
Theoretical Computer Science 916 (2022) 86–110
Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

Signatures of knowledge for Boolean circuits under standard 

assumptions

Karim Baghery a,∗, Alonso González b, Zaira Pindado c,d, Carla Ràfols d,e

a imec-COSIC, KU Leuven, Leuven, Belgium
b ENS de Lyon, Laboratoire LIP (U. Lyon, CNRS, ENSL, INRIA, UCBL), France
c QPQ, Dublin, Ireland
d Universitat Pompeu Fabra, Barcelona, Spain
e Cybercat, Spain

a r t i c l e i n f o a b s t r a c t

Article history:
Received 3 September 2020
Received in revised form 7 February 2022
Accepted 4 March 2022
Available online 9 March 2022
Communicated by G. Persiano

Keywords:
NIZK
Signatures
Bilinear groups
CircuitSat

This paper constructs unbounded simulation sound proofs for boolean circuit satisfiabil-
ity under standard assumptions with proof size O (n + d) bilinear group elements, where 
d is the depth and n is the input size of the circuit. Our technical contribution is to add 
unbounded simulation soundness to a recent NIZK of González and Ràfols (ASIACRYPT’19) 
with very small overhead. We give two different constructions: the first one is more effi-
cient but not tight, and the second one is tight. Our new scheme can be used to construct 
Signatures of Knowledge based on standard assumptions that also can be composed uni-
versally with other cryptographic protocols/primitives.
As an independent contribution we also detail a simple formula to encode Boolean circuits 
as Quadratic Arithmetic Programs.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the 
CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

As one of the essential tools in modern cryptography, Non-Interactive Zero-Knowledge (NIZK) proof systems allow a party 
to prove that for a public statement �x, she knows a witness �w such that (�x, �w) ∈ R, for some relation R, without leaking 
any information about �w and without interaction with the verifier. Due to their impressive advantages and functionalities, 
NIZK proof systems are used ubiquitously to build larger cryptographic protocols and systems [8,32]. Among the various 
constructions of NIZK arguments, there is usually a trade-off between several performance measures, in particular, between 
efficiency, generality and the strength of the assumptions used in the security proof.

Zero-knowledge Succinct Argument of Knowledge (zk-SNARKs) [21,28] are among the most practically interesting NIZK 
proofs. They allow to generate succinct proofs for NP-complete languages (3 group elements for CircuitSat [28]) but they 
are constructed based on non-falsifiable assumptions (e.g. knowledge assumptions [14]). A well-known impossibility result 
of Gentry and Wichs [22] shows that this is unavoidable if one wants to have succinctness for general languages. Thus, 
non-falsifiable assumptions are an essential ingredient to have very efficient constructions, while falsifiable assumptions 
give stronger security guarantees and more explicit and meaningful security reductions [41].
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Groth-Sahai proofs [31] also allow to prove general languages1 under standard assumptions non-succinctly, trading secu-
rity for succinctness. On the other hand, some constructions of Quasi-Adaptive NIZK (QA-NIZK) generate very efficient proofs 
based on falsifiable assumptions for very specific statements (e.g. membership in linear spaces). Somewhere in between, re-
cent work by González and Ràfols [25] constructs a NIZK argument for boolean CircuitSat under falsifiable assumptions 
by combining techniques of QA-NIZK arguments and zk-SNARKs. The proof size of their construction is O (n + d) group 
elements, where n is the length of the input and d is the depth of the circuit.

The primary requirements in a NIZK argument are Completeness, Zero-Knowledge (ZK), and Soundness. Completeness guar-
antees that if both parties honestly follow the protocol, the prover will convince the verifier. Zero-knowledge preserves 
prover’s privacy and ensures that the verifier will not learn more than the truth of the statement from the proof. Soundness 
guarantees that a dishonest prover cannot convince an honest verifier. However, in practice usually bare soundness is not 
sufficient and one might need stronger variations of it, known as Knowledge Soundness, Simulation Soundness or Simulation 
Knowledge Soundness (a.k.a. Simulation Extractability) [43,26]. Knowledge soundness ensures that if an adversary manages to 
come up with an acceptable proof, he must know the witness. Simulation soundness (a.k.a. unbounded simulation sound-
ness) ensures that an adversary cannot come up with valid proof for a false statement, even if he has seen an arbitrary 
number of simulated proofs. This notion basically guarantees that the proofs are sound and non-malleable. A strongest 
case, in terms of extractability, Simulation Extractability (SE) implies that an adversary cannot come up with a fresh valid 
proof unless he knows a witness, even if he has seen an arbitrary number of simulated proofs. In both notions knowledge 
soundness and simulation extractability the concept of knowing is formalized by showing that there exists an extraction 
algorithm, either non-Black-Box (nBB) or Black-Box (BB), that can extract the witness from the proof.

Zk-SNARKs (either knowledge sound ones [21,28], or SE ones [29,4,7,6]) are probably the best-known family of NIZK 
arguments. They achieve nBB extraction under non-falsifiable assumptions. While SE with nBB extraction is a stronger 
notion in comparison with (knowledge) soundness, it is still not sufficient for UC-security and needs to be lifted [3]. The 
reason is that in UC-secure NIZK arguments, to simulate the corrupted parties, the ideal-world simulator should be able to 
extract witnesses without getting access to the source code of environment’s algorithm, which is only guaranteed by BB 
SE [11,26,30].

SE NIZK arguments have great potential to be deployed in practice [38,36], or construct other primitives such as 
Signature-of-Knowledge (SoK) [12]. In a SoK, a valid signature of a message m for some statement �x and a relation R
can only be produced if the signer knows a valid witness �w such that (�x, �w) ∈ R. Groth and Maller [29] constructed a SE 
zk-SNARK and a generic construction of a SoK from any SE NIZK argument, resulting in a SoK for CircuitSat. While their 
construction is for general NP relations and it is also succinct, it also relies on non-falsifiable assumptions and cannot be 
directly deployed in UC protocols.

This paper constructs a SE NIZK argument with BB extraction for Boolean CircuitSat which is secure under falsifiable 
assumptions. The proposed construction is based on the result of [25]. We show that the proposed construction adds 
minimal overhead to the original construction, resulting in a SE NIZK argument with BB extraction and proof size O (n + d). 
Moreover, the proposed construction also allows one to construct a (Universally Composable) SoK of the same size.

The restriction to Boolean CircuitSat (and not arithmetic) for our SE NIZK argument is inherited from the NIZK argument 
of [25] on which our argument is based. This restriction is due to the fact that we need the DLOG-based commitments to 
the input of the circuit to be extractable, and this is only possible (for a BB extractor) if the message space is of polynomial 
size. Thus, we restrict ourselves to the important special case of Boolean CircuitSat. As an independent result, in this paper 
we also give a simple formula to encode Boolean CircuitSat as a Quadratic Arithmetic Program [21], which we later use for 
our construction.

1.1. Our contribution

Trivial approach for Boolean CircuitSat. Let φ be some boolean circuit, and let ai, bi, ci be the left, right and output wires 
of gate i. A zero-knowledge argument for Boolean CircuitSat, where the prover shows knowledge of some secret input 
satisfying the circuit, can be divided into three sub-arguments:

1) an argument of knowledge of some boolean input: to prove that the secret input is boolean, the prover must show that 
each input value satisfies some quadratic equation,

2) a set of linear constraints, which proves “correct wiring”, namely that ai, bi are consistent with �c and the specification 
of the circuit,

3) a set of quadratic constraints, which proves that for all i, ai , bi and ci are in some quadratic relation which expresses 
correct evaluation of gate i.

It is straightforward to prove CircuitSat by computing perfectly binding commitments to all the wires ai, bi, ci and use, for 
example, GS NIZK proofs for each of the three sub-arguments. However, the proof size is obviously linear in the number of 
wires.

1 GS proofs allow to prove satisfiability of any quadratic equation over Zp , where p is the order of a bilinear group. In particular, this can encode 
CircuitSat. The size of the resulting proof is linear in the total number of wires.
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New techniques. In a recent result, González and Ràfols [25] give a proof for Boolean CircuitSat of size O (n + d) group 
elements under falsifiable assumptions in bilinear groups. We now give an overview of their techniques, which is the 
main building block of our paper. The key to their result is to prove 2) and 3) succinctly for each level of the circuit. 
More specifically (ignoring zero-knowledge, momentarily), if L j (resp. R j , O j) is a shrinking (non-hiding, deterministic) 
commitment to all left (resp. right, output) wires at depth j, they construct:

2’) an argument that shows that the opening of L j (resp. R j) is in the correct linear relation (given by the wiring constraints 
in the circuit specification) with the input and the openings of O 1, . . . , O j−1,

3’) an argument that shows that the opening of O j is in the correct quadratic relation (which depends on the type of gates 
at level j) with the opening of L j and R j .

The abstraction given above of the results of [25] hides an important subtlety: “the opening of L j” (and similarly for the 
other shrinking commitments O j, R j ) is not well defined, as many openings are possible, so it is unclear what it means for 
these sub-arguments to be sound. However, as the authors of [25] observe, when we are using these as part of a global 
proof of CircuitSat, “the opening of L j ” to which we intuitively refer is well defined in terms of the openings in previous 
levels. In other words, in the soundness proof, 2’) can be used to prove that if the reduction can extract an opening of 
O 1, . . . , O j−1 consistent with the input and the circuit, it can also extract a consistent opening of L j (and similarly R j ). 
On the other hand, 3’) shows that if the reduction can extract an opening of L j and R j consistent with the input and the 
circuit, it can also extract an opening of O j . For this reason, González and Ràfols informally called 2’) and 3’) “arguments 
of knowledge transfer” (linear and quadratic, respectively): given knowledge of the input, arguments 2’) and 3’) can be used 
alternatively to transfer this knowledge to lower levels of the circuit.

Promise problems. To formalize this intuitive notion, the authors of [25] define their sub-arguments 2’) and 3’) as arguments 
(with completeness and soundness) for certain promise problems:

2’) Given the input �c0 and openings (�c1, . . . , �c j−1) of O 1, . . . , O j−1, the argument shows that L j can be opened to some �a j
with the correct linear relation to (�c0, �c1, . . . , �c j−1) (similarly for R j).

3’) Given �a j and �b j , openings of L j and R j , the argument shows that there is an opening �c j of O j that is in the correct 
quadratic relation (which depends on the type of gates at level j) with �a j and �b j .

From an efficiency point of view, the interesting thing is that the arguments are of constant size. This explains the proof 
size O (n +d): O (n) is for committing to the input (with extractable commitments, which exist under falsifiable assumptions 
because the input is boolean), and d is the cost of doing 2’) and 3’) repeatedly for each level. At a conceptual level, the key 
issue is that the verifier never checks that the openings are correct (i.e. in 2’) it never checks that �ci is a valid opening of 
O i , and in 3’) that �a j , �b j are valid openings of L j , R j), which is the promise. Soundness is only guaranteed if the promise 
holds, and nothing is said when it does not hold (when the given openings are invalid). In fact, the verifier does not need 
these openings, they are just part of the statement to define soundness in a meaningful way, reflecting the fact that in the 
global argument for boolean CircuitSat, the openings at level j are uniquely determined by transferring the knowledge of 
the circuit to lower levels. So excluding the need to read the statement, the verifier works in constant time (it would work 
in linear time if it verified the statement). In particular, when using the sub-arguments in a global proof, verification of each 
of the sub-arguments is constant size, and the global verifier runs in time O (n + d).

Security proof. The sub-arguments 2’) and 3’) of [25] are not new. More specifically, for 2’) the authors just use the QA-NIZK 
argument of linear spaces for non-witness samplable distributions of Kiltz and Wee [37], a generalization of [33,39] and for 
3’) they use techniques appeared in the context of zk-SNARKs (as e.g. [21]) to write many quadratic equations as a single 
relation of polynomial divisibility that can be proven succinctly. The challenge they solve is to give a proof that 2’) and 3’) 
are sound for the aforementioned promise problems under falsifiable assumptions, which is not implied by the soundness 
of the NIZK arguments they use for 2’) and 3’). More specifically, for the linear constraints the soundness of the argument 
of membership in a linear space does not protect from “witness switching attacks” as explained in [25]. Indeed, to prove 
that two shrinking commitments �c1, �c2 open to vectors of values with a certain linear relation, it is natural to write this as 
a membership proof in a linear space defined by matrices M, N, i.e. to prove that( �c1

�c2

)
∈ Span

(
M
N

)
,

which ensures that there exists some �w such that �c1 = M �w and �c2 = N �w . However, given some opening �w of �c1 (which 
in our analysis is known because of knowledge of the input and the transfer to lower levels of the circuit), the argument 
does not prove that �c2 = N �w , as it only proves that there is some common opening. Therefore, standard soundness does 
not prevent the adversary from “switching the witness”: if the adversary is able to find another witness �w ′ such that 
�c1 = M �w = M �w ′ it can use �w ′ for �c2, for some �w ′ that does not satisfy the linear constraints.
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This attack is easy to reduce to the binding property of commitment schemes if the reduction can extract �w ′ from the 
adversary, but since the commitments are shrinking, this would require some non-black-box extraction, deviating from the 
goal of using standard assumptions. The authors of [25] get around this by showing how to prove soundness for the promise 
problems associated to linear constraints using a decisional assumption related to the matrix M. For 3’) they prove that the 
soundness of their argument for the promise problem is a straightforward consequence of a q-type assumption in bilinear 
groups.

Our techniques: general approach. This paper builds a SE NIZK for CircuitSat under falsifiable assumptions building on the 
work of [25]. There are several generic techniques to solve this problem. To the best of our knowledge, existing generic 
solutions are variations of the following approach, described for example in [26]: build an OR proof that given some circuit 
φ and a public input �xp , either the circuit is satisfiable with public input xp or a signature of M = (φ, �xp) is known. The 
simulator uses as a trapdoor the signature secret key. We note that this approach results in a considerable (although also 
constant) overhead (around 20 group elements).2 Our approach is based on the following observation: to compute “fake 
proofs” of satisfiability, a simulator just needs to lie either about the satisfiability of quadratic equations or linear equations, 
but not both. Further, it is sufficient to lie in the last gate. In particular, we choose the following strategy to simulate a proof 
for a circuit φ and a public input �xp : complete the input arbitrarily, compute consistent assignments to all gates but choose 
the last left and right wire arbitrarily so that the last gate outputs one. Thus the simulator outputs only honest proofs except 
for the last linear relation, which is a simulated proof for a false statement, i.e. the simulator does not need the simulation 
trapdoor for sub-arguments 1) and 3’) and standard soundness is sufficient. To be consistent with this strategy, our SE NIZK 
for boolean CircuitSat uses the construction of [25] but replaces 2’), the proof that the linear relation holds, with 2”) an 
unbounded simulation sound proof for the same promise problem.

