—_ Ghent University
[T}

GHENT
UNIVERSITY Department of Plant Biotechnology and

Faculty of Sciences

Bioinformatics

Applications of Network-based and Integrative Approaches in Plant Systems Biology

Toepassingen van Netwerkgebaseerde en Integratieve Methodes in de Planten Systeembiologie

By

Razgar Seyed Rahmani

Supervisors:
Prof. Kathleen Marchal
Dr. Giles Miclotte

A dissertation submitted to Ghent University in partial fulfilment of the requirements for the degree of Doctor of Science,
Bioinformatics

Academic year: 2021-2022

S FACULTY
& oF sciEnces






Acknowledgments

“If you want to lift yourself up, lift up someone else”
- Booker T. Washington

As a biotechnologist who pursued bioinformatics, my Ph.D. journey was full of challenges and
experiences. | owe my success in completing this challenging task to the many people who
helped me from the very beginning to the end. So, it is time to step back and acknowledge the
support of those who helped me and made this journey possible, memorable, and enjoyable.
First and foremost, I would like to express my appreciation to both my supervisors Prof.
Kathleen Marchal and Dr. Giles Miclotte for their consistent support and guidance. Thank you
both for all your constant encouragement, profound belief in my abilities, friendly meetings,
and personal support whenever I needed it. Your deep insights in this field were the fuel for my
inspiration and determination. I feel very lucky to have such kind and supportive mentors.

I am deeply indebted to both of my advisors from Iran: Prof. Seyed Abolghasem Mohammadi
and Prof. Mahmoud Toorchi, for introducing me to bioinformatics and for their constant
motivation and kind advice. Allow me to extend my special thanks to Prof. Mohammad
Moghadam and all other members of the Department of Plant Breeding and Biotechnology,
University of Tabriz, Iran, for all their kind help and motivation.

A significant part of this thesis is based on the collaborations with Wuhan Botanical Garden,
The Chinese Academy of Sciences. I am thankful to all my Chinese colleagues for sharing
wonderful datasets and projects. Special thanks to Dr. Tao Shi, without our successful
collaboration the completion of my dissertation would not have been possible. I am also so
grateful to Prof. Yves Van de Peer for setting up those collaborations.

I would also like to offer gratitude to Prof. Jan Fostier and Dr. Dries Decap for the wonderful
collaboration and for their insights during the final project. It was a pleasure working with you
in such a friendly and constructive atmosphere.

A very special thanks to Prof. Steven Meare, for chairing my Ph.D. examination board, and to
the rest of the jury members: Prof. Hilde Nelissen, Prof. Pieter De Bleser, Prof. Jan Fostier, and



iv

Dr. Tao Shi for their constructive comments, friendly discussion, and saving me from some
embarrassing mistakes.

This thesis has been generously supported by the Ministry of Science, Research and Technology
of Iran (42 months) and Ghent University (12 months). I would like to thank again Prof. Seyed
Abolghasem Mohammadi for helping me to acquire the first grant and Prof. Kathleen Marchal
for the second grant. I am also thankful to IDLab-imec for hosting me during my stay at Ghent
University and for all their generous help and support.

I also had the pleasure of working with great colleagues and friends: Lieven, Mahdi, Camilo,
Maarten, Aranka, Louise, David, Patricio, Pieter-Paul, Simon, Luca, Lore, and Marie. Thank
you all for your company and for being so friendly. Special thanks to all my Iranian friends for
their support and for spending an enjoyable time together.

I also thank my parents for their endless love and nonstop support throughout my life. Thank
you both for setting me off on the road and giving me the strength to follow my dreams. Thank
you Klsum, Chiman, Nazdar, and Kamal for being the best sisters and brother ever.

Last but not least, I would like to thank my loving and awesome wife, Sayma, for patiently
being there for me and standing by me during every struggle and all my successes. I am so
lucky to have you in my life.

Razgar
May 2022, Ghent



Summary

The field of molecular biology has been revolutionized thanks to progress in sequencing
technologies, resulting in the availability of an increasingly large number of omics datasets. As
a result, the analysis and interpretation of big data created new challenges in animal and plant
research communities. Various types of data are being produced to answer biological questions,
for example (epi)genomics, transcriptomics, proteomics, and metabolomics data. Given the
high availability of omics data sets and prior molecular information, processing these data with
a single statistical model seems promising for obtaining useful insights concerning the
biological process under consideration. However, due to the inherent noise of the underlying
technologies that are used to generate high-throughput data, data interpretation requires vast
biological expertise on top of methods that can efficiently process those data. Moreover, when
analyzing a novel dataset, the findings from previous studies must be considered, since each
dataset may convey unique information. The combination of novel and earlier data sets provides
a more comprehensive understanding of the biology underlying the process of interest. To this
end, we distinguish between two types of integrative approaches: (1) exploratory data analysis
(post-analysis integration), and (2) model-based data integration.

Exploratory data analysis refers to an intuitive way of first analyzing each omics dataset
separately, and then combining the resulting key features. The limitation of exploratory data
analysis is that crosstalk between molecular entities at different molecular layers cannot
properly be explored.

Model-based data integration is applicable if all layers of information can be captured in a single
model. In our setting, we make use of methods that rely on a network model to represent and
interpret different data sources. Network-based approaches have become popular in the field of
system biology, since these methods allow for an intuitive way to integrate and interpret large-
scale data sets. The application of network-based methods in this thesis can be classified into
two categories: 1) methods that infer networks from omics data to visualize/represent the data
as gene-gene interaction network (e.g., coexpression networks); i) methods that use the inferred
gene-gene interaction network to drive the analysis. By mapping omics data on the inferred
network prior, the molecular mechanism that drives the phenotype of interest can be revealed.
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In this thesis, we apply integrative approaches in plant system biology in the context of different
collaborative studies in order to solve outstanding biological problems.

In the first collaborative case study, we assess how different expression, epigenetic regulation,
and functional constraints are associated with the fate of genes that underwent a whole genome
duplication in sacred lotus (Nelumbo nucifera). For this study, dedicated expression and
methylation data in lotus were available. These data were analyzed and their results were
complemented with network-based analyses to study the behavior of genes of different
duplication origins. We found that, after a whole genome duplication, genes that returned to a
single copy state show the highest levels and breadth of expression, gene body methylation, and
intron numbers. On the other hand, long-retained duplicates exhibit the lowest methylation in
gene flanking regions and the highest degrees of protein-protein interactions and protein
lengths. Our results highlight the impact of different functional constraints on gene fate and
duplicate divergence, following a single whole genome duplication in lotus.

In a second case study, we used an integrative approach to systematically study brassinosteroid
signaling in Arabidopsis thaliana using mutant lines. The mutant lines were identified through
a genetic screening process, including a line carrying a loss-of-function mutation in the BRI/
gene along three activation-tag suppressor lines. By using subnetwork inference methods in
order to combine molecular prior information on gene-gene interactions with routine genomics
analysis, we gained valuable insight into the studied process. Our results showed that network-
based methods can provide a clear global picture of the molecular mechanisms underlying
brassinosteroid signaling.

In the final chapter, we identify functional cis-regulatory elements by supplementing a
computational method, BLSSpeller, with an integrative approach. BLSSpeller is a
computational method to predict cis-regulatory elements by incorporating information from
closely related species. On top of redesigning BLSSpeller to cope with larger datasets, we
showed how a multi-omics approach can be applied to comprehensively complement the
prediction results in order to extract the most reliable predictions. The results of this analysis

are useful to infer gene functions and to complement gene regulatory networks in maize.



Nederlandstalige samenvatting

Dankzij de vooruitgang in de ontwikkeling van sequentietechnologieén is het domein van de
moleculaire biologie hervormd, met als gevolg een immer groeiend aantal omics datasets.
Hierdoor werden de analyse en de interpretatie van big data de nieuwe uitdagingen in het
onderzoek rond plant en dier. Er worden verschillende soorten data geproduceerd om
biologische vragen te beantwoorden, bijvoorbeeld (epi)genomische, transcriptomische,
proteomische en metabolische data. Gezien de grote hoeveelheid omics-datasets en reeds
gekende moleculaire informatie, lijkt het interessant om al deze data te verwerken met één enkel
statistisch model, om zo tot nuttige inzichten te komen over het betreffende biologisch proces.
Door de inherente ruis van de onderliggende technologieén, vereist de interpretatie van deze
data enerzijds een enorme biologische expertise en anderzijds methoden die deze data efficiént
kunnen verwerken. Bovendien moeten bij het analyseren van een niecuwe dataset de
bevindingen uit eerdere studies ook in overweging genomen worden, omdat elke dataset unieke
informatie kan overbrengen. De combinatie van nieuwe en eerdere datasets biedt een bredere
kijk op het onderliggende biologisch proces. Hiertoe onderscheiden we twee integratieve
aanpakken: (1) verkennende data-analyse (integratie-na-analyse), en (2) data-integratie
gebaseerd op een model.

De verkennende data-analyse, is een intuitieve manier waar elke omics-dataset eerst
afzonderlijk geanalyseerd wordt, waarna vervolgens de resulterende bevindingen
gecombineerd worden. De beperking van deze aanpak is dat eventuele crosstalk tussen de
moleculaire entiteiten in de verschillende moleculaire niveaus moeilijk te onderzoeken is.

De data-integratie gebaseerd op een model, kan gebruikt worden indien er een gepast model is
waarin alle lagen informatie bevat kunnen worden. In onze setting steunen we op een
netwerkmodel om verschillende databronnen weer te geven en te interpreteren.
Netwerkgebaseerde modellen zijn erg populair in de systeembiologie, omdat deze toelaten om
grootschalige datasets op een intuitieve manier te integreren en te interpreteren. In dit
proefschrift onderscheiden we twee categorieén van e toepassingen van netwerkgebaseerde
modellen: 1) methodes die netwerken opstellen op basis van omics-data, hier worden de data
gevisualiseerd/gerepresenteerd door gen-gen-interacties (bijv. een coexpressienetwerk); ii)
methodes waarin een gen-gen-interactienetwerk de analyse aandrijft. Hier wordt nieuwe data
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afgebeeld op een gekend netwerk, waardoor het onderliggende moleculaire mechanisme
onthuld wordt.

In dit proefschrift passen we integratieve aanpakken toe in de systeembiologie, dit doen we in
de context van verschillende wetenschappelijke samenwerkingen, met als doel openstaande
biologische problemen op te lossen.

