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Abstract
Indoor human activity recognition is actively studied as part of creating various intelligent systems with applications in

smart home and office, smart health, internet of things, etc. Intrusive devices such as video cameras or sensors attached to

the human body are often used to realize human activity recognition. These solutions, however, lead to various privacy

issues. On the other hand, radar sensors are privacy-preserving and provide a lot of information about the subject such as

speed, distance, range, and angle. Moreover, radar sensors can sense through the walls. In this respect, we investigate the

use of radar data to achieve patient activity recognition. In particular, human activity data are collected from both an indoor

environment that replicates a hospital setting and a real-life hospital room using two high dimensional radar sensors. The

data are further fed to various supervised Machine Learning (ML) classification approaches. We investigate the robustness

and generalization capabilities of the ML approaches with respect to people’s age, radar sensor position, mobility aids and

environments. The results show promising levels of accuracy. The Convolutional Neural Network (CNN) using Micro-

Doppler (MD) maps are more effective for generalizing across different environments and radar positions with 62% and

73% accuracy, respectively. The CNNs using Range-Doppler (RD) maps are more efficient than using MD maps within the

same environment in the case of distribution of age (87–95%), mobility aids (91–95%) and with different subjects

(93–95%). A subset of the data set is made publicly available.
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1 Introduction

Healthcare systems of today are facing two serious chal-

lenges: rapid growth of the elderly population and severe

shortage of medical practitioners [1]. Nowadays, patients

are increasingly monitored using devices ranging from

various medical sensors to typical Internet of Things (IoT)

sensors. Indoor human activity recognition is one of the

vital aspects of many intelligent surveillance systems

ranging from smart homes to patient health monitoring

tools. These surveillance systems commonly use video

cameras as their primary sensors. Video-based surveillance

systems have advantages such as wide viewing angles,

high-definition resolution, and cost-effective. However,

they show fundamental deficiencies such as being ineffi-

cient in poor weather and low-light environments, more

difficult to detect subjects with concealing clothes, etc.

Moreover, video-based sensors are intrusive, and may

not be a feasible choice where privacy plays an important

role. In contrast, radar devices can operate in a variety of

severe conditions such as rain, fog, dust, darkness, smoke,

and heat. Further, radar devices are privacy-preserving and

non-intrusive in their nature which facilitate their usage in

environments with a high privacy-demand. In addition,

they are capable of sensing through the walls or any other

obstructing elements [2]. These qualities of the radar sen-

sors make them a logical choice for indoor human activity

recognition where privacy plays a significant role. Hence,

modern and compact radar sensors are an interesting option

as an alternative to video cameras in many applications

today.

A radar device transmits an electromagnetic radio signal

in its line of sight that gets reflected by targets and objects.

The reflected signal is then captured by the receiver after a

certain time delay. The received signal is used to calculate
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the range and angle of the target. If the target is moving,

then the frequency shift in the received signal can be used

to estimate the speed of the moving object [3, 4]. If there

are many independently moving objects, the superposition

of all the reflected signals can be represented as a Micro-

Doppler (MD) signature [5].

In this paper, we present Machine Learning (ML)

approaches for indoor human activity recognition using

Frequency Modulation Continuous Wave (FMCW) radars

(77 GHz and 60 GHz) and a video camera, where the latter

is only used for validation and annotation. In particular, we

monitor patients or elderly people by recognizing different

activities in a hospital room by using the radar sensors in a

non-intrusive way. To the best of our knowledge, there are

no public radar data sets that contain activities recorded

simultaneously with multiple radar sensors in a hospital

room. The summary of the main contribution of our

research are as follows:

1 Data collection in hospital rooms: Two extensive data

sets are constructed which include indoor patient

activities from two different types of environments: a

synthetic hospital room and a real-life hospital room. A

part of these two data sets is made publicly available as

PARrad (Patient Activity Recognition with Radar

sensors)1, in order to allow benchmarking and to

facilitate further research activities in this direction.

2 Neural Network architecture: we propose a robust deep

learning architecture that is able to recognize patient

activities effectively. We compare against other super-

vised classification models such as Convolutional

Neural Network-Long Short-Term Memory (CNN-

LSTM), LSTM, Support Vector Machine (SVM),

Linear Discriminant Analysis (LDA), and Random

Forest (RF).

3 Effect of different ML models and radar data: we

compare the effectiveness of various ML models using

radar data from two different environments. We also

demonstrate how the ability of the ML models vary in

predicting patient activities when two different kinds of

data, known as MD signatures and Range-Doppler

(RD) maps, that originate from high dimensional

sensors are used as the input to ML models.

4 Robustness: we investigate the robustness with respect

to people’s age (adult vs elderly people), mobility aids

(without any aids vs with aids: walking stick and

walker), radar position (77 GHz vs 60 GHz radar

sensors) and environments (Hospital vs Homelab).

The rest of the paper is organised as follows: in Sect. 2, we

presented a brief overview on related work on indoor

human activity recognition with different sensors. In

Sects. 3 and 4, an overview of the utilised sensors and the

machine learning algorithms are presented, respectively. In

Sect. 5, our proposed approach is detailed and the experi-

mental setup used to validate our approach is discussed. In

Sect. 6 contains a detailed discussion of our experimental

results. Finally, in Sect. 7, we conclude our work and

provide potential directions for future research.

