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Although still not fully understood, sleep is known to play an important role in learning

and in pruning synaptic connections. From the active inference perspective, this can

be cast as learning parameters of a generative model and Bayesian model reduction,

respectively. In this article, we show how to reduce dimensionality of the latent space

of such a generative model, and hence model complexity, in deep active inference

during training through a similar process. While deep active inference uses deep neural

networks for state space construction, an issue remains in that the dimensionality of the

latent space must be specified beforehand. We investigate two methods that are able to

prune the latent space of deep active inference models. The first approach functions

similar to sleep and performs model reduction post hoc. The second approach is a

novel method which is more similar to reflection, operates during training and displays

“aha” moments when the model is able to reduce latent space dimensionality. We

show for two well-known simulated environments that model performance is retained

in the first approach and only diminishes slightly in the second approach. We also

show that reconstructions from a real world example are indistinguishable before and

after reduction. We conclude that the most important difference constitutes a trade-off

between training time and model performance in terms of accuracy and the ability to

generalize, via minimization of model complexity.

Keywords: active inference, free energy, deep learning, model reduction, generative modeling

1. INTRODUCTION

While the role of sleep in animals still contains a lot of mystery (Mignot, 2008; Joiner, 2016),
it has been linked to many phenomena, such as restorative processes in the brain (Hobson,
2005) and memory processing (Born and Wilhelm, 2012; Potkin and Bunney, 2012; Stickgold and
Walker, 2013). In particular, sleep and learning appear to be deeply intertwined (Korman et al.,
2003; Tononi and Cirelli, 2006; Holz et al., 2012). Recent work has indicated that the removal of
redundant neural connections during sleep (Li et al., 2017) can be compared to minimization of
complexity through elimination of redundant parameters during Bayesian model reduction (BMR)
in Bayesian approaches to brain function (Hobson and Friston, 2012; Friston et al., 2017b, 2019).
Removal of redundant connections while strengthening others should promote learning (Li et al.,
2017).

Artificial agents used for learning specific tasks are often based on the formalism of Markov
decision processes (MDPs) (Watkins, 1989; Mnih et al., 2015; Hafner et al., 2019). In this
formalism, the complexity of the environment determines the complexity of the latent space
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(a.k.a. state space), as the number of dimensions grows rapidly
with the number of possible states the agent can find itself
in. A large state space increases computational costs and can
lead to overfitting (Sỳkora, 2008). It is possible to reduce the
state space through various methods, such as state clustering or
segmentation [e.g., Q-learning with adaptive state segmentation
(Murao and Kitamura, 1997)], state vector transformation
[e.g., basis iteration for reward based dimensionality reduction
(Sprague, 2007)] and state space reconstruction [e.g., action
respecting embedding (Bowling et al., 2005; Sỳkora, 2008)]. State
space reduction can improve generalization, as well as reduce
computational complexity and learning time.

In cases where the agent cannot fully observe the underlying
state of the world, the formalism is generalized into a partially
observable Markov decision process (POMDP) and decisions
cannot be made based on the current state, but must be made
based on the current belief about the state. For example, when
the agent’s observations consist of images, there are a number
of variables which are not exactly known, such as the agent’s
own velocity, the velocity of objects in the images, the existence
of objects outside the field of view of the camera, etc. The
agent can, however, infer some of these variables based on the
information in the images and, as a result, form beliefs about
these variables. Which variables are relevant depends strongly
on the task at hand. Therefore, it is inefficient to always attempt
to track every possible variable. A possible solution exists in
the form of feature learning to extract a smaller size feature
space, which can then be used as state space. While deep neural
networks have been shown to be rather good at encoding high-
dimensional (observation) spaces into low-dimensional (feature)
spaces (Hinton and Salakhutdinov, 2006), the issue remains that
the size of the low-dimensional space must be specified. This
space should be small enough to promote generalization and
reduce complexity, yet large enough to maintain model accuracy.

