section 4.1 gives rise to a
multivariate time series. In order to compare the time series embedding
of a demonstrator X = (x1, . . . , xi, . . . , xN) to that of a chosen expert310

Y = (y1, . . . , yi . . . , yM) in order to judge the quality of the folding demon-
stration. To calculate the alignment between these time series, we use Dy-
namic Time Warping (DTW) [40]. DTW is an algorithm for measuring
the similarity between time series under time distortions. It minimises the
effects of shifting in time by allowing elastic transformations of the time315

series, subject to time-normalisation constraints. This allows accounting for
nonlinear task execution rate differences between two demonstrations. In
DTW, an optimal path P ∗ mapping time series X and Y are found:

P ∗ = argmin
ϕx,ϕy

T∑
t=1

d(xϕx(t), yϕy(t)),

with d() being a local distance function, for example, Euclidean distance.
The alignment between the two time series is established through the map-320

ping functions (ϕx(t), ϕy(t)). The warping functions are limited by certain
constraints in order to be meaningful. Common warping constraints [46]
are (1) start- and endpoint constraints as a clear start and end are manu-
ally specified by preprocessing the data, (2) monotonicity constraint which
maintains temporal order during time normalization, and (3) local continu-325

ity constraints, also known as step patterns, to minimize loss of information.
Compared to the canonical version of DTW, we relax the monotonicity con-
straint, which specifies that the alignment path does not go back in time.
By allowing the time index of the expert time series Y (i.e., the reference
signal) to go back in time, we can account for demonstrators restarting part330

of the task execution or even executing the task backward. This also allows
for coping with a failed task execution. We also relax the formulation to
open-end DTW [47] by removing the endpoint constraint to incorporate the
possibility that demonstrators are not finishing the task optimally or com-
pletely. A visual interpretation on how we align a demonstration to video335

frames of an expert is given in Figure 3. We show the single component
of two fictitious one-dimensional embeddings. The demonstration of which
we need to calculate the task progression is labelled as the query. This is
aligned to the embedding time series of the expert. The warping path is
drawn in the global cost matrix. The coloured sections on the time series340

and alignment path represent subtasks. The background colours represent
similar task progression or the same subtasks in the videos of the expert and
query sample.

12

Figure 3: Dynamic Time Warping (DTW) without monotonicity
constraint. We align a multivariate time series embedding of a demon-
stration (the query) to the video frames of an expert. The time index is
allowed to go back in time in order to correctly align a demonstration in
which executed actions undo the made progress.

13

4.3 Extracting Task Progression from Embeddings
The last step in our methodology is to extract task progression indicators345

using the aligned embeddings. First, we search which frame of each expert
aligns best with each frame of the demonstration. The alignment score is
expressed as the reciprocal of the cost of the best fit between them. Then,
we select the temporal index of the best matching frame of every expert
and express it as progress in percentage. Next, we average the experts’350

progress ratings by weighting with the normalised fit scores of the DTW
phase of the pipeline. Finally, we remove any outliers by rejecting progress
predictions of experts that deviate too much from the median of the absolute
deviations [48].

5 Empirical results on folding clothing355

We apply our methodology to the challenging case of assessing the task pro-
gression and quality of folding clothing. Manipulation of clothing and other
deformable objects is considerably harder than rigid object manipulation due
to the infinite number of configurations the object can be in. This makes
the domain of deformable object manipulation relevant for our application:360

state estimation is challenging given the deformations exercised on the cloth-
ing [3]. In order to assess the quality of the executed manipulations, it is
necessary to estimate how well the clothing is folded by identifying the final
shape and detecting wrinkles. Manually performing this state estimation is
time-consuming. Automated annotation processes rely on extracting con-365

tours of the textile using colour segmentation [49], utilizing depth cameras
to detect wrinkles [50] and equipping the textile with tactile sensors [51].
However, these methods do not scale and generalize well as they require
prior information about the state of the clothing and considerable engi-
neering effort. In contrast, asking people to give folding demonstrations is370

cost-efficient to gather data.
In the remainder of this section, we present experimental results of ap-

plying our framework to extract task progression metrics based on video
demonstrations of humans folding clothing. We first describe how we crowd-
sourced human folding demonstrations, followed by a quantitative analysis375

of the learned embeddings of these video demonstrations. We conclude by
qualitatively examining the resulting task progression metrics functions on
a test set.

5.1 Folding from demonstrations
To generate data, we crowdsourced video demonstrations of people folding380

clothing [52]. The setup is a dedicated folding table, visible in Figure 4. It
contains three cameras mounted on top to capture multiple fixed perspec-

14

tives of the demonstrations. These are marked with yellow boxes on the
Figure. The data is sliced into single clothing folding demonstrations: each
demonstration starts with grasping an isolated piece of clothing on the left385

side of the table, folding in the middle, and finally stacking it on top of other
clothing on the right side of the table. We only use folded t-shirts in our
experiments, leading to 751 folding demonstrations. We manually select 5%
of the data as experts, which will later represent the signal to align other
video demonstrations using DTW. This selection was based on two simple390

criteria: (1) the resulting fold looks successful, and (2) the demonstrator
executes substeps to solve the task in one go. The last criterion implies
that to go from an initial state to a target state, the fold is executed in one
flow and not paused in between or divided into multiple intermediate states.
The data contains multiple sources of randomization as the recordings took395

place at two different locations, of which one is a public library. This makes
it useful to learn multiple invariances.

