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Abstract

Motivation: Network-based driver identification methods that can exploit mutual exclusivity typically fail to detect
rare drivers because of their statistical rigor. Propagation-based methods in contrast allow recovering rare driver
genes, but the interplay between network topology and high-scoring nodes often results in spurious predictions.
The specificity of driver gene detection can be improved by taking into account both gene-specific and gene-set
properties. Combining these requires a formalism that can adjust gene-set properties depending on the exact net-
work context within which a gene is analyzed.

Results: We developed OMEN: a logic programming framework based on random walk semantics. OMEN presents
a number of novel concepts. In particular, its design is unique in that it presents an effective approach to combine
both gene-specific driver properties and gene-set properties, and includes a novel method to avoid restrictive, a pri-
ori filtering of genes by exploiting the gene-set property of mutual exclusivity, expressed in terms of the functional
impact scores of mutations, rather than in terms of simple binary mutation calls. Applying OMEN to a benchmark
dataset derived from TCGA illustrates how OMEN is able to robustly identify driver genes and modules of driver
genes as proxies of driver pathways.

Availability and implementation: The source code is freely available for download at www.github.com/
DriesVanDaele/OMEN. The dataset is archived at https://doi.org/10.5281/zenodo.6419097 and the code at https://doi.
org/10.5281/zenodo.6419764.

Contact: dries.vandaele@cs.kuleuven.be or kathleen.marchal@ugent.be

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Mining cohorts of cancer genomes (International Cancer Genome
Consortium et al., 2010; Weinstein et al., 2013) offers the potential to
identify genes and/or pathways driving carcinogenesis. Gene-centric
driver identification methods assess to what extent aberrant genes car-
rying somatic variants display properties of driver genes, such as the
extent to which genes are more frequently mutated than expected by
chance in a cohort, either throughout the gene (Dees et al., 2012;
Lawrence et al., 2013) or at specific functional or clustered sites
(Reimand and Bader, 2013; Tamborero et al., 2013; Van den Eynden
et al., 2015), or the extent to which genes are affected in a cohort by
aberrations with high functional impact (Gonzalez-Perez and Lopez-
Bigas, 2012; Gonzalez-Perez et al., 2013; Mularoni et al., 2016). By
relying on mutational recurrence, gene-centric methods are ideal to
identify drivers that are frequently mutated in a cohort (Abeshouse
et al., 2015; Bailey et al., 2018; Banerji et al., 2012; Ciriello et al.,
2013). However, since in cancer the same causal pathway can become
disturbed in many different ways, tumors of patients with the same

disease are likely to carry different, possibly rare mutations that hit
the same driver pathway. Current datasets are often underpowered to
identify, based on their individual gene-centric mutational profile such
rarely mutated genes as drivers. By searching for subgraphs enriched
in driver properties, network-based methods in contrast can dig in the
long tails of these rarely mutated genes (Dimitrakopoulos et al.,
2018). This network model is based on a prior interaction network in
which genes are typically represented using nodes and the interactions
between genes by edges.

When seeking for such subgraphs, a popular strategy involves
propagating a gene-centric signal over a network model where the
network model is based on a prior gene-gene interaction network.
This propagation allows prioritizing drivers [MUNDIS, NetICS
(Dimitrakopoulos et al., 2018)], find subgraphs enriched for gene
specific properties as proxies of driver pathways (HotNet2,
MUNDIS) or for sub-typing [NBS (Hofree et al., 2013), MUNDIS,
SRF (Le Van et al., 2016)].

Besides propagating gene-centric properties for prioritizing driv-
ers (Horn et al., 2018), network-based driver identification methods
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can also use properties of gene-sets. Methods that exploit such gene-
set properties search for connected subgraphs in the interaction net-
work that display a high score for the relevant gene set property. A
popular property is mutual exclusivity (Gao et al., 2017; Kim et al.,
2015; Pulido-Tamayo et al., 2016). Mutual exclusivity can arise be-
cause of positive epistatic effects where a single mutation in a driver
pathway often yields the complete fitness advantage associated with
a perturbation in that pathway and therefore additional mutations
in the same pathway become redundant (Yeang et al., 2008).
Alternatively, mutual exclusivity can be due to negative epistatic
effects where a mutation can only have a driving effect if it occurs in
the absence of another mutation (van de Haar et al., 2019). If genes
contain mutations that are mutually exclusive they have a higher
change of being true drivers. True driver mutations should therefore
exhibit a pattern of mutual exclusivity. The definition of mutual ex-
clusivity often relies on binary information: the presence or absence
of mutations in the cohort. To make the search for patterns of mu-
tual exclusivity tractable and to exclude false positives, most meth-
ods that search for patterns of mutual exclusivity filter mutations
up-front—based at least partly on the mutation frequency of the
genes (Babur et al., 2015; Ciriello et al., 2012)—and/or use scoring
functions that find a good trade-off between mutational frequency
and mutual exclusivity (Gao et al., 2017; Kim et al., 2015). Rarely
mutated genes often display mutual exclusivity with more frequently
mutated genes by chance because of the infrequent number of muta-
tions in a cohort. As a result, rare driver mutations are either not
considered in mutually exclusive gene sets, or deteriorate the predic-
tions of mutual exclusivity by introducing spurious genes to the set
(Pulido-Tamayo et al., 2016).