2 Background and related work

Human activity recognition is extensively investigated for

many intelligent systems such as smart homes and smart

health. [6]. Human activities range from simple to complex

movements such as using a single hand to open the door, or

running, that causes movement of legs, arms and the whole

body. In most of the applications, video cameras are

commonly used to monitor human activities. Starting from

motion detection to activity recognition, various neural

network models are investigated [7–10]. In [11], different

architectures of CNN are investigated to learn the spatial

and the temporal information from a large-scale video data

set. LSTM and feature pooling methods are presented in

[12] for better classification of lengthy video data sets. In

[13], Three Dimensional (3D)-CNN outperforms two

Dimensional (2D)-CNN in learning the spatio-temporal

features from videos. These research activities are followed

by an extensive study of human activity recognition with

deep learning [14–19].

The population of elderly people is significantly grow-

ing worldwide [1]. Elderly people or patients show decline

in day-to-day physical activities due to physical and mental

deterioration caused by ageing [20]. The safety of elderly

people can be improved by monitoring their daily activity

patterns. The monitoring process may enable us to identify

the occurrence of critical life changing events. Over the last

few years, extensive research efforts are carried out on a

wide variety of devices to monitor elderly people and to

enhance their independent life. Sian Lun Lau et al. [21]

created a movement recognition assistant named CARMA

powered by smartphone with a built-in accelerometer and

ML methods like Decision Tree, K- nearest neighbours,

etc. In [22], accelerometer and decision tree algorithms are

used to detect 10 falling movements of Transient Ischemic

Attack patients. The authors used IoT technology that

notifies the patients family to take immediate action if the

patient has fallen. Lisa Schrader et al. [23] investigated the

changes in physical activities of elderly people and patients

by creating a data repository of various activities under

different environmental conditions using various wearable

and ambient sensors. The authors used RF algorithms to

recognize the activity patterns. In the health care sector,

1 The data set is publicly available at: https://www.imec-int.com/en/

PARrad.
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various sensors and methods are investigated to advance

the healthcare services which aim to provide support to

patients and elderly people [24–28].

In recent years, the use of non-intrusive and non-wear-

able devices for human activity recognition is explored.

Unlike cameras or wearable sensors, radars ensure comfort

by their contact-less and non-invasive properties (i.e.,

people do not need to wear, interact or carry radar sensors).

Hence, radar devices are often preferred in intelligent

surveillance systems where privacy is an important factor

(e.g., indoors, hospital rooms, etc.) [29–34]. Google

designed a mm-wave radar system Soli and used signal

processing and machine learning techniques to recognize

finger gestures [35, 36]. Baptist Vandersmissen et al. [37]

used high dimensional sensors (77 GHz FMCW radar and

camera) to recognize various human gestures and events.

As part of the work, the authors created two data sets with

6 different types of gestures and events. This research

shows that a sensor fusion approach with CNN-RD con-

sidering radar RD maps is a promising approach for human

activity recognition.

When it comes to the healthcare sector, radar sensors are

essentially used in monitoring daily physical activities

[38, 39] and vital signs [40] in order to improve the

physical and the cognitive well-being of patients. Fran-

cesco Fioranelli et al. [41] use radar sensors for multiple

purposes in order to fulfil the needs of the healthcare sys-

tem. Radars are often investigated for activity recognition

to ensure immediate medical treatment for patients in case

of life changing events [42–44]. In [45], radar data with

both range and velocity information are used for fall

detection. Li et al. [46] focus on both magnetic and radar

sensors to monitor 10 different daily activities of 20 sub-

jects and next, various classification algorithms are used to

achieve both fall detection and activity classification.

Mu Jia et al. [47] explore the robustness of different

ML algorithms (SVM, Stacked AutoEncoder (SAE) and

CNN) for recognizing 6 different human activities (using a

FMCW radar operating at 5.8 GHz with 400 MHz band-

width and 1ms chirp duration [38, 48]). Besides, RD and

MD maps, 2 more features are extracted from the radar

data: a phase diagram and a cadence velocity diagram. The

classification accuracy of over 96% is achieved by the

feature fusion of handcrafted features and CNN features

(obtained from MD input).

There are existing radar data sets which are publicly

available. The ‘‘Radar signatures of human activities’’ data

set contains 6 different indoor human activities (walking,

sitting down, standing up, pick up an object, drink water

and fall) performed by several people at different locations

(collected with a 5.8 GHz FMCW radar) [38, 48]. A ‘‘Dop-

NET radar micro-Doppler’’

database is introduced by the UCL Radar Research

Group, where the data set contains 4 different hand ges-

tures (swipe, wave, pinch and click) recorded with a

24 GHz FMCW radar [49]. The ‘‘Human Activity Recog-

nition with a Radar’’ (HARrad) data set with 6 different

types of hand gestures and indoor human activities (col-

lected using a 77 GHz FMCW radar) is mentioned in [37].

The ‘‘Indoor person identification with a Radar’’ (IDRad)

data set contains 150 min of MD signatures of walking

activity (collected using a 77 GHz FMCW radar) per-

formed by 5 subjects [50].

Most of the above mentioned research works share that

the experiments are mostly conducted in well-controlled

environments. The data sets in our work are more specific

to the patient activities in a hospital room as compared to

many of the publicly available data sets. Moreover, the

activities in one of our data sets are collected in a real

hospital environment (which is a less controlled setting).