Recall that the argument 2’) of [25] is just the QA-NIZK argument for membership in linear spaces of Kiltz and Wee for 
non-witness samplable distributions with a security proof is adapted for promise problems (non-trivially). We take the most 
efficient Unbounded Simulation Soundness (USS) QA-NIZK argument of membership in linear spaces in the literature, also 
due to Kiltz and Wee [37] and we adapt the USS argument to work for bilateral linear spaces (linear spaces split among 
the two source groups in a bilinear group) as in [24] and for promise problems as in [25]. The overhead of the construction 
with respect to the original CircuitSat proof is minimal (3|G1|). BB extractability is achieved because of the soundness of 
the argument which proves that the input is boolean and the fact that ElGamal ciphertexts of 0 or 1 are BB extractable (the 
extraction trapdoor is the secret key).

Our approach modularly combines a USS argument of membership in linear spaces with other arguments. The USS 
NIZK argument of Kiltz and Wee is not tight. However, to get tight security we only need to construct a tight USS for 
promise problems for linear spaces (or for bilateral spaces if we want to improve efficiency). In Section 7 we give such a 
construction, we take the most tight QA-NIZK argument in the literature, Abe et al. [1], and we adapt the security proof 
to build an argument for the promise problem related to satisfiability of linear constraints. The result is a signature of 
knowledge for circuits with a loss of d (the circuit depth) in the reduction (inherited from [25]), but independent of the 
number of queries to the simulation oracle.

As Groth and Maller [29] pointed out, USS arguments for CircuitSat are very close to Signatures of Knowledge (SoK). 
We use the fact that our CircuitSat argument is tag-based to obtain a very simple transformation to SoK. In particular, our 
second construction results in a tight SoK.

Adapting the USS argument to promise problems. Technically, the main challenge that we solve is to prove that the tag-
based USS argument for membership in linear spaces of Kiltz and Wee [37] (in Section 6) and of Abe et al. [1] (in Section 7) 
is sound for the promise problem defined in [25] for linear constraints. More precisely, what we prove is that the adversary 
cannot create a valid proof for the statement( �x

�y
)

∈ Im
(

M
N

)
such that �x = M �w for some known �w but �y �= N �w even after seeing many simulated proofs. The idea is that if the linear 
constraints are satisfied until a certain level, they must be satisfied also at lower levels of the circuit.

In the following, we give an overview on how we adapt Kiltz and Wee’s USS argument for this promise problem. The tight 
construction based on Abe et al. in Section 7 follows the same lines. The main idea of the USS argument of Kiltz and Wee, 
�LIN-USS is to add a pseudorandom MAC to their QA-NIZK argument of membership in linear spaces �LIN . The soundness 
of the argument �LIN that proves membership in the space spanned by the columns of some matrix U is guaranteed by the 
fact that �y�K is uniformly random in the adversary’s view given UK if �y /∈ Span(U). Their construction can be thought of 
as a compilation (via a pairing assumption) of a hash proof system to the public key setting. The matrix K plays the role of 
the hashing key in the hash proof system. To achieve public verifiability, partial information about K is published. The proof 

2 Using OR proofs (the less efficient construction for PPE given in [42] or adding a bit as an auxiliary variable) plus the Boneh-Boyen signature for 
adaptive soundness.
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of simulation soundness of �LIN-USS shows, in the first place, that under some decisional assumption, the queries made 
by the adversary do not give additional information to the adversary, in particular, they do not leak additional information 
about the secret key other than the one in the common reference string. We can adapt this part of their argument in a 
straightforward way. Then their proof concludes by arguing that in the final game the common reference string information 
theoretically hides part of the secret key, more concretely, �y�K remains information theoretically hidden.

We need to add one extra game in the proof of �LIN-USS to account for the fact that in our case U =
(

M
N

)
spans 

all of the space. In particular, on the one hand, our soundness condition is different, as explained (the adversary breaks 
soundness for (�x�, �y�) if �x = M �w for some known �w but �y �= N �w). On the other hand, the common reference string 
reveals all information about the secret key (since U�K reveals everything about K), so the information theoretic argument 
used by Kiltz and Wee to conclude the proof of �LIN-USS does not apply. We solve this in the same way as González and 
Ràfols [25], who show that if the Matrix Decisional DDH Assumption [18] associated to the distribution of the first block 
M holds, then we can switch to a game where (0�, N�)K is information theoretically hidden. Intuitively, this means the 
adversary cannot compute valid proofs such that if �x = M �w for some known �w but �y �= N �w), because it does not know the 
projection of the secret key on the second block without involving the first block.

Generalization of our techniques. The observation that to add unbounded simulation soundness to NIZK arguments which 
prove both quadratic and linear equations it suffices to have USS in the linear part can have other applications. For example, 
a direct application is to give USS to the construction of Daza et al. [16], which gives a compact proof that a set of perfectly 
binding commitments open to 0 or 1.

A canonical transformation of Boolean circuits to QAPs. To prove quadratic equations compactly, González and Ràfols adopt 
the idea of [21] to encode many quadratic equations as a problem of divisibility among polynomials. More in detail, in a 
breakthrough result building on [27], Gennaro et al. [21] introduced in 2013 two characterizations of circuit satisfiability 
(Quadratic Span Programs or QSPs for boolean circuits and Quadratic Arithmetic Programs or QAPs for arithmetic circuits 
over Zp where p should be the order of the bilinear group of the zk-SNARK, inspired by the notion of Span Programs [35]) 
and proposed an efficient zk-SNARK for it. The basic idea is that the correctness of all the computations of the circuit is 
expressed as a divisibility relation among certain polynomials which define the program. This leads to a succinct proof 
in the CRS model by checking the divisibility relation only in a secret point given in the CRS “in the exponent”. In 2014, 
Danezis et al. [15] introduced Square Span Programs (SSP) for boolean circuits to simplify QSPs. The reason why special 
encodings for Boolean circuits exist is because these are an important special case, and they have special characteristics 
(a part from checking gate satisfiability, one must check that the wires are boolean). In 2016, Groth [28] introduced the 
most efficient zk-SNARK for QAPs, and also mentioned that QAPs can encode boolean CircuitSat but did not give an explicit 
transformation. González and Ràfols [25] gave an explicit encoding of Boolean CircuitSat, separating linear and quadratic 
constraints and dividing the encoding by layers of same depth as needed by their construction. That is, essentially they 
were spelling out a QAP for satisfiability of all boolean gates of the same depth.

We spell out a canonical QAP to describe boolean CircuitSat as a problem of satisfiability of polynomials. We call the 
transformation canonical because it is essentially the direct and simplest way to do this transformation. Although encoding 
Boolean CircuitSat as a QAP is not difficult and can be easily done with a computer, we give an exact formula that describes 
a simple QAP from the description of the gates. This is a contribution of independent interest, and when combined with 
Groth16’s zk-SNARK it results in an argument with the polynomials that define the QAP are very simple, Lagrangian polyno-
mials or sums of them. Then, we use this transformation from boolean CircuitSat to QAP to derive a simpler transformation 
from Boolean CircuitSat (separated in linear and quadratic constraints for each depth) compared to González and Ràfols [25]
(they needed to check a more complex quadratic equation at each depth).

Organization. In Section 2 we introduce notation and the relevant security definitions and recall the Signature of Knowledge 
definition and properties. In Section 3, we define a canonical QAP codification for Boolean Circuits. In Section 4 we recall 
the subschemes of Aggregated Proofs of Quadratic Equations and Aggregated Proofs of Linear Equations applied to our 
codification. In Section 5 we give our main construction, we present a framework of SE NIZK Argument for Boolean CircuitSat 
that uses three building blocks, a concrete instantiation of the framework in 5.1 and the UC SoK based on the instantiation 
in 5.2. In Section 6 we prove the USS argument of Kiltz and Wee is still secure with the promise problem. Same for Abe 
et al. USS argument in Section 7 (see Table 1). Finally, in Section 8 we show how to improve the efficiency of the main 
construction with respect to a naive use of Groth-Sahai proofs.

Novelty. This is the full version of the work with the same title published in Africacrypt 20, [5]. The tight construction 
(Section 7), the details on tuning GS proofs (Section 8) and the details on the Signature of Knowledge construction (Sec-
tion 5.2), and the canonical QAP for boolean circuits (Section 3) are new. Further, with respect to the Africacrypt 20 version, 
we have corrected minor issues about the definitions and corrected a claim about the distribution of simulated proofs. We 
have generalized our construction to work for all boolean circuits (and not only circuits with only NAND gates, as originally 
done for simplicity).
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Table 1
A comparison of our proposed SoK schemes in Sec. 5.1 with the USS argument for membership in linear 
spaces for in Section 6 and Section 7 respectively, with prior schemes. In the last column we show the tight-
ness respect to the number of the queries Q for those constructions that are simulation sound. ns denotes 
the secret input size in a boolean circuit, d the depth of the circuit, nPPE is the number of pairing product 
equations (each multiplication gate in an arithmetic circuit can be encoded as a pairing product equation, 
in such case nPPE = n), nX , nY are the number of variables in all the pairing product equations in G1, G2, 
respectively, �K is the size of the output of a hash function. PE: Pairing Equations, SAP: Square Arithmetic 
Equations, QE: Quadratic Equations.

Construction Language Signature size Assumption Tightness

BFG [9] PE (nPPEnX ,nPPEnY ) + �K Falsifiable -
GM [29] SAP (2,1) + �K Non-falsifiable O (Q )

Sec. 5.1. 6 QE (2ns + 10d − 4,6d + 4) Falsifiable O (Q )

Sec. 5.1. 7 QE (2ns + 10d + 8,6d + 4) Falsifiable O (log Q )

2. Preliminaries

Let PPT denote probabilistic polynomial-time, and NUPPT denote non-uniform PPT. Let λ ∈ N be the information-
theoretic security parameter, say λ = 128. All adversaries will be stateful. For an algorithm A, let Im(A) be the image 
of A, i.e., the set of valid outputs of A. By y ← A(x; r) we denote the fact that A, given an input x and a randomizer 
r, outputs y. We denote by negl an arbitrary negligible function. For distributions A and B , A ≈c B means that they are 
computationally indistinguishable.

In pairing-based groups, a bilinear group generator BGgen(1λ) is a PPT algorithm returns the group key gk :=
(p, G1, G2, GT , e, P1, P2), the description of an asymmetric bilinear group, where G1, G2 and GT are additive groups of 
prime order p, the elements P1, P2 are generators of G1, G2 respectively, e :G1 ×G2 →GT is an efficiently computable, 
non-degenerate bilinear pairing, and there is no efficiently computable isomorphism between G1 and G2. Elements in Gγ

are denoted implicitly as [a]γ := aPγ , where γ ∈ {1, 2, T } and PT := e(P1, P2). For simplicity, we often write [a]1,2 for 
the pair [a]1, [a]2. The pairing operation will be written as a product ·, that is [a]1 · [b]2 = [a]1[b]2 = e([a]1, [b]2) = [ab]T . 
Vectors and matrices are denoted in boldface. Given a matrix T = (ti, j), [T]γ is the natural embedding of T in Gγ , that is, 
the matrix whose (i, j)-th entry is ti, jPγ . We denote by |Gγ | the bit-size of the elements of Gγ and by (·, ·) the bit-size 
of elements in G1 and G2 in each component.

2.1. Definitions

We recall the formal definition of QA-NIZK proofs. A QA-NIZK proof system [33] enables to prove membership in a 
language defined by a relation Rρ , which is determined by some parameter ρ sampled from a distribution Dgk . While 
the CRS can be constructed based on ρ , the simulator of zero-knowledge is required to be a single PPT algorithm that 
works for the whole collection of relations Rgk . For witness-relations Rgk = {Rρ}ρ∈sup(Dgk) with parameters sampled from a 
distribution Dgk over associated parameter language Lpar , a QA-NIZK argument system � consists of tuple of PPT algorithms 
� = (K0, K1, P, V, S0, S1, E), defined as follows,

Parameter generator, gk ← K0(1λ): K0 is a PPT algorithm that given 1λ generates group description gk.
CRS generator, crs ← K1(gk,ρ): K1 is a PPT algorithm that given gk, samples string ρ ← Dgk , and then uses gk, ρ and 

generates (crs, trs, tre), it also defines the tag space T ; finally output crs (that also contains parameter ρ) and stores the 
simulation trapdoor trs and extraction trapdoor tre as trapdoors.

Prover, π ← P(crs, �x, �w, τ ): P is a PPT algorithm that, given (crs, �x, �w, τ ), where (�x, �w) ∈ R outputs an argument π with 
respect to a tag τ ∈ T . Otherwise, it outputs ⊥.

Verifier, {0,1} ← V(crs, �x,π, τ ): V is a PPT algorithm that, given (crs, �x, π, τ ), returns either 0 (reject) or 1 (accept).
Prover Simulator, π ← S(crs, �x, trs, τ ): S is a PPT algorithm that, given (crs, �x, trs), outputs a simulated argument π with 

respect to a tag τ ∈ T .
Extractor, �w ← E(gk, crs, �x,π, τ , tre): E is a PPT algorithm that, given (crs, �x, π, τ , tre) extracts the witness �w; where tre is 

the extraction trapdoor.

We require an argument QA-NIZK system � to be quasi-adaptive complete, computational quasi-adaptive sound and computa-
tional quasi-adaptive zero-knowledge, as defined below.