In de eerste casestudy beoordelen we hoe afwijkende expressie, epigenetische regulering en
functionele beperking geassocieerd worden met de bestemming van genen na een volledige
genoomduplicatie in heilige lotus (Indische lotus; Nelumbo nucifera). Voor deze studie was er
specifiek expressie- en methyleringsdata beschikbaar. Deze data werden geanalyseerd en de
resultaten werden vervolgens aangevuld met netwerkgebaseerde analyses om het gedrag van
genen met verschillende duplicatieorigines te onderzoeken. We ontdekten dat, genen die na een
volledige genoomduplicatie terugkeerden naar enkelvoudige kopieén de hoogste niveaus en
breedte van expressie, genlichaammethylering en intronengetallen tonen. Anderzijds, vertonen
de blijvende duplicaten de laagste methylering in regio’s grenzend aan genen en de hoogste
graad van proteine-proteine-interacties en proteinelengte. Onze resultaten benadrukken het
effect van verschillende functionele beperkingen op de bestemming van genen en dubbele
divergentie, na een enkele volledige genoomduplicatie in lotus.

In de tweede casestudy gebruikten we een integratieve aanpak om systematisch de
brassinosteroidesignalering in zandraket (Arabidopsis thaliana) te bestuderen met behulp van
gemuteerde lijnen. De gemuteerde lijnen werden geidentificeerd met genetische screening, en
bevatten een lijn die een verlies-van-functieverandering in het gen BRI1 droeg langs drie
activatie-label-onderdrukkingslijnen. Met behulp van  netwerkgebaseerde  methodes,
verkregen we waardevolle inzichten in het onderzochte proces door gekende moleculaire
informatie op gen-gen-interacties te combineren met een klassieke genomische analyse. Onze
resultaten toonden aan dat netwerkgebaseerde methoden een duidelijk beeld kunnen geven van
de moleculaire mechanismen die brassinosteroidesignalering aandrijven.

In de laatste casestudy identificeren we functionele cis-regulerende elementen door een
computationele methode, BLSSpeller, aan te vullen met een integratieve aanpak. BLSSpeller is
een computationele methode om cis-regulerende elementen te voorspellen door informatie van
nauw verwante soorten in rekening te nemen. Naast het herontwerpen van BLSSpeller om
grotere datasets te kunnen verwerken, toonden we aan hoe een multi-omics aanpak de
voorspellingsresultaten kan complementeren om zo de betrouwbaarste voorspellingen te
verkrijgen. De resultaten van deze analyse zijn nuttig om genfuncties te bepalen en om

genregulerende netwerken voor mais (Zea mays) aan te vullen.
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Introduction and background

“The best and most beautiful things in the world cannot be seen or even touched — they
must be felt with the heart”
- Helen Keller

1.1 Introduction

In the last decade, biology has increasingly become data-driven. Large datasets generated by
high-throughput technologies which containing information on various omics layers such as
(epi)genomics, transcriptomics, proteomics, and metabolomics have been submitted to the
public domain (Figure 1.1). The availability of such large-scale datasets brought new challenges
to the scientific community in data processing, correction, and interpretation perspective. As
more data become available, the integration of these datasets provides a holistic view of
complex biological systems and of the interplay between different components of those
systems. Methods to integrate omics data and prior molecular knowledge can be subdivided
into exploratory data analysis and model-based data integration [1]. Different integrative
methods rely on the use of a network model to represent different information sources.

In this thesis, we tried to answer a diverse set of fundamental research questions in plant biology
by integrating different sources of omics datasets and prior information. Below we first
introduce some general biological concepts. Subsequently, we provide an overview of the omics
data sources that are used in the thesis, and finally, we describe why network-based methods
offer an ideal approach to represent the prior molecular information and omics datasets in the
integrative approaches.
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‘Figure 1.1 Large-scale datasets at different omics levels are becoming available that provide
information on the structure, quantification, and modification of molecular entities at different omics
levels. Examples of advanced technologies to produce omics data are shown next to each omics level.

1.2 Basic biological concepts used in the thesis

All the genetic information encoded in DNA consists of a four-letter code: A, T, C, G; standing
for Adenine, Thymine, Cytosine, and Guanine, respectively. These are the nucleotide bases of
DNA and their combination encodes all the information necessary to perform required
biological functions during growth, development, and in response to internal and external
signals. In order to translate the code to biological function, the code has to be transcribed into
messenger RNA (mRNA) by the transcription machinery. Subsequently, the translation
machinery, the ribosome, can read the mRNA and turn it into proteins. The genetic code in
mRNA molecules is read in triplets, each representing a code for a single amino acid. Finally,
chains of amino acids form proteins which play many critical roles in the cells and translate the
genetic codes to phenotypes (Figure 1.2).
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Figure 1.2 Simplified picture of complex processes by which the genetic information stored in DNA is
translated into RNA and then RNA is translated into proteins as the functional agents in the cell.

Changes to the genetic code (mutation) can potentially lead to changes in proteins being
produced and thus to distinct phenotypes. Although the majority of the mutations are either
neutral or deleterious, they are a great source of phenotype variation that is at the heart of
evolution and adaptation in response to environmental changes. In the plant genomics
community, quite some effort has been invested in identifying and predicting the relationship
between the genetic code and phenotype of the plant as understanding this relationship
facilitates phenotypic engineering, a process in which the genomic information is altered to
obtain traits desired by human needs. High-throughput technology has boosted our
understanding of information flow from the genetic code to phenotypes. In the next section, we
give an overview of the different types of omics data and the online resources containing these
data in model plants.

1.3 Sources of large-scale omics datasets

The entire genome of an organism can be sequenced in less than a single day thanks to
massively parallel sequencing technologies, so-called next-generation sequencing (NGS). We
will refer interested readers to the history of NGS development and its connection to the
traditional Sanger sequencing [2-5]. Eventually, NGS platforms generate millions of small
fragments of (c)DNA, so-called short reads. Piecing together this fragmented information to
recover the original information contained in the molecules provided to the sequencing
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machines, is referred to as the assembly process. To this end, short reads are mapped to a
reference genome, if this is available [6]. Alternatively, the reads can be assembled without
prior genome information using de novo assembly methods [7]. NGS can be applied to sequence
the entire genome or transcriptome, or constrained to target regions of interest. For example,
active chromatin regions can be captured using ChIP-seq or ATAC-seq protocols and subjected
to sequencing [8].

Availability of cost-efficient NGS technologies and highly efficient software to process the data
obtained from NGS machines, along with rapid development and enormous progress in other
omics fields to profile proteins and metabolites have made it possible to obtain large-scale
molecular data within a tissue, and more recently even at single cell level [9]. Data at different
molecular levels can be generated using those technologies. The profiling of genomes, RNA,
metabolites, proteins, and epigenetic marks on DNA or histones is referred to as respectively
genomic, transcriptomic, metabolomic, proteomic, and epigenetic profiling. Processing those
data to extract meaningful and unbiased biological results requires specialized bioinformatics
expertise (Figure 1.3). Many methods and tools have been specifically developed to analyze
each type of high-throughput data as it is not trivial handle to the biological and technical noise
that goes together with the generation of omics data [10, 11]. Below we will review the most
commonly available large-scale and high-throughput omics data types for plant species.

Genetic resources

Figure 1.3 The Figure shows how information from different omics sources can be used to increase our
fundamental understanding of plant responses. Such understanding can pave the way for
biotechnological programs that focus on improving crop performance, quality, or response to stress.
Sources [12-16]
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1.3.1 Genomics data

Each organism has unique genomic information that differs from the genomic information of
other individuals of the same species by differences in single nucleotide polymorphisms (SNP),
indels (insertion or deletion), copy number variations, chromatin rearrangements, etc.
Identifying those differences within and between species is the focus of genomics studies as it
can explain differences in observed phenotypes. To facilitate uncovering those differences,
more than 600 plant reference genomes have been sequenced and made available in public
repositories [17]. Availability of the reference genome would facilitate generating and
processing other high-throughput data at the DNA level (genomics data). Genomics data are
generated to characterize the content, structure, organization, and dynamics of DNA. Using the
genomics data and genome sequence, hidden information such as functional regions can be
uncovered [18]; adaptive responses that took place during evolution (natural selection) can be
reconstructed [19]; and the adaptive behavior of an organism in response to environmental
constraints or artificial selection can be predicted [20]. Furthermore, within-species and cross-
species comparisons and comparative genomics can establish which genes are common to all
plants or specific to a particular species, or they can even determine differences at the single
nucleotide level [21, 22]. For example, the difference in a single nucleotide in the regulatory
region in the DNA sequence can change the binding site of a transcription factor (TF). As a
result, individuals with a different nucleotide in that position might undergo different regulation
of a specific biological process [23]. Besides cultivars, remarkable progress in NGS
technologies has enabled the characterization of wild types and landraces to study the genomes
among a large number of diverse individuals. Regarding crop improvement, genome
information can facilitate exploring new genes and traits for potential application in breeding
and biotechnological programs. Those resources can be used in advanced crop improvement
programs for making critical decisions, i.e., genomics selection or identifying the candidate
regions for targeted gene editing [24]. Many tools and databases have been developed for
visualizing, mining, and analyzing plant genomics data such as Ensembl Plants [25], PLAZA
[26], Phytozome [27], and many more.

1.3.2 Epigenetics data

Epigenetics aims at studying the reversible modifications on the DNA without altering the
underlying DNA sequence. Such modifications include for instance DNA methylation, histone
modifications, chromatin accessibility, and transcription factor (TF) binding sites [28, 29].
Epigenetic modifications influence the accessibility of chromatin to the transcriptional
machinery and hence result in transcriptional activation or gene silencing. Hence, epigenetics
data is advancing our understanding of gene expression regulation and complement expression
data. The levels of epigenetic features (e.g., the level of DNA methylation and chromatin
accessibility) can be measured using NGS technologies by capturing the regions of interest,
followed by sequencing [30-32]. Below different types of epigenetics data are described in more
detail.
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1.3.2.1 DNA methylation

DNA methylation occurs at the 5’ position of cytosine which is conserved in plants and
mammals. This methylation can be profiled using Bisulfite sequencing (BS-seq) or other
advanced NGS-based methods [33]. Plant DNA methylation is a dynamic process mediated by
methylating and demethylating enzymes and regulatory factors, occurs in cytosine sequence
contexts: CG, CHG, and CHH (H represents A, T or C), mostly in heterochromatin regions [34].
DNA methylation is the main player in transposon silencing, gene expression regulation,
chromosome interactions, and genome stability [35]. As a result, the DNA methylation state is
crucial for development and environmental stress responses and can serve as environmental

memory for plants to adapt to environmental changes [36-38].

1.3.2.2 Chromatin accessibility

The structure of DNA at the chromatin level is highly dynamic and this property influences the
interaction of the transcriptional machinery with binding regions on the DNA. The chromatin
accessibility landscape can be profiled to determine the active regions of the DNA to which
nuclear macromolecules or TFs can bind. The genome-wide chromatin accessibility landscape
can be quantified by enzymatically (DNase I, MNase, Tn5 transposase) or chemically
(Formaldehyde) fragmenting the genome and isolating either the accessible or protected
locations which are subsequently sequenced [31]. ATAC-seq is one of the commonly used
methods for profiling accessible chromatin. It uses a hyperactive Tn5 transposase to insert
[Nlumina sequencing adaptors into accessible chromatin regions. Publicly available ATAC-seq

data provide a great resource to locate putative TF binding sites [39].