The two high dimensional FMCW radar sensors are higher

in frequency (77 GHz and 60 GHz), bandwidth

(1.536 GHz) and range resolution (9.77 cm) (see Table 1)

as compared to other public data sets. Moreover, we use

two different radar sensors to investigate the robustness of

ML approaches with respect to different radar positions.

Furthermore, the human activities are focused on patient

activities with mobility aids (walking stick and walker) in

the hospital room and we include fine-grained small motion

activities (i.e., bed activities).

3 Radar sensors fundamentals

The Texas Instruments (TI) Millimeter (Mm) Wave

FMCW radars set up in Multiple Input Multiple Output

(MIMO) mode are used [4]. In particular, the xWR14xx

(77 GHz) and xWR68xx (60 GHz) sensors, originally

developed for the automotive sector. These radars have the

added advantage of exhibiting high power efficiency while

at the same time being able to be produced at low-cost.

However, the high power efficiency comes at the cost of

having an inferior Signal to Noise Ratio (SNR) [51] that

often poses significant challenges in analysing the data.

The FMCW radar is an active sensor that continuously

emits electromagnetic signals through a transmitting

antennas which gets reflected by the target and captured by

an array of receiving antennas [3, 4]. Essential information

about the targets (such as range, angle, and speed) are then

extracted from the reflections based on the time delay or

phase shift (i.e., the Doppler effect [52]). The RD maps,

which give information on the range and the velocity of the

target, are generated by applying the 2D Fourier transforms

on the reflected signals [5]. A MD signature is obtained

from RD maps by summarizing over the range dimension
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and concatenating over the time dimension. Figure 1 shows

examples of MD signatures and RD maps of different

activities. These activities are performed by the patients in

a hospital room which are recorded by the sensors

employed in this work. Moreover, we used the video sensor

for the sole purpose of validation and annotation.

4 Machine learning algorithms

We focus on Deep Convolutional Neural Networks

(DCNNs), and we compare their performance with other

deep learning and traditional modeling pipelines (i.e.,

LSTM, CNN-LSTM, SVM [53], LDA and RF [54] clas-

sifiers). Figure 8 shows our neural network architectures

which are described in Sect. 5.3.1.

A DCNN is composed of various components such as

convolutional layers, activation functions, and pooling

layers. The architecture of a given DCNN is decided by the

way its components are interconnected. Through the con-

volutional process, see Fig. 2, in each layer multiple con-

volutional filters work in parallel for feature mapping

which refers to the idea that each convolutional filter can

be trained to search for different features in an spectrogram

or image, which can then be used in the classification

process [55]. Hence, each convolution filter is a specific

feature detector. The nonlinear activation function per-

formed on the output of a convolution filter enables a

nonlinear transformation of the data which helps more

easily to discriminate among classes, i.e., it represents the

nonlinear connection between inputs and outputs. There are

many activation functions in use such as sigmoid, Expo-

nential Linear Unit (ELU), and Rectifier Linear Units

(ReLU) [56].

Using ReLU and ELU activation function was shown to

solve the vanishing gradient problem [57, 58]. The next

component pooling layer is another sliding window type

technique which reduces data dimensions by down sam-

pling the image, which enables the final prediction to be

more robust to noise. The pooling can be performed by

choosing either maximum value (max pooling) or mean

value (average pooling). The most common type of pooling

is max pooling which applies the max() function over the

window contents as shown in Fig. 3. In addition, dropout is

used as a regularization scheme, to avoid overfitting.

Finally, we have a fully connected layer which can be

thought of as a standard classifier attached to the output of

the network to make predictions.

5 Methodology

The main objective of this research work is to recognize

various activities performed by persons in indoor envi-

ronments using FMCW radar sensors. Figure 4 shows the

schematic overview of the proposed approach. The DCNNs

are used to automatically recognize various human activi-

ties in hospital rooms. In this respect, two data sets are

created using two high dimensional radar sensors with

separate nominal frequencies. The data sets contain 21859

(time-series) samples for 10 activities of 29 subjects. The

data collection is carried out in two environments: a syn-

thetic hospital room and a real-life hospital room. In par-

ticular, we address the following key areas:

1 The effect of using various forms of data emanating

from the radar sensors on the accuracy of the ML

models built with the proposed DCNN architectures.

2 The robustness with respect to different environments,

people’s age, mobility aids and radar position.

Table 1 TI MmWave FMCW radar configuration recording

parameters

Radar-1 Radar-2

Device

Device type xWR14xx xWR68xx

Lower frequency 77 GHz 60 GHz

Maximum bandwidth 4 GHz 4 GHz

Max. number of Rx 4 4

Max. number of Tx 3 3

Configured parameters

Centre frequency 77.89 GHz 61.14 GHz

Sampling frequency 5.00 MHz 5.00 MHz

Radar bandwidth 1.536 GHz 1.536 GHz

Data bandwidth 134 Mb/s 134 Mb/s

Chirp period 8e-05 s 8e-05 s

Chirp loops 128 128

Frame period 90.0 ms 90.0 ms

Frame rate 11.1 fps 11.1 fps

Frame gap 59.3 ms 59.3 ms

Frequency slope 30 30

Receiving antennas (Rx) 4 4

Transmitting antennas (Tx) 3 3

Range bins 93 93

Doppler bins 128 128

Max. velocity 4.01 m/s 5.11 m/s

Velocity resolution 0.06 m/s 0.08 m/s

Max. range 22.50 m 22.50 m

Range resolution 9.77 cm 9.77 cm

MIMO mode Yes Yes
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5.1 Experimental setup

5.1.1 Data set

Data collection is performed in two different environments:

Homelab and Hospital. Both environments are about 30

m2 (Fig. 5). As discussed earlier, we are monitoring the

patients in the hospital room by recognizing different

activities in an non-intrusive way and ensuring patient

comfort. For this reason, we collect data for different

patient activities with two different FMCW radar devices

and a webcam, in two separate environments.

