High-energy x-ray photoelectron spectroscopy spectra of Al_2O_3 measured by Cr K α

Special Collection: Higher Energy X-ray Photoelectron Spectroscopy 2022

I. Hoflijk; C. Zborowski; I. Vaesen; ... et. al

Surface Science Spectra 29, 014021 (2022) https://doi.org/10.1116/6.0001577

View

Online

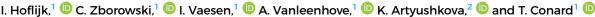
CrossMark

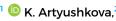
High-energy x-ray photoelectron spectroscopy spectra of Al_2O_3 measured by Cr K α

Cite as: Surf. Sci. Spectra 29, 014021 (2022); doi: 10.1116/6.0001577

Submitted: 22 October 2021 · Accepted: 13 April 2022 ·

Published Online: 10 May 2022





AFFILIATIONS

¹Imec, MCACSA, Kapeldreef 75, 3001 Leuven, Belgium

Note: This paper is part of the 2022 Special Topic Collection on Higher Energy X-ray Photoelectron Spectroscopy.

ABSTRACT

An Al₂O₃ sapphire sample was analyzed using high-resolution high-energy x-ray photoelectron spectroscopy (HAXPES). The HAXPES spectra of Al₂O₃ obtained using monochromatic Cr Kα radiation at 5414.8 eV include two survey scans (Al Kα and Cr Kα) and high-resolution spectra of Al 2p, Al 2s, Al 1s, and O 1s.

Key words: Al₂O₃, HAXPES, Cr Kα

Published under an exclusive license by the AVS. https://doi.org/10.1116/6.0001577

Accession #: 01740 and 01743

Technique: XPS Host Material: Al₂O₃

Instrument: ULVAC-PHI Quantes Major Elements in Spectra: Al, O

Minor Elements in Spectra: None

Published Spectra: 7

Spectra in Electronic Record: 7 Spectral Category: Comparison

INTRODUCTION

While high-energy photoemission has been in use for decades, only very few reference spectra are available, even for common materials. The recent availability of performant labscale photoemission spectrometers (Refs. 1-3) requires reliable reference data.

In this work, we present reference spectra from an Al₂O₃ sapphire sample, which was analyzed using high-resolution highenergy x-ray photoelectron spectroscopy (HAXPES). The HAXPES spectra of Al₂O₃ obtained using monochromatic Cr Kα radiation at 5414.8 eV include two survey scans (Al Kα and Cr Kα) and highresolution spectra of Al 2p, Al 2s, Al 1s, and O 1s.

SPECIMEN DESCRIPTION (ACCESSION # 01740)

Host Material: Al₂O₃ CAS Registry #: 1344-28-1

Host Material Characteristics: Homogeneous; solid; single crystal; dielectric; inorganic compound; other

Chemical Name: Aluminum oxide

Source: Single crystal, 2 in. c-plane sapphire substrates (0001) obtained from Roditi International Corporation Ltd.

Host Composition: Al, O

Form: Bulk

Structure: Single crystal

History and Significance: Air exposed monocrystalline and bulk 2 in. c-plane sapphire substrates (0001).

As Received Condition: Piece of a 5 in. wafer Analyzed Region: Same as host materials

Ex Situ Preparation/Mounting: The sample was taped on the sample holder using insulating removable 3M double sided tape.

In Situ Preparation: The sample was presputtered using 100 eV Ar+ ions while monitoring the C 1s signal. Sputtering was stopped when the C 1s presented only background levels.

Charge Control: Low energy electrons (1 eV, filament 1.1 A) and low energy ions (10 eV, 5 mA emission)

Temp. During Analysis: 300 K

Pressure During Analysis: $<5 \times 10^{-7}$ Pa

Pre-analysis Beam Exposure: 0 s

Downloaded from http://pubs.aip.org/avs/sss/article-pdf/doi/10.1116/6.0001577/16346223/014021_1_online.pc

Surf. Sci. Spectra, 29(1) Jun 2022; doi: 10.1116/6.0001577

Published under an exclusive license by the AVS

²Physical Electronics, 18725 Lake Drive East, Chanhassen, Minnesota 55317

SPECIMEN DESCRIPTION (ACCESSION # 01743)

Host Material: Au

CAS Registry #: 7440-57-5

Host Material Characteristics: Homogeneous; solid; amorphous;

conductor; metal; other Chemical Name: Gold

Source: 0.250 mm thick foil from Goodfellow, AU000372/5

Host Composition: Au

Form: Bulk

Structure: Amorphous

History and Significance: In-vacuum sputtered

As Received Condition: Foil

Analyzed Region: Same as host materials

Ex Situ Preparation/Mounting: The sample was taped on the sample holder using insulating removable 3M double sided tape.