1.3.2.3 TF binding sites

Chromatin immunoprecipitation (ChIP-seq) assays are powerful methods to capture and
sequence the DNA binding sites of a specific TF at the genome level (ChIP-seq). Unlike open
chromatin assays, ChIP-seq can locate TF binding sites with higher resolution. To rapidly and
inexpensively interrogate large numbers of TFs, DNA affinity purification sequencing (DAP-
seq) was introduced that uses in-vitro-expressed TF to interrogate naked gDNA fragments to
establish binding locations (peaks) and sequence motifs [40]. DAP-seq has been successfully
applied to uncover the regulatory binding landscape of several plant species [40-44]. However,
like other high-throughput methods, ChIP-seq and DAP-seq come with technical limitations
including limited capacity to detect the binding sites of poorly expressed proteins (TF), and the
dependence on the availability of specific antibody against the TF. Despite those limitations,
ChIP-seq and DAP-seq have become indispensable tools for studying gene regulation and
epigenetics.

1.3.3 Transcriptome data

NGS technologies can also be applied to profile the expression level of genes by determining
the amount of RNA that is produced in a specific tissue or cell. The amount of RNA is used as
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a proxy of the levels of proteins present in a cell. Hence, determining the differences in gene
expression between individuals can help explain differences in observed phenotypes.
Transcriptome analysis is commonly used to study the adaptive behavior of plants to
environmental or developmental signals. In addition, it has been widely used to annotate
reference genomes. If accompanied by genomics data, the transcriptomics data will provide
valuable information to link changes in gene expression to genomic changes (aka eQTL
mapping) [45, 46]. Two high-throughput methods coexist to quantify the amount of (m)RNA
transcribed for every gene in the genome: microarrays and RNA-seq. Microarray is a
hybridization-based approach for high-throughput expression analysis that only profiles
predefined genes through probe hybridization. Specifically, a microarray is a laboratory tool
that consists of a collection of microscope probes attached on a solid surface. In the
hybridization step, strands (stranded cDNA) with the complement sequence of the probe will
bind to the corresponding probe. Hybridization can be detected by linking probes with
fluorescent or radioactive labels to be quantified. Although microarrays are increasingly being
replaced by RNA-seq, it was commonly used for transcriptome profiling due to its cost
efficiency and its standardization for model organisms, such as Arabidopsis. In addition, large-
scale microarray databases that have been produced over the years are still being used in meta-
analyses and comparative studies. Overall, it is considered an accurate, cost-effective, sensitive,
and reliable technique, especially under high sample size conditions.

RNA-seq has emerged as an alternative method to profile gene expression which is very similar
to genome sequencing and allows for full sequencing of the whole transcriptome [47]. Briefly,
by breaking the cDNA into fragments, the nucleotide content of each fragment, i.e., sequencing
reads, can be determined using next-generation sequencing machines. After prepossessing and
quality filtering, the reads are mapped to the corresponding reference genome for gene
expression quantification. Compared to microarrays, RNA-seq identifies more modulated
protein-coding genes, allows for detecting splice variants, and non-coding transcripts, and
provides a wider quantitative range of expression level changes [48, 49]. Due to the drop in cost
and other advantages, it has become the standard and preferred technology over microarrays
for gene expression profiling.

1.4 Represent biological information as a network

Powerful and scalable technologies enabled the generation of genome-wide datasets in
genomics, epigenetics, metagenomics, proteomics, metabolomics, from which the interaction
among molecular entities can be inferred [50-52]. Interaction information is typically
represented as a graph or biological network consisting of nodes and edges. A network is a
collection of nodes linked by edges. In the biological context, nodes represent molecular entities
(genes, transcripts, proteins, metabolites, etc.), while edges represent pairwise relations
(physical interaction, similarity in function or expression, activation or suppression, etc.)

between the entities represented by the nodes. A set of attributes or features can be associated
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with nodes or edges in the network to provide extra information. Some important terminologies

related to network analysis used in this thesis are explained below.
1.4.1 Exploiting networks

In a directed network, the edges are valid only in one direction (direction from the source node
to target node) while in an undirected network the direction is valid both ways (source and
target nodes are interchangeable). In a weighted network, a confidence score (weight) is
associated with each edge reflecting the degree of dependency between source and target (to
what extent they are functionally dependent), or the degree of confidence on the inferred edge
using prediction methods (e.g., consistency in detection or prediction from different methods
or datasets). In contrast, the edges in an unweighted network are binary. This reflects that there
is no reason to believe one interaction is stronger or more reliable than other edges. In some
cases, the weighted network is converted to an unweighted one for computational convenience
(this is also true for directed and undirected networks). Negative weights (e.g., derived from a
negative correlation between the expression profiles of two genes) are normally converted to
positive weights as popular network algorithms expect positive values as edge weights. For the
sake of simplicity, we simplified networks by filtering self-loops and multiple edges between
two nodes.

Neighbors (first-order neighbors) refer to two nodes in the network that are connected by at
least one edge. Second-order neighbors consist of all nodes that are connected to the node of
interest by one intermediate node. Similarly, higher-order neighbors (third-order, fourth-order,
etc.) are defined by the number of intermediate nodes needed to connect the two nodes under
consideration. A path is a sequence of edges which joins a source to a target node. Length of a
path is the number of edges in the path that are needed to reach the target node from the source
node. A network is connected if for each node at least one path exists to any of the other nodes
in the network; otherwise, the network is disconnected and consists of a set of sub-networks or
connected components. The degree of a node is the number of edges connecting that node to
its adjacent nodes. In a directed graph, the outdegree is the number of edges leaving the node
of interest, while the indegree is the number of incoming edges ending at the node of interest.
A hub is a node with a high degree. A network can be represented as an adjacency matrix, i.e.,
square matrix with binary entries (or edges weights) indicating whether an edge exists between
nodes in row ‘1’ and column °j’. The adjacency matrix is the algebraic representation of a graph
and can easily be used to extract structural information.

1.4.2 Homogeneous biological networks

Different types of biological networks exist that capture interactions at different molecular
layers. Homogeneous networks typically capture one specific level of information. For
instance, protein interaction networks correspond to interactions among proteins, regulatory
networks contain interactions between TFs and their targets, metabolic networks represent
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interactions between metabolites and enzymes, and coexpression networks represent mutual

similarity in expression profiles between genes (Figure 1.4).
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Figure 1.4 Examples of biological networks. Nodes represent biological units, and edges represent the
type of connection among nodes. An edge can be directed, and its associated weight indicates its
reliability. Regulatory networks are an example of directed networks that represent the flow of signals
from TFs to targets. Protein interaction networks are often undirected and indicate the physical
interaction among proteins. Coexpression networks are inferred from expression data with undirected
edges. Metabolic networks are more complex including directed, undirected, activator, and suppressor
edges.

1.42.1 Gene regulatory networks

Gene regulation is a complex process in which TFs bind to the regulatory regions of their target
genes. These regulatory regions or TF binding sites are non-coding genomic regions that are
either located in the vicinity of the target genes (cis-regulatory elements) or many kilobases
away from their target genes (distal regulatory elements). Next to transcriptional regulation,
many additional processes such as phosphorylation, and other protein modifications such as
carbonylation, glycosylation, and S-nitrosylation affect signaling [53, 54]. These different
regulatory mechanisms do not act independently. The crosstalk between these mechanisms
forms an interconnected regulatory system that senses and integrates endogenous and
environmental signals and converts them into altered gene expression. The complex regulatory
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connections from regulators to their target genes can be summarized in a gene regulatory
network.

PlantTFDB (http://planttfdb.cbi.pku.edu.cn/) provides a comprehensive, high-quality resource
for both plant transcription factors (TFs) and their targets for 165 plant species. It includes: (i)
a set of high-quality, non-redundant TF binding motifs derived from experiments; (ii) multiple
types of regulatory elements identified from high-throughput sequencing data; and (iii)
regulatory interactions curated from the literature and inferred by combining TF binding motifs
and regulatory elements [55, 56].

1.4.2.2 Protein interaction network

Understanding protein interactions is crucial to unveiling the mechanisms underlying plant
response to internal and external signals. The protein interaction network is a graph
representation of the physical binding of proteins to each other in the cells derived from protein
binding assays [57, 58]. The edges in the protein interaction network can represent stable
(formed in protein complexes) or transient (to make protein modifications) bindings [59].
Unlike stable interactions, transient or dynamic interactions are more challenging to identify by
experimental or computational methods [60]. Protein interactions can be directed or undirected,
with the majority of them being indirect. Protein interaction networks have only been
experimentally assessed for model species such as Arabidopsis, and even for those model
species, only a subset of the protein interactions has been characterized experimentally [61].
Most interactions are extrapolations of interactions from other model organisms (interologs)
[62, 63]. For instance, Geisler-Lee et al. [64] identified 19,979 interactions for 3617 proteins in
Arabidopsis thaliana by aligning with S. cerevisiae, Caenorhabditis elegans, Drosophila
melanogaster, and Homo sapiens. In addition, protein interactions are often biased toward well-
studied genes, which often have high numbers of associated functional annotations
(“multifunctional”) [65]. Therefore, the protein interaction networks from public databases
such as String [66] must be used and interpreted with care, especially for non-model plant
species.

1.4.2.3 Metabolic network

A metabolic network comprises enzymes and metabolites as nodes and chemical reactions
between nodes as edges which represents the most important physiological and biochemical
processes in a cell [67]. Unlike protein interactions, the majority of metabolic interactions are
directed, starting from precursors to intermediate and end-point metabolites. As metabolites
represent the endpoint of gene-environment interactions, metabolic interactions are considered
the most reliable source of interactions between molecular entities. Hence, metabolic networks
are at the heart of system biology methods and have been extensively used to complement,
validate, and interpret different omics datasets [68-70]. Upon genome sequencing,
reconstructing the metabolic network of the sequenced genome is common practice in all
organisms. This is because metabolic reactions are highly conserved among species and the
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available information can be extrapolated to a newly sequenced genome [71, 72]. However, this
extrapolation is only possible for highly conserved metabolic processes, which only cover a
small set of genes. Identifying lineage and species-specific metabolic processes, and changes
in the rate and levels of metabolites in response to internal and external signals is a challenge.
As aresult, a metabolic network covers relatively fewer genes than a network derived from the
transcriptome and proteome [73]. Several databases and tools have been developed for
metabolic pathway analysis in plants such as KEGG [67], Plant Metabolic Network or PMN
[71], MetaCyc [74], and MapMan [75].