Hence, network-based driver identification methods that can
handle gene-set properties are ideally suited to exploit mutual exclu-
sivity, but are not suited to identify statistically significant rare
driver genes. Propagation-based methods in contrast allow for
recovering driver genes with low gene specific driver scores (rare
drivers). However, here spurious predictions can result from the
interplay between network topology and high scoring nodes (Horn
et al., 2018). The specificity of driver gene detection could be
improved by taking into account criteria that assess a gene set prop-
erty of the immediate neighborhood of a gene of interest (such as
mutual exclusivity) or an aggregate score of its gene set specific
properties in addition to propagated gene-centric properties. To our
knowledge, there does not yet exist a formalism that can combine
the advantages of both gene specific driver properties and properties
of gene sets to identify drivers.

Therefore, we propose OMEN: a flexible network-based driver
identification method that captures both gene-centric properties
such as the frequency with which a gene is mutated in a cohort as
well as properties derived from its local context (gene-set specific
properties, in case mutual exclusivity) over an interaction network.
Since gene-set properties are only meaningful when considered with
respect to a particular selection of genes, the influence of gene-set
specific properties has to be dynamically adjusted depending on the
exact network context within which a gene is analyzed. OMEN
manages this using a logic programming framework based on ran-
dom walk semantics. It does not explicitly enumerate all mutually
exclusive patterns, but rather like SSA-ME (Pulido-Tamayo et al.,
2016), prioritizes genes as drivers based on their probability of
belonging to a network neighborhood that displays mutual exclusiv-
ity. Not explicitly enumerating all mutually exclusive patterns
reduces computational complexity and avoids heavy prefiltering.

A gene is prioritized as a driver if it has a high probability of
belonging to a high-scoring subgraph of the interaction network,
where subgraph scores account for the average mutational frequency
of its genes across the cohort, the functional impact of the muta-
tions, and the extent to which the mutations in that gene set display
mutual exclusivity. Importantly, by reformulating mutual exclusiv-
ity in terms of functional impact scores of the contributing muta-
tions, OMEN prevents that rarely occurring mutations with low
functional impact (likely passengers) deteriorate the identified mu-
tual exclusive gene sets. Applying OMEN to a benchmark dataset
derived from TCGA illustrates how OMEN is able to robustly

identify driver genes and modules of driver genes as proxies of driver
pathways.

2 System and methods

2.1 Method overview
Genes that are frequently mutated in a cohort are more likely to be
drivers. However, rarely mutated genes also have an increased
chance of being true drivers when they are located in a subnetwork
of genes that on average is highly mutated in a cohort and displays
mutually exclusive mutations. OMEN is a network-based driver
identification method that takes this into account. It prioritizes
genes by accounting for both gene-centric and gene set properties
while also considering the context of these genes in the interaction
network.

Figure 1 shows a high-level overview of the method. OMEN
takes an interaction network as a scaffold to drive its analysis. It
starts by searching this network for a pattern. Here, the patterns of
interest are fixed-length paths (sets of three nodes connected on the
network). OMEN weights these paths by traversing the interaction
network using a random walk semantics informed by an objective
function. This objective function combines the mutational frequency
of the genes in the pattern with the degree to which the gene sets are
mutually exclusive. Mutual exclusivity is expressed in terms of the
functional impact score of the occurring mutations. The resulting
weighted patterns reflect the mutational burden and the mutual ex-
clusivity of their involved genes while also capturing their local net-
work context. The random walk semantics used to determine the
weights implicitly accounts for the network topology and is unique
among random walk approaches in its inclusion of a sink node. This
node allows OMEN to avoid giving high weights to sparsely con-
nected nodes that display a low driver potential.

The resulting pattern set is aggregated into a probabilistic net-
work where both the edges and nodes are weighted. These weights
reflect the contribution of each respective element in the aggregated
pattern. Node and edge probabilities in this aggregated network are
subsequently used to prioritize driver genes and infer modules of
mutually exclusive driver genes, referred to as driver pathways.