In Situ Preparation: Sample was sputtered using 1 keV Ar⁺ ions until no C or O was observed.

Charge Control: Low energy electrons (1 eV, filament 1.1 A) and

low energy ions (10 eV, 5 mA emission) Temp. During Analysis: 300 K Pressure During Analysis: $<5 \times 10^{-7}$ Pa Pre-analysis Beam Exposure: 0 s

INSTRUMENT DESCRIPTION

Manufacturer and Model: ULVAC-PHI Quantes

Analyzer Type: Spherical sector Detector: Multichannel resistive plate Number of Detector Elements: 32

INSTRUMENT PARAMETERS COMMON TO ALL SPECTRA

Spectrometer

Analyzer Mode: Constant pass energy

Throughput (**T** = **E**^N): The energy dependence can be modeled using the following equation: $A/E_p = (a^2/(a^2 + R^2))^b$, where a and b are constants, E_p is the pass energy, A is the peak area, and B is the retard ratio equal to E/E_p , where B is the kinetic energy. Three spectral regions [Ag 2s (3790–3830 eV), Ag 3s (700–740 eV), and Ag 3d (350–390 eV)] are recorded on a sputter-cleaned silver sample at different pass energies. The values of B and B are then determined to be 576.9 and 6.3, respectively, by a linear least square fit of the data applying the equation described above.

Excitation Source Window: Al

Excitation Source: Cr K_{α} monochromatic

Source Energy: 5417.8 eV **Source Strength:** 43 W

Source Beam Size: $100 \times 100 \,\mu\text{m}^2$ Excitation Source: Al K_{α} monochromatic

Source Energy: 1486.6 eV **Source Strength:** 43 W

Source Beam Size: $100 \times 100 \,\mu\text{m}^2$ Signal Mode: Multichannel direct

Geometry

Incident Angle: 22°

Source-to-Analyzer Angle: 46°

Emission Angle: 45°

Specimen Azimuthal Angle: 0°

Acceptance Angle from Analyzer Axis: 0° Analyzer Angular Acceptance Width: $20^{\circ} \times 20^{\circ}$

Ion Gun

Manufacturer and Model: ULVAC-PHI Quantes

Energy: 10 and 100 eV

Current: 5 mA

Current Measurement Method: Biased stage

Sputtering Species: Ar

Spot Size (unrastered): $10\,000\,\mu\text{m}$

Raster Size: N/A Incident Angle: 45° Polar Angle: 45° Azimuthal Angle: 45°

Comment: Gun used for neutralization

DATA ANALYSIS METHOD

Energy Scale Correction: Due to the too low intensity of the C 1s peak with Cr Kα, the binding energy was referenced by determining the binding energy position of the O 1s peak recorded by Al Kα XPS measurement and subsequent correction shift of the C 1s peak to 284.8 eV. The determined binding energy position of O 1s is 530.6 eV. The binding energy shift of the Cr Kα data was then performed by shifting the O 1s peak to 530.6 eV.

Recommended Energy Scale Shift: 1.15 eV

Peak Shape and Background Method: Data treatment was performed using Shirley background and Gaussian–Lorentzian peak shapes.

using Shirley background and Gaussian–Lorentzian peak shapes.

Quantitation Method: Quantification was done using PHI MULTIPAK
Software Version 9.9.0.8. The elemental relative sensitivity factors
were derived according to ISO 18118 Equation (A.7): "The pureelement relative sensitivity factor (PERSF), Si(Ep), can be obtained
from measurements of Si(ref) for the selected element and a measurement of the peak intensity for the selected key material, I(key),
as given in Formula (A.7):Si(Ep) = (Ii(ref)/(I(key))."