Kinect RGB-D
cameras

Basket contain-
ing clothing to
fold

Location
on the ta-
ble where
to fold
clothing

Figure 4: Picture of our folding table setup to crowdsource video demon-
strations in a public library.

5.2 Training results
The first step in our methodology is to train TCNs using multi-perspective
images of task demonstrations. The neural network architecture we used is400

given in Figure 5. We utilize the DenseNet [53] architecture pre-trained on
ImageNet [54] as it already contains semantic relevant features for general-
purpose vision-based tasks. Depending on the application, other neural

15

network architectures can be used as a backbone. We append four train-
able convolutional layers to the output of the DenseNet architecture. Af-405

terwards, the output is passed to a spatial softmax layer [55]. The ”spa-
tial soft arg-max” layer produces the expected image-space positions of the
points of maximal activations of the features in the former convolutional
layer. This allows decoding of the relative position of salient objects in the
scene. The spatial softmax layer is succeeded by two fully-connected layers410

of 2048 and 32 neurons. The neurons in the last layer represent the com-
pact low-dimensional representation of the task execution, which we will use
downstream to generate a task progression metric. We train the network for
500 epochs using Adam optimization. Other fixed parameters during our
experiments are given in Table 1.415

To tune the hyperparameters of our method, we split the dataset into
a training, validation and test set. We define the split at the level of the
demonstration and not at the collective set frames. This means that a vali-
dation and test sample is a complete, novel example demonstration of folding
a piece of cloth. We define a range for each identified hyperparameter in420

Table 2. Then, we evaluate all possible combinations of the hyperparame-
ters using the semi-hard triplet loss, amount of semi-hard triplets and the
fraction of successful hard negatives. We explain these quantitative metrics
in the next paragraph. Finally, we select the set of hyperparameters that
performs best on these training metrics on the validation set. The test set425

is used for the subsequent steps of translating the learned embedding to a
scalar progression value. We provide the final hyperparameters used in our
experiments in Table 2.

Figure 5: Neural network architecture. We use a pre-trained DenseNet
backbone appended with four trainable convolutional layers. It is followed
by a spatial softmax layer, which produces the expected 2D coordinates of
the region of maximal activation in each channel of conv4. These coordinates
are manipulated by a fully connected layer, which is finally passed through
to the compressed embedding space.

In Figure 6, we show quantitative results of training the TCN. The loss
quickly and steadily improves, as visible in Subfigure 6a. This indicates that430

transfer learning from the DenseNet backbone advances smoothly. However,
the semi-hard triplet mining strategy presents more difficult training triplets
over time to the network. This might result in oscillating loss functions mak-
ing it necessary to monitor additional metrics. In particular, we monitor the
amount of semi-hard triplets still available in the batches and the percent-435

16

Table 1: Fixed settings during training of the TCN embedding.

Hyperparameter Value

Optimizer Adam
Weight initialization Glorot initialization
Epochs 500

Image size 224× 224 pixels
GPU 1 NVIDIA Quadro P6000

Table 2: Hyperparameters used for learning an embedding to extract task
progression metrics for folding clothing items.

Hyperparameter Best value Value range

Learning rate 0.001 [0.0001, 0.001, 0.01, 0.1]

Batch size 32 samples [16, 32, 64]

Embedding dimension 32 neurons [16, 32, 64]

Max temporal distance between anchor and positive 3 s 0.5 s, 1 s, 3 s
Margin 0.2 [0.1, 0.2, 0.4, 0.8]

NN backbone DenseNet VGG, ResNet, DenseNet

age of successful hard negatives. Subfigure 6b shows that pushing a new
semi-hard negative out of the margin does not lead to an increased amount
of new semi-hard triplets re-entering the margin. Subfigure 6c examines
which fraction of the anchor-hardest positive pairs are closer in embedding
space compared to the anchor-hardest negative pairs. This metric steadily440

increases, indicating that meaningful clusters are formed in embedding space
to temporally separate images from different viewpoints.

5.3 Task progression metrics
We align the resulting embeddings using DTW as described in Section 4.2.
We use a symmetric stepping pattern [46] with a maximum step size up445

to 10 frames, corresponding with approximately 1 second. Figure 7 shows
the task progression of a sample in the dataset. We annotated points in
the plot with the corresponding image in the video demonstration. This
shows that the task progression metric increases at meaningful moments in
the demonstration. For example, when the demonstrator grasps the shirt450

to unfold on the table, the progression score increases from 0% to 40%.
Afterwards, the progression scalar value stagnates because the demonstrator
slowly moves the right sleeve to the middle. Once the sleeve is folded,

17

(a) (b) (c)

Figure 6: Loss and training metrics of the TCN training process with semi-
hard triplet loss as optimization objective.

the progression indicator climbs. Next, the demonstrator grabs the left
part of the shirt relatively quickly and moves it to the centre. This action455

is reflected in the progression value raising more quickly compared to the
previous fold. Finally, the demonstrator receives maximum progression on
completely folding the shirt. We find these results to be consistent among
samples in the dataset. We provide videos of the task progression metric
of other samples on https://youtu.be/_HJhn8Hbv5s. The whole pipeline460

requires 63 ms to process a single frame, with the slowest step being the
alignment.