In this article, we focus on pruning the latent space in deep
active inference. Active inference is a theory of behavior and
learning that has been gaining attention in the last decade
(Friston et al., 2016; Kirchhoff et al., 2018; Millidge et al.,
2020; Sajid et al., 2021). The theory adopts the Bayesian
brain hypothesis and, as such, frames sleep as Bayesian model
reduction. Recently, methods have been developed through
which the latent space is learned by deep neural networks. These
methods are known as deep active inference (Ueltzhöffer, 2018;
Çatal et al., 2019) and have been shown to be able to solve
multiple environments (Çatal et al., 2020), i.e., the mountain car
problem, the OpenAI Gym car racing environment (Brockman
et al., 2016) and a robot navigation environment.

We present two methods for latent space pruning in the
deep active inference framework. First, we discuss the off-line
algorithm from our earlier work (Wauthier et al., 2020), which
acts on a model which has previously been trained. Second, we
present an on-line algorithm that prunes dimensions on-the-
fly during training on sequences of observations and actions.
We explore some of the properties of the latter and compare
both methods in terms of performance and show that both
methods are able to effectively prune dimensions in the latent
space. Furthermore, we show that the off-line method requires

a longer training time, but maintains performance, while the on-
line method requires a shorter training time, but leads to a slight
drop in performance.

This work is structured as follows. In Section 2, we provide
an overview of related work. In Section 3, we briefly summarize
(deep) active inference and describe our methods for pruning.
We proceed with a description of the environments used in
the experiments. In Section 4, we explain the experiments and
display the results, which we discuss in Section 5. In Section 6, we
conclude this work and examine future prospects.

2. RELATED WORK

The earliest use of the term “active inference”, as it is used
now, in relation to the free energy principle (Friston et al.,
2006) dates back to Friston et al. (2009). Since then, it has been
expanded upon in a number of ways and applied in a multitude
of scenarios. Beside continued work on behavior and learning
(Friston et al., 2015, 2016), active inference has been described
as a process theory (Friston et al., 2017a) and as a hierarchical
model (Friston et al., 2018). Furthermore, active inference has
been employed in hermeneutics (Friston and Frith, 2015), in a
theory of allostasis (Barrett et al., 2016), to augment traditional
reinforcement learning approaches (Tschantz et al., 2020), and
in humanoid robot control (Oliver et al., 2021). In particular,
our methods relate to developments in deep active inference
(Ueltzhöffer, 2018; Çatal et al., 2019, 2020), where the goal is
to step away from predefined state spaces by learning through
artificial neural networks.

Thus far, sleep has yet to be covered extensively in the
context of active inference. Hobson and Friston (2012) review the
purpose of sleep in terms of free energy minimization. Similarly,
the premise that the brain’s generative model is actively refined
during sleep is explored by Hobson et al. (2014). Friston et al.
(2017b) detail the parallels between Bayesian model reduction
and certainmechanisms associated with sleep or “Aha”moments.
Specifically, it refers to the removal of redundant connections
to minimize complexity. Further, sleep has been tied to concept
learning, where Bayesian model reduction merges different states
into one and reduces complexity (Smith et al., 2020).

In comparison, artificial neural network pruning has a
relatively long history. As a means to improve generalization
and reduce hardware and storage requirements, Le Cun et al.
(1989) suggested a method for removing unimportant weights
from a neural network using second derivatives. In response,
Hassibi and Stork (1992) proposed a method using the inverse
Hessian matrix from training data and structural information
of the neural network. In recent years, with the popularity of
deep neural networks, the discussion has been reopened. Various
techniques have been developed to compress large models and
reduce the number of parameters. Gong et al. (2014) examine
information theoretical vector quantization methods. Han et al.
(2016) introduced a 3-step method involving pruning, trained
quantization and Huffman coding. Other notable contributions
include “soft weight-sharing” (Ullrich et al., 2017), variational
dropout (Molchanov et al., 2017), L0-norm-based methods
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(Louizos et al., 2018; Li and Ji, 2020), and Dirichlet pruning
(Adamczewski and Park, 2021).