Fig. 1 Radar data of different activities labelled as: walk to room, sit down on chair, get in bed, walk to bed, sit down on bed, fall on the floor and

roll in bed. In a a video recording, b and c related radar recording: Range-Doppler (RD) maps and Micro-Doppler(MD) signatures respectively

Fig. 2 Example of a two-dimensional convolutional operation. A

2� 2-sized kernel is used to perform convolution on a 3� 4-sized

input with zero padding to produce an output feature map. The

operation of each element is shown in the resulting output feature map

Fig. 3 Example of a two-dimensional max pooling operation with

size 2� 2 filters and stride 2. A 4� 4-dimensional feature map is

reduced to a 2� 2-dimensional feature map by selecting the

maximum value of each 2� 2 subregion
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The intention of using more than one radar sensor is to

improve the robustness of the model by placing each radar

in different positions. In addition to providing more data,

placing radars at different locations enables us to recognize

the same set of activities with different values of radar data.

The detailed radar recording parameters that are used for

the data collection in both environments are given in

Table 1.

In order to easily record the activities, we have provided

the subjects with audio of the activity to be performed, with

a display mentioning the current activity (þ a timer), and

also the next upcoming activity, so that the subject clearly

knows which particular activity to perform at any time. We

have recorded 14 different activities, summarized in

Table 2. We group similar activities as shown below:

• walk to bed, walk to room, walk to chair –[walk

• sit down on bed, sit down on chair –[ sit down

• stand up from bed, stand up from chair –[ stand up

Fig. 4 Schematic overview of the proposed approach for the Homelab and the Hospital data sets

Fig. 5 Data collection: The 77 GHz radar is placed near the ceiling,

while the 60 GHz radar and webcam are placed at eye-level height on

a tripod

Table 2 Overview of 14 different patient activities in both Homelab

and Hospital data sets

Total samples Avg. time (s)

In-room activities

Walk to room 2053 4.0

Fall on the floor 1782 3.6

Stand up from the floor 1772 4.0

Walk to chair 2102 3.4

Sit down on chair 1854 2.5

Stand up from chair 1820 2.5

Walk to bed 2384 4.1

Sit down on bed 921 3.0

Stand up from bed 895 2.5

Bed activities

Get in bed 1300 3.5

Lie in bed 1153 2.6

Roll in bed 1148 5.0

Sit in bed 1145 2.5

Get out bed 1240 3.6
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Thus, the 14 original activities are grouped into 10

different classes of activities. Moreover, the 10 classes of

activities are consecutive as depicted in Fig. 6. For

instance,‘‘walk –[walk, fall on the floor, sit down, get in

bed’’represents the following consecutive actions: if the

current activity of a person is walking then the next activity

can be either walk or fall on the floor or sit down or get in

bed.

5.1.2 Homelab environment

Homelab2 is a unique standalone residential test environ-

ment of 240 square meters for IoT applications. We have

modified one of the rooms of the Homelab in such a way

that it acts as a hospital room. This synthetic hospital room

consists of a hospital bed, a chair, two tables, a cupboard

and a bathroom. We have recorded 9 different subjects

which involve all adult people. The 77 GHz radar sensor

was fixed near the ceiling in one corner of the room, the 60

GHz radar sensor and the webcam are positioned at eye-

level height. All the three sensors are placed on the same

side of the room as shown in Fig. 5. Moreover, the sensors

are directed towards the main entrance of the room so that

they cover the whole room. The recording was done in four

sessions and the duration of each session was 10 minutes

with randomly chosen activities. Thus, each subject

recorded continuously in these four sessions, during which

they performed all the specified actions.

5.1.3 Hospital environment

A real-life hospital room in a local hospital is used. The

data set is composed of both elderly and adult people (i.e.,

synthetic patients) performing different activities. We have

recorded 20 different subjects. As shown in Fig. 5 , the two

radar sensors are placed at two different corners with the

radar 77 GHz almost near the ceiling and the radar 60 GHz

at slightly above average eye-level height whereas the

webcam is placed near the 77 GHz radar. In this environ-

ment, we have a hospital bed, 3 chairs, other hospital

related materials, cupboards, a table, a sink room and a

bathroom. Similar to Homelab data collection, the

recording is done in four sessions with each 10 min random

activities. For each session we changed the position of

chairs and out of four sessions, two sessions involve

activities using mobility aids: walking stick and walker.

Moreover, we have done some manual cleanup of the data

as we encountered the following challenges in this

environment:

• Some elderly people could not perform‘‘fall on the

floor’’and‘‘ stand up from the floor’’activities (see

Table 11).

• Some activities had a duration of less than 2 s.