Figure 7: Task progression plot with corresponding video frames of
a single demonstration. Each image is annotated with what is happening
in the scene.

In conclusion, we find training of the embeddings in a self-supervised
manner to be stable and efficient by using a semi-hard triplet function loss
where we push out the easiest hard cases out of the margin first. Aligning465

the resulting embeddings with DTW on manually selected reference samples
and using the alignment to express task progression increases progression
scores on meaningful moments in the demonstration. This suggests that
the embeddings encode task-relevant features. We analyze to which extent
the embedding encodes important features for folding clothing in the next470

section.

18

https://youtu.be/_HJhn8Hbv5s

6 Discussion
In the previous section, we have shown that TCN embeddings can be tem-
porally aligned to extract useful task progression metrics. We now analyze
the embeddings for post hoc interpretability. The goal is to discover which475

semantics are learned from the input images. However, neural networks
lack decomposability into intuitive and understandable components. This
is why we leverage the following two methods to understand what the net-
work is encoding. First, we look at the semantic meaning of the embeddings
at multiple temporal levels in Subsection 6.1. Second, we employ a case-480

based reasoning approach to interpret the learned representations and run
robustness tests in Subsection 6.2.

6.1 Semantic Meaning of Learned TCN Embeddings
To discover the encoded semantics in the learned representations, we ex-
amine how the embedding progresses over time while linking it to what485

is happening in the scene. First, we examine how the embedding changes
during the progress of a demonstration. To make the visualization inter-
pretable, we project it to a lower dimension. Second, we examine whether
we can extract meaningful information when searching for clusters in latent
space.490

To qualitatively analyze the results of training the embedding, we project
the 32D embedding space to 2D using UMAP [56]. In Figure 8 we plotted
the resulting projection mapped to the corresponding frame at different time
shots. The time index is indicated with the colour of the scatter plot: from
magenta to red, yellow, green, and blue.495

A first, reoccurring observation is the projection of the embedding jumps
at meaningful moments during task progression. In Figure 8, we notice that
while grasping the shirt from the pile, the embedding stays in the first quad-
rant. Once the shirt is unfolded on the table, the embedding jumps to quad-
rant two. During the execution of the required folding steps, the embedding500

jumps to other locations. For example, the embedding gently transitions
from quadrant two to three when folding the right and left sleeves. This
suggests that the embedding can recognize different substeps in the folding
task. When performing the final fold, the embedding is positioned between
the first and fourth quadrant. We find this observation to be consistent505

among other samples. Consequently, the embedding at the start and the
end of a trial is very similar. The explanation can be found in the obser-
vations starting and ending with a pile of unfolded shirts on the right side
of the table and a pile of folded shirts on the left side. A similar start and
end encoding in embedding space imply that the network potentially has510

problems distinguishing the start and end of the trial from a single image
when there is no notion of memory.

19

A second observation is the embedding following a trajectory to go from
grasping a piece of unfolded clothing to completely folding it on the table.
Given that, in general, the third quadrant encodes folding the shirt’s sleeves,515

it is possible that folding methods that do not fold the sleeves will not be
assigned the correct progression score as there is no alignment available. In
other words, for the DTW alignment to work, there needs to be a trajectory
followed in embedding space in order to arrive at the solution. We explore
this in Subsection 6.2.520

Figure 8: 2D projection of the learned embedding. We annotate some
points in the quadrants with the corresponding images to offer insight in
to what is happening in the scene. Colors in the scatter plot indicate time
progression from magenta to yellow, green and finally to blue.

To further analyze whether the embedding can distinguish meaningful
moments during task execution, we generate clusters in the embedding hy-
perspace. We perform agglomerative clustering with ward linkage on each
demonstration separately. Because our data is temporally sorted, we set
the connectivity matrix as a square matrix with ones on the superdiagonal525

and subdiagonal, and zeros elsewhere. This way, we enforce the bottom-up
cluster formation to consider temporal neighbours, reflecting the temporal
ordering. We select five clusters to identify as they reflect the substeps in the
task: grasping, flatten, fold one side, fold another side, fold in the middle.
We visualize the results of the clustering in Figure 9. Here, we show the 2D530

projection of using UMAP on the embedding, with the colour representing
the cluster membership instead of the temporal dimension. Qualitatively,
we find the emergence of subtasks in the cluster membership when running
agglomerative clustering in embedding space. The task starts in quadrant
I in the projected embedding space. This is indicated with the red cluster535

membership. Once the demonstrator unfolds the shirt on the table, the clus-
ter membership switches to green while the embedding transitions towards

20

quadrant II. The same process repeats when transitioning between the other
subtasks. This indicates that the embedding encodes relevant aspects of the
task, which downstream algorithms can use. However, we have no guaran-540

tees that the network picks up other signals from the environment during
training. For example, the network might be encoding the position of the
hands, or the size of the shirt. We examine which features the network is
attending to in the following subsection.