1.4.2.4 Gene coexpression network

Gene coexpression networks are inferred from gene expression measurements using microarray
or RNA-seq data. Each gene is represented by its expression profile (a vector containing the
expression of the gene in many different samples, genotypes, or conditions). Subsequently, the
pairwise similarity between these gene expression vectors is determined. In the simplest form,
the similarity is calculated using the absolute value of the pairwise Pearson correlation
coefficient. Those pairwise gene-gene similarities are converted into an undirected network,
after filtering the weak correlations. The resulting network consists of edges with associated
correlation values greater than a user-specified cutoff. In this network, nodes correspond to
genes and edges represent the mutual similarity in expression profiles between the connected
nodes. Many improvements have been proposed to avoid hard-thresholding [76], to alleviate
the impact of outliers [77], and to reduce the number of false associations [78]. Taken together,
the choice of an appropriate similarity measure and some careful preprocessing of the
expression data is the key to constructing a reliable coexpression network [79, 80]. Like other
networks, statistical machine learning methods can be applied to coexpression networks to
associate genes of unknown function with biological processes, prioritize candidate genes, infer
gene regulatory interactions, and to compare properties of the gene groups in the network.
Similarly, a coexpression network can be used for clustering nodes into groups such that nodes
belonging to the same group are functionally related and share common properties. For most
plant species, coexpression networks have been constructed and sorted in repositories such as
PlaNet [81], ATTED-II [82], and AraNet [83].

1.4.3 Heterogeneous interaction network

Each homogeneous biological network is derived from their cognate experimental data sources
to capture interactions at a specific molecular layer. Unfortunately, such experimental
approaches are limited in their breadth and resolution for technical and budgetary reasons,
which makes the inferred biological networks incomplete [30, 84, 85]. Integrating different data
sources can increase the breadth and depth of these homogeneous networks [86, 87]. For
instance, coexpression information can be used to support inferred protein interactions [88] or
to infer TF target relation [89]. Alternatively, different levels of biological networks can be
combined into a single heterogeneous interaction network. In the word of Aristotele: the whole
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is greater than the sum of its parts, indeed an interaction network built from different
information layers can better explain systematic mechanisms that control complex traits, and it
can predict the behavior of biological systems with higher precision [87, 90, 91]. However,
constructing interaction networks is not trivial. To this end, interactions from different
experiments performed in different conditions are typically combined. This often results in
networks that are over-connected but at the same time incomplete and may not accurately
represent the ‘biological truth’. Therefore, sophisticated biological knowledge and advanced
computational methods are required to extract relevant information from such noisy networks
[89].

1.5 Integrative analysis in plants systems biology

As mentioned before, the increase in high-throughput sequencing data from different layers and
availability of prior molecular information allowed researchers to move from studying the
cellular response at a single omics level toward exploring the behavior of an entire system at
different molecular layers (DNA, RNA, proteins, etc.) (Figure 1.3). However, integrating the
heterogeneous prior molecular information and the data generated from high-throughput
techniques requires systematic approaches, which is proven to be a difficult task [92]. Advanced
and well-defined methods are needed to ensure accurate large-scale data analysis and extract
meaningful results by integrating multiple types of quantitative and qualitative molecular data.
Two classes of approaches for multi-omics data analysis are relevant to this dissertation: 1)
exploratory data analysis (post-analysis data integration), and ii) model-based data integration
(Figure 1.5).

The exploratory data analysis refers to an intuitive way of first analyzing each omics dataset in
isolation, and then stitching the key feature results together in a post-processing step, to search
for patterns that are supported by all complementary datasets. More specifically, it aims to find
the underlying relationship between datasets in a descriptive manner or to predict a certain
response using one or more explanatory datasets [93]. Approaches based on the aforementioned
sequential analysis depend on in-depth biological insight. New candidate genes involved in
complex phenotypes can be introduced using exploratory data analysis approaches and can be
provided to wet-laboratory researchers for further investigation [94]. Prioritizing candidate
genes and suggesting the mechanism of a gene’s effect on a particular phenotype requires
knowledge from literature and system-level information of all molecular entities. For example,
transcriptome, proteome, and metabolome data have been explored to identify stage-specific
biomarkers for biological processes in several plant species [95-98].

Exploring prior molecular knowledge, omics datasets, and phylogenetic data is also a common
approach. For example, De Smet et al [99] associated gene function with gene copy number
state by exploring sequence information and expression datasets. Similar studies have explored
the combination of molecular prior information, sequencing, expression, and epigenetics data
to provide deeper insight into genes function and uncover genetic components that shaped
observed evolutionary patterns in plants [100-103].
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Figure 1.5 Principal differences between exploratory data analysis (left) and model-based data
integration (right). In the exploratory data analysis, each dataset is analyzed in isolation, and conclusions
are made based on collective information from different levels. In model-based data integration, data
are integrated into a single model, typically a network, to be explored at once. Source [73].

Although it is possible to explore each omics dataset separately, the crosstalk between the
molecular entities at different molecular layers cannot be properly assessed by analyzing each
dataset in isolation [104]. Model-based integration methods are algorithmically more
complicated but can only be applied if all layers of information can be captured in a single
appropriate model. Different integrative methods rely on the use of a network model to
represent different information sources. This is because networks provide an intuitive way to
represent biological information and molecular interactions. Networks can be used or explored
with graph-based algorithms and mathematical models that have been developed or adopted
from other domains [105]. The way a network is used largely depends on the research question
at hand. Their applications are widespread, ranging from inferring gene or protein function
through the guilt by association principle [106]; predicting interactions among biological units
[107]; prioritization of gene lists [108], and inference of active subnetworks that could best
explain the observed phenotype of interest in a specific experiment [17]. Because of their
popularity, we will review some network-based methods that are used in plant systems biology
studies.
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A very popular approach is the representation of single omics data as a network to identify
functional relationships between molecular entities. This is achieved by assuming that genes
associated or interacting in a network are more likely to share function. This process is known
as guilt by association (GBA) which relies on module inference. GBA has been widely used in
biology to assign a function to unknown genes [109, 110]. Practically, GBA can also be used to
prioritize genes that control phenotypes of economic importance, such as tolerance to
environmental stress and resistance to disease using information available on known genes
[111, 112].

With the rapid accumulation of large expression data for many plant species, coexpression
network analysis is one of the most popular methods to detect gene modules that show high
transcriptional coordination across a variety of experimental conditions [79]. Coexpression
analysis has been successfully applied to infer transcriptional regulatory networks for nitrogen
metabolism [113], to identify and associate new genes to metabolic pathways [114], to transfer
gene functional annotation from model plants to non-model plants using comparative
coexpression analysis across plant species with homology information [115], and to prioritize
candidate SNP-associated genes [116].

Gene regulatory networks (GRN) are another popular and powerful tool that reflects a blueprint
of the molecular interactions underlying plant responses. GRN has been employed to identify
new regulatory connections for metabolic pathways [117] or in response to environmental and
intrinsic signals [118, 119].

Despite being powerful, protein interaction networks (PIN) are less characterized compared to
gene regulatory networks and coexpression networks, due to the limited availability of cost-
effective and statistically powerful methods for characterizing protein functions and
interactions in plants [120].

However, network-based methods that rely solely on a single level of information and that do
not use any additional information have a poor performance to prioritize genes for a specific
trait or biological process [121, 122]. This is because the network is treated as a static reference,
which does not reflect the dynamic nature of molecular networks [111]. In addition, the
association between GBA and some biological network properties, e.g., a “scale-free” degree
distribution is not well explored [121]. In some cases, prediction performance could be
attributed entirely to node degree effects [65]. However, networks constructed from single
omics data are helpful in assessing the quality of other networks, and the performance of
computational methods, by assuming that a high-quality network or computational results
should map well onto known gene function information and other molecular information [121,
123].

Studies that integrate more than one level of information go a step beyond. A pioneer algorithm
for this class is ENDEAVOUR [124] which calculates gene-wise statistics from heterogeneous
genome-wide data sources (including molecular interactions) and ranks genes according to their

similarity to known genes involved in the biological process under analysis. For example,
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Lysenko et al. (2013) identify candidate virulence genes in the fungus Fusarium graminearum
by integrating gene coexpression, protein-protein interactions, and sequence similarity [125].

1.6 Network-based omics data interpretation

Networks derived from publicly available molecular interaction data (PIN, GRN, GCN, etc.)
are often used as a scaffold or roadmap to interpret an in-house generated omics dataset. This
application is referred to as network-based data interpretation [90, 108]. Analysis of omics
data reveals a list of genes (or other biological entities) of which the behavior or state is
significantly altered between individuals or conditions, e.g., a list of genes that are differentially
expressed, genes with different copy number states, differentially methylated genes, etc.
Although gene lists identify entities that are activated or inhibited, the direct casual and
functional associations between the entities in the gene list and the observed phenotype cannot
be established [89, 126]. Mapping the gene list on a network prior can help to systematically
explain how listed genes interact to drive the phenotype of interest and recover the unobserved
mechanisms at upstream or intermediate molecular levels [69, 73]. By leveraging candidate
genes with known interaction information, spuriously identified candidate genes can be
removed as they will not be part of the subnetworks. In addition, genes relevant to the process
of interest that were not measured due to technical limitations or their biological properties, are
indirectly identified by being part of a connected subnetwork to which also many of the
candidate genes belong. Hence, these subnetworks reflect the pathways of relevance triggered
by the studied process. This is of particular importance for complex traits such as plant response
to stress in which many genes with small effects interact in a complex system to drive the
response [112]. The advantage of subnetwork analysis is that the backbone interaction network
used to drive the analysis contains next to well-annotated connections between genes also less
well-documented edges, derived from the large body of publicly available omics datasets. This
allows to also assigning genes without GO annotation to a process of which their neighbors
involved. It is also possible to infer causality relationships by identifying the upstream programs
of the modules to describe the cause of observed changes in molecular entities behavior.

Advanced methods have been developed to overlay the omics data on the interaction scaffold.
Some clustering-based methods search for subnetworks in the weighted interaction network
using (multi)omics data. The weight on the edges can be derived from either the node properties
(such as expression, copy number, etc.) or from the structure of the graph. The former uses node
features and assigns a higher weight to the edges that connect nodes sharing common features.
For example, an edge between two genes that have a similar copy number or mutation state
between different individuals gets a high weight. Examples of those methods include
10OmicsPASS [127], and SteinerNet [128]. The weight of an edge can also be derived from the
structure of the graph. Two nodes are more similar and hence will be assigned a higher weight
if they are structurally close. Examples of algorithms that incorporate the structure of the
network to assign weight to the edges of the interaction network are nuChart [129] and SNF
[106]. Ignoring the edge directionality and treating the interaction network as an undirected
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graph is the main limitation of those methods. PheNetic [90] is unique as it can incorporate both
the weights and the directionalities of the edges. In PheNetic, candidate genes identified through
an omics study are mapped on the interaction network, and subsequently, the algorithm searches
for subnetworks that connect as many candidate genes as possible using the least number of
edges. The edge weights can be derived from both features on the nodes (coming from omics
data) and the structure of the graph. Features on the nodes allow for integrating data from a
specific omics study with the network scaffold [127, 128], while the structure of the network is
handy to alleviate the effect of hubs in the downstream analysis (Figure 1.6) [90, 108, 130].