AUTHOR DECLARATIONS

Conflict of Interest

The authors have no conflicts to disclose.

DATA AVAILABILITY

The data that support the findings of this study are available within the article and its supplementary material (Ref. 4).

REFERENCES

¹See: https://www.ulvac-phi.com/en/products/xps/quantes/.

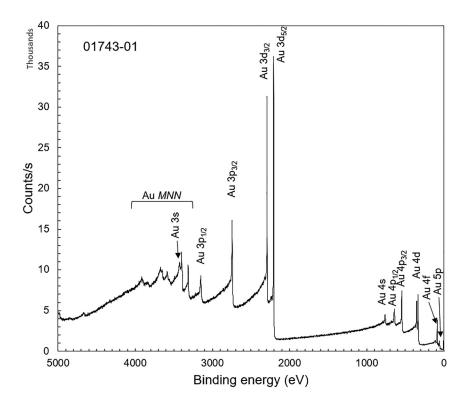
²See: https://www.kratos.com/products/axis-supra-xps-surface-analysis-instrument.

³See: https://scientaomicron.com/en/system-solutions/electron-spectroscopy/HAXPES-Lab.

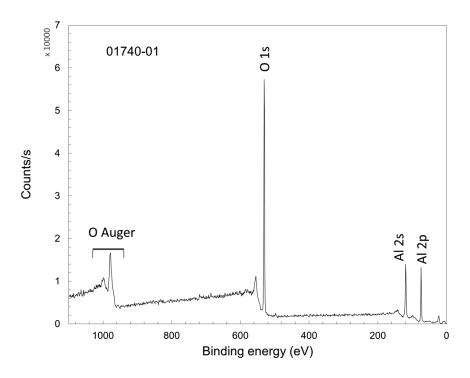
⁴See supplementary material at https://doi.org/10.1116/6.0001577 for ASCII data of all shown spectra.

SPECTRAL FEATURES TABLE							
Spectrum ID #	Element/ Transition	Peak Energy (eV)	Peak Width FWHM (eV)	Peak Area (eV × couts/s)	Sensitivity Factor	Concentration (at. %) ^a	Peak Assignment
01740-03	Al 2p	73.8	1.58	236	0.075	36.4	Al_2O_3
01740-04	Al 2s	118.6	2.17	865	0.368	35.3	Al_2O_3
01740-05	Al 1s	1560.7	1.73	11 574	4.254	37.4	Al_2O_3
01740-06	1s	530.6	1.66	2441	0.589	•••	Al_2O_3

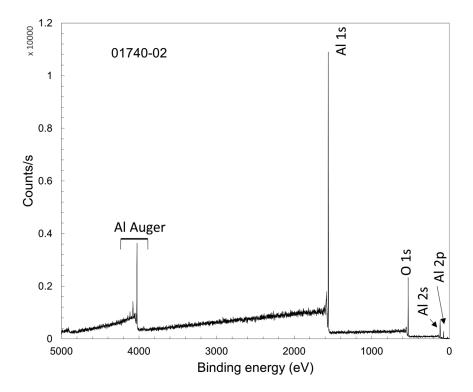
^aThe concentration is calculated by taking into account only the O 1s peak and the Al peak from the given transition.


ANALYZER CALIBRATION TABLE ^a							
Spectrum ID #	Element/ Transition	Peak Energy (eV)	Peak Width FWHM (eV)	Peak Area (eV × counts/s)	Sensitivity Factor	Concentration (at. %)	Peak Assignment
01743-01	Au 3d _{5/2}	2206.8	2.59	47 379		•••	•••
01743-01	Au 4f _{7/2}	84.2	1.24	2 115			•••
	Cu 2p _{3/2}	932.9	1.34	7 090			
	Ag 2p _{3/2}	3352.7	2.61	30 352			
	Ag 3d _{5/2}	368.4	1.15	2 978		•••	•••

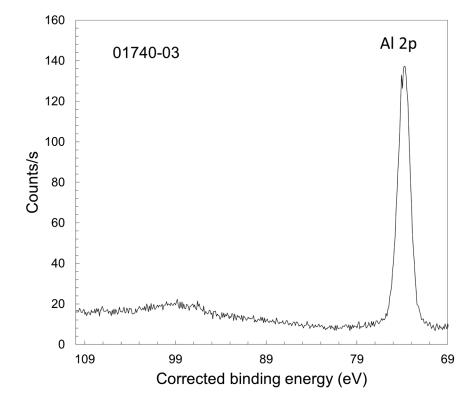
 $^{^{}a}$ The calibration table is established using the Cr K α photons and a pass energy of 112 eV corresponding to the presented high-resolution spectra.