The activities involved in the above mentioned cases are

removed from the final data sets. Therefore, the final data

sets contain 21569 activities, subdivided into 8210

Homelab activities and 13359 Hospital activities. The data

sets thus contain a total of 22 h of data which is effectively

annotated and distributed over 10 activity classes. Fur-

thermore, the speeds of the subjects are different for dif-

ferent activities as it involves adult and elderly people. As

the activities are randomly generated for each section and

for each subject, the number of samples is unequal for

different activities. In Hospital data, we have adult people,

elderly people, with mobility aids (walking stick and

walker), without mobility aids and combination of all of

them. Whereas, in Homelab data, we have only adult

people without mobility aids. An overview of the recorded

activities in Homelab and Hospital rooms is given in

Table 3. Tables 10 and 11 list some of the basic informa-

tion of the participants in Homelab and Hospital data sets,

respectively. All of our participants are aged between 24

and 90 years. Their heights and weights range from 155 to

185 cm and from 47 to 95 kg, respectively.

5.2 Pre-processing

5.2.1 Range and Doppler dimensions

The RD map is obtained by applying the 2D Fourier

transform to the raw radar data, and then converting the

absolute values of the RD signal to decibels (dB). The RD

map is three dimensional, which contains range, Doppler

and time units, with 93 range bins (0.9 to 9.9 m), and 128

Doppler bins (- 4.0 to ?3.9 m/s). The MD is the sum-

mation of the RD maps over the range dimension. We

Fig. 6 Different activities performed in hospital room and the

connectivity between them

2 https://www.ugent.be/ea/idlab/en/research/research-infrastructure/

homelab.htm.
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reduced the dimensions of each MD signatures and RD

maps to 98 and 63x98 respectively.

In the Doppler dimension, we remove both zero-Doppler

bins and outer-Doppler bins. The three middle Doppler

bins which represent all static objects with zero velocity are

removed without loss of any pertinent information [50]. In

case of the outer-Doppler bins we empirically decided to

remove the 13 Doppler bins on one side and 14 Doppler

bins on the other side, corresponding to velocity ranging

from - 3.1 to ?3.1 m/s. In a similar way, in the range

dimension, we observe that the performed activities of the

subjects are up to 7 m as per the size of the room in both

the environments. For this reason, we remove the outer

range bins and thus eliminating any external noise signals

that are not in the range of a hospital room. At the end, we

have 98 Doppler and 63 range bins as shown in Fig. 7.

5.2.2 Sample length

A sample is a set of consecutive frames which contains the

complete activity of the target. The recordings are labelled

by segmenting the radar frames based on the activity audio

and the radar timestamps. Additionally, we use video data

timestamps for validating the annotation. The optimal

sample length is 40 frames, i.e., 3.7 seconds, based on

performing analysis on different sample lengths. Moreover,

we also consider a padding where if the sample length is

less than a specified k seconds, we pad with the last frame

to fill the rest of the frames. The range, Doppler and time

dimensions are given in Table 4.

5.3 Modelling

5.3.1 Models

We create two neural network architectures using the

PyTorch3 machine learning framework. One which accepts

the 2D-MD signatures, and the other which accepts the 3D-

RD maps. Each network consists of convolutional layers,

activation function, pooling and fully connected layers.

The architecture CNN-MD takes two-dimensional MD

signatures as input data. We used four convolution layers.

The CNN-MD network extracts features from the Doppler

and the time dimensions by using the two-dimensional

convolutional layers with 8, 16, 32 and 64 convolutional

Table 3 The number of samples for each activity in different data types

Data types Activities

Walk Sit

down

Stand

up

Fall on the

floor

Stand up from

the floor

Get in

bed

Lie in

bed

Roll in

bed

Sit in

bed

Get out

bed

Total

Homelab 2412 966 932 690 690 548 490 494 476 512 8210

Hospital 4127 1809 1783 1092 1082 752 663 654 669 728 13,359

Hospital without any

aids

2213 1013 949 570 562 406 371 368 363 389 7204

Hospital walking stick 1088 486 482 296 292 196 166 152 166 190 3514

Hospital walker 1052 460 452 278 278 188 170 168 172 182 3400

Hospital elderly

people

1646 726 718 390 386 292 238 258 258 282 5194

Hospital adult people 2481 1083 1065 702 696 460 425 396 411 446 8165

Hospital adult without

any aids

1111 475 467 314 310 206 197 196 185 198 3659

Hospital radar 77 GHz 2047 896 883 541 536 374 329 325 332 362 6625

Hospital radar 60 GHz 2080 913 900 551 546 378 334 329 337 366 6734

Fig. 7 Visualization of an example RD map fed as input to our model:

a Original RD map with 93 range and 128 Doppler bins, b Remove

static (centre) Doppler bins, c Remove range bins, and d Remove

outer Doppler bins

3 https://pytorch.org.
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filters, respectively. Further, to reduce the input data

dimensions, each convolutional layer is followed by a non-

overlapping max pooling layer of size 2x2. Finally, pre-

dictions are made by the network based on two fully

connected layers of size 128 and 6, respectively.