Definition 1 (Quasi-adaptive completeness). A quasi-adaptive argument � is perfectly complete for Rρ , if for all λ, all (�x, �w) ∈
Rρ , and all τ ∈ T ,

Pr

[
gk ← K0(1λ), ρ ← Dgk,

crs ← K (gk,ρ),π ← P(crs, �x, �w, τ )
: V(crs, �x,π, τ ) = 1

]
= 1 .
1
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Definition 2 (Computational quasi-adaptive soundness). A quasi-adaptive argument � is computationally quasi-adaptive sound 
for Rρ , if for all λ, and for all non-uniform PPT A,

Pr

[
gk ← K0(1λ), ρ ← Dgk,

crs ← K1(gk,ρ), (�x,π, τ ) ← A(gk, crs)
: V(crs, �x,π, τ ) = 1 ∧

�x /∈ Lρ

]
≈ 0

Definition 3 (Computational quasi-adaptive zero-knowledge). A quasi-adaptive argument � is computationally quasi-adaptive 
zero-knowledge for Rρ , if for all λ, all τ ∈ T , and for all non-uniform PPT A,

Pr

⎡⎢⎢⎢⎢⎣
gk ← K0(1λ),ρ ← Dgk,

crs ← K1(gk,ρ) :
AOreal(�x, �w)(gk, crs) = 1

(�x, �w) ∈ Rρ

⎤⎥⎥⎥⎥⎦ ≈ Pr

⎡⎢⎢⎢⎢⎣
gk ← K0(1λ),ρ ← Dgk,

(crs, trs, tre) ← K1(gk,ρ) :
AOsim(�x, �w)(gk, crs) = 1

(�x, �w) ∈ Rρ

⎤⎥⎥⎥⎥⎦
where Oreal(�x, �w, τ ) returns P(crs, �x, �w, τ ) which emulates the actual prover for (�x, �w) ∈ Rρ , otherwise it outputs ⊥; and 
Osim(�x, �w, τ ) that returns S(crs, trs, �x, τ ) on input (�x, �w) ∈Rρ and ⊥ if (�x, �w) /∈Rρ .

We also consider simulation soundness for our proofs, we take the next definition from Kiltz and Wee [37].

Definition 4 (Unbounded simulation adaptive soundness). A quasi-adaptive argument � is unbounded simulation adaptive 
sound for Rρ , if for all λ, and for all non-uniform PPT A,

Pr

⎡⎣ gk ← K0(1λ),ρ ← Dgk,

(crs, tr) ← K1(gk,ρ);
(�x∗,π∗, τ ∗) ← AO (·)(gk, crs,ρ)

: τ ∗ /∈ Qtags ∧ �x∗ /∈ Lρ

∧ V(crs, �x∗,π∗, τ ∗) = 1

⎤⎦ ≈ 0,

where O (�x) returns S(crs, tr, �x, τ ) and adds τ to the set Qtags .

Next, we define a variation of BB simulation extractability for QA-NIZKs that is satisfied by our schemes.

Definition 5 (Quasi-adaptive BB simulation extractability). A non-interactive argument scheme � is quasi-adaptive black-box 
simulation-extractable for Rρ , if for all λ, and for all non-uniform PPT A, there exists a black-box extractor E such that,

Pr

⎡⎢⎢⎣
gk ← K0(1λ), ρ ← Dgk,

(crs, trs, tre) ← K1(gk,ρ);
(�x∗,π∗, τ ∗) ← AO (·)(gk, crs,ρ),

�w∗ ← E(gk, crs, �x∗,π∗, τ ∗, tre)

:
V(crs, �x∗,π∗, τ ∗) = 1

∧ (�x∗, �w∗) /∈ Rρ ∧ (�x∗,π∗) /∈ Q
τ ∗ /∈ Qtags

⎤⎥⎥⎦ ≈ 0,

where O (�x, τ ) returns S(crs, trs, �x, τ ) and adds (�x, π) to the set of simulated proofs Q and τ to the set Qtags .

A key point about Definition 5 is that the extraction procedure is black-box and the extractor E works for all adversaries.

2.2. Computational assumptions

In this section, we recall the definition of some computational assumptions that are used in the rest of paper. The 
assumptions are defined in [25] and are special cases of decisional and computational Matrix Diffie-Hellman assumptions, 
an abstraction introduced in [19,40].

Definition 6. Let k ∈ N . We call D�,k (resp. Dk) a matrix distribution if it outputs in PPT time, with overwhelming proba-

bility matrices in Z�×k
p (resp. in Z(k+1)×k

p ).

Assumption 1. Let D�,k be a matrix distribution and gk ← G(1λ). For all non-uniform PPT adversaries A and relative to 
gk ← G(1λ), A ←D�,k, �w ←Zk

p, [�z]γ ←G�
γ and the coin tosses of adversary A,

1. the Matrix Decisional Diffie-Hellman Assumption in Gγ (Dk-MDDHγ , [19]) holds if∣∣Pr[A(gk, [A]γ , [A �w]γ ) = 1] − Pr[A(gk, [A]γ , [�z]γ ) = 1]∣∣ ≤ negl(λ),
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2. the Split Matrix Decisional Diffie-Hellman Assumption in Gγ (Dk-SMDDHγ ) holds if∣∣Pr[A(gk, [A]1, [A]2, [A �w]γ ) = 1] − Pr[A(gk, [A]1, [A]2, [�z]γ ) = 1]∣∣ ≤ negl(λ).

Two examples of interesting distributions are the following:

Lk : A =

⎛⎜⎜⎝
s1 0 ... 0
0 s2 ... 0
.
.
.

.

.

.
.
.
.

.

.

.

0 0 ... sk
1 1 ... 1

⎞⎟⎟⎠ LGR,k : A =

⎛⎜⎜⎝
λR1 (s1) λR1 (s2) ... λR1 (sk)

λR2 (s1) λR2 (s2) ... λR2 (sk)

.

.

.

.

.

.
.
.
.

.

.

.

λR� (s1) λR� (s2) ... λR� (sk)

⎞⎟⎟⎠ ,

where si ← Zp and R = {r1, . . . , rN} ⊂ Zp . The assumption associated to the first distribution is the k-Lin family. The 
assumption associated to the second one was introduced by González and Ràfols in [25]. As in their work, we will use this 
assumption to construct an argument for CircuitSat when k = 2 and R an arbitrary set of size N , the maximum number of 
gates of the same multiplicative depth. The reason for considering k = 2 is that the Split Decisional MDDH assumption is 
not hard when k = 1.

The Kernel Diffie-Hellman Assumption [40] says one cannot find a non-zero vector in one of the groups which is in the 
co-kernel of A. In [25], the authors presented a generalized version of it in the bilinear groups which says one cannot find 
a pair of vectors in Gk+1

1 ×Gk+1
2 such that the difference of the vector of their discrete logarithms is in the co-kernel of A.

Assumption 2. Let D�,k be a matrix distribution. For all non-uniform PPT adversaries A and relative to gk ← G(1λ), A ←
D�,k, �w ←Zk

p, [�z]γ ←G�
γ and the coin tosses of adversary A,

1. the Kernel Matrix Diffie-Hellman Assumption holds in Gγ [40] if

Pr
[
[�r]3−γ ← A(gk, [A]γ ) : �r�A = 0

]
= negl(λ),

2. the Split Kernel Matrix Diffie-Hellman Assumption [24] holds if

Pr
[
[�r]1, [�s]2 ← A(gk, [A]1, [A]2) : �r �= �s ∧�r�A = �s�A

]
= negl(λ).

We note that the Split Decisional and Split Kernel MDH Assumptions are generically hard in asymmetric bilinear groups 
for all distributions for which the non split variant is hard in symmetric bilinear groups whenever k ≥ 2.

Finally, for completeness, we recall an assumption introduced also in [25] which is similar to the q-SFrac Assumption 
considered in [23], but in the source group.

Assumption 3 (R-RSDH assumption). Let R be an arbitrary set of integers of cardinal q. The (R, q)-Rational Strong Diffie-
Hellman Assumption holds in G1 if the following probability is negligible in λ:

Pr

[
e([z]1, [1]2) = e([w]1, [t(s)]2)

z �= 0

∣∣∣∣ gk ← G(1λ);
([z]1, [w]1) ← A

(
gk,R,

{[si]1,2
}q−1

i=1 , [sq]2

) ]
,

where t(s) = ∏
r∈R(s − r), and the probability is taken over gk ← G(1λ), s ←Zp and the coin tosses of adversary A.

2.3. Signature of knowledge

A Signature of Knowledge (SoK) [12] generalizes the concept of digital signature. One can sign the message just if it has 
a valid witness for membership in a language, in our case the NP-complete language of boolean CircuitSat. We require three 
properties: Correctness that ensures that all signers with a valid witness can always produce a signature that convinces the 
verifier, Simulation Extractability that any adversary able to issue a new signature, even after seeing arbitrary signatures for 
different instances, should know a witness and Perfect Simulatability that ensures that the verifier learns nothing new about 
the witness from a signature.

We give the formal definitions of [29] in the following.

Definition 7 (Signature of knowledge). Let R be a relation generator, {Mλ}λ∈N a sequence of message spaces. Then, a tuple 
(SSetup, SSign, SV, SS) is a Signature of Knowledge scheme for R if it is correct, simulatable, simulation-extractable (defined 
in the following) and it is composed by the following algorithms:

trs, tre,pp ← SSetup(R): the setup algorithm is a PPT algorithm that takes as input a relation R ∈ Rλ and returns public 
parameters pp, together with a simulation trapdoor trs and an extraction trapdoor tre .
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σ ← SSign(pp, �x, �w,m) : the signing algorithm is a PPT algorithm that takes as input the public parameters pp, a pair 
(�x, �w) ∈ R and a message m ∈ Mλ and returns a signature σ .

0/1 ← SV(pp, �x,m,σ ) : the verification algorithm is a deterministic polynomial time algorithm that takes as input some 
public parameters pp, an instance �x, a message m ∈ Mλ , and a signature σ and outputs either 0 or 1 if it rejects or 
accepts, respectively.

σ ← SS(pp, trs, �x,m) : the simulated signing algorithm is a PPT algorithm that takes as input some public parameters pp, a 
simulation trapdoor trs , and an instance �x and returns a signature σ .

Definition 8. A Signature of Knowledge is correct if for all λ ∈N , for all R ∈Rλ , for all (�x, �w) and for all m ∈Mλ

Pr
[
pp ← SSetup(R);σ ← SSign(pp, �x, �w,m) : SV(pp, �x,m,σ ) = 1

] = 1,

Definition 9. A Signature of Knowledge is simulatable if for any non-uniform PPT adversary A, Advsimul
SoK ,A(λ) = 2εA(λ) − 1 ≈

0, where

εA(λ) = Pr

[
R ← R(1λ),pp ← SSetup(R)

b ← {0,1},b′ ← ASb
pp,trs (·,·,·)(pp)

: b = b′
]

,

where Sb
pp,trs

(�xi, �wi, mi) checks ((�xi, �wi) ∈ R, mi ∈ Mλ) and returns σ i ← SSign(pp, �xi, �wi, mi) if b = 0 and σ i ←
SS(pp, trs, �xi, mi) if b = 1.

Definition 10. A Signature of Knowledge is simulation-extractable if for any non-uniform PPT adversary A, there exists a PPT 
extractor E such that Advsim−extr

SoK ,A,E (λ) ≈ 0, where

Advsig−extr
SoK ,A,E (λ) = Pr

[
R ← R(1λ), (pp, trs, tre) ← SSetup(R)

(�x,m,σ ) ← AOSignpp,trs (·,·), �w ← E(pp, tre, (�x,m,σ ))
: (�x, �w) /∈ R and (�x,m,σ ) /∈ Q,

1 ← SV(pp, �x,m,σ )

]
,

where OSignpp,trs
(�xi, mi) returns �σi ← SS(pp, trs, �xi, mi) and adds {(�xi, mi, σ i)} to the set Q, which is initialized to ∅.

We emphasize that in the construction given in this paper, the extractor E is a PPT algorithm that only accesses A’s 
output, as opposed to the work of Groth and Maller [29], where the extractor has nBB access to the adversary.

3. Canonical QAP for Boolean circuits

Boolean circuits are acyclic directed graphs where the edges are called wires and the vertices are called gates. In this 
work, we consider boolean circuits φ : {0, 1}nipt −→ {0, 1}nopt , with possibly some set of public inputs np and some set of 
private inputs ns , ns + np = nipt . Gates are arbitrary gates of fan-in two, (excluding non-interesting or trivial gate types). We 
denote m the total number of wires, n the number of boolean gates of the circuit, and � the number of public values, where 
usually it will be the case that � = np + nopt + 1 and m = np + ns + n + 1.

It is a well-known fact that, if a, b ∈ {0, 1}, correct gate evaluation can be expressed as a quadratic equation over Z. That, 
is for each gate type there exist values ρ, ω, γ , ε ∈ Z, such that if a, b ∈ {0, 1}, and c = ρab + ωa + γ b + ε , then c ∈ {0, 1}
and c is the correct value of the gate evaluated at a, b. The constants satisfy that ε ∈ {0, 1}, ω, γ ∈ {0, ±1}, ρ ∈ {±1} for all 
gate types except for XOR and XNOR, and ρ ∈ {±2} for these two gates. More specifically, the important gate types are the 
following3

AND(a, b, c): c = ab.
NAND(a, b, c): c = −ab + 1
OR(a, b, c): c = −ab + a + b
NOR(a, b, c): c = ab − a − b + 1
XOR(a, b, c): c = −2ab + a + b.

XNOR(x, y, x): c = 2ab − a − b + 1.
G1(a,b, c) = (c = a ∧ b) : c = −ab + b.
G2(a,b, c) = (c = a ∧ b) : c = ab − b + 1.
G3(a,b, c) = (c = a ∧ b) : c = −ab + a.

G4(a,b, c) = (c = a ∧ b) : c = ab − a + 1.

Therefore, we can express a boolean circuit of m wires and n gates as a tuple (F, G, �ρ, �ω, �γ , �ε), where F = ( f i j), G =
(gij) ∈ {0, 1}m×n are the matrices which express the constraints for the left and right inputs for every gate and �ρ, �ω, �γ , �ε ∈
Zn are the vectors of constants associated to every gate. That is, if a jL (resp. a jR ) is the left (resp. right) wire of gate j, then 
a jL = ∑m

i=1 f i jai (resp. a jR = ∑m
i=1 gijai ), i.e. �f j = ( f1 j, . . . , fmj) is a unit vector which selects the left wire.