Network-based interpretation is powerful but also comes with certain assumptions. Casting the
data in a way they can be modeled together is not trivial and also not feasible for each
application. Other limitations of network-based methods are discussed in the last chapter.

Step 1: Step 2: Step 3:
Collecting in house data Converting omics data to networks Constructing interaction network
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Figure 1.6 The flow of mapping candidate genes resulting from an omics study on the interaction
network. First, relevant datasets are collected, processed, and converted to molecular networks at
different molecular layers. Then, the molecular networks from different sources are combined in an
integrated interaction network. The gene list containing candidate genes from an omics study is mapped

on the interaction network.

1.7 Integrate sequence data with other omics data

As the amount of generated sequence data grows, new biological questions can be answered by
mining thousands of genomic datasets that span different technological platforms, genotypes,
tissues, and developmental stages (Curtis Huttenhower, Oliver Hofmann, 2010). Due to its
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complexity, gene regulation is a good candidate to be investigated by such large-scale datasets.
Upon binding of the TFs to cis-regulatory elements (CREs), the expression of the target genes
can be activated or repressed in response to developmental and environmental signals.
However, each gene can be regulated by multiple TFs and each TF can target thousands of
downstream genes which form a complex system of regulatory networks. Uncovering the
details of this regulatory network and CREs identification is essential for understanding the cell
response to the internal and external stimuli and can facilitate synthetic biology and metabolic
engineering [131, 132]. Integrating omics datasets with other molecular data to identify
transcriptional regulatory mechanisms is an active research subject [133]. The pioneering
algorithms to integrate molecular information and omics datasets to infer transcriptional
regulation are GRAM [131], DISTILLER [134], SEREND [135], DeMAND [136], SIRENE
[137], and GeneXPress [126]. We refer interested readers to reviews on integrative methods to

infer gene regulatory interaction [89, 132].

Discovering TF binding motifs is a key step in inferring gene regulatory networks [43, 138,
139]. The most reliable way to discover binding sites is through experimental approaches [40,
140]. Charting the entire regulatory landscape is becoming a routine practice thanks to the
recent progress in genomics. This includes experimental high-throughput approaches to
characterize the binding sites for a specific cluster of TFs through ChIP-seq and DAP-seq, open
(accessible) chromatin regions through DNase-seq and ATAC-seq, chromatin interacting sites
using Hi-C, and epigenetic marks such as DNA methylation and histone modification [30-32,
40, 141].

Unfortunately, such experimental approaches are limited in their breadth and resolution for
technical and budgetary reasons [30, 31, 40]. In addition, because the data generation process
1s noisy and assumptions are made during data analysis, the final binding regions cannot be
located exactly but often cover hundreds to a thousand bp. In addition, for non-model
organisms, the application of the experimental approaches is limited by the lack of genome
information [30, 141]. Computational approaches can complement experimental approaches in
order to validate or to pinpoint the accurate location of the experimentally identified TF binding
sites. Phylogenetic footprinting is a comparative approach that integrates information from
closely related species to overcome spurious predictions in binding site identification [142].
Functional binding sites should be well conserved in closely related species as most mutations
in functionally important regions mostly interfere with their functionality and would be pruned
through selective pressure over the time [18]. Therefore, conserved regions in the homologs
from closely related species can be candidate binding sites. Among the tools for phylogenetic
footprinting, BLSSpeller is unique in the sense that it explores the full sequence space and
allows for alignment-free search by easing the constraint that a binding site must be well aligned
[143]. The computational prediction can be integrated with a wide range of genomics and
functional molecular data to identify the best candidates for further investigation.
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1.8 Research goals and outline

This dissertation is a compilation of collaborative research papers in which we applied
integrative analyses to answer biological questions on specific plant systems. We specifically
focus on combining expression data with other information sources. We hereby made use of
both exploratory data analysis and network-based approaches.

Chapter 2 studies the fate of genes following an ancient whole gene duplication (WGD) in
sacred lotus. Lotus is the only species that experienced a single WGD after diverging from the
basal-most angiosperm, Amborella, and for which a well-assembled genome is available. We
studied the expression, epigenetic regulation, and functional constraints that shape gene fates
following a WGD. This is important to provide deeper insight into genes function as gene
function is not independent of gene copy number state. In addition to standard genomics
analysis, a network-based method was adopted to explore and compare the behavior of genes
with different duplication states in more detail. More specifically, we tested the gene balance
hypothesis (GBH) on the network. The GBH states that the fate of duplicates in transcription
factors or kinases after WGD is largely shaped by their hub-like properties in the network and
those genes can only be retained or deleted together with their “interactors”. This hypothesis
was tested in the physical interaction network inferred from Arabidopsis. We also classified
duplicate gene pairs based on their properties in the coexpression network and linked the

expression divergence of these gene pairs with their divergence in sequence and function.

In chapter 3 we employed an Arabidopsis mutant line carrying a loss-of-function mutation in
the BRI1 gene (involved in brassinosteroid (BR) signaling pathway) along with three activation-
tag suppressor lines that were able to partially revert the BRI1 mutant phenotype (dwarf) to a
wild-type phenotype. The “activation tagging” falls into the inserted DNA category that
involves generating random genomic insertions of a transgene that contains transcriptional
enhancers capable of increasing the expression of nearby genes. Mutants are powerful in
functional genomics to study the function of genes. However, assessing the function of every
gene through mutations is not possible due to the existence of gene homologs which create
functional redundancy and difficulty in technical processes in developing mutant lines. Hence,
a systematic approach is required to understand the components of the process of interest, here
BR signaling, using information on the mutant lines. Using an integrative approach, in which
the expression data of the four BR signaling mutant lines and the wild-type was combined with
the prior molecular network could identify a more holistic view on BR signaling and its
crosstalk with other hormones signaling. A weighting system based on expression data was
adopted to make the interaction network specific to the conditions used in the study. The results
demonstrate the advantage of using network-based analysis over the traditional methods such
as differential expression and GO enrichment analysis. Differential expression analysis of one
mutant compared to the wild-type could explain part of the observed phenotype only.
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Chapter 4 shows how regulatory regions can be predicted using sequence information from

closely related species and how datasets from different omics levels can be employed to validate

the results. First, BLSSpeller was redesigned to enable the analysis of larger datasets. Then, it

was used to identify conserved motifs in Zea mays in a comparative genomics setting.

Combining predictions with available genomics and functional data allowed further elucidating

transcriptional regulation in Zea mays.
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Distinct Expression and Methylation Patterns for Genes with Different
Fates following a Single Whole-Genome Duplication in Flowering

Plants

“Believing as I do in evolution, I merely believe that it is the method by which God created,
and is still creating, life on earth’

- Rachel Carson

Flowering plant genomes are characterized by large variations of genome size and level of
ploidy, which is mostly driven by gene duplication. Interestingly, the fate of duplicated regions
(loss, neofunctionalization, subfunctionalization) is not independent of their genetic
characteristic and their function. One of the well-known hypotheses is the gene (dosage)
balance hypothesis (GBH) which suggests that altering the stoichiometric balance of members
of macromolecular complexes results in dosage-dependent phenotypes. Hence, preserving the
balance by retaining every single gene in the complex is required and genes in complexes can
only be deleted together with their ‘interactors’. In line with this hypothesis, multiple studies
showed that genes with retained copies following a WGD event are enriched for regulatory and
signaling functions whereas single-copy genes are associated with housekeeping functions.
Describing the difference in functional constraints on expression, epigenetic regulation, and
behavior in biological networks that shape the fate of genes after WGD can shed light on the
function of genes and the biological processes they involved. The study described below is a
collaborative effort with CAS Key Laboratory of Aquatic Botany and Watershed Ecology,
Wuhan Botanical Garden. In the framework of the study, the candidate performed the quality-
control on the expression data, preprocessed the data for analysis, performed the expression and
network analysis, and contributed to the writing of the paper. The candidate was not involved
in the experimental design, the wet-lab data generation, and the genome analysis. Page 2-29
includes an overview of the contributions of all authors.
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Abstract

For most sequenced flowering plants, multiple whole-genome duplications (WGDs) are found.
Duplicated genes following WGD often have different fates that can quickly disappear again,
be retained for long(er) periods, or subsequently undergo small-scale duplications. However,
how different expression, epigenetic regulation, and functional constraints are associated with
these different gene fates following a WGD still requires further investigation due to
successive WGDs in angiosperms complicating the gene trajectories. In this study, we
investigate lotus (Nelumbo nucifera), an angiosperm with a single WGD during the K—pg
boundary. Based on improved intraspecific-synteny identification by a chromosome-level
assembly, transcriptome, and bisulfite sequencing, we explore not only the fundamental
distinctions in genomic features, expression, and methylation patterns of genes with different
fates after a WGD but also the factors that shape post-WGD expression divergence and
expression bias between duplicates. We found that after a WGD genes that returned to single
copies show the highest levels and breadth of expression, gene body methylation, and intron
numbers, whereas the long-retained duplicates exhibit the highest degrees of protein—protein
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interactions and protein lengths and the lowest methylation in gene flanking regions. For those
long-retained duplicate pairs, the degree of expression divergence correlates with their
sequence divergence, degree in protein—protein interactions, and expression level, whereas
their biases in expression level reflecting subgenome dominance are associated with the bias
of subgenome fractionation. Overall, our study on the paleopolyploid nature of lotus highlights
the impact of different functional constraints on gene fate and duplicate divergence following
a single WGD in plant.

2.1 Introduction

Gene duplication is one of the most important drivers of eukaryotic evolution. Indeed, by
increasing the amount of raw genetic material on which evolution can work, gene duplication
generates the genetic redundancy through which processes such as subfunctionalization and
neofunctionalization can create functional novelty [2-7]. Apart from small-scale gene
duplication (SSD), also whole-genome duplication (WGD), whereby thousands of novel genes
are created at once, has been frequently observed during evolution, especially in flowering
plants [8-11]. Interestingly, the fate of genes duplicated through such large-scale duplication
(LSD) events often seems to be different from that of genes duplicated in small-scale events,
and previous studies have shown that the chance of survival and maintenance of genes
duplicated in a WGD is very much dependent on their function. On the one hand, despite
repeated WGDs in angiosperms, many genes were found that convergently revert to single-
copy status, and in Arabidopsis, they exhibit more constitutive and higher expression than
duplicate genes in general and are enriched in housekeeping functions [12, 13]. One
explanation is that the deletion of duplicates is needed to prevent copies with dominant-
negative mutations, which might interfere with the correct functioning of the wild type copy
[12, 13]. On the other hand, there are those genes that are retained in excess following WGD
for a longer time. For these retained duplicate genes, gene balance hypothesis (GBH) states
that maintaining stoichiometric balance is crucial, and genes can only be deleted together with
their “interactors” where losing or further duplication of part of the network or complex is
detrimental because the stoichiometry is challenged [14-18]. Genes that underwent SSDs, such
as tandemly duplicated genes, in contrast were found to be selected for either increased gene
dosage or rapid gene turnover in order to confer lineage-specific adaptation because they are
mostly insensitive to dosage imbalance [3, 19]. Although these theories explain how different
mechanisms that potentially affect gene fate after WGD, we still do not know the difference in
functional constraints including quantifiable features such as expression, epigenetic regulation,
and protein—protein interactions (PPIs) imposed on those genes with different fates after a
WGD (single-copy, WGD, and SSD genes).