Many dimensionality reduction techniques exist for the
purpose of transforming a high-dimensional space into a
low-dimensional space. Traditional dimensionality reduction
techniques include singular value decomposition (SVD) and the
related method principal component analysis (PCA) (Pearson,
1901), linear discriminant analysis (LDA) (Cohen et al., 2003),
non-negative matrix factorization (NMF) (Lawton and Sylvestre,
1971), etc. In this article, we also investigated SVD as state
dimensionality reduction technique after training. The downside
is that this requires retraining afterwards. A well-known neural
network-based method is that of the autoencoder (Kramer,
1991), which inspired the more recent variational autoencoder
(VAE) (Kingma and Welling, 2014). However, also in this case
the dimensionality of the latent bottleneck is a hyperparameter
that needs to be tuned by the experimenter. Model reduction
methods related to Markov decision processes can be classified
into three different approaches. Clustering and segmentation
approaches attempt to partition the state space into a finite
number of partitions, examples include Q-learning with adaptive
state segmentation (QLASS) (Murao and Kitamura, 1997) and
extended ǫ-reduction for hierarchical reinforcement learning
(Asadi and Huber, 2004). In our case, observations can contain
continuous features, which would require an infinite number of
states. State vector transformation approaches project a high-
dimensional space onto a low-dimensional space, such as basis
iteration for reward based dimensionality reduction (Sprague,
2007), locally linear embedding (LLE) (Roweis and Saul, 2000)
and dimensionality reduction by learning an invariant mapping
(DrLIM) (Hadsell et al., 2006). Apart from DrLIM, these
methods require recomputation of the embedding for each
unknown datapoint, and rely on predetermined computable
distance metrics. DrLIM, on the other hand, requires training a
neural network. State space reconstruction methods build a low-
dimensional representation of the data, e.g., multidimensional
scaling (Borg and Groenen, 2005) and action respecting
embedding (ARE) (Bowling et al., 2005). Multidimensional
scaling, like PCA and SVD, generates linear embeddings. ARE
is not able to embed unknown datapoints. A similar approach to
the off-line sleep method performs reduction on the state space
in deep Q-networks through PCA (Ge and Ouyang, 2018).

3. METHODS

3.1. Active Inference
Consider an agent, natural or artificial, inhabiting an
environment, e.g., a living room or a warehouse. Such an
agent interacts with its environment in two ways: it can observe
the state of the environment and it can perform actions within
the environment. For example, a mouse can use its eyes to see
where it is and use its mouth to eat cheese, or a roomba can see
the shape of the room using its sensors and clean up dirt using its
brushes. However, due to limitations on the sensors of the agent,
such as noise and range limits, an agent can never know the
exact state of the environment, e.g., the mouse cannot see what
is going on outside of its field of view and the roomba cannot

know the shape of the room if its view is blocked by a large piece
of furniture. Therefore, it must always make decisions based on
incomplete information. This concept is formalized as a partially
observable Markov decision process (POMDP).

Active inference postulates that a natural agent maintains an
internal model of the world (Friston et al., 2016). That is, an agent
holds beliefs about the world. Mathematically, this is represented
by a generative model P(õ, s̃,π) over possible observations o,
states s, and policies π ,

P(õ, s̃,π) = P(s0)P(π)

T∏

t=1

P(ot|st)P(st|st−1,π), (1)

where the tilde notation indicates a variable sequence over time,
i.e., x̃ = (x1, x2, x3, . . . , xT) and policies are sequences of actions
at = π(t). This generative model is continually updated to
include evidence from new observations.

Active inference adheres to the free energy principle in
that action selection occurs on the basis of variational free
energy (Friston et al., 2016). In other words, an agent selects
its actions in such a way that the actions minimize a free
energy functional

F = EQ(s,π)[logQ(s,π)− log P(õ, s̃,π)] (2)

= DKL(Q(s,π) ‖ P(s,π))︸ ︷︷ ︸
complexity

−EQ(s,π)[log P(õ|s̃,π)]︸ ︷︷ ︸
accuracy

, (3)

where Q denotes the approximate posterior which emerges in
variational Bayesian methods and DKL denotes the Kullback-
Leibler (KL) divergence. Minimizing this functional corresponds
to minimizing the complexity of accurate explanations.
Particularly, it constitutes a trade-off between model complexity
and accuracy.