We show how to encode correct boolean circuit computation to prove that some pair (�x, �y) satisfies that φ(�x) = �y as a 
simple QAP. The vector �a will denote the assignment of the circuit, so (a1, . . . , anipt) = �x and (am−nopt+1, . . . , am) = �y.

3 As observed in [15], the last remaining 6 gate types depend mostly on one input and are not used.
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Theorem 1. Let p be some prime number, p > 2. Let φ : {0, 1}nipt → {0, 1}nopt , be a circuit with n boolean gates, m wires, ns secret 
inputs and np public inputs, defined by (F, G, �ρ, �ω, �γ , �ε) ∈ ({0, 1}m×n)2 × (Zn

p)4 as described above. Define the matrices A, B, C ∈
Zm×(ns+n)

p as

A =
⎛⎝ 0(np+1)×ns �γ

Ins

0n×ns

F′

⎞⎠ , B =
⎛⎝ 0(np+1)×ns �ω′

Ins

0n×ns

G

⎞⎠ , C =
⎛⎝ 0(np+1)×ns �ε − �γ ◦ �ω′

Ins

0ns×n

0ns×n

In

⎞⎠

where F′ = F 

⎛⎜⎝ ρ1

. . .

ρn

⎞⎟⎠, �ω′ = �ω
⎛⎜⎝ ρ−1

1
. . .

ρ−1
n

⎞⎟⎠.

Then, �a = (1, a1, . . . , am) ∈Zm+1
p is a valid assignment of the circuit wires if and only if

(�a�A) ◦ (�a�B) − �a�C = �0�
ns+n, (1)

which is equivalent to

(�a′�A + �̂γ ) ◦ (�a′�B + �̂ω) − �a′�C + �̂ε − �̂γ ◦ �̂ω = 0�
ns+n, (2)

where �a′ = (a1, . . . , am), A(B, C) ∈ Zm
p is the matrix A (resp. B, C) without the first row, �̂γ = (

0ns �γ )
, �̂ω = (

0ns �ω′ ), �̂ε =(
0ns �ε ) ∈Zns+n

p .

As we will see, the first ns equations (corresponding to the first ns columns) prove that the secret inputs of the circuit 
anp+1, . . . , anp+ns are boolean and the last n columns correspond with correct gate evaluation equations for the wiring 
corresponding with matrices F, G.

Proof. We first observe that the matrices are well defined since ρ−1
j mod p is always defined because ρ j �= 0 and its 

absolute value is at most 2 for the type of gates considered.
We then note that when restricted to i = np + 2, . . . , np + ns + 1, j = 1, . . . , ns , all three matrices Aij, Bij, Cij are the 

identity matrix Ins . Therefore, for any assignment �a the first ns columns of equation (2) express the fact that the secret input 
is boolean. If �A j , �B j , �C j are the j-th column of the matrices A, B, C, for j = 1, . . . , ns we have (�a� �A j) ◦ (�a� �B j) − �a��C j =
a ja j − a j = a2

j − a j = 0 is satisfied if and only if a j ∈ {0, 1}, for j = np + 2, . . . , np + ns + 1 = nipt .

We now look at the equations determined by the last n columns of equation (2). If �F ′
j , �G j are the j-th columns of F′ , G, 

then, the (ns + j)-th equation in expression (2) can be rewritten as:

(�a′� �F ′
j + γ j) ◦ (�a′� �G j + ω′

j) − �a′�
n| �In, j + ε j − γ jω

′
j = 0 (3)

where the vector �a′
n| contains the last n components of �a′ , i.e. (a′

nipt+1
, . . . , a′

m).
The circuit φ specifies, for the j-th circuit gate, a pair of indexes jL, jR which indicate the left and right wires. By 

definition of F′ = ( f ′
i, j), G = (gi, j), for i = 1, . . . , m, j = 1, . . . , n, the constants f ′

i, j and gi, j are 0 everywhere except for 
f ′

jL , j = ρ j and g jR , j = 1. Then, �a′� �F ′
j = ρ ja jL , �a′� �G j = a jR and �a′��Ins+ j = a′

nipt+ j + ε j .

Replacing these values in equation (3), we obtain:

(ρ ja jL + γ j)(a jR + ω′
j) − anipt+ j − γ jω

′
j + ε j = 0. (4)

Using the fact that, by definition, ω′
j = (ρ−1

j ω j) mod p, we can rewrite this equation as:

anipt+ j = ρ ja jL a jR + a jL ω j + a jR γ j + ε j, (5)

which by definition of the constants encodes the satisfiability of gate j. �
The reason why the encoding is very simple is because the matrices B and C are mostly independent of the gate type, 

and have only 0, 1 entries, whereas the entries of matrix A are {0, ±1, ±2}. Further, matrices A, B, C are as sparse as possible 
(with n + ns non-zero entries) and all columns have exactly one non-zero value. This is optimal, since n + ns equations are 
required to prove that the secret input (of size ns) is boolean and n gates are satisfied, this is why we call it canonical. For 
completeness, in the next Theorem, we express all the quadratic equations (boolean input and correct gate evaluation) as a 
divisibility relation following the usual “polynomial aggregation technique” of [21].
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Theorem 2. Let R ⊂ Zp be some fixed set of cardinal ns + n and let λi(X) be the associated Lagrangian polynomials and t(X) the 
polynomial whose roots are the elements of R. Let φ : {0, 1}nipt → {0, 1}nopt , be any circuit with n boolean gates, m wires, ns secret 
inputs, and � public values. There exist some polynomials {ui(X); vi(X); wi(X)}m

i=0} such that �a = (a0, a1, . . . , am), with a0 = 1, is a 
valid assignment to the circuit wires if and only if(∑m

i=0 aiui(X)
) · (∑m

i=0 ai vi(X)
) − (∑m

i=0 ai wi(X)
) ≡ 0 mod t(X). (6)

Proof. Numerate the rows of matrices A, B, C from 0, . . . , m. For i ∈ [1, m] set

ui(X) =
ns+n∑
j=1

Aijλ j(X), vi(X) =
ns+n∑
j=1

Bijλ j(X), wi(X) =
ns+n∑
j=1

Cijλ j(X).

Further, define

u0(X) =
ns+n∑

j=ns+1

γ jλ j(X), v0(X) =
ns+n∑

j=ns+1

ω′
jλ j(X), w0(X) =

ns+n∑
j=ns+1

(ε j − γ jω
′
j)λ j(X).

Finally, if we let

u(X) =
m∑

i=1

aiui(X) + u0(X), v(X) =
m∑

i=1

ai vi(X) + v0(X), w(X) =
m∑

i=1

ai wi(X) + w0(X)

it holds that �a satisfies equation (6) if and only if t(X) divides p(X) = u(X)v(X) − w(X). This is a direct consequence of the 
definition of the polynomials and Theorem 1. �

The simple form of matrices A, B and C translates into very simple expressions for {ui(X), vi(X), wi(X)}m
i=1. For instance, 

the vi(X)’s can be computed as a sum of Lagrangian polynomials, without any exponentiation. Similarly, u0(X) has a very 
simple expression as γ j ∈ {±1}, v0(X) is slightly more complicated (the coefficients take values in {±1, ±2−1 mod p}) and 
so is w0(X).

3.1. Circuit slicing

As we explain in Section 4 following González and Ràfols’ construction [25], the prover aggregates the proofs that all the 
gates are satisfied at level i (a set of quadratic equations), on the one hand, and all the linear equations that show “correct 
wiring”, i.e. that the outputs at level at most i − 1 are correctly transferred to inputs at level i, on the other hand.

For this, similar to the construction of González and Ràfols, we slice a boolean circuit in layers according to the depth 
of each gate. That is, we index the gates of φ by a pair (i, j), where i denotes the gate depth and j is some index in the 
range 1, . . . , ni , where ni is the number of gates at level i, and we write down, for each level, the set of quadratic and affine 
constraints that need to be satisfied. In the following, φ : {0, 1}n → {0, 1} and we call d the depth of the circuit.

We define a witness for Boolean CircuitSat as a tuple (�a, �b, �c) which is, respectively, a valid assignment to the left, right 
and output wires of φ when each boolean gate is written as a multiplicative constraint, as explained below. To “slice” 
the circuit, each of these vectors is written as a concatenation of vectors, one for each multiplicative depth. That is, �a =
(�a1, . . . , �ad), �b = (�b1, . . . , �bd) and �c = (�c0, �c1, . . . , �cd) and �yi = (yi,1, . . . , yi,ni ) for all �y ∈ {�a, �b, �c}. Gate (i, j) is described by 
constants ρi, j, ωi, j, γi, j, εi, j , and �ρi, �ωi, �γi, �εi ∈Zni are the vectors of constants associated to the ni gates at level i.

A valid assignment should give ai, j , bi, j and ci, j the values that prove correct gate evaluation of gate (i, j), namely, 
ci, j = (ai, j + γi, j)(bi, j + ω′

i, j) − (γi, jω
′
i, j + εi, j) that are consistent with some boolean input c0,1, . . . , c0,n are some boolean 

values that represent a satisfying input.
We differ from the construction of González and Ràfolsin that we take advantage of our work in the previous section 

characterizing Boolean CircuitSat as a QAP, therefore, the set of equations that need to be satisfied is simpler.
Lemma 1 breaks down CircuitSat in different items which reflect the different building blocks used by González and 

Ràfols, and also our work. The input vector �x (which corresponds to �c0) is divided in two parts, the first np components 
being the public input �xp and the rest is the secret input �xs of length ns . The main achievement of González and Ràfols [25]
is to do two aggregated proofs of all the constraints at the same depth with just two constant size proofs, one for the 
multiplicative and the other for the linear constraints. Therefore, items c) (resp. d)) require that for each i = 1, . . . , d, a set 
of quadratic (resp. linear) equations holds. In the next two subsections (Section 4.1, 4.2) we sketch the aggregated proofs of 
the sets of equations described in c) and d).

Lemma 1. Let φ : {0, 1}n → {0, 1}, be a circuit with m boolean gates. Then, for any public input �xp ∈ {0, 1}np , (�a, �b, �c) is a valid input 
for satisfiability of φ(�xp, ·) if and only if:
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a) (c0,1, . . . , c0,np ) = (�xp).
b) Boolean secret input: (c0,np+1, . . . , c0,n) = (�xs) ∈ {0, 1}ns .

c) Correct gate evaluation at level i, for i = 1, . . . , d there exists a vector of constants �ki such that:

�ci = �ki + �ai ◦ �bi, j = 1, . . . ,ni .

d) Correct “wiring” (linear constraints) at level i: there exist some matrices ̃Fi, ̃Gi such that �ai = F̃i�c|i−1 and �bi = G̃i�c|i−1 , where 
�c�
|i−1 = (1, �c�

0 , . . . , �c�
i−1), more precisely.

e) Correct output: cd,1 = 1.

The matrices ̃Fi, ̃Gi and the constants ki, j are defined naturally from the description in Theorem 1, namely:

• F̃i = ( �γi F′
i

)
where F′

i =
⎛⎜⎝ ρi,1

. . .

ρi,ni

⎞⎟⎠F�
i , where if F is the matrix given in the circuit description, Fi ∈

Z
(
∑i−1

j=0 n j)×ni
p is the matrix that describes the left wires of gates at level i.

• G̃i = ( �ω′
i G�

i

)
, where �ω′

i = �ωi

⎛⎜⎜⎝
ρ−1

i1
. . .

ρ−1
ini

⎞⎟⎟⎠, and if G is the matrix given in the circuit description, Gi ∈

Z
(
∑i−1

j=0 n j)×ni
p is the matrix that describes the right wires of gates at level i.

• ki, j = εi, j − γi, jωi, jρ
−1
i, j .

4. GR19 argument for Boolean CircuitSat

In Section 3 we have described Boolean CircuitSat as a d sets of linear and quadratic constraints, where d is the depth 
of the circuit. In this section, we revisit the results of González and Ràfols [25] but using the simpler characterization 
of Boolean CircuitSat given in 3.1. Recall that, GR19 shows how to give a constant size proof for each of these sets of 
constraints while basing security on falsifiable assumptions provided a witness of satisfiability is known for the “previous” 
sets of equations (ordering the sets of equations in the natural order from the input).

4.1. Aggregated proofs of quadratic equations

We now describe the construction proposed by González and Ràfols to prove correct gate evaluation at level i, for 
i = 1, . . . , d − 1, i.e. a proof that ci, j = ki, j − ai, jbi, j , for all j = 1, . . . , ni . It consists, for k = 1, 2, of a Groth-Sahai NIZK Proof 
that some secret values [Li,k]1, [Ri,k]2, [O i,k]1, [O ∗

i,k]2, [Hi,k]1 satisfy the following relation4:

e([Ki,k]1, [1]2) + e([Li,k]1, [Ri,k]2) − e([O i,k]1, [1]2) = e([Hi,k]1, [tk]2), (7)

e([O i,k]1, [1]2) = e([1]1, [O ∗
i,k]2), (8)

where if t(X) = ∏
r∈R(X − r), tk = t(sk) and λi(X) = ∏

j∈R\{ri}
(X − r j)

(ri − r j)
is the i-th Lagrangian polynomial associated to R, 

a set of W = maxi=1,...,d ni points used for interpolation, then

Li,k =
∑

a jλ j(sk), Ri,k =
∑

b jλ j(sk), Ci,k =
∑

c jλ j(sk), Hi,k = hi(sk),

where s1, s2 are random secret points specified in the CRS, hi(X) = (1 − (
∑

a jλ j(X))(
∑

b jλ j(X)) − ∑
c jλ j(X))/t(X) and 

[Ki,k]1 = ∑
ki, jλ j(sk). Alternatively, for each ni we define �ni =

(
λ1(s1) . . . λni (s1)

λ1(s2) . . . λni (s2)

)
,

[�Li]1 = [�ni
�ai]1, [�Ri]2 = [�ni

�bi]2, [ �O i]1 = [�ni
�ci]1,

and � is called Lagrangian Pedersen commitment by González and Ràfols.
To the reader familiar with the literature, it is obvious that equation (7) uses SNARK techniques originally appeared 

in [21] (what we could call “polynomial aggregation”) for proving many quadratic equations simultaneously. What is new 
in [25], is the security analysis, which avoids non-falsifiable assumptions.