Studies including a recent investigation on WGDs across plants including 134 sequenced
angiosperms suggest that after diverging from the extant basal-most angiosperm (Amborella),
only lotus and seagrass (Zostera marina) experienced a single WGD (4x), whereas the other
angiosperms experienced at least a genome triplication (6x) or sequential WGDs [20].
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However, the scaffold-level genome assembly of seagrass provides limited information on
synteny to study the gene fates after its WGD [21]. Case studies of recently released genomes
also show that columbine, Liriodendron and water lily experienced a single WGD [22-24].
Therefore, the genome of sacred lotus (Nelumbo nucifera Gaertn.) is one of the few
angiosperms carrying a well-retained intraspecific synteny reflecting only a single ancient
WGD coincided with the K—pg boundary [25-28]. Because of its relatively simple and ancient
WGD history, lotus genome facilitates comparing genes with different fates (duplication status)
following a single WGD. In addition, because long-retained duplicate pairs descending from
the same WGD event can be easily tracked in species such as lotus, the (functional) factors,
including dosage-balance constraint, that shape the expression pattern divergence of duplicate
gene pairs can also be well investigated. Yet, in Arabidopsis, poplar, soybean, tomato, or maize,
the fact that multiple different rounds of WGDs occurred makes it difficult to study the fate of
the most ancient duplicates [29-31]. Other than divergence in expression pattern, many
duplicate pairs might have bias in expression level [32]. Often, this expression bias between the
two copies is associated with subgenome dominance which is a phenomenon that was initially
defined in allopolyploid cotton and later in other (presumed) paleo-allopolyploids: copies
residing in one less fractionated (LF; parental) subgenome tend to show higher expression than
those in the other (parental) subgenome [33-40].
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Figure 2.1 Circos plot of lotus genome assembly. From inside to outside rings: (I) size (Mb) of the
assembly for each chromosome; (II) density distribution of genes; (III) density distribution of SRNA -
TEs; (IV) density distribution of SRNA + TEs; (V) dot plot of nucleotide diversity of CDS for each gene;
(VD) methylation level of genes and flanking regions; (VII) gene expression level (log-transformed
FPKM value); and (VIII) syntenic paralogs are linked by colored lines.

Therefore, understanding the mechanisms such as epigenetic regulation and subgenome
dominance underlying the divergence in expression pattern and level after a WGD in lotus will
improve our understanding of how a duplicate pair diverges in function. To better address the
questions as mentioned above, we build an improved genome assembly of the lotus var. “China
Antique” by PacBio long-read sequencing and scaffolding using high-throughput chromosome
conformation capture (Hi-C). This can optimally identify the genomic relics from both ancient
SSD and WGD events. Complementing this chromosome-level assembly with further whole-
genome bisulfite (methylation) sequencing, RNA-seq, and genome resequencing data, not
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only allow us to study the mechanisms, such as expression and epigenetic regulation that
coordinate and maintain the functional integrity of genes displaying different evolutionary
fates, but also provide further insight into the genetic mechanisms that create functional
divergence of duplicates retained after a WGD.

2.2 Results

2.2.1 A chromosome-level assembly of lotus

Based on newly generated data, we obtained an improved assembly and annotation of the lotus
genome. Combining PacBio Sequel subreads (11.9 G; 1,330,739 subreads with a mean length
of 8.8 kb and N50 of 12.7 kb) with previously published Illumina paired-end (PE) reads (94.2
Gb) [25], resulted in a hybrid assembly, containing contigs with an N50 length of 484.3 kb.
This assembly is about 12.5 times the length of previously assembled contigs (v2013) (N50
38.8 kb) (Figure S2.1). The final 4,709 contigs cover about 807.6 Mb. Using genome-wide HI-
C, overall, 4,248 contigs (799.7 Mb) were anchored and ordered into eight different
pseudomolecules (chromosomes) (Figure 2.2). Further optimization of the assembly by gap
filling and polishing (error correction using accurate Illumina reads) resulted in a final
assembly consisting of eight pseudochromosomes (813.2 Mb) and 456 unanchored contigs (8.0
Mb) (Figure 2.1 and Table S2.1).

The newly assembled genome contains 58.5% repetitive sequences, of which 48.7% of the total
assembly consists of known transposable elements (TEs) and 9.1% of unknown repeats (Figure
2.1 and Table S2.2). Gene annotation based on a repeat-masked genome yielded a total of
32,124 protein-coding genes (Figure 2.1). The accuracy of the new assembly was assessed by
a previous single-nucleotide polymorphism (SNP)-based linkage map of lotus [41]. The
majority of uniquely mapped SNP markers from a given linkage group aligned within the same
pseudochromosome in the new assembly, whereas in the old assembly these markers showed a
partitioned and mosaic distribution over different megascaffolds (v2013) (Figure S2.3). To
assess the completeness of the assembly, we investigated to what extent the 1,440 plant
conserved gene set of BUSCO was recovered: 94.6% (1,362) of the gene set was completely
retrieved, 3.1% (44) was partially retrieved, and 2.3% (34) was “missing.” This shows that our
assembly is the most complete lotus assembly to date when comparing to the other lotus
assemblies (Table S2.3) (Gui et al. 2018). This is supported by the fact that the number of
syntenic orthologs, for instance in relation to monocots, is substantially higher in our new
assembly than in an older version: 5,421 Brachypodium distachyon genes and 5,922 rice genes
showed a collinear relationship in the new assembly, whereas in the old assembly the numbers
were 3,690 and 4,040, respectively (v2013) (Figure S2.4). Comparing eudicot genomes from
the Plant Genome Duplication Database (PGDD) and our lotus assembly to both B. distachyon
and rice learns that both the new and old assemblies of lotus share more collinear orthologs
with the two monocot genomes than the other eudicots (Figure S2.4). Although lotus and the
other eudicots in the PGDD together form a sister group to monocots, the genome architecture
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(at least considering synteny) of lotus seems to resemble that of monocots most, probably
because most eudicots present in the PGDD have undergone at least one triplication or further
rounds of WGDs subsequent to eudicot radiation (Ming et al. 2013).

2.2.2 Classification of single-copy and duplicated lotusgenes

To define different classes of lotus duplicates [42, 43], first, within-species syntenic blocks
were identified (see Materials and Methods). Such blocks, showing conservation in gene
content and order, and thus potentially representing remnants of a WGD, were found across all
chromosomes (Figure 2.1 and Table S2.4). Comparison of peaks in 4dTv (4-fold degenerate
site transversion) distances which represent age distributions formed by the divergence of
syntenic duplicates (4dTv median 0.158) and divergence of orthologs between lotus and
Macadamia ternifolia (the other sequenced Proteales species) (4dTv median 0.405) suggests
that most syntenic duplicates (WGD) have been derived from a duplication event after the split
between Macadamia and lotus (Mann—Whitney U test, P < 0.01) (Figure S2.5).

Next to 2,353 orphan genes (defined as genes in lotus that have no homolog in any other
considered plant species), we identified 29,771 genes with homologs in other species (non-
orphan genes) (Table S2.5). Among these lotus genes, so-called dispersed duplicates are the
most abundant (13,235), followed by duplicates resulting from WGD (referred to WGD)
(9,482), tandemly duplicated genes (2,622), single-copy genes (2,261), proximal duplicated
genes (1,566), and finally duplicates that underwent both WGD and tandem duplication
(WGD&TD) (605), as classified by MCscanX (Figure S2.6A and Table S2.5,). Orphan genes
are mostly either single-copy (62.14%) dispersed duplicates (33.81%) (Figure S2.6B and Table
S2.5). The above-defined gene groups were used to further study how the fate of genes, for
instance after WGD, correlates with functional constraints, reflected by PPIs, gene expression,
and epigenetic and sequence properties. Lotus-specific orphan genes were analyzed separately.

2.2.3 Single-copy genes and WGD-derived duplicates of lotus show conservation in
copy number in related taxa

Here, we estimated the extent to which dosage sensitivity (copy number conservation) of lotus
genes depends on their duplication status. Hereto, we first grouped lotus genes according to

29 <¢

their duplication status in lotus (as defined above, “single-copy genes,” “WGD,” “tandem
duplicates,” and others) and subsequently assessed whether the orthologs of these lotus genes
retained the same copy number status in two related eudicot species, namely M. ternifolia and
Vitis vinifera. Macadamia was chosen because it is the sequenced Proteales species that is
closest to lotus, whereas Vitis, with only one eudicot genome triplication, was also chosen
because of its relatively conserved genome architecture compared with the other core eudicots
[44]. To assess the variation in copy number across the studied species, we used the coefficient
of variation (CV). The average copy number among the three species (as shown in the violin

plot) varies largely among the genes of different duplication status, and therefore standard
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deviation cannot serve to assess the variation in this case (Figure 2.2A). Single-copy genes
(grouped according to their single-copy status in lotus) have a median of the average copy
number among the three species close to one, indicating that, for genes grouped as single-copy
in lotus, there is a general strong selection against gene redundancy in the related species as
well (Figure 2.2A).
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Figure 2.2 Violin plots of expression, functional, and genomic features of genes from different gene
groups (based on duplication status). (4) The average copy number of orthologs. (B) Coefficient of
variation (CV) of copy number among taxa. (C) Ratio of orthologs as “angio-singles.” (D) Themean of
log-transformed FPKM. (£) The ratio of silent genes. (F) Tissue specificity index (based on Tau index).
(G) The average portion of the deleted genic sequence in tropical lotus comparing to the reference genome
(ratio of deletion). (H) Nucleotide diversity (x). (/) Length of the genic region. (/) Exon number. (K) The
number of protein—protein interactions inferred from the closest orthologs in Arabidopsis. (L) CDS length.

Black line: median; gray line: quantile.