Figure 9: Interpretation of embedding using agglomerative cluster-
ing. Colors in the scatterplot indicate cluster membership. One point in
the scatterplot represents an embedded video frame, projected onto a 2D
plane using UMAP. The line links images to the corresponding embedding.

6.2 Case-based examples for post hoc interpretability545

For the learned task progression metrics to be useful, they must be able to
capture and generalize to specific situations that arise during the execution
of the task, not seen in the training set. For example, a task executor can
be performing random manipulations without actually performing meaning-
ful contributions towards progressing the given task. This is also the case550

for learning purposes; many RL algorithms start with an exploration phase
in which the robot acts randomly. To research the generalizability of our
method, we employ a case-based approach in which we input certain scenar-
ios and qualitatively analyze the result of our pipeline. We first describe the
relevant scenario, followed by the resulting task progression scores, and offer555

insight into why a specific scenario succeeds or fails. Figure 10 and Figure 11
contains the visualizations of the cases we discuss below. We annotated the
plotted task progression with specific frames from the demonstration to ex-
plain changes in the assigned progression. Videos of these hold-out samples
are available at https://youtu.be/ZvK0pQWH8ec.560

21

https://youtu.be/ZvK0pQWH8ec

Change of environment with background distractions. Practical
reasons and safety concerns make it possible that workers perform the de-
signed process flow in another environment compared to the demonstrators.
To test whether the learned progression metric can cope with this, we set
up the folding table in a location not seen during training and fold cloth-565

ing while putting random objects on the table. The images corresponding
to the annotated parts of the plotted task progression in Figure 10a show
that adding distractor objects such as a safety helmet, a flashlight, and a
quadruped robot, do not prevent the learned task progression metric from
assigning a correct progression score. There are two potential reasons for570

this. First, the data is recorded in a public environment where distractions
are inherently present. Second, the TCNs are forced to attend high-level,
task-relevant features. This filters out distractions in the image.

Meaningful manipulations compared to random behavior. In both
process monitoring and scenarios where agents are learning to solve a task,575

non-meaningful manipulations in the process execution occur. Because fully
random behaviour is not present in the data provided by the crowdsourced
demonstrations, it is uncertain how the learned progression metric associate
this with process quality. We explore how the progression metric evolves
by first doing a meaningful manipulation of the shirt, followed by randomly580

moving the hands above the shirt. This experiment is displayed in Subfig-
ure 10b. We find that the progression metric correctly assigns an interme-
diate score on unfolding the shirt. For the subsequent random movement
of the arms of the demonstrator, no additional progress is made according
to the metric. In similar experiments where demonstrators move their arms585

without any shirts on the table, we noticed that the network tries to distil
meaningful manipulations. For example, a frequently reoccurring movement
is performing the final fold where demonstrators grab the shirt at the bottom
and fold it to the top. In some of those cases, we notice that the progression
score increases due to the trajectory of the hands being recognized. How-590

ever, the progression correctly drops again when the network detects that
there is no shirt being folded. We explore this further in the next paragraph.

Attention to the essence of the task. In the previous paragraph, we
examined the effect of random behaviour on the learned task progression
metric. Here we compare non-meaningful behaviour to meaningful manip-595

ulations to test to which extent the neural network is paying attention to
the essence of the task. We do this by setting up a scenario to test to which
extent the neural network looks at the hand trajectories while monitoring
the state of the textile. Concretely, we try to fool the network: we first
solve a subtask and then execute the required arm trajectories to solve the600

task but without touching the clothing. We hypothesize that in case the

22

embedding is solely looking at the executed trajectories and not the cloth-
ing, the assigned task progression will increase. The result in Subfigure 10c.
shows that the progression value increases when the shirt is unfolded. It is
followed by stagnation of the progression score because the demonstrator is605

not manipulating the clothing. This demonstrates that our method looks
at task-relevant features, like the state of the clothing, to indicate task pro-
gression. For RL purposes, this is relevant when compared to behavioural
cloning; our method searches for the essence of the task instead of imitating
end-effector trajectories.610

Different task execution speed. The resulting progression metric should
cope with different task execution speeds resulting from using different
demonstrating entities. Given our crowdsourced dataset, this issue is al-
ready present in the training data. It is solved by aligning the resulting
embedding time series with DTW. We verify that this is working as in-615

tended by performing the folds of a shirt at different speeds. We provide
the results of this experiment in Subfigure 10d. We label the start and end
of the folds in order to indicate the different speeds at which the task is
solved. For example, the first fold is executed rapidly, leading to a quick
increase in task progression values. Contrary, the second fold is executed620

by moving the right sleeve very slowly to the centre of the shirt. Once the
sleeve is folded, a sudden increase in task progression is given.