Crucially, an agent will also aim to minimize its free energy in
the future, and hence select policies that it believes will yield a low
free energy. This leads to the notion of expected free energy over
a certain policy

G(π) =
∑

τ

G(π , τ ) (4)

G(π , τ ) = EQ(oτ ,sτ |π)[logQ(sτ |π)− log P(oτ , sτ |π)] (5)

= DKL(Q(sτ |π) ‖ P(sτ ))︸ ︷︷ ︸
expected cost

+EQ(sτ |π)[H(log P(oτ |sτ )]︸ ︷︷ ︸
expected ambiguity

,

(6)

where we have used that Q(oτ , sτ |π) ≈ P(oτ |sτ )Q(sτ |π).
Expected free energy again decomposes into two terms: expected
cost and expected ambiguity. Expected cost is the divergence
between predicted state distribution and the preferred state
distribution P(sτ ), i.e., the states the agent wants to be in.
Expected ambiguity is the accuracy expected under predicted
outcomes. Thismeans that an agent will select policies that realize
preferred outcomes and resolve ambiguity.
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3.2. Deep Active Inference
Belief state spaces in active inference are typically constructed
manually, and/or taken to be identical to the state space of the
generative process of the modeled environment when known
to the experimenter (Da Costa et al., 2020). In other words,
every aspect of the state space is specified by hand. However,
handcrafting a state space is typically only feasible for low-
dimensional problems. The task becomes more difficult for high-
dimensional problems, e.g., in the case of high-dimensional
sensor input such as RGB images, and problems where the
dynamics are difficult to model by hand. For that reason, recent
work has focused on learning state space representations using
artificial neural networks.

In this work, we adopt the model as implemented by Çatal
et al. (2020). With this framework, the generative model in
Equation (1) is slightly reformulated. The policy π is broken up
into actions at , so that

P(õ, s̃, ã) = P(s0)P(ã)

T∏

t=1

P(ot|st)P(st|st−1, at−1). (7)

Deep neural networks are used to parameterize the approximate
posterior qθ (st|st−1, at−1, ot), prior pφ(st|st−1, at−1) and
likelihood pψ (ot|st), where we have introduced the parameters
θ , φ and ψ . In combination with Equation (2), minimization of
free energy is realized using the loss function

Lt(θ ,φ,ψ) = DKL(qθ (st|st−1, at−1, ot) ‖ pφ(st|st−1, at−1))

− log pψ (ot|st), (8)

which corresponds to the free energy of time step t. Here, the
expectation from Equation (2) is carried out throughminibatches
as in Kingma and Welling (2014) and can therefore be dropped
from Equation (8). In practice, the free energy is averaged out

over all time steps, L = 1
T

∑T
t=1 Lt , before adjusting the weights

of the neural networks. Importantly, approximate posterior,
prior, and likelihood distributions are modeled as multivariate
normal distributions. The information flow in the network is
visualized in Figure 1.

This architecture makes it possible to engage in planning as
shown by Çatal et al. (2020). In brief, this requires generating
imaginary rollouts using the learned prior model. Trajectories
are then scored using expected free energy (as in Equation 4).
In practice, planning occurs through iterative Monte Carlo
sampling. For each policy π , J state trajectories of K time steps
are sampled using the prior model. The expected free energy for
each policy is, then, estimated using (Friston et al., 2021).

Ĝt(π) =

t+K∑

τ=t+1

DKL

(
N(µ̂sτ , σ̂sτ ) ‖ P(sτ )

)
+

1

ρ
H

(
N(µ̂oτ , σ̂oτ )

)

+
∑

π ′

σ
(
−γ Ĝt+K

(
π ′

))
Ĝt+K

(
π ′

)
, (9)

where µ̂sτ and σ 2
ŝτ
are the batch mean and variance of the state

samples ŝτ , µ̂oτ and σ
2
ôτ

are the batch mean and variance of the

corresponding observation samples ôτ ∼ pψ ( · |̂sτ ), σ is a
softmax function, and ρ is a hyperparameter which allows tuning
the precision of prior preferences over states in the future. The
last term effectively implements a deep tree search over policies,
where each path is effectively an accumulation of expected free
energy over actions. This construction has the same format as a
Bellman recursion, but, in this instance, it is recursion of expected
free energy functionals of (Bayesian) beliefs about latent states
and policies as opposed to value functions of states and policies.