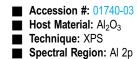

GUIDE TO FIGURES					
Spectrum (Accession) #	Spectral Region	Voltage Shift ^a	Multiplier	Baseline	Comment #
01743-01	Survey	0	1	0	Au survey with x-ray source Cr Kα ^b
01740-01	Survey	0	1	0	X-ray source Al Kα
01740-02	Survey	0	1	0	X-ray source Cr K α
01740-03	Al 2p	-1.15	1	0	
01740-04	Al 2s	-1.15	1	0	
01740-05	Al 1s	-1.15	1	0	
01740-06	O 1s	-1.15	1	0	•••

^aVoltage shift of the archived (as-measured) spectrum relative to the printed figure. The figure reflects the recommended energy scale correction due to a calibration correction, sample charging, flood gun, or other phenomenon.

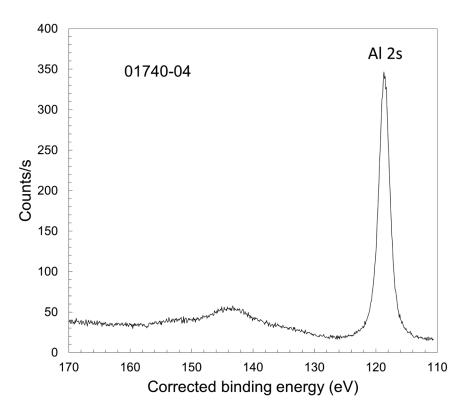

^bThe reference spectrum included in this paper is the same as those included with other papers in this collection that use this x-ray source. This was intentional and not an error as submissions were requested to be accompanied by a wide-scan spectrum of sputter-cleaned gold taken on the same instrument and using the same settings as the wide-scan spectrum of the material or materials in the submission.

Accession #	01743-01	Inde-paraor IV. I I provou 1377/16346223/014021online.pa
Host Material:	Au	201/00
Technique:	XPS	¥ .
Spectral Region:	Survey	Ξ
Instrument:	ULVAC-PHI Quantes	
Excitation Source:	Cr K_{α} monochromatic	.00
Source Energy:	5414.8 eV	Ö
Source Strength:	48 W	2
Source Size:	0.1 × 0.1 mm ²	040
Analyzer Type:	Spherical sector analyzer	223
Incident Angle:	22°	2
Emission Angle:	45°	Š
Analyzer Pass Energy:	280 eV	<u> </u> -
Analyzer Resolution:	1.9 eV	<u>`</u>
Total Signal Accumulation Time:	5210 s	<u>.</u>
Total Elapsed Time:	5700 s	2
Number of Scans:	1	
Effective Detector Width:	31 eV	




Accession #	01740-01	
Host Material:	Al_2O_3	
Technique:	XPS	
Spectral Region:	Survey	
Instrument:	ULVAC-PHI Quantes	
Excitation Source:	Al K_{α} monochromatic	
Source Energy:	1486.6 eV	
Source Strength:	43 W	
Source Size:	0.1 × 0.1 mm ²	
Analyzer Type:	Spherical sector analyzer	
Incident Angle:	22°	
Emission Angle:	45°	
Analyzer Pass Energy:	140 eV	
Analyzer Resolution:	1.9 eV	
Total Signal Accumulation Time:	114 s	
Total Elapsed Time:	125 s	
Number of Scans:	1	
Effective Detector Width:	31 eV	