Driver pathways are driver genes connected with high probabil-
ity edges and for which the mutations show high intra-set mutual ex-
clusivity, and a lesser inter-set mutual exclusivity. An in-depth
description of the methodology can be found in Section 3.

2.2 Pan-cancer performance against benchmark
To test and assess our method with respect to state-of-the-art driver
identification methods, we used the evaluation framework from
(Tokheim et al., 2016) based on a comprehensive pan-cancer dataset
derived from TCGA. We adopted the performance and consistency
criteria based on the definition of a true positive driver mutation
and the concept of TopDrop consistency as described in the original
article. Using the same standardized assessment criteria and data
allowed us to compare our method to the driver identification meth-
ods already assessed by Tokheim et al. which included ActiveDriver
(Reimand and Bader, 2013), OncodriveFM (Gonzalez-Perez and

Fig. 1. High-level overview of OMEN. Inputs can be gene-specific properties and

gene-set properties such as mutual exclusivity. The genome-wide interaction net-

work acts as a scaffold to drive the analysis

2 D.Van Daele et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/advance-article/doi/10.1093/bioinform
atics/btac312/6585332 by G

hent U
niversity user on 03 June 2022



Lopez-Bigas, 2012), OncodriveFML (Mularoni et al., 2016),
OncodriveClust (Tamborero et al., 2013), MuSiC (Dees et al.,
2012), TUSON (Davoli et al., 2013), MutSigCV (Lawrence et al.,
2013) and 20/20þ (Tokheim et al., 2016). Since few of these meth-
ods rely on mutual exclusivity or network knowledge as a driving
force to prioritize cancer driver mutations, we complemented the as-
sessment of Tokheim et al. with Mutex (Babur et al., 2015), SSA-
ME (Pulido-Tamayo et al., 2016) and MEMo (Ciriello et al., 2012).

These methods are highly heterogeneous. They can be contrasted
in their approach to learning from data (supervised versus unsuper-
vised), in the type of information they use to prioritize drivers (using
only gene-centric properties such as mutational burden or functional
impact, exclusively using gene set properties such as mutual exclu-
sivity or a combination of both), and in whether or not they use an
interaction network to drive the analysis. In the latter case, we dis-
tinguish between methods that employ a pre-computed property of
the network as a feature in their analysis (static network methods)
and those that rely on a graph search to integrate gene-centric or
gene-set driver properties on an interaction network. These latter
methods are classified as network-based methods and rely on propa-
gation or pattern finding.

2.2.1 Precision–recall against cancer gene census

As a first measure of performance we assessed to what extent the
different methods could recover known driver mutations docu-
mented in the Cancer Gene Census. Results of this analysis are sum-
marized in the precision–recall plot shown in Figure 2.

We find that methods that employ more information generally
yield a better score. Methods that exclusively rely on one specific
data property such as gene-centric driver score or mutual exclusivity
perform lower in general, and when their results are used as input
for more integrative methods, either during data prefiltering or dir-
ectly as features in a predictive model the performance increases.
2020þ, TUSON, OMEN and MEMo stand out as performing par-
ticularly well.

Since OMEN combines both gene-centric and gene-set properties
on an interaction network, we contrast its performance with its con-
ceptually most related methods. These are SSA-ME and MEMo.
Where SSA-ME also combines gene-centric with gene-set properties,
MEMo indirectly accounts for mutational burden and functional
impact by prefiltering the genes with high driver potential based on
their gene-centric properties. OMEN outperforms both. Its perform-
ance in comparison to MEMo suggests merit in the combined ana-
lysis of network, gene-centric and gene-set specific properties as
opposed to relying on a sequential approach that prefilters before
identifying mutually exclusive subnetworks.

The moderate performance displayed by SSA-ME can be
explained by a significant bias toward hubs in its identification of
mutually exclusive subnetworks. Spurious genes are pulled in by
hubs such as TP53 and can receive very high rankings, causing poor
precision even at low recall.

The supervised methods 2020þ and TUSON clearly outperform
unsupervised methods, but as they rely on known drivers to train
their model they are biased toward existing driver knowledge and
the possibility of overfitting cannot be excluded as the benchmark
set is not completely independent from the training set.

Interestingly, when considering the top performing methods, it
seems that prior information in the form of connectedness on an
interaction network as used by OMEN and MEMo can compensate
for the lack of prior information in the form of a training set.
TUSON does not use any network properties whereas 2020þ relies
on precalculated network features but does not use connectivity on
an interaction network to drive the analysis.