4 The second equation is added to have the element O i,k in both groups G1, G2. This will allow us to use simple QA-NIZK proofs of membership in 
linear spaces in G1 and G2 for the linear constraints, instead of using proofs of membership in bilateral spaces (spaces with parts in G1 and in G2.)
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GS proofs are necessary for zero-knowledge because �Li, �Ri, �O i need to be deterministic for the proof to work. González 
and Ràfols use this proof as a building block in a larger proof, and for this we prove the following:
“if (�ai, �bi) are valid openings of [Li,k]1, [Ri,k]2 for k = 1, 2 then �ki + �ai ◦ �bi is a valid opening of O i,k .”

Formally, we define the languages

Lquad
YES =

⎧⎨⎩ (�a, �b, [�L]1, [�R]2, [ �O ]1) : �k + �a ◦ �b = �c,[�L]
1
= [�]1�a,

[�R
]

2
= [�]2�b,

[ �O
]

1
= [�]1�c

⎫⎬⎭
Lquad

NO =
⎧⎨⎩ (�a, �b, [�L]1, [�R]2, [ �O ]1) : �k + �a ◦ �b = �c,[�L]

1
= [�]1�a,

[�R
]

2
= [�]2�b,

[ �O
]

1
�= [�]1�c

⎫⎬⎭ .

The argument consists of giving some values �H, �O ∗ chosen by the prover which satisfy equations (7) for �L, �R, �O . Com-
pleteness holds for Lquad

YES and soundness for values Lquad
NO under the (R, m)-Rational Strong Diffie-Hellman assumption [25]. 

When (7) are proven with GS proofs, the authors argue that zero-knowledge also holds.
Note that the fact [�L]1 = [�]1�a, or [�R]2 = [�]2�b is never checked by the verifier, this is the promise. The argument does 

not give any guarantee when this does not hold.

4.2. Aggregated proofs of linear equations

In this section we explain the technique used in González and Ràfols [25] to prove correct “wiring” at level i, for 
i = 1, . . . , d − 1, i.e. an aggregated proof for linear constraints applied to the equations defined in 3.1. As we have seen in 
Lemma 1, we can express linear constraints at level i as:

�ai = F̃i�c|i−1, �bi = G̃i�c|i−1 for all i = 1, . . . ,d. (9)

Then at level i left and right constraints can be expressed, respectively as:( �O |i−1�Li

)
=

(
Ci

NL
i

)
�c|i−1,

( �O |i−1�Ri

)
=

(
Ci

NR
i

)
�c|i−1 (10)

where Ci =

⎛⎜⎜⎜⎝
I �0 . . . 0
0 �n1 . . . �0
0 0

. . . 0
0 0 . . . �ni−1

⎞⎟⎟⎟⎠, NL
i = �ni F̃i , NR

i = �ni G̃i and �ni is the matrix of the Lagrangian Pedersen commitment 

key defined in the last section, and �O 0 is just the input of the circuit.
To make the argument zero-knowledge, the prover does never give �O i, �Li or �Ri in the clear, but rather, for k = 1, 2 and 

any i ∈ [d], it gives GS commitments [�z]1 to the input (i.e. to all components of �O 0 = �c0), to the vector �O i as [�zO ,i]1, to the 
vector �Li as [�zL,i]1 and to the vector �Ri as [�zR,i]2 (a part from other GS commitments necessary for the quadratic proof). The 
matrices which define the linear relation between committed values are defined from Ci , NL

i = �ni F̃i , NR
i = �ni G̃i adding 

columns and rows to accommodate for the GS commitment keys in the relevant groups (see full details in [25]). We denote 
the matrix that define the left (resp. right) constraints until level i − 1 as ML

i (resp. MR
i ), that is:

ML
i =

⎛⎜⎜⎜⎝
Ci

NL
1
...

NL
i−1

⎞⎟⎟⎟⎠ , MR
i =

⎛⎜⎜⎜⎝
Ci

NR
1
...

NR
i−1

⎞⎟⎟⎟⎠ .

González and Ràfols prove that the QA-NIZK argument of Kiltz and Wee [37] (with standard soundness) for membership 
in linear spaces for non-witness samplable distributions is an argument for the following promise problem:

LLin
YES =

{
( �w, [�x]1, [�y]1) :

[�x]1 = [M]1 �w and[�y]1 = [N]1 �w
}

LLin
NO =

{
( �w, [�x]1, [�y]1) :

[�x]1 = [M]1 �w and[�y]1 �= [N]1 �w
}

parametrized by matrices M, N.
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If we use this construction for matrices ML
i and NL

i (similarly for right side), this argument can be used to prove that, 
if we can extract �c|i−1, then we can extract an opening �ai of �Li which is in the correct linear relation with �c|i−1. In other 
words, this proves that if all the linear constraints are satisfied until level i − 1, they must be satisfied until level i.

The authors prove completeness of the argument for statements in LLin
YES and soundness for LLin

NO under the M�
L -MDDH1, 

M�
R -MDDH2 and any secure Dk − KerMDH assumption in G1 and G2, where ML (resp. MR ) is the distribution of ma-

trices ML
i (resp. MR

i ) described above. Note that the M�
L -MDDH1 is implied by the (R, k)�-MDDH1 assumption, and, for 

M�
R -MDDH2 by (R, k)�-MDDH2, plus some constant-size assumption MDDH assumption for the GS keys. This follows be-

cause any non-zero block of Ci is a matrix with this distribution or the result of eliminating some rows in a matrix with 
this distribution.5

Efficiency improvements. We note that for simplicity, we have explained the result of González and Ràfols [25] as proving 
a linear system of constraints for each level and each side (left or right), but in fact a single QA-NIZK argument for bilateral 
spaces for non-witness samplable distributions [24] is used by González and Ràfols to gain efficiency (the proof requires 
then only 2 elements in G1 and G2 instead of O (d) elements).

5. SE NIZK argument for Boolean CircuitSat

We present our Quasi-Adaptive argument for Boolean CircuitSat for the language defined as

Lφ = { (�xp
) ∃�xs ∈ {0,1}ns s.t. φ(�xp, �xs) = 1

}
.

As consequence of Lemma 1 the language Lφ,ck can be equivalently defined as

Lφ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(�xp

) ∃�xs s.t. �xs ◦ (�xs − �1) = �0;
�c0 := (�xp, �xs);
∀i ∈ [d],∃�ai, �bi,�ci ∈Zni

p s.t. ;
�ai = F̃i�c|i−1, �bi = G̃i�c|i−1 ∈ Zni

p ,
�ki + �ai ◦ �bi = �ci .

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ .

In the following �Q denotes the argument for Quadratic Equations described in Section 4.1, �L a tag-based USS mem-
bership argument for linear spaces that can be either the one presented in Section 6 or the one presented in Section 7 and 
Input an argument to prove that some BB extractable commitments to integers open to binary values.

K0(λ, W ,R): On input some set R ⊂Zp of cardinal W , choose a bilinear group gk and output (gk, W ).

Dgk,W ,R: Pick commitment keys (ck1, ck2) = ([�]1, [�]2) that are the Lagrangian Pedersen commitment keys associated 
to R. Output (ck1, ck2, crsGS).

K1 (gk, φ): Given (ck1, ck2, crsGS) ← Dgk,W and φ : {0, 1}n → {0, 1} of maximum width W . For each i ∈ [d] define matri-

ces [ML
i ]1, [MR

i ]2, [NL
i ]1, [MR

i ]2 as explained in Section 4.2. Let crsInput the crs of the argument Input for a vector of size ns

is binary. Let crsQ the crs of �Q for proving correct evaluation of (at most) W gates. For each i ∈ [d], let crsL
L,i (crsR

L,i) the 

crs for the USS argument of linear knowledge transfer �L of left (right) wires at depth i. Let crsL =
{

crsL
L,i, crsR

L,i

}
i∈[d] and 

trL =
{

trL
L,i, trR

L,i

}
i∈[d] , where trL

L,i (trR
L,i) are the trapdoors of the �L arguments of left (right) wires at depth i, crsL includes 

the tag space T .
Output crs = (ck1, ck2, crsGS, crsInput, crsQ , crsL), tr = trL .

P
(

crs, �xp, �xs,�r, �a, �b,�c, τ
)

: Computes the commitment of the secret input [�z]1 = comck1,ck2 (�xs, �r) and constructs the proof 

Input for [�z]1. For each i ∈ [d] compute Lagrangian Pedersen commitments to the wires [ �O i ]1,2, [�Li]1, [�Ri]1,2, give a GS 
proof ˝Q ,i that they satisfy the equations (7) and let [�zO ,i,k]1, [�z∗

O ,i,k]2, [�zL,i,k]1, [�zR,i,k]2, [�z∗
R,i,k]1 the correspondent GS 

commitments to �O , �L, �R , for k = 1, 2. Compute proofs ˝L,i of correct wiring, ˝L,0 that the opening of [�z]1 is correctly assigned 
to [�zO ,0]1 and that the openings of [�zR ]2, [�z∗

R ]1 and [�zO ]1, [�z∗
O ]2 are equal respectively.

The proof is

π =
(
[�z]1, Input, [�zO ]1, [�zL]1, [�z∗

O ]2,
[�zR

]
2 ,

[�z∗
R

]
1
�̋L, ˝L,0,�̋Q

)
.

5 It is important to stress that the MDDH assumptions underlying our construction can be reduced to decisional assumptions in bilinear groups which 
do not depend on the circuit.
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V
(
crs, �xp,π, τ

)
: Verify all the proofs in π with the corresponding verification algorithms VInput , V˝L (which uses τ ) and 

check the GS proofs of equations (7).

S
(
crs, tr, �xp, τ

)
: Extend the input with zeros, �x = (�xp, 0, . . . , 0) and evaluate the circuit honestly with this input to ob-

tain the corresponding �ai, �bi, �ci for each i = 1, . . . , d. Change the last gate values, i.e. the right and left values of the last 
gate at level d, ad,1, bd,1, and cd,1 consequently, to have an assignment that satisfies the equation of this gate. Com-
pute the commitment [�z]1 = comck1,ck2 (

�0, �r), honest proofs Input and ˝Q ,i , and commitments [�zO ,i,k]1, [�zL,i,k]1, [�z∗
O ,i,k]2, [�zR,i,k

]
2, 

[
�z∗

R,i,k

]
1

for each i = 1, . . . , d. Run the simulator S˝L to obtain d simulated ˝S
L,i, ̋

S
R,i together with ˝S

L,0. Finally, 

π S = ([�z]1, Input, [�zO ]1, [�zL]1, 
[�zR

]
2 , [�z∗

O ]2, ̋ S
L , ̋ S

L,0, ̋ Q ).

Completeness is direct from the completeness of the respective subarguments.

Computational zero-knowledge follows from witness samplability of the GS commitment keys and the fact that in GS proofs, 
commitments are dual mode commitments. This means that the common reference string can be generated in an indis-
tinguishable way so that all commitments are perfectly hiding. In particular, in this setting, the distributions of real and 
simulated proofs are indistinguishable.

Unbounded simulation extractable adaptive soundness is proved in the following theorem.

Theorem 3. If A is an adaptive adversary against the Unbounded Simulation BB Extractability Soundness of the Boolean CircuitSat 
argument described in Section 5 that makes at most Q queries to S, then there exist PPT adversaries B1, B2 , B3 against the BB 
Extractable Soundness of Input, the Unbounded Simulation Soundness of ̋ L argument and the soundness of ̋ Q argument, respectively, 
such that

AdvUSS(A) ≤ AdvES-Input(B1) + dAdvUSS-˝L (B2) + 2dAdvSound-˝Q (B3).

Proof. (sketch) The simulator algorithm generates honestly the Input and �Q arguments and an adversary sees only 
simulated proofs of the linear argument �L . Therefore, an adversary that creates a new proof for an invalid statement 
breaks either the knowledge soundness of the Input, the soundness of the �Q arguments, or the USS of the linear argu-
ments �L . �
5.1. Concrete SE QA-NIZK for Boolean CircuitSat

For the scheme described above, one can take as Input, and ˝Q the same building blocks as [25], namely the bitstring 
argument of Daza et al. [16] and ˝L the argument described in Section 4.1. An USS argument for promise problems either 
the one given in Section 6 or the one given in Section 7.

To simplify the exposition we have omitted many details that actually make the proof more efficient. In particular, instead 
of using two linear arguments for each depth of the circuit, we can use the linear argument for all the linear constraints 
of the circuit at once (as it is also done in the original work by González and Ràfols). First, it is easy to see one can prove 
all the left (and right) constraints together, by considering a larger matrix. Second, left and right constraints can be merged 
in a single matrix which consists of elements in both groups, and using an argument for some promise problem in bilateral
linear spaces. This also makes the auxiliary variable O ∗ (and related equations) unnecessary.

Efficiency. Then, the building blocks Input, �Q of our instantiation are exactly the same as in González and Ràfols [25]. 
The cost of committing to the input plus proving it is boolean with the argument of [16] is (2ns + 4, 6). We take the 
same idea for quadratic constraints proof from the construction of González and Ràfols, with Zero-Knowledge applied to 
our equations (7), that is (6d − 3, 2d − 1) for the commitments and (4d − 4, 8d − 8) for the GS proofs. This is the same 
cost as in the construction of González and Ràfols, using an approach where we add more elements in the crs, but we 
gain in the commitment size. This approach is explained in detail in Section 8, in our case the direct approach gives us 
(12d − 12, 4d − 4) elements in the commitment, while using the approach in Section 8 we add (4d − 2, 2d − 2) elements 
in the crs and the commitment size is reduced to about 25% in group G1. Finally, the overhead of using an USS argument 
for promise problems in bilateral spaces as opposed to the argument for bilateral spaces with standard soundness used in 
González and Ràfols [25] is only 3 elements in G1 in case of USS argument in 6, and 15 elements in 7.

5.2. Universally composable signature of knowledge

Next, we construct a Signature of Knowledge (SoK) for boolean CircuitSat. Similarly, Groth and Maller [29] (see Sec-
tion 2) build a SoK using a Simulation Extractable NIZK with non-black-box extraction along with a universal one-way hash 
function. We use a different approach and take advantage of having a tag-based argument, and we set the tag to be the 
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SSetup(R)

Use (crs, �trs, �tre) ← K1(gk, φ) where crs fixes
a tag space T . Define a collision resistant
hash function H , return pp = (crs, H).