For genes classified as lotus WGD-derived duplicates, a median of the average copy number
between 1 and 2 was found, suggesting that genes belonging to this group also tend to display
a limited level of gene redundancy in the three studied taxa (Figure 2.2A). Interestingly,
dispersed and WGD-derived duplicates show, after single-copy genes, respectively the second
and the third-lowest CV for variation in copy number, and therefore presumably exhibit higher
dosage sensitivity than local duplicates (tandem, proximal, and WGD&TD) (Kruskal-Wallis
test, all P values < 0.01) (Figure 2.2B). This is in line with the GBH, which states that WGD-
derived duplicates are more dosage-sensitive or more strict in preserving their copy numbers
than local duplicates [19, 45]. For the group of the dispersed duplicates, the interpretation is
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less trivial as these genes contain WGD-derived duplicates that lost collinearity, local
duplicates that lost “proximity” to other duplicates, transposed duplicates, or “angiosperm-
conserved single-copy genes” (“angio-singles”) that were created by earlier preangiosperm
duplications but stopped duplicating during angiosperm radiation. By examining the proportion
of “angio-singles” in each of the studied gene groups using annotations described in a previous
publication [12], we found that next to the group of single-copy genes, the group of dispersed
duplicates contains the second-highest enrichment of “angio-singles” (Figure 2.2C). Greater
4dTv distances between the most similar dispersed duplicates than between corresponding
orthologs (Nelumbo vs. Amborella) (Kruskal-Wallis test, all P values < 0.01) (Figure S2.7)
suggest that “angio-singles” in dispersed duplicates were mostly created by early duplications
prior to angiosperm radiation. As those early duplicates stopped duplicating during angiosperm
radiation, they were classified as so-called single-copy genes in angiosperms. This explains

why the group of dispersed duplicates also shows a low CV in copy number.

2.2.4 Single-copy genes and WGD-derived duplicate genes have high expression level
and breadth

To understand why single-copy genes and WGD-derived duplicates are more highly
constrained in copy number, we compared the level and breadth of gene expression for the
above-defined gene groups. This is because genes expressed at higher levels tend to be under
stronger selective pressure [46-49]. Average gene expression levels (log-transformed FPKMs),
observed in 41 samples representing a variety of tissue-types, varied substantially among the
studied gene groups. Single-copy genes showed on average the highest expression level
(Kruskal-Wallis test, all P values <0.01) (Figure 2.2D and Table S2.6). This result is consistent
with a previous finding in Arabidopsis showing that the angiosperm-conserved single-copy
genes generally show higher expression than duplicated genes [12]. This larger expression
ubiquity also implies that single-copy genes are more likely involved in housekeeping
functions than genes belonging to the other groups. When focusing on the duplicated genes,
genes retained after WGD show on average a significantly higher expression level than genes
from groups representing other types of duplicates (Kruskal-Wallis test, all P values < 0.01)
(Figure 2.2D). Because essential genes are found to be highly expressed in Arabidopsis and
other plants [50], this suggests that both single-copy and WGD-derived duplicates might
constitute the more essential genes in lotus. Therefore, the strong purifying selection from
gene essentiality of these two groups of genes might play an important role in constraining
their dosage sensitivity (copy number change among taxa).

Further, we found that in lotus the largest gene group, namely the dispersed duplicates,
possesses the highest ratio of silent genes (genes that are not expressed in any of the
investigated samples) (9.61%), followed by proximal duplicates (9.20%) and tandem
duplicates (7.29%), whereas genes resulting from WGD&TD (2.81%), from WGD (1.15%)
and single-copy genes (1.42%) display much lower ratios of silent genes (Figure 2.2E). This
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explains that even though dispersed duplicates contain a large portion of “angiosperm-
conserved single-copy genes,” they do not show a higher expression level than duplicates
retained from WGD because they also contain a substantial number of silent (likely
pseudogenized) duplicate genes. We further showed that compared with the expressed
dispersed duplicates, the silent dispersed duplicates generally have younger ages (measured by
4dTv), lower number of introns, smaller protein length, and lower selective pressure,
suggesting that they might be recent retrotransposed duplicates (Figure S2.8). Overall, these
comparisons further confirm that losing function by gene silencing is not a random
phenomenon and that single-copy genes and duplicates retained after a WGD are the least likely
to be silenced.

Moreover, using the Tau index to measure expression specificity across different lotus tissues,
we revealed that single-copy genes (mean Tau index of 0.38) show the lowest expression
specificity of all gene groups (Kruskal-Wallis test, all P-values < 0.01). In addition, WGD
duplicates (mean Tau index 0.45) exhibit significantly lower expression specificity than other
types of duplicates (Kruskal-Wallis test, all P val- ues < 0.01) (Figure 2.2F). Both single-copy
genes and genes retained from a WGD tend to have a wider “expression breadth” than small-
scale duplicates, and hence their expression might be essential in most tissues as is supported
by findings in Arabidopsis [50]. By showing higher expression level and breadth, both single-
copy genes and WGD-derived genes might expose themselves to stronger purifying selection.
This is supported by lotus genome resequencing data that show significantly lower ratios of
sequence deletion and nucleotide diversity (x) for single-copy genes and WGD-derived
duplicates than for small-scale duplicates (Kruskal-Wallis test, all P values < 0.01) (Figure
2.2G and H).

2.2.5 Differences in expression might be associated with differences in methylation
level and TE distribution

Most cis-regulatory elements reside in gene flanking regions, which play profound roles in
gene regulation. Given the impact of epigenetic regulation on gene expression, we assessed
whether the above-mentioned differences in expression among different gene groups could be
associated with differences in methylation level on gene flanking regions [51-53]. Hereto, we
used methylation data obtained from leaf, petal, stamen petaloid, and stamen. Cytosine
methylation levels at CG, CHG, and CHH sites along the gene (upstream, genic and
downstream region) generally display a curved “W” shape with the lowest methylation level
being observed close to the gene start and stop sites; Note that similar “W”-like shapes were
observed when using an alternative definition of flanking regions (see Materials and Methods)
(Figure 2.3 and Figures S2.9 and S2.10). These patterns in which the lowest methylation level
is observed near the flanking regions agree with the finding that methylation can inhibit the
binding of RNA polymerase II and transcriptional initiation [51]. Among CG, CHG, and CHH
sites, the methylation level is the strongest at CG (mean ML = 0.458) (Figure 2.3A). The
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average methylation level in flanking regions (promoters and downstream regions) of genes
retained after a WGD is significantly lower than the methylation levels of genes belonging to
other groups, indicating that duplicates retained after a WGD are transcriptionally less
repressed by methylation in flanking regions. This is displayed in figure 2.3 for methylation
levels observed in leaf. Similar figures were obtained for the methylation data obtained from
other tissues (Figure S2.9 and S2.10). This average lower methylation level in flanking regions
for genes that were retained after a WGD is in line with their relatively higher expression level
and breadth. In contrast, the higher expression level and breadth of single-copy genes as
compared with genes from other groups seem not to be associated with relatively lower
methylation levels of flanking regions: single-copy genes display a higher methylation level
in their promoters than genes belonging to the other groups (Kruskal-Wallis test, P values <
0.01).

In plants, (24-nt) RNA-directed DNA methylation is frequent in regions containing TEs, likely
because most TEs need to be silenced to reduce TE activity and maintain genome stability.
Hence, we assessed the degree to which differences in methylation level in gene flanking
regions can be associated with the presence of TEs, including both TEs with 24-nt small
(interfering) RNA (sRNA TE) and those without (SRNA TE) [54] (see Materials and Methods).
Interestingly, the differences in TE density, especially of sSRNA TEs, between the different
gene groups resembles the distribution pattern of the overall CG and CHG methylation levels,
where the gene group representing duplicates retained after a WGD shows the lowest average
TE density in gene flanking regions and concomitantly also the lowest average methylation

levels in these flanking regions (Figure S2.11).

Unlike gene flanking regions, the methylation level along the gene body (gene region) seems
to be more related to differences in gene expression among the different gene groups. Whereas
gene flanking DNA methylation is generally believed to repress gene expression [55-57], we
found that higher gene body methylation level tends to occur in the gene groups with higher
expression level and breadth, that is, single-copy and WGD duplicates. Interestingly, we found
that for the group of single-copy genes, on average, the higher methylation level in the gene
body seems to correlate with their greater gene length and exon number (Kruskal-Wallis test,
all P values < 0.01) (Figure 2.21 and J). The fact that introns often contain TEs which are often
associated with higher methylation levels might explain why single-copy genes also display
the highest TE density in their gene body (Kruskal-Wallis test, all P values <0.01) (Figure 2.3
and Table S2.6) [58, 59].
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Figure 2.3 Differences in average CG, CHG, and CHH methylation level (ML) in lotus leaf along the gene and
flanking regions among different gene groups based on the duplication status. (A—C) Methylation of all annotated
genes. (D-F) Methylation of the genes with RNA-seq evidence.

2.2.6 WGD-derived duplicates are constrained by gene dosage balance

The evolutionary fate of duplicates is often explained employing the GBH: Genes with
regulatory or signaling functions such as transcription factors or kinases will largely impact the
regulatory network after a duplication because of their hub-like properties. Such duplicates are
preferentially retained because the loss of one copy might disrupt many genes to which they
directly or indirectly connect [18, 60]. If gene balance plays a role in the preferential retention
of duplicates after a WGD, this should be reflected in the topological properties of these WGD
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duplicates [17]. To assess the effect of gene balance, we analyzed the topological properties of
genes belonging to each of the studied gene groups in the physical interaction network. As
27,458 out of 32,124 lotus genes (85.5%) can have the closest ortholog to corresponding
Arabidopsis genes, the protein—protein interactome map from the “Arabidopsis Interactome
Map” was used as a scaffold for the lotus (PPI) network (see Materials and Methods)
(Arabidopsis Interactome Mapping Consortium 2011). We found that indeed genes retained
after a WGD show the highest average number of PPIs (mean PPIs 1.31) (Kruskal-Wallis test,
all P values < 0.01), whereas genes belonging to the other groups only differ marginally in the
number of PPIs in which they tend to be involved (Figure 2.2K). Even though the analyses
above suggest that, based on their relatively high expression level and breadth, single-copy
genes are likely to be the more essential genes, these single-copy genes are not involved in
more PPIs than genes from other groups. It appears that single-copy genes tend to immediately
return to their single-copy status after a WGD because little dosage-balance constraint is
imposed by the interaction network and a strong selection against gene redundancy is present
[12]. Larger protein length for genes is often found to be associated with the possibility of
increased interfacing with different interactors [61, 62]. Intriguingly, we also found that genes
retained from a WGD have the largest average coding sequences (CDS) or protein length
(Kruskal-Wallis test, all P values < 0.01), whereas genes retained after SSDs show a
comparably smaller protein length, which further supports the stronger constraint of dosage

balance on genes retained from a WGD (Figure 2.2L).