2.2.2 Overlap in predicted driver genes

Figure 3 shows a pairwise comparison of the number of overlapping
genes across all investigated methods. Methods with significant con-
ceptual similarity such as OMEN, SSA-ME and MEMo have a sig-
nificant overlap in the identified driver genes. ActiveDriver and
MuSiC however, stand out for sharing few of their top-ranked genes
with other methods. This overlap is visualized in the Supplementary
Materials Illustration S21 and Supplementary Table S1.

2.2.3 Topdrop consistency

A robust method prioritizes the same genes, irrespective of which
fraction of the dataset it is applied to, provided each fraction con-
tains the same signal. Observing highly inconsistent outcomes serves
as a strong indicator that the prioritized drivers are spurious. This
robustness can be assessed using TopDrop consistency. Tokheim
et al. (2016) defines it as jA1:d \ B1:2d j=d, where d is the number of
ranked genes of interest, and A and B are lists of ranked genes
extracted from different splits of the dataset. This corresponds to
the percentage of top d ranked genes in A that are also in the top 2d
of B. Our TopDrop consistency results were assessed by running
each method on 10 random splits of the patient data, maintaining
the original tumor type distribution within each split. Figure 4
shows the TopDrop consistency as a function of the number of
selected genes d.

TopDrop consistency is expected to decrease as the number of
selected genes is increased. Genes with a low signal in the dataset
are expected to be ranked lower and their detection would be more
prone to the exact subset of data that was selected. For most meth-
ods this expected decrease in consistency was observed except for
Mutex, MEMo and ActiveDriver. This can be explained by the fact
that these methods only focus on prioritizing genes that have an ex-
tremely high driver potential (strict prefiltering based on functional
impact and/or mutational frequency) prior to the analysis. This pre-
filtering prevents finding rare mutations of which the detection is
more sensitive to the selected subset of the data. SSA-ME appears
very robust, with near-perfect consistency, but digging into results
showed that irrespective of the subset of data used, the same drivers

Fig. 2. Precision–recall plot of the top-80 ranked genes returned by OMEN and

competing driver prioritization algorithms, applied on the benchmark pan-cancer

dataset described in Tokheim et al. (2016)

Fig. 3. Heat map showing the number of overlapping genes within the 80 most like-

ly ranked driver genes on the benchmark pan-cancer dataset described in Tokheim

et al. (2016)
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were always prioritized, many of which were neighbors of hubs, the
principal one being TP53. This shows that despite its focus on mu-
tual exclusivity, SSA-ME does not compensate sufficiently for the
trade-off between exclusivity and mutational coverage and hence is
at risk of identifying spurious patterns of mutual exclusivity that in-
clude rarely mutated genes, especially if these are located in the
neighborhood of a hub such as TP53. For larger selections of genes,
MuSiC is the most consistent of the remaining methods with MEMo
and OMEN as runner-ups.

OMEN delivers highly consistent results competitive with
MEMo and 2020þ, and it also displays the expected decrease in
TopDrop consistency as the number of genes are increased.

2.3 Biological relevance of pan-cancer results
Only 6 of the top-40 genes prioritized by OMEN as shown in
Table 1 were not present in CGC. This suggests that OMEN has an
acceptable precision. Of those six novel predictions TAF1, TCF4,
CSNK2A1 and YWHAZ were also prioritized as top-ranked driver
candidates by other methods.

Since OMEN and SSA-ME are the only network-based methods
that focus on mutual exclusivity, the shared genes in their top 80
that are not prioritized by other methods might be characteristic of
these features. Of the 30 genes they share in their top 80, 8 do not
appear in the top 80 of the other methods: GATA2, GRB2, JUN,
MYC, MYH9, NEB, RAD21 and TAF1. Five of these are in CGC
tier 1: GATA2, JUN, MYC, MYH9 and RAD21.

An asset of OMEN is its ability to comprehensively summarize
the prioritized driver genes in mutually exclusive driver subnet-
works. Driver subnetworks are identified by searching the inter-
action network for connected sets of prioritized driver genes that
display stronger patterns of mutual exclusivity amongst each other
than with genes belonging to other subnetworks. The 80 top genes
prioritized by OMEN on the Tokheim pan-cancer dataset could be
subdivided in 10 different driver subnetworks (Supplementary Note
S2). Overall the modules recapitulate important cancer hallmarks:
DNA damage response and apoptosis, small GTPase mediated sig-
naling, Wnt/b-catenin pathway, oxidative stress, EGF signaling,
MAPK pathways and chromatin remodeling.