SSign(pp, �xp, �w,m)

Compute τ = H(�xp ,m),

return σ ← P(crs, �xp, �w, τ ).

SV(pp, �xp ,σ ,m)

Compute τ = H(�xp ,m),

return V(crs, �xp,σ , τ ).

SS(pp, �trs, �xp)

Compute τ = H(�xp ,m),

return σ ← S(crs, �trs, �xp, τ ).

Fig. 1. UC SoK based on the tag-based SE NIZK of Section 5, with algorithms (P,V,S) and m ∈ M.

output of a hash function of the message to be signed together with the public input. The efficiency of the SoK is essentially 
the same as the SE NIZK on which it relies, because we just need to add a collision resistant hash function in the public 
parameters and compute a hash for proving/verifying the relation.

The construction of Groth and Maller is based on knowledge assumptions and non-black box extraction, while our NIZK 
is based on falsifiable assumptions and the extractor is used as a black box. Following previous results that show black-box 
simulation extractability is sufficient to realize the idea functionality of NIZK arguments [26], our constructed SoK can also 
achieve UC-security [10].

UC signature of knowledge for circuit satisfiability under standard assumptions. We present a Signature scheme of Knowl-
edge based in the tag-based SE NIZK argument of Section 5 for boolean CircuitSat. To sign a message m, we use a collision 
resistant hash function of the message and the public statement, the result is used as the tag of the argument behind. If 
an adversary tries to reuse the same proof to forge a signature, it should be for a different message otherwise we have the 
same tag.

Given a message space M and a relation R ∈ R, we give a signature scheme in Fig. 1 that is the natural transformation 
of the tag-based SE NIZK argument of Section 5 to a Signature of Knowledge for R .

6. USS QA-NIZK arguments of knowledge transfer for linear spaces

In this section, we prove that the USS argument for membership in linear spaces of Kiltz and Wee also satisfies the 
“knowledge transfer” property, or more technically, that it has soundness for the same promise problem described in Sec-
tion 4.2. We give the argument for membership in linear spaces in one group in detail in Section 6.1 and we present the 
scheme for the bilateral version in Section 6.2.

6.1. USS LinDk argument

In this section we present LinDk , a quasi-adaptive USS argument of membership in linear spaces in the group G1 for the 
promise problem defined by languages

LLin
YES =

{
( �w, [�x]1, [�y]1) :

[�x]1 = [M]1 �w and[�y]1 = [N]1 �w
}

LLin
NO =

{
( �w, [�x]1, [�y]1) :

[�x]1 = [M]1 �w and[�y]1 �= [N]1 �w
}

parameterized by matrices M ∈ Z�1×n
p , N ∈ Z�2×n

p sampled from some distributions M, N . Completeness holds for YES 
instances, and soundness guarantees that NO instances will not be accepted. That is, as in [25], we assume [�x]1 = [M]1 �w
holds when proving soundness. In the CircuitSat context, this can be assumed because the idea is that this is proven by first 
proving knowledge of the input and then by “transferring” this knowledge to the lower layers via the quadratic or the linear 
argument we have presented. We consider the general language L that includes all tuples ( �w, �x, �y) of the right dimension, 
some of them which are outside of LLin

YES ∪ LLin
NO. We allow simulation queries for any tuple in L. Note that it would be 

enough to allow the adversary just to ask for queries in LLin
NO in some contexts, as in Section 5 for CircuitSat, but we define 

this more generally.

Scheme definition. The argument is presented in Fig. 2 and is just the USS QA-NIZK argument of [37] written in two blocks, 
which adds a pseudorandom MAC to the basic (not simulation sound, just sound) QA-NIZK argument of membership in lin-
ear spaces for general distributions also given in [37]. If in the basic arguments the proofs are of the form [�x�, �y�]1(K1, K2), 
in the USS variant they are given by([

(�x�, �y�)(K1,K2) +�r��(�0 + τ�1)
]

1
,
[
�r���]

1

)
.

Our contribution is not in the scheme but in the security analysis. Our proof follows [25], that proved that the basic 
argument in [37] is complete and sound for the same promise problem under some MDDH and KerMDH assumptions 
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K (gk, [M]1, [N]1) : P (crs, τ , [x]1, [y]1, w) :
K1 ←Z�1×(k+1)

p ,K2 ←Z�2×(k+1)
p , Pick �r ←Zk

p and return

K� =
(

K�
1 ,K�

2

)
�π = (

w�[B]1 + �r�[P0 + τP1]1,

A,� ← Dk, [�r���]1
)
.

�0,�1 ←Z(k+1)×(k+1)
p V

(
crs, τ , [x]1, [y]1, �π) :

C1 = K1A,C2 = K2A, Check if:

[B]1 = [
M�K1 + N�K2

]
1 e

( �π1, [A]2
) − e

([
x�, y�]

1 , [C]2
)

(P0,P1) = (���0,���1) = e
( �π2, [Q0 + τQ1]2

)
(Q0,Q1) = (�0A,�1A) S (crs, τ , [x]1, [y]1, tr) :
Return crs = (

gk, [B]1, [A]2, [P0]1 , Sample �r ←Zk
p and return

[P1]1 , [Q0]2, [Q1]2, [C1]2, [C2]2, [�]1
) �π = ([�x�, �y�]1K + �r�[P0 + τP1]1,

tr = (K1,K2) [�r���]1
)
.

Fig. 2. The LinDk argument for proving membership in linear spaces in blocks
[�x, �y]1 ∈ Im[M,N]1 where M ∈Z�1×n

p ,N ∈Z�2×n
p .

related to the matrix distribution M. Our contribution is to modify their analysis to adapt it to simulation soundness for 
the scheme of Fig. 2.

Perfect completeness, perfect zero-knowledge. Our language LLin
YES is the same language for membership proofs in a linear 

space [M,N]�1 used in [37]: 
{( �w, [�x, �y]1

) : [�x�, �y�]�1 = [M,N]�1 �w}
, so perfect completeness and perfect zero-knowledge are 

immediate.

Unbounded simulation soundness. We use Definition 4, for any adversary A that sends any number Q of queries 
( �wi, [�xi, �yi]1) ∈ L to the query simulator oracle S, receives simulated proofs { �π i}Q

i=1 as described in Fig. 2, the probabil-
ity that the adversary A comes up with ( �w∗, [�x∗, �y∗]1, τ ∗, �π∗) such that ( �w∗, [�x∗, �y∗]1) ∈LLin

NO different of the queried ones, 
different tag τ ∗ and V(crs, τ ∗, [�x∗, �y∗]1, �π∗) = 1 is negligible.

Our proof is analogous to the USS proof of [37], where the authors argue that partial information about matrix K is 
computationally hidden across all the simulated proofs. Essentially, what the authors are doing is to reduce the proof of 
USS to a standard soundness proof. More concretely, they switch to a game where the simulated proofs hide information 
theoretically the projection of K for vectors outside of the span of the columns of a matrix M̃ that defines the language. 
Therefore, one can argue, as in the standard soundness proof, that the probability of providing a valid proof for a false 
statement is negligible.

Our proof combines the work of [37] to show that the queries do not provide additional information, with the work 
of [25] to show standard soundness to the language associated to the promise problem. Indeed, in the case we are interested 
in the matrix M̃ spans the whole space so the standard soundness proof used by [37] cannot be used and we need an extra 
change of games to use a technique proposed by [25] that proves that the block K2,2 is hidden from the adversary. This 
block corresponds to the part of the statement that is not in the correct linear space. That is, for breaking soundness the 
adversary has to create a valid proof for ( �w, [�x]1, [�y]2) such that �y �= N �w and �x = M �w), and the coordinates of this block 
correspond to the projection by matrix N. Concretely, at some point in their proof, Kiltz and Wee change the key matrix 
uniformly sampled for another of the form K′ + �b�a⊥ , where K′ is uniformly sampled and �a⊥ is in the co-kernel of A. We 
apply the same change but in blocks, �b = (�b1, �b2), so our extra game consists in changing the projection of �b1 by M� to 
some random vector �z, i.e. we change M��b1 + N��b2 to �z + N��b2 by assuming the M�-MDDHG1 assumption, where M�

is the matrix that defines the distribution of M� (as in [25]). So, what the adversary can see about �b is just N��b2 but it is 
hidden by �z.

For the following theorem, we use the Computational Core Lemma of Kiltz and Wee in Section 4.1 of [37], which is 
independent of M, N , it just assumes the Dk-MDDHG1 , so we can use it directly in our proof.

Theorem 4. The LinDk scheme in Fig. 2 is a Quasi-adaptive Non-Interactive Zero-Knowledge Argument with Unbounded Simulation 
Soundness such that for any adversary A that makes at most Q queries to S there exist adversaries B1, B2 , B3 against the Dk-KerMDH, 
M�-MDDH assumptions in G1 for which the advantage of A is bounded by

AdvUSS-LinDk
(A) ≤AdvDk−KerMDHG1

(B1) + 2Q AdvDk-MDDHG1
(B2)

+ AdvM�-MDDHG1
(B3) + Q + 1

p
.

Proof. Let A be an adversary that plays the game described in USS Definition 4. We will proceed by changing to indistin-
guishable games in order to bound the advantage of A. Let Game0 be the real game and Advi the advantage of winning 
Gamei .
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• Game1 is the same as Game0 except the verification algorithm V is changed to

V∗(crs, τ , [�x, �y]1, �π) :
Check: �π1 = [�x�, �y�]1K + �π2(�0 + τ�1).

If a tuple ([�x, �y]1, �π) passes verification of V but does not pass verification of V∗ , it means that the value �π −[�x�, �y�]1K −
�π2(�0 + τ�1) ∈ Gk+1

1 is a non-zero vector in the cokernel of A. Thus, there exists an adversary B1 against KerMDHG1

such that

|Adv0 − Adv1| ≤ AdvDk−KerMDHG1
(B1).

• Game2 is the same as Game1 except the simulation algorithm S is changed to

S∗(crs, τ , [�x, �y]1, tr) :
�r ← Zk

p,μ ← Zp

Return: �π = ([(�x�, �y�)K + μ�a⊥ +�r�(P0 + τP1)]1, [�r��]1),

where �a⊥ is an element from the Kernel of A. Let B2 be an adversary against Dk-MDDHG1 . B2 picks K itself and answers 
queries (τi, �wi, [�xi, �yi]1) from A:

– if τi �= τ ∗: B2 queries the oracle Ob , defined in the core lemma [37], who simulates S if b = 0, or S∗ if b = 1.
– if τi = τ ∗: B2 samples �r ←Zp and computes ([(�x�

i , �y�
i )K +�r�(P0 + τiP1)]1, [�r���

0 ]1).

Then B2 queries V∗ to simulate verification of the final message of A, (τ ∗, �w∗, [�x∗, �y∗]1). Now, it is easy to check if 
( �w∗, [�x∗, �y∗]1) ∈ LLin

NO by computing [N]1 �w∗ . The difference between respective advantages is bounded using the core 
lemma of [37] as

|Adv1 − Adv2| ≤ 2Q AdvDk−MDDHG1
(B2) + Q

p
.

• Game3 is the same as Game2 except the matrix K ← Z(�1+�2)×(k+1)
p is changed in K to K = K′ + �b�a⊥ where K′ ←

Z(�1+�2)×(k+1)
p , �b1 ←Z�1

p , �b2 ←Z�2
p , �b� = (�b�

1 , �b�
2 ) and B = (M�, N�)K + (�z + N��b2)�a⊥ , where �z = M��b1. It is direct to 

see that both K, K′ are uniformly distributed in Z(�1+�2)×(k+1)
p , so the advantages in both games are equivalent.

• Game4 is the same as Game3 except that now �z ← Z�1
p . Let B3 be an adversary against Dk-MDDHG1 that receives 

([M�]1, [�z]1) as a challenge and computes the crs as in the previous game with this [�z]1 in B and runs A as in Game3. 
Finally, the advantage of B3 to distinguish between Game3 and Game4 is bounded by the probability of distinguishing 
between a random vector from the image of the matrix M� , so

|Adv3 − Adv4| ≤ AdvM�−MDDHG1
(B3).

Now we bound the advantage of adversary A in winning Game4. Firstly, we show what is leaked about vector �b in the 
adversary’s view:

• the matrix C = (K′ + �b�a⊥)A completely hides the vector �b,
• the output of S∗ , (�x, �y)�(K′ + �b�a⊥) + μ�a⊥ completely hides �b because μ masks (�x�, �y�)�b,
• the matrix B contains information about �z + N��b2, but �z is uniformly random and independent of �b2, so �z masks �b2.

Note that if the adversary A passes the verification V∗ with some �π∗ for a statement ( �w∗, �x∗, �y∗) ∈LLin
NO, it can compute 

�y = N �w∗ and construct a valid proof π = ( �π∗
1 − �w∗B, �π∗

2 ) that the vector (�0, �y − �y∗) is in the span of the columns (M�, N�). 
It must hold that

π = (0, �y − �y∗)(K′ + �b�a⊥) = (�y − �y∗)K′
2 + (�y − �y∗)�b2�a⊥. (∗)

Note �y − �y∗ is not zero because �y �= �y∗ . Since �b2 remains completely hidden to the adversary and K′
2 is independent of �b2, 

the probability than equation (∗) holds is less that 1/p. �
6.2. USS BLinDk argument

In this section we present the USS argument for membership in linear spaces in groups G1, G2, which is just an 
extension to bilateral spaces of the USS LinDk argument presented in Section 6.1 for the promise problem defined by 
languages
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K (gk, [M]1, [N]1, [P]2) : P (crs, τ , [x1]1, [x2]1, [y]2, w) :
K1 ←Z�1×(k+1)

p ,K2 ←Z�2×(k+1)
p , Pick �r ←Zk

p and return

K3 ←Z�3×(k+1)
p , �π = (

w�[B]1 + �r�[P0 + τP1]1,

A,� ← Dk,� ←Zn×(k+1)
p , [�r���]1

)
,

�0,�1 ←Z(k+1)×(k+1)
p θ = w�[D]2.