Despite the parameterization of the posterior and prior, the
issue remains that the size of the latent space must be specified.
The size of the latent space is an important hyperparameter, since
it can have critical consequences regarding model performance
and resource usage. The free energy functional (Equation 2)
emphasizes the importance of the accuracy-complexity trade-
off in active inference. While the latent space dimensionality
should be large enough to encode all the relevant information
for the task at hand contained in the observations and actions,
it should also be small enough to have low memory usage
and promote generalization. This is especially important during
planning, since this step is done in latent space and requires
drawing multiple samples and evaluating multiple paths. The
dimensionality is, therefore, a trade-off, and identifying the
critical value is not trivial and often depends on the application
at hand. Due to this, there is no one-size-fits-all value for the size
of the latent space, and a sensible value must be found through
different means. In practice, this often implies trial and error
or a parameter sweep; both of which are suboptimal, since they
require a lot of resources and unnecessary training loops. In the
following sections, we describe two methods to resolve the issue.

3.3. Off-Line Sleep
A method that is able to prune the latent space is the sleep
algorithm proposed by Wauthier et al. (2020). It allows the
agent to initialize the model with a large number of latent
space dimensions and, subsequently, sleep until the model
can no longer reduce. The approach resembles biological
sleep in the sense that it minimizes model complexity post
hoc and in the absence of observations. Additionally, in the
active inference framework, it can be compared with BMR,
which provides an analytic approach to removing redundant
model parameters or latent space dimensions. However, in the
current implementation, the model must be retrained after each
“reduction”. Importantly, this is an off-line method, as the
reduction happens when the model is not training.

The off-line sleep method is based on singular value
decomposition (SVD). Geometrically, singular values in SVD can
be understood as the lengths of the semi-axes of the ellipsoid
containing the data. The idea is that small singular values
correspond to small semi-axes and, therefore, can be pruned,
as these dimensions are not informative. Algorithm 1 sketches
the workings of the method. We start by selecting a large initial
number of latent space dimensions ν. This number will be
reduced through the ensuing iteration. We train the model with
ν latent space dimensions for E epochs using a data set consisting
of sequences of actions and observations. After training, we
generateNν sequences of latent vectors from the model using the
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FIGURE 1 | Information flow between neural networks in the deep active inference framework. The posterior network takes the current observation ot, previous state

st−1 and previous action at−1, and returns a multivariate normal posterior distribution from which the current state is sampled. The prior takes the previous state st−1

and previous action at−1, and returns a multivariate normal prior distribution. The likelihood takes the current state st and returns a reconstructed observation ôt. The

process is recurrent and is repeated until the end of the sequence. States st−1 and st are shaded to reflect the fact that the dimensionality of the latent space is a

hyperparameter and may vary.

data set. From each sequence, we sample a vector to populate a
square matrix Ai, i.e., each row is a latent space vector, in such
a way that we obtain N square matrices. We perform SVD on
each Ai and find the number of singular values that are larger
than the threshold value α. Then, we compute a new latent
space dimensionality by averaging the number of remaining
singular values over the N matrices and round off to the closest
integer value. Next, we retrain the model with the new latent

Algorithm 1: Off-line sleep on sequences of actions and
observations.

input : Data set D =
{
(o1, a1), . . . , (od, ad)

}

Number of repetitions N
Threshold α

output: A pruned model

1 select initial latent space dimensionality ν
2 repeat

3 train model with ν latent space dimensions for E epochs
4 generate Nν sequences of latent vectors from model
5 populate N square matrices Ai by sampling one state

vector from each sequence
6 perform SVD on all Ai and apply threshold α to singular

values
7 ν ← rounded average of remaining number of singular

values
8 until ν no longer decreases

space dimensionality and repeat the process until the number of
dimensions can no longer be reduced.

Note thatAlgorithm 1 does not need to be executed in a single
run.When training amodel for a certain application, it is possible
to pause after having trained the model a first time (line 3) and to
continue whenever the application experiences downtime. This
allows the model to be used from the start and be optimized in
subsequent sleep runs.

Crucially, SVD does not allow one to know which dimensions
can be pruned at each iteration. The method only indicates how
many dimensions are informative. Geometrically, in general, the
semi-axes of the earlier-mentioned ellipsoid are rotated with
respect to the basis vectors of the latent space. As a result,
singular values do not correspond to specific dimensions of the
latent space and it is not possible to distinguish individual latent
dimensions to prune. For this reason, retraining is a necessity.
To alleviate this drawback, we now present an on-line method,
which optimizes the number of latent dimensions as part of the
training process.