Genes can belong to the same mutually exclusive driver subnet-
work because they belong to the same signaling pathway and hence
a mutation in an additional component of the same signaling path-
way does not confer any addition fitness to the cancer cells (van de
Haar et al., 2019). This is probably the case of genes that belong to
the same protein complex (e.g. the Polycomb complex, SUZ12 and
EZH2 in Supplementary Illustration S2 and S12). However, it might
also be that the added value of a mutation in one gene depends on
the absence of another mutation. The mutual exclusivity between
mutations in KRAS and EEF1A1 could exemplify such a case
(Supplementary Illustrations S4 and S14). KRAS-Driven cancers are
dependent on METTL13-Mediated EEF1A Methylation. Hence in
tumor cells that carry a mutation in EF1A further acquisition of
KRAS mutations might not confer any additional benefit to the cell

(Liu et al., 2019). Lastly, Supplementary Illustration S1 and S11 il-
lustrate how genes giving rise to pleiotropic effects are mutually ex-
clusive. Aberrations in genes of this subnetwork all interfere with
epigenetic regulation and hence gene expression. Mutations in these
genes tend to be mutually exclusive, indicating that their net contri-
bution to driving cancer is similar and independent. Affecting mul-
tiple mechanisms to interfere with chromatin remodeling seems to
also not confer any benefit to the cells or is, given their pleiotropic
effects even detrimental. The fact that these genes of the same path-
way tend to be mutated in different cancer types further supports
their negative epistatic interaction (van de Haar et al., 2019).

3 Algorithm

3.1 Overview
OMEN performs three key steps: (i) collecting patterns, (ii) generat-
ing a probabilistic network from those patterns and (iii) prioritizing
driver genes and/or pathways.

During the pattern collection phase, OMEN explores an inter-
action network Gi ¼ ðVi;EiÞ where Vi are a set of genes, and Ei the
undirected interactions between pairs of genes. OMEN retrieves pat-
terns that satisfy a given pattern definition and provides each with a
score. The pattern definition in OMEN is expressed in a (logic) pro-
gramming language and specifies the criteria an individual pattern
should meet to be accepted. It also encodes the objective function
that scores each accepted pattern. Here, the patterns of interest are
paths through the interaction network that connect three consecu-
tive genes. The objective function assesses the average mutational
burden and mutual exclusivity of the genes in the pattern. Its
assigned score proves useful to identify parts of driver pathways.
The minimal score required for a pattern to be considered interesting
is determined through a permutation test. The patterns that meet the
threshold are considered valid, and are used in the construction of a
probabilistic network.

Figure 5 shows an overview of probabilistic network generation.
OMEN aggregates all valid patterns and uses them to construct a
probabilistic network. That is, a probabilistic variant of the inter-
action network. The probability of a node or edge in this aggregated
network is the sum of all the path weights in which the respective
node or edge occurs. Those probabilities capture the importance of
each node and edge in the network.

Once a probabilistic network has been generated, the availability
of node and edge probabilities puts the final goal of driver prioritiza-
tion and pathway identification within reach.

Section 3.2 describes the objective function, Section 3.3 describes
how OMEN generates a probabilistic network and Section 3.4 cov-
ers how the probabilistic network is used to prioritize driver genes
and retrieve mutually exclusive modules.

3.2 Objective function
The objective function assigns a score to a gene set G that quantifies
its driver potential. The score is a value in the [0,1] range and can
thus also be interpreted as a probability. It combines two contribu-
tions (i) the frequency with which a gene in G is mutated across the
cohort and (ii) the mutual exclusively of G. Each contribution is
modeled by a specific term, and the objective function f is their con-
vex combination:

f ðGÞ ¼ a �mut exðGÞ þ ð1� aÞ � gene freqðGÞ where 0 � a � 1

(1)

The trade-off between these terms is explicitly captured in the
parameter a. This offers the user control when searching for rele-
vant, mutually exclusive gene sets. A higher value for a results in a
higher weighting of the mutual exclusivity term. In our experiments
we employed a ¼ 0:8. We place an emphasis on the mutual exclusiv-
ity term, since it is a very rich term that integrates functional impact
data. In addition, a too strong focus on coverage would hamper our
search for rare driver genes. The terms of the objective function:

Fig. 4. TopDrop consistency in function of the number of prioritized genes consid-

ered for multiple driver gene/patterns of mutual exclusivity prioritization algorithms

applied to the pan-cancer dataset presented in Tokheim et al. (2016) and Dees et al.

(2012)
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mutual exclusivity and gene specific mutational burden are defined
as follows.