C1 = K1A,C2 = K2A,C3 = K3A, V
(
crs, τ , [x1]1, [x2]1, [y]2, �π, θ

) :
[B]1 = [

M�K1 + N�K2 + �
]

1 Check if: e
( �π1, [A]2

) − e ([A]1, θ)

[D]2 = [
P�K3 − �

]
2 −e

([
x�

1

]
1 , [C1]2

) − e
([

x�
2

]
1 , [C2]2

)
(P0,P1) = (���0,���1) +e

(
[C3]1 ,

[
y�]

2

) = e
( �π2, [Q0 + τQ1]2

)
(Q0,Q1) = (�0A,�1A) S (crs, τ , [x1]1, [x2]1, [y]2, tr) :
Return crs = (

gk, [B]1, [A]1,2, [P0]2, Sample �r ←Zk
p and return

[P1]2 , [Q0]1, [Q1]1, [C1]2, [C2]2, �π = ([�x1, �x2]1(K�
1 ,K�

2 )

[C3]1, [�]1) +�r�(P0 + τP1), [�r���]1
)
,

θ = [�y]2K�
3 .

tr = (K1,K2,K3)

Fig. 3. The BLinDk argument for proving membership in linear spaces in blocks ([�x1, �x2]1, [�y]2
) ∈ Im ([M,N]1, [P]2, ) where M ∈ Z�1×n

p , N ∈ Z�2×n
p , P ∈

Z�3×n
p .

LBlin
YES =

{
( �w, [�x1]1, [�x2]1, [�y]2) :

[�x1
]

1 = [M]1 �w and[�x2
]

1 = [N]1 �w, [�y]2 = [P]2 �w
}

LBlin
NO =

{
( �w, [�x1]1, [�x2]1, [�y]2) :

[�x1
]

1 = [M]1 �w and[�x2
]

1 �= [N]1 �w or [�y]2 �= [P]2 �w
}

parameterized by matrices M ∈ Z�1×n
p , N ∈ Z�2×n

p , P ∈ Z�3×n
p sampled from some distributions M, N , P . This argument is 

presented in Fig. 3. QA-NIZK arguments of membership in linear spaces were extended to the bilateral case in [24] for 
both samplable and non-witness samplable distributions. In [25], the authors proved that the argument for non-witness 
samplable distributions of [24] is also sound and complete for this promise problem. Adding the pseudorandom MAC given 
in [37] we get USS. The proof is essentially the same as in 6.1, but now the linear spaces are split in two groups G1 and 
G2. The core lemma would be the same and the reduction of the proof of USS is bounded by SKerMDH and Dk-MDDHG1

Assumptions.

7. Tight USS QA-NIZK arguments of knowledge transfer for linear spaces

In this section we prove that the Tight USS argument of Abe et al. [1] for membership in linear spaces satisfies the 
knowledge transfer property explained in Section 1. The authors present a Designated Verifier (DV) QA-NIZK argument and 
then use a well-known conversion from DV to public verifier QA-NIZK with pairings. We follow the same approach and we 
further modify it to be a tag-based argument and adapt the sub-argument for disjunction spaces to the one of Couteau and 
Hartmann [13] for efficiency.

In Section 7.1 we prove the DV QA-NIZK of [1] is perfectly complete, perfect zero-knowledge and USS for the language 
associated to promise problems for linear spaces, already defined in Section 6, namely:

LLin
YES =

{
( �w, [�x]1, [�y]1) :

[�x]1 = [M]1 �w and[�y]1 = [N]1 �w
}

LLin
NO =

{
( �w, [�x]1, [�y]1) :

[�x]1 = [M]1 �w and[�y]1 �= [N]1 �w
}

parametrized by matrices M ∈ Z�1×n
p , N ∈ Z�2×n

p sampled from some distributions M, N . In Section 7.2 we present its 
natural conversion to a publicly verifiable QA-NIZK argument. We only give the argument for membership in linear spaces 
in one group, the bilateral version is straightforward following the work of [24], where the authors transform QA-NIZK 
arguments for membership in linear spaces in one group to membership in linear spaces to both groups, namely bilateral 
spaces.

Security proof: intuition. Our construction revisits the proof of Abe et al.’s DV argument for promise problems. In this 
approach the secret keys are vectors �k0, �k1 and the proofs, (�x�

i , �y�
i )(�k0 + τi�k1) where τ is a different value in Zp for each 

proof. We split the secret keys �k0 = (�k1,0, �k2,0), �k1 = (�k1,1, �k2,1) to indicate the components that come with M� , �k1,0, �k1,1, 
and the others with N� , �k2,0, �k2,1.

We use a similar solution as in Section 6 and argue that partial information of the secret keys necessary to produce 
a proof in the NO language is hidden across all the proofs. In this construction, the crs contains projections of the secret 
keys �k0, �k1 by matrices M�, N� . Assuming the M�-MDDHG1 assumption holds, where M� is the distribution of M� , as in 
Section 6, we change the projection by M� by a random vector �z, which masks completely the projection by N� .
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K (gk, [M]1, [N]1) :
A0,A1 ← D2k,k, H ← H,

crsor ← K(gk,A0,A1)

�k ←Z2k
p , �k0 = (�k1,0, �k2,0), �k1 = (�k1,1, �k2,1) ←Zn

p,

�k1,0, �k1,1 ∈Z�1
p , �k2,0, �k2,1 ∈Z�2

p[�p]1 = [A�
0

�k]1 ∈Gk
1,[�p0

]
1 = [M��k1,0 + N��k2,0]1 ∈Gn

1,[�p1
]

1 = [M��k1,1 + N��k2,1]1 ∈Gn
1,

crs = (
crsor, [A0]1, [�p]1, [�p0]1, [�p1]1, H

)
tr = (�k0, �k1), vk = (�k, �k0, �k1).

S
(
crs, [x]1, [y]1, τ̃ , tr

) :
�s ←Zk

p , [�t]1 = [A0]1�s, [πor]1,2 ← Por(crsor, [�t]1,�s)
τ = H([�x]1, [�y]1, [�t]1, [πor]1,2, τ̃ ) ∈Zp ,

[u]1 = [�x�]1(�k1,0 + τ �k1,1) + [�y�]1(�k2,0 + τ �k2,1) + �s�[�p]1

Return [π ]1 = ([�t]1, [u]1, [πor]1,2)

P
(
crs, [x]1, [y]1, τ̃ , w

) :
�s ←Zk

p, [�t]1 = [A0]1�s
[πor]1,2 ← Por(crsor, [�t]1,�s)
τ = H([�x]1, [�y]1, [�t]1, [πor]1,2, τ̃ ) ∈Zp

[u]1 = [ �w�(�p0 + τ �p1) + �s� �p]1

Return [π ]1 = ([�t]1, [u]1, [πor]1,2).

V
(
crs, [x]1, [y]1, vk, [π ]1, τ̃

) :
Parse [π ] = ([�t]1, [u]1, [πor]1,2),

τ = H([�x]1, [�y]1, [�t]1, [πor]1,2, τ̃ ) ∈Zp,

Check [πor]1,2 and [u]1 = [�x�]1(�k1,0 + τ �k1,1)

+[�y�]1(�k2,0 + τ �k2,1) + [�t�]1�k
Return 0/1.

Fig. 4. Tight DV QA-NIZK Argument for membership in linear spaces of Abe et al. [1] in blocks, [�x, �y]1 ∈ Im[M, N]1, where M ∈Z�1×n
p , N ∈Z�2×n

p and H a 
family of collision-resistant hash functions. The scheme is modified to be tag-based and is written in blocks. We use the disjunction argument or of [13]
with |crsor| = (4n + 8)|G1| + (2�1 + 3)|G2|, |πor| = 8|G1| + 3|G2|.

Note that in the construction of Abe et al.’s we use in this section, there are also more projections of the secret keys 
leaked from simulated proofs, concretely: �x�

i (�k1,0 +τi�k1,1) + �y�
i (�k2,0 +τi�k2,1). But we can use the same information-theoretic 

argument as in [1], namely, since τi is different each time, �k1,0 + τi�k1,1, �k2,0 + τi�k2,1 are pairwise independent, then they do 
not add any clue to the information of adversary.

7.1. Tight DV QA-NIZK argument of knowledge transfer for linear spaces

The DV QA-NIZK argument presented in Fig. 4 is the argument for linear spaces of Abe et al. [1] written in blocks, and 
(trivially) modified to admit tags. Also, We use the disjunction argument of Couteau and Hartmann [13], which is 3 group 
elements more efficient than the one presented in [2] (used in the first construction of Abe et al. [1]), and we denote it by 
or.

Security. We prove it has completeness for LLin
YES and USS for LLin

NO. USS relies in the same core lemma as in Abe et al. 
(Lemma 3 in [1]), the security of the MAC presented in Gay et al. [20], the soundness of an argument for membership in a 
disjunction space of [13]. Our contribution is to combine this with the same techniques as in Section 6 to adapt the proof 
for promise problems.

The scheme in Fig. 4 is perfectly complete and perfect-zero knowledge for YES instances, and soundness guarantees that 
NO instances will not be accepted as we show in the following. As in Section 6 we consider the general language L that 
includes all tuples ( �w, �x, �y) of the right dimension, some of them are outside of LLin

YES ∪ LLin
NO. We allow simulation queries 

for any tuple in L.

Perfect completeness, perfect zero-knowledge. Our language LLin
YES is the same language for membership proofs in a linear 

space [M,N]�1 used in [1]: 
{( �w, [�x, �y]1

) : [�x, �y]�1 = [M,N]�1 �w}
. Thus, we directly obtain perfect completeness and perfect 

zero-knowledge.

Unbounded simulation soundness. We use the Definition 4 where for any adversary A that sends any number Q of queries 
( �wi, [�xi, �yi]1, τ̃i) to the query simulator oracle S, receives simulated proofs {[πi]1}Q

i=1 as described in Fig. 4. The probability 
of the adversary A comes up with a proof [π∗]1 for a statement ( �w∗, [�x∗, �y∗]1) ∈ LLin

NO different of the queried ones and 
different tag τ̃ ∗ , such that V(crs, τ̃ ∗, [�x∗, �y∗]1, [π∗]1) = 1, is negligible.

Abe et al.’s construction is based in the USS Kiltz and Wee argument [37], where the security relies in three security 
features that we use as black-boxes: their core lemma (Lemma 3 in [1]), the security of a MAC scheme presented in Gay et 
al. [20], and the soundness of the or argument, all proven secure under standard assumptions.

Both [37] and [1] use a MAC scheme to add randomness to the proof. Concretely, by the Gay et al. MAC, the term �t��k
is added to the proof, where �k is uniformly random and �t ∈ Span(A0) ∪ Span(A1) for some fixed matrices A0, A1 ∈Z2k×k

p in 
the crs. The basic idea is the prover computes �t directly in the image of [A0]1, uses the argument or to prove membership 
of �t in Span(A0) ∪ Span(A1) and uses the image space of [A1]1 to add randomness in the security proof. The last is done 
by changing to a game where �k ∈Z2k

p is switched to �k + RF(·), with RF :Zp →Z2k
p a random function. Indistinguishability 

of both games is proven in [20], concretely, the lemma gives the following tight bound for any adversary A that is able to 
distinguish between both MAC schemes:
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AdvCL(A) ≤ (4k�log Q � + 2)AdvD2k,k-MDDHG1
,B(λ) + (2�log Q � + 2)Advzk-or,B′(λ)

+�log Q ��D2k,k + 4�log Q � + 2

p − 1
+ �log Q �Q

p
,

where �D2k,k is statistically small term for D2k,k , B and B′ are adversaries against the D2k,k-MDDHG1 assumption and 
zero-knowledge of argument or respectively.

Theorem 5. The argument of Fig. 4 is a Designated Verifier Quasi-Adaptive Non-Interactive Zero-Knowledge argument that guarantees 
USS such that for any adversary A that makes at most Q queries to S, there exist adversaries B1, B2 , B3 against collision resistance of 
H, core lemma of [20] and M�-MDDHG1 assumption such that

AdvUSS(A) ≤ AdvCR(B1) + AdvCL(B2) + 2AdvM�-MDDHG1
(B3) + Q

p
.

Proof. We proceed via changes of games starting with Game0 that is the real USS game of Definition 4. Let Advi be the 
advantage of adversary A winning Gamei .

• Game1 is the same as Game0 except the simulator computes the element [u]1 as [�x]1(�k1,0 + τ �k1,1) + [�y]1(�k2,0 + τ �k2,1) +
[�t�]1�k and verification of final adversary’s message ( �w∗, [�x∗]1, [�y∗]1, [π∗]1, τ̃ ∗) checks:

– ( �w∗, [�x∗]1, [�y∗]1) ∈LLin
NO,

– ([�x∗]1, [�y∗]1) /∈Qsim ,
– receives τ̃ ∗ , and checks that τ̃ ∗ /∈ Qtag . With o.w.p., by the collision resistance of H , this implies that τ ∗ =

H([�x∗]1, [�y∗]1, [�t∗]1, [π∗
or]1,2, τ̃ ∗) is also different from all the tags used in the simulated proofs.

The new element [u]1 just differs on the element [�t�]1�k, which in Game0 is �s�[�p]1, they pass verification with same 
probability because they are equivalent by definition. Thus,

|Adv0 − Adv1| ≤ AdvCR(B1).

• Game2 is the same as Game1 except that the key �k is changed to �k + RF(·) where RF :Zp →Z2k
p is a random function. 

Concretely, the element [�p]1 = [A�
0
�k]1 is switched to [�p]1 = [A�

0 (�k + RF(0))] in K and the element [u]1 in S is computed 
as [u]1 = [(�xi, �yi)(�k0 +τi�k1) +�t�

i (�k+RF(i))]1 for the i-th query. Moreover, the verifier V defines the set S = {[(�x∗, �y∗)(�k0 +
τ ∗�k1) +�t∗�(�k + RF( j∗))]1}Q

j∗=0 and checks [u∗]1 ∈ S . The indistinguishability between Game1 and Game2 is direct from 
the core lemma [1] because it is equivalent of indistinguishability between both MACs defined in the core lemma, thus

|Adv1 − Adv2| ≤ AdvCL(B2).