To prevent the network from overfitting, dropout is

performed at an increasing rate to all the layers except the

last fully connected layer. The activation function ELU is

used to introduce a nonlinearity operation which is often

followed by convolutional and fully connected layers. ELU

is defined as follows:

ELU : fðx; aÞ ¼
x; if x[ 0

a � ðex � 1Þ; if x� 0

�

with x 2 R represents the input and a a predefined

parameter greater than zero. The softmax nonlinearity is

used by the last fully connected layer to get probabilities

for each target class. The architecture CNN-RD takes

three-dimensional RD maps as input. The CNN-RD is

similar to CNN-MD network, with one dimension more for

both the convolutional and pooling layers. Both network

architectures are shown in Fig. 8. We adapt other deep

learning architectures from [37]. In total, we compare

against four additional architectures: (i) LSTM-MD and

CNN-LSTM-MD networks which take MD signatures as

input and (ii) LSTM-RD and CNN-LSTM-RD networks

which take RD maps as input. The other ML algorithms we

have used in this research work are SVM, LDA and RF,

from the Scikit-learn4 machine learning library.

5.4 Learning

The neural network models are trained for 2000 epochs

with a batch size of 256, making sure the classes are bal-

anced for each mini-batch. It takes around 2 hours (MD)

and 8 hours (RD) on average to converge (using a GeForce

GTX 1080, TITAN X and GeForce RTX 2080 Ti graphic

cards), but it always depends on the data we are using to

train the model. For the given data sets, 80% of the data of

each target were used as training data set, and the other

20% were used as validation data set. The test data set

varies according to what type of generalization we are

testing (mobility aid, environment, etc.). The learning

parameters used for the deep learning models are given in

Table 4. For robust modelling and data diversity, in the

training phase, we have randomly selected the frames of a

sample for the specified sample time range of k seconds. In

the training, validation and test phase, if the sample is less

than this time range, we performed padding with the last

frame. The details of the parameters of SVM, RF and LDA

used in both training and testing phase are given in

Table 5.

5.5 Evaluation

We evaluate the trained model by computing the error rate

that is calculating the wrongly classified samples out of the

total test samples. We consider two approaches for pre-

diction of the activity of the sample: Normal (N) prediction

and Ensemble (E) prediction. In the normal case, a sample

of k seconds is cropped from the middle frames of the

Fig. 8 Convolutional neural network (CNN-MD and CNN-RD)

architectures

4 https://scikit-learn.org.

Table 4 Learning parameters of the deep learning models: convolu-

tional neural network (CNN), long short-term memory (LSTM) and

CNN-LSTM

Parameters Values

Sample length k ¼ 3:7 s � 40 frames

Range dimension 7 m � 63 bins

Doppler dimension �3:1 to þ3:1 m/s � 98 bins

Epochs 2000

Batch size 256

Optimizer Adam optimizer

Learning rate 10�3

Loss function Cross-entropy loss

Mini-batches 64

Normalization Mean and standard deviation

Padding approach With last frame
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whole time range. In the ensemble case, we aggregate

many normal predictions using a majority vote. Similar to

the training process, we extended each sample that is

shorter than this time range, with the padding approach.

The generalization of the models are evaluated in a strat-

ified leave-one-out approach, where we use the following

test set and the model is each time trained on the remaining

data:

1 People’s age and mobility

• Adult people and elderly people

2 Mobility aids

• With mobility aids (walking stick and walker)

• Without any aids

3 Environments

• Hospital and Homelab

4 Subjects

• Leave-five-subjects out

5 Radars

• 77 GHz and 60 GHz

For all results, the performance metrics we consider are

precision, recall, f1-score and accuracy.

6 Results

6.1 People’s age and mobility aids (Hospital)

The results are shown in Table 6 Case-1. The proposed

models trained with adult people data and tested on elderly

people data obtain an accuracy of 92% for the CNN-MD

network and 95% for the CNN-RD network. The vice versa

of this case gave a model performance of 80% and 87%

accuracy for the CNN-MD and the CNN-RD networks,

respectively. The reduction of model performance can be

explained by the data set of the elderly people being

smaller than the adult people data set. Similarly, the model

trained without mobility aids data and tested on walking

stick and walker data results in a high performance of 95%

and 91% accuracy for the CNN-RD network, respectively.

Alternatively, testing on adult people data and without

mobility aids data exhibit similar accuracy levels. The

other ML algorithms SVM, LDA and RF have results that

correlate with the findings above, but are clearly lower than

the CNN models. For all these cases, we conclude that the

CNN-RD network is the best performing setup, with both

range and Doppler features (RD maps) as input.

6.2 Environments (Hospital and Homelab)

The results of all the algorithms are given in Table 6 Case-

2. The Homelab data set contains only adult people without

mobility aids samples (as discussed in Sect. 5.1.1). The

radar-based models, CNN-MD and CNN-RD result in an

accuracy of 62% and 45%, respectively.

6.3 Subjects (leave-five-subjects-out)

We discuss the results for 4-fold cross validation over 20

subjects. The confusion matrix of the CNN-RD network

are given in Table 7. The results for each fold with dif-

ferent performance metrics are detailed in Table 8, which

shows that the new subjects activities are predicted by

models with an average accuracy of 89% (CNN-MD) and

95% (CNN-RD). The results for other ML algorithms are

given in Table 9.