3.2.1 Mutual exclusivity term

mut exðGÞ ¼ 1

#PtsG
�
X

p2PtsG

X
g2G

mhðg; pÞ �
Y

h2G=g

ð1�mhðh; pÞÞ

where PtsG ¼ fpj9g 2 G;9p 2 Patients : mhðg;pÞ > 0g
(2)

The CADD probability mh captures the likelihood that muta-
tions associated with a particular gene and patient display a func-
tional impact. It is computed by first generating PHRED-like CADD
scores using the CADD algorithm (Kircher et al., 2014) and subse-
quently mapping these to the (0, 1)-range [Given a PHRED-like

CADD score x, we applied the function ð1þ e 15�x
2 Þ�1 , where 15 is

an inflation value, and 2 is a damping scalar]. If no CADD score is
associated with a particular gene and patient, it defaults to 0. The
mutual exclusivity score for a patient p and gene set G is the prob-
ability that exactly one gene in the gene set displays a functional im-
pact. The possible world semantics (Kimmig and De Raedt, 2017) is
used to compute the likelihood that the functionally impactful muta-
tions are mutually exclusive. Mutual exclusivity with respect to an
entire cohort is determined by taking the average.

A set of genes achieves a perfect mutual exclusivity score of 1
only when all the patients in the cohort who experience at least one
mutated gene within the given selection G have exactly one
gene mutated in that set with maximal deleteriousness. That is, a
CADD probability mh of 1. An example is shown in Supplementary
Table S2.

3.2.2 Gene specific mutational burden term

gene freqðGÞ ¼ 1

#G
�
X
g2G

maðgÞ (3)

Mutational recurrence across a cohort is an indication of positive se-
lection. Genes that are recurrently mutated and hence have a high
mutational burden tend to be likely drivers. This property is
expressed by the gene specific mutational burden term which gives a
higher score to gene sets consisting of recurrently mutated genes.

It is the average of the mutational burden of the genes in the gene
set. The mutational burden of a gene can be assessed by the fre-

quency with which the mutation occurs in the cohort or by a muta-
tional burden score derived from e.g. MutSigCV. In our study we
considered both approaches and found no notable differences. In

this study ma stands for the percentile rank of mutational frequency
mapped to the range [0,1]. Thus a gene having an ma of 0.8 implies

that 80% of the genes have fewer observed mutations.

3.3 Probabilistic network generation
In order to identify the driver pathways contained in the interaction
network, all possible subgraphs would ideally be scored by the ob-

jective function. Since this task is computationally infeasible, an ap-
proximation is made. First, the interaction network is traversed to
retrieve and score a limited set of paths. Next, these paths are aggre-

gated into a probabilistic network capturing the expected import-
ance a node or edge plays in a driver pathway. Finally, either gene

driver prioritization is performed by retrieving the highest-scoring
nodes, or driver pathways are identified by applying a constrained
graph clustering method.

3.3.1 Collecting and weighting patterns

OMEN first collects patterns. Here, these are fixed-length, cycle-
free paths over the interaction network. A path is a sequence of

nodes x such that ðxi;xiþ1Þ 2 Ei. Each path is required to have a
length of three nodes, providing a decent trade-off between compu-
tational load and biological relevance, since a path consisting of

three nodes is sufficient to allow the inclusion of linker genes, while
remaining short enough to be collected in reasonable time. In add-

ition, the pattern also requires that the objective function score of its
constituent genes exceeds a given threshold. This threshold is deter-
mined through a permutation test, where pattern collection without

a threshold is performed on data where patient-mutation associa-
tions have been permuted. Due to permuting the data, the patterns
are no longer expected to carry a signal. As such, the threshold on

the objective function is chosen to reject up to 95% of these pat-
terns. Here, this corresponds to an objective function score > 0.786.

Upon collecting a pattern, OMEN assigns it a weight. The
weight captures the quality of the pattern as well as its network con-

text. Naively imposing a uniform weight across all patterns, would
fail to do either, while choosing a weight proportional to the object-
ive function score of the pattern would not account for the network

context. Instead, OMEN uses a weighted random walk semantics
informed by the objective function f to define a distribution over all

possible fixed-length acyclic paths in the network. The weight of a
pattern then corresponds to its probability under this semantics. A
key component here is the transition probability Pt which specifies

the probability of transitioning from a given node xi to one of its
neighbors xj. Here nb is a function that given a node returns the set
of its neighbors: nbðaÞ ¼ fbjða;bÞ 2 Ei _ ðb; aÞ 2 Eig.