Different task executor morphology. Industrial processes can be per-
formed by any human actor or machine. In order for the learned progression
metric to be useful, it has to generalize across actors with different morpholo-625

gies. We test this by folding the shirt with two people, such that four arms
are manipulating the clothing. The results, visible in Subfigure 10e, show
that the resulting progression metric behaves correctly. This demonstrates
that our trained embedding is invariant to the actor executing the task.

Variations in task execution. Task progression metrics should cope630

with different variations in executing the task. We test this in multiple
ways: we fold the task by lying out the shirt diagonally, undo, and repeat
some of the substeps and doing excessive wrinkle flattening. We find that
the given progression value is correct and consistent in all these scenarios.
In particular, we examine the case in which a shirt is folded and then un-635

folded again. The unfolding is executed by the demonstrator and not by
playing the video in reverse. The resulting task progression, visible in Sub-
figure 10f, shows that the maximum progression is reached when the shirt
is folded. When the demonstrator starts undoing the fold step by step, the
task progression correctly drops. This hold-out sample demonstrates that640

our alignment step does not contain an upward drift. This is important as

23

the training data only exists of successful folds, leading to alignments that
primarily run from start to end of the anchor and demonstrator. Hence the
DTW step extracts useful information from the embedding to cope with
failing task executions.645

Generalization towards other folding methods. In extension to ex-
amining how well the learned task progression metric copes with variations
on task execution, we look at how well they generalize when unseen folding
methods are used. We test the case in which the demonstrator uses an al-
ternative, unseen folding method where folds are executed on the table and650

in the air. In Subfigure 11a, we find that the assigned progression increases
while folds are realized. We notice that the progression score suddenly drops
on the step unfolded square. By looking at the embeddings, as demonstrated
in Subsection 6.1, we find that is due to the embedding state transitioning
to the unfolded step. Afterwards, the progression correctly increases to the655

maximum level while performing the last folding steps. We also test the
case when folding only two steps instead of four. The results of this ex-
periment are visible in Subfigure 11b. In this case, the process monitoring
metric only detects the folded shirt very late in the folding process. The
explanation can be found in the training data: the experts have never seen660

folding solutions with four steps. Given that the alignment process expects
a certain trajectory to be followed in embedding space, the alignment fails.

Generalization towards other instances of the target object. We
introduce shirts with other colours, textures, and reflective material to inves-
tigate how well our method generalizes to other shirt instances. We provide665

an example demonstration of a shirt with reflective material in Subfigure 11c.
In this case, the learned process monitoring metric detects increasing pro-
gression on meaningful moments when solving the task. One instance in
which the progression metric did not react appropriately is when folding
tiny shirts, for example, in Subfigure 11d. When increasing the size of the670

shirt to normal proportions, the progression metric starts behaving appro-
priately. We hypothesize this is due to the embedding not reacting to very
small hand movements and changes in the shirt, which lead to small pixel
value changes in the image.

Task quality. We investigate to which degree the learned process moni-675

toring metric incorporates the quality of the end result. We do this by ex-
amining how the task progression evolves when small and large disruptions
are made in the resulting fold of the shirt. In Subfigure 11e, we disarrange
the end fold of the shirt considerably. This leads to the demonstrator not
achieving the maximum task progression at the end of the episode because680

the sleeves are partly hanging out of the shirt. However, in the experiment

24

visualized in Subfigure 11f, we apply a small perturbation of the folded shirt,
which is not picked up by the process monitoring metric. We find that a
rectangular folded shape with many wrinkles receives the same progression
score as a perfectly flattened one. This can potentially be solved by using685

cameras closer to the shirt, using depth information to incorporate wrinkles
in the embedding, or manually constructing triplets of end results with good
and bad flattening.

In conclusion, we find that our method captures meaningful events in the690

task by looking at relevant features in the scene. By examining the assigned
task progression values on the discussed hold-out samples, we show that the
learned process monitoring metric is invariant to the demonstrator’s mor-
phology, background scene, execution speed and distractions. Our method
is largely invariant to the shirt being manipulated, except that when the695

shirt gets too small, the resulting folds are not detected. Additionally, our
method is not fooled by performing the expected arm trajectories without
actually folding the shirt. We notice that the maximum progression value
achieved during a successful folding demonstration consistently corresponds
to the end-fold of the shirt. However, it is not possible to make meaningful700

comparisons in the end-quality of the fold of different demonstrations. We
find meaningful reactions to highly visible disruptions in the shirt, but not to
small wrinkles and small imperfections in the fold. In general, we find that
the learned process monitoring metric effectively captures task progression
and small degrees of output quality.705

7 Conclusions
Learning the intention of a task from example demonstrations is an impor-
tant step for process monitoring in manufacturing systems. In particular,
evaluating the progress of folding clothing requires dealing with an infinite
amount of states and occlusions caused by deformations. In this work, we710

proposed a method to encode task intent by assigning a progression value
during task execution. We do this by learning semantically relevant features
by using time as a self-supervisory signal on videos with task demonstrations
captured from multiple perspectives. We align the resulting embedding to
express task progression and task quality. We demonstrate the first results715

on expressing task progression for the challenging case of folding clothing.
We find that the process monitoring metric assigns correct progression values
on meaningful moments during task execution. With case-based examples,
we show that our method learns task progression metrics that are invariant
to noise, actor morphology and execution speed. An important characteris-720

tic is that our approach does not require labelling task progression of exist-
ing demonstrations manually. Therefore, our methodology circumvents the

25

(a)

(b)

(c)

(d)

(e)

(f)

Figure 10: Task progression plots and corresponding images of out-of-sample
cases to specifically test properties of the learned process monitoring metrics.