For the different groups of genes, we also assessed the bias in which genes are retained
following duplication by calculating their Gene Ontology (GO) enrichment (K-S test with P
value <0.01). We showed that the top 30 most significantly enriched GO terms for gene groups
with different duplication status have no overlapping functionalities (GO terms) (Figure S2.12).
In line with the GBH, we observed that genes retained after a WGD are mostly enriched in
biological terms relating to protein phosphorylation and regulation of transcription (Figure
S2.12). In addition, we found that duplicates from the lotus WGD were significantly enriched
in genes related to trehalose biosynthesis, polyamine biosynthesis, xylem, and phloem
development (Figure S2.12). These duplications might have contributed to unique features of
lotus: Because both trehalose and polyamine (metabolites) help plants to survive in stresses
such as drought and cold [63-65], the unique longevity of lotus seeds and their survival during
K—pg boundary might have benefited from the duplication of these biosynthesis genes. Also,
the well-developed aerenchyma in stem and rhizome of lotus might have benefited from the
duplication of genes related to xylem and phloem [66]. In contrast, small-scale duplicates
(groups of tandem and proximal duplicates) are mostly enriched in metabolic processes,
whereas genes resulting from a combination of WGD&TD are enriched in transport processes
(Figure S2.12). Thus, both the PPI network and GO functional enrichment analyses suggest
that gene-balance-driven selection determines the retention of duplicates after a WGD.
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2.2.7 Orphan genes in lotus display unique properties

Orphan genes, comprising 7.32% of all lotus genes, are either single-copy genes or form
dispersed duplicates, suggesting they are either not retained after lotus WGD or appeared after
the lotus WGD (Figure S2.6A and B). They show a much lower average expression level, an
elevated ratio of silent genes, and a higher expression specificity than genes with homology to
known proteins (nonorphan genes) (Kruskal-Wallis test, P values of all pairwise comparisons
<0.01) (Figure 2.2D-F). The relatively higher average = and the ratio of sequence deletion of
orphan genes suggest that they are under more relaxed selection than genes from other groups
(Figure 2.2G and H). Moreover, they have on average a shorter CDS, a shorter gene length
and the lowest number of exons, implying that they are shorter and have a less complex gene
structure (Figure 2.21, J, and L). Additionally, orphan genes only display small differences in
ML and TE density between their flanking regions and gene bodies (Figure 2.3 and Figure
S2.9). Meanwhile, with much higher ML and TE density in gene flanking regions than non-
orphan genes, it is more likely that most dispersed orphan genes were created by transposed
duplications mediated by TEs (Figure 2.3 and Figure S2.11). Hence, as orphan genes exhibit
features that reflect their relatively weaker functional relevancy, especially weak expression
and rapid sequence turnover within lotus populations, than all nonorphan genes, they were not
used to study the fate of genes after a WGD.

2.2.8 WGD-derived duplicates that have diverged in function

WGD-derived duplicates can subfunctionalize and/or neofunctionalize due to changes in the
protein-coding domain, or because of regulatory changes causing divergence of expression.
Here, we focused on the latter phenomenon and assessed the degree to which duplicate pairs
retained from a WGD diverged in gene expression behavior. Hereto, we relied on the
interconnectivity score calculated based on the coexpression network [67] (Figure 2.4A).
Based on the interconnectivity score, duplicates retained after a WGD were subdivided into
five groups: Gene duplicates belonging to group A (connectivity > 0.5 with a P value < 0.01)
tend to share many neighbors in the coexpression network and are unlikely to have
subfunctionalized or neofunctionalized. The degree of connectivity gradually decreases for
duplicates belonging to groups B and C but still is larger than what can be expected by chance,
given the local connectivity of the duplicate pairs under study. In contrast, duplicate pairs
belonging to group D share no coexpressed neighbors and the absence of shared neighbors is
significant given the local connectivity of the genes in a pair (connectivity <0.15 and P value >
0.99). These genes diverged in expression pattern are more likely to have subfunctionalized or
neofunctionalized (Figure 2.4A). Genes belonging to group E (with connectivity < 0.15 and
0.99 > x> 0.1) show detectable connectivity in the coexpression network but this connectivity
is not higher than what can be expected by chance. As for these gene pairs, it is difficult to
decide whether they share coexpression neighbors, they were not considered for further
analyses.
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Figure 2.4 Violin plots of expression, functional, methylation, and evolutionary features of WGD-
derived duplicate genes with different levels of expression divergence (group A, group B, group C, and
group D). (4) Connectivity score. (B) dV, nonsynonymous mutation. (C) dS, synonymous mutation. (D)
The number of protein—protein interactions inferred from the closest orthologs in Arabidopsis. (E) The
mean of log-transformed FPKM. (F) Tissue specificity index (based on Tau index). (G-/) r (correlation
coefficient) of CG methylation levels in tissues between duplicates for gene body (G), upstream (H), and

downstream region (/). Black line: median; gray line: quantile.

To compare the degree of functional constraint on duplicates with different levels of expression
divergence, we further assessed sequence and expression related characteristics for gene pairs
belonging to each of the different groups (excluding group E). In line with the observed
increase in expression divergence, also both the number of nonsynonymous substitutions (dN)
and the number of synonymous substitutions (dS) in group A (the group with duplicates that
display the most conserved expression behavior) are significantly lower than those in group D
(the group most diverged in expression behavior) (Kruskal-Wallis test, all P values < 0.05),
which further shows a gradual increase from group A to group D (Figure 2.4B and C). Thus,
duplicate pairs that show little expression divergence tend to retain their sequence similarity
(especially groups A and B). This indicates that these genes are conserved and under higher
functional constraint which might be related to a relatively stronger dosage balance. We indeed
also observed that duplicates that displayed the largest sequence and expression conservation
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(group A) are also more frequently interacting in the PPI network than duplicates that display
the most divergent expression behavior (group D) (as assessed by the degree of the duplicate
genes in the PPI network) (Kruskal-Wallis test, all P values < 0.01), and accordingly a gradual
decrease from group A to group D was observed, which seems in line with a previous study on
WGD-derived duplicates and small-scale duplicates in Arabidopsis, tomato, and maize (Figure
2.4D) [29]. Moreover, both the average gene expression level and expression breadth
(expressed as the opposite of the Tau index) in group A are significantly higher than group D
(Kruskal-Wallis test, all P value < 0.01), which also exhibit a gradual change from group A to
group D (Figure 2.4E and F). This indicates that duplicate pairs more conserved in their
expression behavior are involved in more generic functions, whereas as expected, the
duplicates more divergent in expression behavior tend to have more specialized functions. The
small difference of tissue specificity (Tau index) between group A and group B might indicate
they are both still under strong functional constraints (Kruskal-Wallis test, all P value 0.141).
However, we did not observe that the degree of expression divergence between duplicated gene
pairs belonging to different groups exhibits any significant association with overall methylation
level (in tissues) or TE density (Figures S2.13—S2.15). This suggests that the gradual increase
in gene expression level of duplicates from group D (less conserved in expression behavior) to
group A (most conserved in expression behavior) is not related to a decline in methylation level.
Because the methylation level of a gene can change in different tissues, we also calculated how
the methylation pattern between duplicates is different in a well-defined region of the gene
(gene body, upstream or downstream) by using correlation coefficient (r). A gene’s methylation
pattern is here defined as the variable of methylation levels in the four tissues on a defined
region of the gene (see Materials and Methods). This analysis was performed for CG, CHG,
and CHH methylation, and for each genic region separately. We found that duplicates belonging
to group A (the group most conserved in expression behavior) display significantly more
correlated CG methylation patterns in their genic region (with the highest r) than those of group
D (Kruskal-Wallis test, all P value < 0.01), with a gradual decline from group A to group D
(Figure 2.4G). This trend was not visible for the CHG nor CHH sites in upstream and
downstream regions of duplicates (Figure 2.4H and I and Figure S2.16A-F). This suggests that
the level to which CG methylation occurs in different tissues tends to be more conserved for
duplicates that are more conserved in expression behavior. Subfunctionalized genes tend to
display more differences in CG methylation level across tissues in their genic regions.

The duplicates with the most conserved expression behavior (group A) are enriched in GO terms
related to protein translation (ribosome) and regulation of transcription, both functions which
are known to be dosage-sensitive (Figure S2.17) [30, 68]. In contrast, the duplicates that are
most diverged in expression (group D) are mainly enriched in transport mechanisms (e.g.,
transmembrane transport, spermine biosynthetic process, and anion transport), which are not
typical dosage-sensitive functions. As areference, we also analyzed duplicates from the
ArabidopsisK—pg boundary WGD (At-b) and the recent WGD (At-a) with a similar strategy
(using a similar grouping based on their degree of expression divergence) (Figure S2.18). In line
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with our results in lotus, also here GO terms related to ribosome synthesis and regulation of
transcription and biological processes are enriched in the groups representing the genes that
displayed the least expression divergence after duplication (respectively group A of At-b and
At-a) (Figures S2.19 and S2.20). For the duplicates from At-b (group D) that diverged most in
expression, GO terms related to response to chemicals, hormone, and stimulus were most
enriched, whereas for the diverged genes of At-a (group A) enriched, GO terms related to
membrane, transferase activity, and oligopeptide transporter activity (Figures S2.19 and S2.20).
This analysis shows that both in lotus and Arabidopsis duplicates that display the least
expression divergent are related to dosage-sensitive functions, whereas the duplicated most
divergent in expression (subfunctionalized) tend to have lineage-specific functions. For
example, group D in lotus was enriched in “circadian regulation of calcium ion oscillation.”
This enrichment could be associated with the presence of four lotus genes (namely, Nn-CRY1
a, b and Nn-CRY?2 a, b) being homologous to respectively Arabidopsis Cryptochrome 1 (CRY1)
and Cryptochrome 2 (CRY?2) (Figure 2.4A and Figures S2.17 and S2.21). Although CRY1 is a
flavin-type blue-light photoreceptor, participating in blue-light induced stomatal opening and
thermomorphogenesis, CRY2 is a blue/UV-A photoreceptor controlling flowering time and
cotyledon expansion [69-71]. Therefore, these four circadian rhythm related genes that
underwent post-WGD subfunctionalization might be associated with the lineage-specific
adoption of lotus-specific characteristics related to the rigorous rhythm of flower opening and

closure.
2.2.9 Subgenome dominance and fractionation

Subgenome dominance is a phenomenon in polyploids, particularly allopolyploids, in which
genes are preferentially lost from one parental subgenome and for which the genes that are
retained on this parental subgenome are also expressed at lower levels than their corresponding
copies on the alternative parental subgenome [72]. Here, we wanted to assess whether we could
find evidence for subgenome dominance in lotus. For most syntenic blocks, there are many
more non-anchor genes (singlets) than anchor genes (collinear genes), suggesting that there has
been extensive gene loss and genome rearrangement after the lotus WGD (Figure 2.5A). Most
of the syntenic genome fragments are different in the degree to which gene duplicates are
retained (retention of gene numbers), and all pairs of the syntenic regions are different in length
(Figure 2.5A). Only 19 out of the 130 syntenic regions with at least six ancestral genes are
significantly biased in gene retention (v2 test, P < 0.05), rendering it is difficult to partition
syntenic genomic fragments based on the significance of gene retent