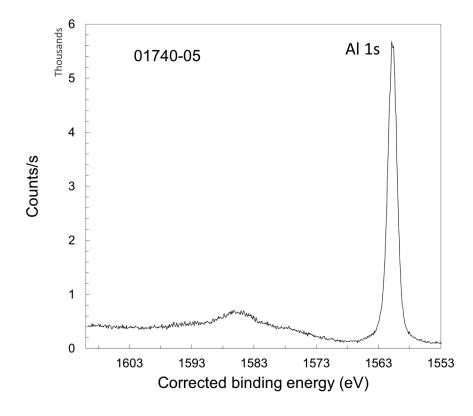
Accession #	01740-02	
Host Material:	Al_2O_3	
Technique:	XPS	
Spectral Region:	Survey	
Instrument:	ULVAC-PHI Quantes	
Excitation Source:	Cr K _{\alpha} monochromatic	
Source Energy:	5414.8 eV	
Source Strength:	43 W	
Source Size:	$0.1 \times 0.1 \text{ mm}^2$	
Analyzer Type:	Spherical sector analyzer	
Incident Angle:	22°	
Emission Angle:	45°	
Analyzer Pass Energy:	280 eV	
Analyzer Resolution:	1.9 eV	
Total Signal Accumulation Time:	1500 s	
Total Elapsed Time:	1650 s	
Number of Scans:	1	
Effective Detector Width:	31 eV	

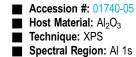


Instrument: ULVAC-PHI Quantes Excitation Source: Cr K_{α} monochromatic Source Energy: 5414.8 eV Source Strength: 43 W Source Size: 0.1 × 0.1 mm² Analyzer Type: Spherical sector Incident Angle: 22° Emission Angle: 45° Analyzer Pass Energy: 112 eV Analyzer Resolution: 0.86 eV

Total Signal Accumulation Time: 7440 s Total Elapsed Time: 8180 s

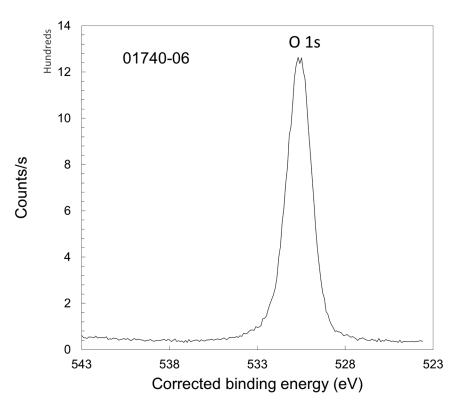
Number of Scans: 140 Effective Detector Width: 12.4 eV

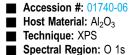

■ Technique: XPS■ Spectral Region: Al 2s


Instrument: ULVAC-PHI Quantes

Excitation Source: Cr K_{α} monochromatic Source Energy: 5414.8 eV Source Strength: 43 W Source Size: $0.1 \times 0.1 \, \text{mm}^2$ Analyzer Type: Spherical sector Incident Angle: 22° Emission Angle: 45° Analyzer Pass Energy: 112 eV Analyzer Resolution: $0.86 \, \text{eV}$ Total Signal Accumulation Time: 8400 s

Total Elapsed Time: 9250 s Number of Scans: 140 Effective Detector Width: 12.4 eV




Instrument: ULVAC-PHI Quantes Excitation Source: Cr K_{α} monochromatic Source Energy: 5414.8 eV Source Strength: 43 W Source Size: $0.1 \times 0.1 \text{ mm}^2$ Analyzer Type: Spherical sector Incident Angle: 22° Emission Angle: 45° Analyzer Pass Energy: 112 eV

Analyzer Resolution: 0.86 eV Total Signal Accumulation Time: 480 s Total Elapsed Time: 520 s

Number of Scans: 8

Effective Detector Width: 12.4 eV

Instrument: ULVAC-PHI Quantes Excitation Source: Cr K_{α} monochromatic Source Energy: 5414.8 eV Source Strength: 43 W Source Size: $0.1 \times 0.1 \text{ mm}^2$ Analyzer Type: Spherical sector Incident Angle: 22° Emission Angle: 45° Analyzer Pass Energy: 112 eV

Analyzer Resolution: 0.86 eV Total Signal Accumulation Time: 720 s Total Elapsed Time: 790 s

Effective Detector Width: 12.4 eV

Number of Scans: 36