26

(a)

(b)

(c)

(d)

(e)

(f)

Figure 11: Task progression plots and corresponding images of out-of-sample
cases to specifically test properties of the learned process monitoring metrics.

27

need to engineer task progression metrics by learning the task intent from
existing task demonstrations. Additionally, our method can potentially be
used in learning-based systems where the notion of progression needs to be725

incorporated in the learning signal, such as the reward function in reinforce-
ment learning.

acknowledgements
This research is supported by the Research Foundation Flanders (FWO)
under Grant number 1S54220N and Ghent University BOF under Grant730

number 01D21220. We gratefully acknowledge the support of NVIDIA Cor-
poration with the donation of the Quadro P6000 GPU used for this research.

8 acknowledgements

References
[1] Shen Yin, Steven X. Ding, Xiaochen Xie, and Hao Luo. A review on735

basic data-driven approaches for industrial process monitoring. IEEE
Transactions on Industrial Electronics, 61(11):6418–6428, 2014.

[2] Zhiqiang Ge, Zhihuan Song, and Furong Gao. Review of recent research
on data-based process monitoring. Industrial & Engineering Chemistry
Research, 52(10):3543–3562, 2013.740

[3] Gian Luca Foresti and Felice Andrea Pellegrino. Automatic visual
recognition of deformable objects for grasping and manipulation. IEEE
Transactions on Systems, Man, and Cybernetics, Part C (Applications
and Reviews), 34(3):325–333, Aug 2004.

[4] Vittorio Gallese, Christian Keysers, and Giacomo Rizzolatti. A unify-745

ing view of the basis of social cognition. Trends in cognitive sciences,
8(9):396–403, 2004.

[5] Brenna D Argall, Sonia Chernova, Manuela Veloso, and Brett Brown-
ing. A survey of robot learning from demonstration. Robotics and
autonomous systems, 57(5):469–483, 2009.750

[6] Chrystopher L Nehaniv, Kerstin Dautenhahn, et al. The correspon-
dence problem. Imitation in animals and artifacts, 41, 2002.

[7] Pierre Sermanet, Corey Lynch, Yevgen Chebotar, Jasmine Hsu, Eric
Jang, Stefan Schaal, Sergey Levine, and Google Brain. Time-contrastive
networks: Self-supervised learning from video. In 2018 IEEE Interna-755

tional Conference on Robotics and Automation (ICRA), pages 1134–
1141. IEEE, 2018.

28

[8] Xue Z Wang. Data mining and knowledge discovery for process moni-
toring and control. Springer Science & Business Media, 2012.

[9] Duc T Pham and Ashraf A Afify. Machine-learning techniques and760

their applications in manufacturing. Proceedings of the Institution of
Mechanical Engineers, Part B: Journal of Engineering Manufacture,
219(5):395–412, 2005.

[10] Haisheng Li and Xuefeng Zhu. Application of support vector machine
method in prediction of kappa number of kraft pulping process. In765

Fifth World Congress on Intelligent Control and Automation (IEEE
Cat. No.04EX788), volume 4, pages 3325–3330 Vol.4, 2004.

[11] Rui Zhao, Ruqiang Yan, Zhenghua Chen, Kezhi Mao, Peng Wang, and
Robert X. Gao. Deep learning and its applications to machine health
monitoring. Mechanical Systems and Signal Processing, 115:213–237,770

2019.

[12] Long Wen, Xinyu Li, Liang Gao, and Yuyan Zhang. A new convolu-
tional neural network-based data-driven fault diagnosis method. IEEE
Transactions on Industrial Electronics, 65(7):5990–5998, 2018.

[13] Yuting Lyu, Junghui Chen, and Zhihuan Song. Image-based process775

monitoring using deep learning framework. Chemometrics and Intelli-
gent Laboratory Systems, 189:8–17, 2019.

[14] Olivier Janssens, Rik Van de Walle, Mia Loccufier, and Sofie
Van Hoecke. Deep learning for infrared thermal image based ma-
chine health monitoring. IEEE/ASME Transactions on Mechatronics,780

23(1):151–159, 2018.

[15] Yaguo Lei, Feng Jia, Jing Lin, Saibo Xing, and Steven X. Ding. An
intelligent fault diagnosis method using unsupervised feature learning
towards mechanical big data. IEEE Transactions on Industrial Elec-
tronics, 63(5):3137–3147, 2016.785

[16] Thorsten Wuest, Daniel Weimer, Christopher Irgens, and Klaus-Dieter
Thoben. Machine learning in manufacturing: advantages, challenges,
and applications. Production & Manufacturing Research, 4(1):23–45,
2016.