6.4 Radars (77 GHz and 60 GHz)

Finally, we show the results for generalization between the

two radars considered in this work. While we expect the

frequency difference to have little effect, the position of the

radars could matter greatly for the model robustness. The

models trained on Hospital radar 77 GHz samples and

tested on Hospital radar 60 GHz samples obtained on

Table 5 Hyperparameters of the support vector machine (SVM),

linear discriminant analysis (LDA) and random forest (RF) models

Algorithm Parameters

SVM Optimization: grid search CV

Regularization C: [0.1, 1, 10, 100]

Gamma MD: [0.001, 0.01, 0.1]

Gamma RD: [0.000001, 0.000004, 0.00001]

Kernel: radial basis function (rbf)

Class weight: balanced

Cross validation (CV): 5 folds

All other parameters: default

LDA Solver: singular value decomposition (svd)

All other parameters: default

RF Optimization: grid search CV

Max features: auto

Bootstrap: True

Class weight: balanced

Cross validation (CV): 5 folds

Max depth: [30, 40, 50, 60, 70, 80]

Min samples leaf: [3, 4, 5]

Min samples split: [8, 10, 12]

Estimators: [500, 1000, 1500, 2000]

All other parameters: default
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accuracy of 73% for CNN-MD and 66% for CNN-RD. All

the results for this case are shown in Table 6 Case-3.

6.5 Comparison with other deep learning
approaches

The results of the LSTMs and the CNN-LSTMs for all the

different cases are given in Tables 6 and 9. Based on the

results, we observe that the impact of both MD and RD in

the LSTM and the CNN-LSTM models are similar to the

CNN models. Moreover, the performance of CNN-LSTM

with RD maps approaches our proposed CNN-RD network.

Furthermore, in general, CNN-LSTM networks perform

better than LSTM networks.

6.6 Final results

Based on the results of the different cases, we can clearly

see that the CNN models are the best performing compared

to other ML (LSTM, CNN-LSTM, SVM, LDA and RF)

algorithms. Similar results are observed in [47], where

CNNs with MD maps outperform SVM and SAE with 92%

accuracy, and 77% accuracy when generalizing to other

environments. In our work, we also investigated the use of

Table 6 Results of the model

performance in terms of

accuracy performance metrics

for Case-1: the combinations of

different data types in the

Hospital environment, Case-2:

model generalization

considering two different

environments and Case-3:

model generalization

considering two different radars

(77 GHz and 60 GHz) in the

Hospital environment, with

different models: Convolutional

Neural Network (CNN), Long

Short-Term Memory (LSTM),

CNN-LSTM, Support Vector

Machine (SVM), Random

Forest (RF), Linear

Discriminant Analysis (LDA)

and different radar input data:

2D input Micro-Doppler (MD)

signatures and 3D input Range-

Doppler (RD) maps and two

prediction approaches for the

CNN model: Normal (N) and

Ensemble (E) (in the ensemble

case 50 variants of samples are

considered)

Case-1

Model Train: without mobility aids Train: adult people

Test: walker Test: walking stick Test: elderly people

(N, E) (N, E) (N, E)

CNN-MD 0.77, 0.78 0.84, 0.85 0.91, 0.92

CNN-RD 0.90, 0.91 0.94, 0.95 0.95, 0.95

LSTM-MD 0.70, 0.72 0.78, 0.80 0.88, 0.88

LSTM-RD 0.82, 0.84 0.86, 0.87 0.91, 0.91

CNN-LSTM-MD 0.75, 0.77 0.82, 0.83 0.88, 0.89

CNN-LSTM-RD 0.87, 0.89 0.92, 0.93 0.93, 0.94

SVM-MD 0.66 0.73 0.81

SVM-RD 0.73 0.80 0.85

RF-MD 0.60 0.67 0.71

RF-RD 0.65 0.70 0.76

LDA-MD 0.30 0.31 0.39

LDA-RD 0.64 0.68 0.77

Case-2 Case-3

Model Train: Adult without mobility aids Train: 77 GHz radar

Test: Homelab Test: 60 GHz Radar

(N, E) (N, E)

CNN-MD 0.59, 0.62 0.71, 0.73

CNN-RD 0.44, 0.45 0.65, 0.66

LSTM-MD 0.60, 0.61 0.62, 0.63

LSTM-RD 0.22, 0.24 0.51, 0.51

CNN-LSTM-MD 0.54, 0.56 0.67, 0.69

CNN-LSTM-RD 0.42, 0.43 0.60, 0.60

SVM-MD 0.46 0.57

SVM-RD 0.27 0.54

RF-MD 0.42 0.54

RF-RD 0.32 0.55

LDA-MD 0.21 0.34

LDA-RD 0.23 0.49

The best model for each test set is highlighted in bold
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Table 7 The resulting confusion matrix for the Hospital data set after summing the confusion matrices of all splits of the leave-five-subjects-out

cross validation. The predictions are obtained by the CNN-RD radar-based network

Predicted label

Sit

down

Stand

up

Walk Fall on the

floor

Stand up from the

floor

Lie in

bed

Get in

bed

Roll in

bed

Get out

bed

Sit in

bed

True label

Sit down 1688 8 28 38 9 7 27 1 2 1

Stand up 25 1581 34 2 68 0 0 1 70 2

Walk 27 20 4052 13 13 0 1 0 1 0

Fall on the floor 19 0 14 1042 12 4 1 0 0 0

Stand up from the

floor

9 23 19 1 1020 1 1 1 5 2

Lie in bed 11 0 0 1 1 599 32 12 3 4

Get in bed 10 0 2 1 1 3 716 14 2 3

Roll in bed 1 0 2 0 3 9 7 523 3 8

Get out bed 3 31 1 0 0 1 1 3 679 9

Sit in bed 3 1 0 0 0 4 3 13 40 605

The number of correctly classified samples for each activity is highlighted in bold