Fig. 5. The genes and interactions in the probabilistic network correspond to the set

of genes and interactions used by the input paths. Gene a has probability w1 þw2

since a occurs in two paths with respectively probability w1 and w2. The interaction

between gene a and c has probability w1 because it is only present in the path with

probability w1

Table 1. Top 40 genes prioritized by OMEN on the Tokheim pan-cancer dataset annotated with respective Cosmic CGC tier

Rank Gene CGC Rank Gene CGC Rank Gene CGC Rank Gene CGC

1 CTCF T1 11 CTNNB1 T1 21 YY1 No 31 PIK3CA T1

2 TP53 T1 12 SUZ12 T1 22 KRAS T1 32 CSNK2A1 No

3 EP300 T1 13 SMAD4 T1 23 GATA3 T1 33 FBXW7 T1

4 PIK3R1 T1 14 HSP90AB1 T1 24 TCF4 No 34 MYH9 T1

5 VHL T1 15 RAD21 T1 25 MAP3K1 T1 35 BRAF T1

6 EGFR T1 16 RB1 T1 26 AKT1 T1 36 ERBB2 T1

7 TAF1 No 17 STK11 T1 27 MTOR T1 37 LRP1 No

8 APC T1 18 SMAD2 T1 28 IDH1 T1 38 DDX3X T1

9 SMARCA4 T1 19 ATM T1 29 PTEN T1 39 SMAD3 T1

10 TCF12 T1 20 CDKN2A T1 30 KEAP1 T1 40 YWHAZ No
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Ptðx; i; jÞ ¼
f ðx1; . . . ; xi; xjÞP

k2nbðxiÞ f ðx1 ;...;xi ;kÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ðaÞ

� ð1�
Y

k2nbðxiÞ
ð1� f ðx1; . . . ; xi; kÞÞÞ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ðbÞ

(4)

Notably, this transition probability cannot be captured using
Markov chains, as it is dependent on the complete history of the
walk. ðx1; . . . ; xjÞ. Furthermore, the random walk semantics helps to
take into account the local network context. Term (a) in Equation
(4) captures the relative attractiveness of moving from xi to xj con-
trasted against all neighbors of xi. Finally, OMEN introduces a
probability sink. It is a single node that all nodes have some prob-
ability of transitioning into (see Fig. 6). The probability that a node
xi in pattern x transitions to a sink is:

Ptðx; i; sinkÞ ¼
Y

k2nbðxiÞ
ð1� f ðx1; . . . ;xi; kÞÞ (5)

It is because of this additional flow of probability that term (b)
was added to Equation (4). It discounts the other transition proba-
bilities, ensuring that all probabilities leaving any node add up to 1.
The purpose of this term is to compensate for a key pitfall when con-
sidering the probabilities of all unmodified (weighted) random
walks. Term (a) in Equation (4) is only sensitive to the local context.
When presented with e.g. a number of equally attractive alterna-
tives, it will return the same probability, regardless of whether those
alternatives have a high or low objective function score. Term (b) in
Equation (4) behaves as a noisy-OR construct. Its effect is that nodes
with less attractive neighbors will transition toward the sink node
with a higher probability than nodes whose neighbors hold more
promise, thus reducing the total amount of probability with which
such a node would be able to transition to one of its neighbors.
Consider for example how in Figure 6 node a can only distribute a
probability mass of 0.72 to its neighbors, while node b can distribute
0.97 as a direct result of the difference in aggregate objective func-
tion score between their neighbors.

Having defined Pt, we can now define the probability of a pat-
tern. Given x the pattern along the path ðx1; . . . ;xnÞ and m the car-
dinality of the set of genes in which mutations have been observed,
the probability of x is:

PðxÞ ¼
0 :9p : mhðx1; pÞ > 0;
1

m

Y
Ptðx; i; iþ 1Þ; 8i : ðxi;xiþ1Þ 2 Ei

� �
otherwise

8<
:

(6)

If no mutations were observed in the first gene in the path, the
probability of the pattern is 0. Otherwise, the probability is 1=m
(the uniform distribution over all genes for which at least 1 mutation
was recorded) multiplied by the product of all its transition
probabilities.

OMEN encodes this distribution as a stochastic logic program
(Cussens, 2013; Van Daele et al., 2015). Each gene is represented as
a single stochastic predicate, and each transition is represented as a
clause whose probability is computed dynamically as the pattern is
constructed.

The weighted random walk semantics mitigates the effect of
hubs in the network. Since a distribution is imposed over all the
neighbors of a node, the probability of a path transitioning out of a
hub node is likely to be relatively low. Thus a pattern that goes
through a hub is not likely to be explored because it is so improb-
able, and if it does get collected as a valid pattern, its weight is likely
to be low due to the effect of the low probability transition
out of the hub node. The effect of the sink node on the final prob-
ability of the pattern is also notable as it penalizes paths that visit
regions of the network that display limited potential.

Upon having collected and weighted these patterns, it is not yet
possible to straightforwardly apply them to prioritize driver genes
and identify relevant modules. These tasks are facilitated by aggre-
gating the patterns in a probabilistic network.