[17] Pilsung Kang, Dongil Kim, and Sungzoon Cho. Semi-supervised sup-790

port vector regression based on self-training with label uncertainty: An
application to virtual metrology in semiconductor manufacturing. Ex-
pert Systems with Applications, 51:85–106, 2016.

29

[18] Pankaj Malhotra, Vishnu Tv, Anusha Ramakrishnan, Gaurangi Anand,
Lovekesh Vig, Puneet Agarwal, and Gautam Shroff. Multi-sensor prog-795

nostics using an unsupervised health index based on lstm encoder-
decoder. 1st SIGKDD Workshop on Machine Learning for Prognostics
and Health Management, 08 2016.

[19] Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of im-
itation learning and structured prediction to no-regret online learning.800

In Proceedings of the fourteenth international conference on artificial
intelligence and statistics, pages 627–635, 2011.

[20] Andrew Y Ng, Stuart J Russell, et al. Algorithms for inverse reinforce-
ment learning. In Icml, volume 1, page 2, 2000.

[21] Chelsea Finn, Sergey Levine, and Pieter Abbeel. Guided cost learning:805

Deep inverse optimal control via policy optimization. In International
Conference on Machine Learning, pages 49–58, 2016.

[22] Jonathan Ho and Stefano Ermon. Generative adversarial imitation
learning. In Advances in neural information processing systems, pages
4565–4573, 2016.810

[23] Justin Fu, Katie Luo, and Sergey Levine. Learning robust rewards with
adverserial inverse reinforcement learning. In International Conference
on Learning Representations, 2018.

[24] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
BERT: pre-training of deep bidirectional transformers for language un-815

derstanding. In Jill Burstein, Christy Doran, and Thamar Solorio, edi-
tors, Proceedings of the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics: Human Language
Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7,
2019, Volume 1 (Long and Short Papers), pages 4171–4186. Associa-820

tion for Computational Linguistics, 2019.

[25] Richard Zhang, Phillip Isola, and Alexei A Efros. Colorful image col-
orization. In European conference on computer vision, pages 649–666.
Springer, 2016.

[26] Deepak Pathak, Philipp Krahenbuhl, Jeff Donahue, Trevor Darrell, and825

Alexei A Efros. Context encoders: Feature learning by inpainting. In
Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 2536–2544, 2016.

[27] Carl Doersch, Abhinav Gupta, and Alexei A Efros. Unsupervised visual
representation learning by context prediction. In Proceedings of the830

IEEE international conference on computer vision, pages 1422–1430,
2015.

30

[28] Ishan Misra, C. Lawrence Zitnick, and Martial Hebert. Shuffle and
Learn: Unsupervised Learning using Temporal Order Verification. In
ECCV, 2016.835

[29] Hsin-Ying Lee, Jia-Bin Huang, Maneesh Kumar Singh, and Ming-
Hsuan Yang. Unsupervised representation learning by sorting sequence.
In IEEE International Conference on Computer Vision, 2017.

[30] Basura Fernando, Hakan Bilen, Efstratios Gavves, and Stephen Gould.
Self-supervised video representation learning with odd-one-out net-840

works. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 3636–3645, 2017.

[31] Avi Singh, Larry Yang, Kristian Hartikainen, Chelsea Finn, and Sergey
Levine. End-to-end robotic reinforcement learning without reward en-
gineering. Robotics: Science and Systems, 2019.845

[32] Kristian Hartikainen, Xinyang Geng, Tuomas Haarnoja, and Sergey
Levine. Dynamical distance learning for semi-supervised and unsuper-
vised skill discovery. In International Conference on Learning Repre-
sentations, 2019.

[33] Suraj Nair, Mohammad Babaeizadeh, Chelsea Finn, Sergey Levine, and850

Vikash Kumar. Trass: Time reversal as self-supervision. In 2020 IEEE
International Conference on Robotics and Automation (ICRA), pages
115–121, 2020.

[34] Ashvin V Nair, Vitchyr Pong, Murtaza Dalal, Shikhar Bahl, Steven
Lin, and Sergey Levine. Visual reinforcement learning with imagined855

goals. In Advances in Neural Information Processing Systems, pages
9191–9200, 2018.

[35] Debidatta Dwibedi, Jonathan Tompson, Corey Lynch, and Pierre Ser-
manet. Learning actionable representations from visual observations.
In 2018 IEEE/RSJ International Conference on Intelligent Robots and860

Systems (IROS), pages 1577–1584. IEEE, 2018.

[36] Cory Myers, Lawrence Rabiner, and Aaron Rosenberg. Performance
tradeoffs in dynamic time warping algorithms for isolated word recog-
nition. IEEE Transactions on Acoustics, Speech, and Signal Processing,
28(6):623–635, 1980.865

[37] Sean L Seyler, Avishek Kumar, Michael F Thorpe, and Oliver Beck-
stein. Path similarity analysis: a method for quantifying macromolec-
ular pathways. PLoS Comput Biol, 11(10):e1004568, 2015.