• Game3 is the same as Game2 except that the elements [�p0]1 = [M��k1,0 + N��k2,0]1 and [�p1]1 = [M��k1,1 + N��k2,1]1 are 
switched to [�p0]1 = [�z0 + N��k2,0]1 and [�p1]1 = [�z1 + N��k2,1]1 in K, where �z0, �z1 ←Zn

p . We can think in an intermediate 
game where we just switch [�p0]1, then for any adversary B3 able to distinguish between these intermediate games and 
Game2 is breaking M�-MDDHG1 . By the same argument, B3 distinguishing between the intermediate game and Game3

is breaking M�-MDDHG1 . Finally,

|Adv2 − Adv3| ≤ 2AdvM�-MDDHG1
(B3).

Before studying the probability of the adversary A wins the Game3, note that by linearity, we observe that the proof π∗
is a valid proof to prove membership in the linear space of the vector ([�0]1, [�y∗]1). For any adversary that makes a proof 
[π∗]1 for ( �w∗, [�x∗]1, [�y∗]1) ∈ LLin

NO, the element [u∗]1 = [u∗]1 − �w∗[�p0]1 − �w∗[�p1]1τ
∗ is a valid proof for ([�0∗]1, [�y∗ − �y]1)

where �y = N �w∗ (with same [�t∗]1 and [πor]1,2).
Now, we use an information-theoretic argument to bound the probability of success of the adversary A. In the first 

place, we study what is leaked about the secret keys. The elements [�p0]1 = [�z0 + N��k2,0]1, [�p1]1 = [�z1 + N��k2,1]1 in the 
crs do not leak information about N��k2,0 and N��k2,1 because the vectors [�z0]1, [�z1]1 hide completely the projections by N. 
Then, the element �y∗�(�k2,0 + τ ∗�k2,1) in the proof, where [�y∗]1 /∈ Span[N]1, is uniformly random in adversary’s view.

The adversary A also learns the following projections of the secret keys from each query i: �x�
i (�k1,0 + τi�k1,1) + �y�

i (�k2,0 +
τi�k2,1), but they are pairwise independent and �yi �= �y∗ for all i = 1, . . . , Q . So, given �x�

i (�k1,0 + τi�k1,1) + �y�
i (�k2,0 + τi�k2,1)

from the i-th query, the term �y∗�(�k2,0 + τ ∗�k2,1) in the proof is distributed uniformly at random. Thus, the probability of A
computes this term and passes verification is 1/p. Finally, taking into account there are Q simulated proofs, we have

|Adv3(A)| = Q
. �
p
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K (gk, [M]1, [N]1) :
A0,A1 ← D2k,k,

crsor ← K(gk,A0,A1)

H ← H,A ← Dk

K ←Z2k×k
p ,m = �1 + �2, for i = 0,1 :

Ki = (
Ki ,Ki

)� ←Zm×(k+1)
p ,

Ki ∈Z�1×(k+1)
p ,Ki ∈Z�2×(k+1)

p .

[P]1 = [A�
0 K]1 ∈Gk×(k+1)

1

[P0]1 = [M�K0 + N�K0]1 ∈Gn×(k+1)
1

[P1]1 = [M�K1 + N�K1]1 ∈Gn×(k+1)
1 ,

C = KA ∈Z2k×k
p ,

C0 = K0A,C1 = K1A ∈Zm×k
p

crs = (crsor, [A0]1, [P]1, [P0]1, [P1]1, [A]2,

[C]2, [C0]2, [C1]2, H) ,

tr = (K0,K1).

P
(
crs, [x]1, [y]1, w, τ̃

) :
�s ←Zk

p , [�t]1 = [A0]1�s, [πor]1,2 ← Por(crsor, [�t]1,�s)
τ = H([�x]1, [�y]1, [�t]1, [πor]1,2, τ̃ ) ∈Zp

[u]1 = [ �w�(P0 + τP1) + �s�P]1 ∈Gk+1
1

Return [π ]1 = ([�t]1, [u]1, [πor]1,2).

V
(
crs, [x]1, [y]1, [π ]1, τ̃

) :
Parse [π ]1 = ([�t]1, [u]1, [πor]1,2),

τ = H([�x]1, [�y]1, [�t]1, [πor]1,2, τ̃ ) ∈Zp,

Check [πor]1,2 and[
u�]

1 [A]2 = [�x�, �y�]1 [C0 + τC1] + [�t�]1C

Return 0/1.

S
(
crs, [x]1, [y]1, tr, τ̃

) :
�s ←Zk

p , [�t]1 = [A0]1�s, [πor]1,2 ← Por(crsor, [�t]1,�s)
τ = H([�x]1, [�y]1, [�t]1, [πor]1,2, τ̃ ) ∈Zp,

[u]1 = [�x�, �y�]1(K0 + τK1) + �s�[P]1.

Fig. 5. Tight QA-NIZK Argument for membership in linear spaces of Abe et al. [1] in blocks, [�x, �y]1 ∈ Im[M, N]1, where M ∈ Z�1×n
p , N ∈ Z�2×n

p and H a 
family of hash functions that are collision resistant. The scheme is modified to be tag-based. We use the disjunction argument or of [13] with |crsor| =
(4n + 8)|G1| + (2�1 + 3)|G2|, |πor| = 8|G1| + 3|G2|.

7.2. Tight USS LinDk QA-NIZK

The QA-NIZK argument in Fig. 5 is the Tight USS QA-NIZK argument for membership in linear spaces of Abe et al. [1]
written in blocks for promise problem languages LLin

YES and LLin
NO defined in Section 4.2. It is the straightforward construction 

from the tight DV QA-NIZK of the previous Section 7.1 to public verifier QA-NIZK with pairings.
The security proof is analogous to the security proof of the tight QA-NIZK of Abe et al. [1]. In that construction, the 

authors give a tight reduction where the advantage of breaking the USS of the QA-NIZK is bounded by the advantage of 
breaking USS of the DV QA-NIZK and a kernel assumption. As we have seen in Section 7.1 the USS of our DV QA-NIZK is 
proven by a tight reduction that is linear in log Q , where Q is the number of simulated queries. So, the USS of the QA-NIZK 
argument presented here inherits the same tightness loss linear in log Q .

The bilinear QA-NIZK argument of Section 5 is a membership proof in linear spaces in two groups G1, G2, for the 
same languages as defined in 6.2. It is easily constructed from the bilinear version of the DV QA-NIZK argument 7.1. The 
reduction is analogous to the unilateral QA-NIZK reduction. We bound the advantage of breaking USS of the QA-NIZK for 
bilateral spaces by the advantage of breaking the USS of DV QA-NIZK for bilateral spaces and the SKerMDH assumption, 
with same tightness loss linear in log Q .

8. Adapting GS proofs for improved efficiency

In this section we show how to add zero-knowledge to the circuit satisfiability proof. A naive use of GS proofs results in 
a considerable overhead.

More concretely, we need to prove many quadratic Pairing Product Equations (PPEs), i.e. equations with variables in 
G1 and G2. Recall that GS proofs have a commit-and-prove structure: first, given an equation, the prover commits to the 
witness (a solution to the equation, which is a vector [�x]1 of elements in G1 and a vector [�y]2 of elements in G2) and then 
it gives a proof that the committed values satisfy the equation. When trying to save group elements of the proof, we will 
save on the number of group elements necessary to commit to the witness.

We note that although there are several techniques to save on the “proof part” of GS proofs [34,24] by aggregating proofs, 
they work for linear equations and not for quadratic.

In order to commit to the witness of satisfiability (a pair [�x]1, [�y]2) of an equation, individual commitments to each 
coordinate of these vectors are computed. We focus on the Symmetric EXternal Diffie-Hellman assumption instantiation of 
GS proofs for efficiency. Under this assumption, each individual commitment is either a dual-mode commitment based on 
DDH or an ElGamal ciphertext.

A natural idea to explore to reduce the commitment cost is to compute a single commitment to the whole vector 
[�x]1 (and similarly for [�y]2). This approach fails in general because GS proofs use some homomorphic properties of the 
commitments to combine them in a proof, and these are lost when using a single commitment to all of [�x]1. This explains 
why, to the best of our knowledge, there is no technique to save on the commitment part of GS proofs which works in 
general, that is, for every set of equations of any form.6

6 What is important in the equation form for using simultaneous commitments is the structure of the quadratic part. On the other hand, this is indepen-
dent of the equation type, i.e. this remark applies to multiscalar multiplication or quadratic equations in the field as well.
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However, for the specific form of the equations we use in this paper, it is possible to exploit the specific form of the 
PPEs that we need to prove. More precisely, we can exploit that the equations, which depend on some group variables 
{Li, Ri, O i}d

i=1 do not have cross terms, i.e. terms which multiply Li with R j , i �= j.
More specifically, we show how to reduce the size of GS proofs for equations which can be written in this form:

e([k j]1, [1]2) + e([x j]1, [y j]2) − e([w j]1, [1]2) = e([h j]1, [b j]2), j = 1, . . . ,m (11)

for some constants [k j]1, [b j]2, and variables x j, y j, w j, h j (in fact in our case b j is the same for all equations, namely t(s)).
GS proofs use dual mode commitments to commit to the witness, meaning that commitments are either used in perfectly 

hiding or perfectly binding mode. To simulate proofs, the trapdoor is the equivocation trapdoor of the commitment scheme 
in both G1 and G2. However, for this particular type of equation it is enough to use standard ElGamal encryption for G2
(see [17]), the reason being that the equation admits the trivial solution in G1 . That is, it is enough for commitments in G2
to be computationally hiding, it is not necessary that there is a setup mode in which they are perfectly hiding. This allows 
us to save on the proof size ((2, 4) elements per equation).

The idea to save on the number of commitments is to reuse the randomness and encrypt all the variables �x, (resp. 
�y, �z, �w) with a single vector of commitments. This reduces the size of the commitments from 2m to m + 1 for committing 
to each of the variable vectors. We define the commitment key in Gm+1

1 as:

u1 ← Um+1,1, �u2 = τ �u1, τ ← Zp

and the commitment as:

ComU ([�x]1,�r) = r1[�u1]1 + r2[�u2]1 +
[( �x

0

)]
1
,

where �r ∈Z2
p and Um+1,1 is the uniform distribution of vectors of Zm+1

p .
On the other hand, in G2 the commitment key is defined as:

v ← Um+1,1,

and the commitment as

ComV ([�y]2, s) = s[�v]2 +
[( �y

0

)]
2
.

The idea is that a commitment [�z�y] to a vector [�y] can be divided into small parts [�zyi ], such that each part is a 
commitment to yi . More precisely, components (i, m + 1) are a commitment to �yi with the commitment key corresponding 
to the components of (i, m + 1) of �u1, �u2 (for commitments in G1) and of �v (for commitments in G2). That is, commitment 

keys are: �ui
1 =

(
u1,i

u1,m+1

)
and �ui

2 =
(

u2,i
u2,m+1

)
, and ComU ([xi]1, �r) = r1[�ui

1]1 + r2[�ui
2]1 +

[(
xi
0

)]
1

. Similarly, we can get a 

commitment to [yi]2 by getting the components (i, m + 1) of a commitment in G2 with respect to the key �vi =
(

vi
vm+1

)
.

Therefore, we can now prove the equation i with different commitments keys, that is, it is as if we were using a different 
GS common reference string for each equation, namely, the keys �ui

1, �ui
2, �vi .

The form of the j-th verification equation is:

e(
[
�z j
�x
]

1
,
[
�z j

�y
]

2
) − e(

[
�z j

�w
]

1
,
[�z1

]
2) = e(

[
�z j
�h
]

1
,
[
�zb j

]
2
) +

2∑
i=1

e([�u j
i ]1, [ �πi, j]2) + e([�θ j]1, [�v j]2),

where �z j
�α is the result of keeping the j-th and the (m + 1)-th coordinate of the commitment to vector �α and �z1 =

(
1
0

)
, 

�z�b j
=

(
b j
0

)
, for j = 1, . . . , m.

Soundness obviously holds because the partial commitment keys define perfectly binding commitments, so the same 
argument as in GS proofs applies.

On the other hand, one can claim computational witness indistinguishability under the DDH Assumption in G1. Indeed, 
in the security proof of witness indistinguishability, after the setup of the common reference string, the adversary can 
choose two witnesses W0 = ([�x0]1, [�y0]2, [ �w0]1, [�h0]1), and W1 = ([�x1]1, [�y1]2, [ �w1]1, [�h1]1), and receive a proof for Wb , 
b ← {0, 1}.

We define a sequence of games, {Gamei,0, Gamei,1, Gamei,2}m
i=1.

1. In Gamei,0 the commitment key is changed to define a perfectly hiding commitment to the ith coordinate of G1, as 
�u2 = τ �u1 + �ei , where �ei is the ith vector in the canonical basis of Zm+1

p .
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2. In Gamei,1 the challenger samples a bit b but uses the witness W ∗
i,b to create the proof, where W ∗

i,b = ([�xi,b]1, [�yb]2,

[ �wi,b]1, [�hi,b]2) and [�xi,b]1, [ �wi,b]1, [�hi,b]1 are the same as [�xb]1, [ �wb]1, [�hb]1 replacing the first i coordinates with 0.
3. In Gamei,2 the coordinate i is changed to define a perfectly binding commitment in G1, as �u2 = τ �u1.

At the end of the sequence of Games, the part in G1 of the witness is changed to the all zero vector, and is independent 
of b.

To complete the proof, we observe that the equation is left simulatable. This means that, in particular, using the prop-
erties of GS proofs it is possible to compute a valid proof of the equation given a commitment to the part of the witness 
of G2, without knowing an opening. For this reason, in the last m games we can switch to the all-zero witness for the 
elements in G2 based on the IND-CPA security of ElGamal, namely based on the DDH Assumption in G2 .

This argues Witness Indistinguishability, which is all we need for our Signature of Knowledge, although ZK follows 
immediately from the fact that the equations are trivially satisfiable.

This strategy adds to the CRS 2(m − 1) elements in G1 and m − 1 in G2, and, as explained, this reduces the cost of 
committing to the witness from 3 · 2m elements in G1 and 2m in G2 to 3(m + 1) in G1 and m + 1 in G2.
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