Table 8 The results of leave-

five-subjects-out Cross

Validation (CV) for each fold

with performance metrics:

P(recision), R(ecall), F(1-score),

Mi(cro avg.), Ma(cro avg.),

W(eighted avg.) and A(ccuracy)

for the Hospital data set. The

predictions are obtained by the

CNN-MD and CNN-RD radar-

based networks with an

ensemble approach

Model Four-fold Performance metrics

Cross validation P.W R.W F.W P.Ma R.Ma F.Ma P.Mi R.Mi F.Mi A

CNN-MD Fold-1 0.90 0.90 0.90 0.86 0.88 0.87 0.90 0.90 0.90 0.90

Fold-2 0.92 0.91 0.91 0.90 0.90 0.90 0.91 0.91 0.91 0.91

Fold-3 0.86 0.86 0.86 0.83 0.83 0.83 0.86 0.86 0.86 0.86

Fold-4 0.90 0.89 0.89 0.84 0.89 0.86 0.89 0.89 0.89 0.89

CNN-RD Fold-1 0.94 0.94 0.94 0.92 0.94 0.93 0.94 0.94 0.94 0.94

Fold-2 0.96 0.96 0.96 0.95 0.95 0.95 0.96 0.96 0.96 0.96

Fold-3 0.93 0.93 0.93 0.92 0.90 0.91 0.93 0.93 0.93 0.93

Fold-4 0.95 0.95 0.95 0.94 0.94 0.94 0.95 0.95 0.95 0.95

The best model accuracy for each fold is highlighted in bold

Table 9 The results of leave-five-subjects-out Cross Validation (CV)

using the accuracy metric on the hospital data set. The following

models are included: Convolutional Neural Network (CNN), Long

Short-Term Memory (LSTM), CNN-LSTM, Support Vector Machine

(SVM), Random Forest (RF) and Linear Discriminant Analysis

(LDA). The deep learning models are using an ensemble approach for

the prediction.

Four-fold CV Different models accuracy

CNN LSTM CNN-LSTM SVM RF LDA

MD RD MD RD MD RD MD RD MD RD MD RD

Fold-1 0.90 0.94 0.85 0.92 0.86 0.94 0.76 0.82 0.67 0.61 0.43 0.79

Fold-2 0.91 0.96 0.88 0.93 0.89 0.94 0.72 0.77 0.68 0.64 0.40 0.75

Fold-3 0.86 0.93 0.86 0.90 0.86 0.93 0.71 0.77 0.64 0.59 0.43 0.74

Fold-4 0.89 0.95 0.87 0.94 0.88 0.95 0.73 0.81 0.69 0.65 0.44 0.78
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RD maps for improving the accuracy and the robustness of

the models. The results are qualitatively similar (CNN

using MD maps outperforms other methods) to [47]. In our

results, less sensitivity is observed to the presence or

absence of people of different ages (adult people and

elderly people) and in the use of mobility aids (with

mobility aids and without any aids in the training data set).

The MD signatures are more effective for generalizing

across different environments while the RD maps provide a

better performance within the same environment. This is

because the ability of the model to recognize the activities

is mainly based on the velocity/speed of the subjects for

each activity performed in the recording environment. In

different environments the range dimension is not very

useful, and no key discriminative factor, as the range of the

activities performed is different in different room setups.

Regarding the activities, we observe more confusion

among the bed activities and less confusion among the in-

room activities. The bed activities are slightly more diffi-

cult to recognize compared to other activities. Moreover,

the activities are generally better predicted by the models

with an ensemble approach.

7 Conclusions and future work

We proposed a novel approach towards automatic recog-

nition of indoor human activities, especially the activities

of patients in a hospital room, using various machine

learning algorithms and two different radar sensors. In this

respect, we collected novel data of patient activities in two

different environments. A subset of the data set is made

available to the scientific community to encourage further

extension of this work. We note that the model general-

ization is quite good between subjects but quite hard

between environments. The MD signature is slightly less

sensitive over different environments as the model can not

overfit on the range feature (which is significantly different

between environments). The RD maps are more effective

in a single environment as the range features enable the

detection of smaller motions.

In future research, we primarily focus on improving the

robustness and generalization of the model. Accordingly,

we investigate explainable AI, transfer learning and

domain adaptation methods, angle feature (as we suspect

angle is an important reason for sensitivity in different

environments) and sensor fusion with tracking features.

Appendix: Physical characteristics
of the participants involved in Homelab
and Hospital data sets.

See the Tables 10 and 11.

Table 10 Homelab data set: physical characteristics of the participants

Nature Participants

No. Gender Age Height (in cm) Weight (in kg) Mobility aids

Adult group 1 Female 31 155 47

Activities performed without any mobility aids

2 Male 30 170 70

3 Male 30 180 75

4 Female 28 178 56

5 Male 37 160 95

6 Male 33 174 70

7 Male 38 175 74

8 Male 27 185 70

9 Male 33 178 80
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