31

[38] Inês P. Machado, A. Luísa Gomes, Hugo Gamboa, Vítor Paixão, and
Rui M. Costa. Human activity data discovery from triaxial accelerom-870

eter sensor: Non-supervised learning sensitivity to feature extraction
parametrization. Information Processing & Management, 51(2):204 –
214, 2015.

[39] Debidatta Dwibedi, Yusuf Aytar, Jonathan Tompson, Pierre Sermanet,
and Andrew Zisserman. Temporal cycle-consistency learning. In875

The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), June 2019.

[40] Richard Bellman and Robert Kalaba. On adaptive control processes.
IRE Transactions on Automatic Control, 4(2):1–9, 1959.

[41] Ana Kuzmanic and Vlasta Zanchi. Hand shape classification using dtw880

and lcss as similarity measures for vision-based gesture recognition sys-
tem. In EUROCON 2007 - The International Conference on ”Computer
as a Tool”, pages 264–269, 2007.

[42] Vit Niennattrakul and Chotirat Ann Ratanamahatana. On clustering
multimedia time series data using k-means and dynamic time warp-885

ing. In 2007 International Conference on Multimedia and Ubiquitous
Engineering (MUE’07), pages 733–738, 2007.

[43] Duarte Folgado, Marília Barandas, Ricardo Matias, Rodrigo Martins,
Miguel Carvalho, and Hugo Gamboa. Time alignment measurement for
time series. Pattern Recognition, 81:268 – 279, 2018.890

[44] Marcel Brass and Cecilia Heyes. Imitation: Is cognitive neuroscience
solving the correspondence problem? Trends in cognitive sciences,
9:489–95, 11 2005.

[45] Florian Schroff, Dmitry Kalenichenko, and James Philbin. Facenet: A
unified embedding for face recognition and clustering. In Proceedings of895

the IEEE conference on computer vision and pattern recognition, pages
815–823, 2015.

[46] Lawrence Rabiner and Biing-Hwang Juang. Fundamentals of Speech
Recognition. Prentice-Hall, Inc., USA, 1993.

[47] Paolo Tormene, Toni Giorgino, Silvana Quaglini, and Mario Stefanelli.900

Matching incomplete time series with dynamic time warping: an algo-
rithm and an application to post-stroke rehabilitation. Artificial Intel-
ligence in Medicine, 45(1):11 – 34, 2009.

[48] Christophe Leys, Christophe Ley, Olivier Klein, Philippe Bernard, and
Laurent Licata. Detecting outliers: Do not use standard deviation905

32

around the mean, use absolute deviation around the median. Journal
of Experimental Social Psychology, 49(4):764 – 766, 2013.

[49] Stephen Miller, Jur van den Berg, Mario Fritz, Trevor Darrell, Ken
Goldberg, and Pieter Abbeel. A geometric approach to robotic laundry
folding. The International Journal of Robotics Research, 31(2):249–267,910

2012.

[50] Andreas Doumanoglou, Jan Stria, Georgia Peleka, Ioannis Mariolis,
Vladimir Petrik, Andreas Kargakos, Libor Wagner, Václav Hlaváč, Tae-
Kyun Kim, and Sotiris Malassiotis. Folding clothes autonomously: A
complete pipeline. IEEE Transactions on Robotics, 32(6):1461–1478,915

Dec 2016.

[51] Andreas Verleysen, Thomas Holvoet, Remko Proesmans, Cedric
Den Haese, and Francis wyffels. Simpler learning of robotic manip-
ulation of clothing by utilizing diy smart textile technology. APPLIED
SCIENCES-BASEL, 10(12):10, 2020.920

[52] Andreas Verleysen, Matthijs Biondina, and Francis wyffels. Video
dataset of human demonstrations of folding clothing for robotic folding.
The International Journal of Robotics Research, 2020.

[53] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Wein-
berger. Densely connected convolutional networks. In 2017 IEEE Con-925

ference on Computer Vision and Pattern Recognition (CVPR), pages
2261–2269, 2017.

[54] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei.
ImageNet: A Large-Scale Hierarchical Image Database. In CVPR09,
2009.930

[55] Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. End-
to-end training of deep visuomotor policies. The Journal of Machine
Learning Research, 17(1):1334–1373, 2016.

[56] Leland McInnes, John Healy, Nathaniel Saul, and Lukas Großberger.
Umap: Uniform manifold approximation and projection. Journal of935

Open Source Software, 3(29):861, 2018.

33

	Introduction
	Related work
	Data-driven process monitoring in smart manufacturing systems
	Learning from demonstrations
	Inverse Reinforcement Learning
	Self-supervised learning
	Time series alignment

	Overview of the proposed framework
	Generating task progression metrics from multi-perspective camera images
	Learning Semantic Meaningful Embeddings using TCNs
	Aligning Expert Video Embeddings with Query Videos
	Extracting Task Progression from Embeddings

	Empirical results on folding clothing
	Folding from demonstrations
	Training results
	Task progression metrics

	Discussion
	Semantic Meaning of Learned TCN Embeddings
	Case-based examples for post hoc interpretability

	Conclusions
	acknowledgements