3.3.2 Deriving a probabilistic network through pattern

aggregation

P defines a deficient probability distribution over the set of collected
patterns xs. That is, a distribution that sums to N where N<1. It
fails to sum up to 1 due to the pattern definition rejecting paths that
end in a sink node. In addition, some legal paths are also rejected for
failing to meet the objective function threshold.

The set of patterns is used to construct the probabilistic network
Gn ¼ ðVn;EnÞ. Given that x is a pattern drawn from the set of
patterns xs and given that the 2-operator on x tests membership of
the nodes that are contained in x, we have Vn ¼ fvjx 2 xs; v 2 xg
and Vn ¼ fvjx 2 xs; v 2 xg, and each node v and edge (m, n)
has an associated probability pðvÞ ¼ 1

N

P
x2xs;v2x PðxÞ and

Pððm;nÞÞ ¼ 1
N

P
x2xs;m2x;n2p PðxÞ. Here, a proper probability distri-

bution is achieved by multiplying each probability with the normal-
izing constant 1=N. The node probabilities of the probabilistic
network then capture the relative importance of their associated
genes, while the edge probabilities also capture how frequently pairs
of genes share a pattern.

3.4 Gene ranking and driver pathway identification

using the probabilistic network
3.4.1 Ranking genes

The probabilistic network is used to prioritize driver genes and select
driver pathways. To prioritize drivers, nodes from the probabilistic
network are ranked according to their probabilities in the probabilis-
tic network. A higher probability being an indicator that the node is
of higher interest. The top ranked genes are the most likely drivers.

3.4.2 Identifying driver pathways

Driver pathways are non-overlapping groups of interacting genes
that display mutual exclusivity. Identifying the driver pathways
within the probabilistic network can be regarded as a constrained
graph clustering task, where each driver pathway corresponds to a
single cluster. In this setting, each gene in the probabilistic network
is assigned to a particular driver pathway while optimizing a given
clustering criterion.

Tran et al. (2021) presents a method for solving this problem.
Supplementary Note S1 covers details on its usage within OMEN.
Since the proposed algorithm does not automatically infer the
most appropriate number of clusters to extract, we qualitatively
analyzed the results for 6 to 12 clusters and found that 10 clusters
proved most suitable. The result of this clustering is shown in
Supplementary Note S2.

3.5 Materials
The genome-wide interaction network used consists of: high-
quality metabolic interactions from Recon X and literature cura-
ted interactions from Intact. Recon X and Intact data was
acquired from Pathway Commons version 8. These interactomics
data were combined into a genome-wide interaction network in
which the nodes represent genes/gene products and the edges rep-
resent possible physical interactions. Duplicate edges were

Fig. 6. A toy example of the transition probability Pt for the path (a, b, d) (indicated

with arrows) on an interaction network extended with a sink node
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discarded. The resulting network covers 7901 samples, and con-
tains 15.694 nodes and 178.051 edges.

Computing the probabilistic network used in this article took ap-
proximately 5 h using an Intel Xeon Processor E5-2698 v3 CPU and
264 GB RAM (2 GB RAM should be sufficient to replicate the ex-
periment performed in this article).

4 Discussion

Our method is conceptually innovating in two respects: First, the
use of random walk semantics informed by an objective function to
dynamically weight patterns. Transition probabilities depend on the
network topology and are informed by an objective function that
combines the gene-centric property mutational frequency, and the
gene-set derived property mutual exclusivity. In addition, unlike
existing propagation methods, our random walk semantics introdu-
ces sink nodes to prevent weakly connected nodes with low driver
potential from dominating the relevant patterns. Second, the object-
ive function employed by OMEN is unique in defining the mutual
exclusivity of a set of genes in terms of their mutations’ functional
impact scores, rather than in terms of binary mutation calls. As a re-
sult, OMEN does not require imposing a restrictive, a priori filtering
of genes based on the likely functional impact of their mutations,
nor does it involve a local search that only considers a restricted set
of genes or interactions. Our results show how OMEN is highly
competitive with existing methods on a benchmark dataset. The
framework is generic, allowing the objective function to be extended
to account for the average expression aberrations of the genes in a
gene set. Features that resist quantification using a probability are
more challenging to integrate and are the subject of possible future
work. This includes integrating copy number variation data despite
the difficulty in expressing their degree of deleteriousness relative to
point mutations. Our network-based method will also not be able to
identify mutual exclusivity between gene sets that are unconnected
on the graph and therefore might miss negative epistasis between
pathways that are completely disconnected or very distant from
each other on the graph (van de Haar et al., 2019). By having used a
pan cancer setting we obviously found the drivers and driver path-
ways common to all cancer types (cancer hall marks). To detect
more cancer-specific pathways and more rare mutations one could
additionally drill down on particular cancer types.
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