3.4. On-Line Sleep
In response to the problem that the model must be retrained
in off-line sleep, we present an on-line method for latent space
pruning. In this method, weights are pruned on-the-fly during
training. This type ofmodel reduction is very similar to reflection,
where the agent is allowed to reflect on its understanding of
the observations during training. This results in “aha” moments:
in a sense, moments where the agent realizes the world can be
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explained more simply. As we will show, this can be seen as
sudden jumps in latent space dimensionality.

In brief, in order to reduce the number of states, we gate
each state dimension with a gate parameter that follows a
Bernoulli distribution. During optimization, we try to close
as many of these gates as possible through L0 regularization.
By co-optimizing the Bernoulli parameters in this manner, the
model can learn how many states are required to solve a given
task. At first glance, this poses two issues: first, the Bernoulli
parameters make the gradient intractable and, second, without
some way of limiting the reduction, the model will simply try
to reduce the dimensionality to zero. The first issue can be
resolved by making use of the Augment-REINFORCE-Merge
(ARM) gradient estimator (Yin and Zhou, 2019). The second
issue can be resolved through generalized ELBO with constraint
optimization (GECO) (Rezende and Viola, 2018), as shown by
De Boom et al. (2021). GECO introduces a Lagrange multiplier
λ on the accuracy and a threshold hyperparameter τ on accuracy
which controls λ. The accuracy term in the loss function (second
term in Equation 8) will receive more weight during optimization
as long as the desired level of accuracy has not been reached. Once
the threshold has been reached, more weight will be given to the
complexity term. In other words, the model must reach a certain
level of accuracy before it can reduce its complexity.

One of the key features of working in the active inference
framework is that data sets consist of sequences of actions
and observations. This has a number of consequences for the
implementation of the on-line sleep algorithm. For instance,
whereas in a variational autoencoder (VAE) (Kingma and
Welling, 2014) as demonstrated by De Boom et al. (2021), the
gates are sampled with each forward pass through the posterior
network, in deep active inference, the gates remain unchanged
with each pass through the posterior as long as they relate to the
same sequence. In other words, the gates are sampled once at the
beginning of the sequence and are kept constant throughout the
rest of the sequence.

Furthermore, without accounting for sequence length, loss
values would increase with the length of the sequence. Therefore,
it is necessary to average over sequence length in both the
reconstruction error and KL divergence to compare sequences
of different length. A direct result is that the interpretation of
the threshold τ changes slightly, as it is now a threshold on the
time-averaged reconstruction error.

Finally, note that the prior in a VAE is a simple multivariate
standard normal, while in deep active inference, the prior is
parameterized. Consequently, the posterior is no longer “pulled”
toward a standard normal, and the KL divergence must be
computed between the posterior and prior networks.

To summarize, the loss function at time step t becomes

Lt(θ ,φ,ψ) =
1∑
i zi

DKL(qθ (st ⊙ z|st−1 ⊙ z, at−1, ot)

‖ pφ(st ⊙ z|st−1 ⊙ z, at−1))

− λ
(
− log pψ (ot|st ⊙ z)− τ

)
, (10)

where the gates z = 1[u<S(ζ )] with u ∼
∏n

i=1 U[0,1] are
sampled once per sequence, S(ζi) correspond to the Bernoulli

Algorithm 2: On-line sleep on sequences of actions and
observations.

input : Data set D =
{
(o1, a1), . . . , (od, ad)

}

output: A pruned model

1 initialize model with 95% of gates open
2 repeat

3 optimize loss function without regularization term
4 until threshold τ reached
5 repeat

6 compute ARM gradient for gate parameters
(Equation 12)

7 optimize loss function with regularization term
(Equation 11)

8 until trained for a total of E epochs

parameters, λ is the Lagrange multiplier and τ is the accuracy
threshold. Further, ⊙ denotes the Hadamard product and
S(x) = (1+ exp(−kx))−1 is the sigmoid function with parameter
k, where we set k = 7 as in Li and Ji (2020). We, once again,
average over the sequence length and add the L0 regularization
term, to obtain the loss function

L =
1

T

T∑

t=1

Lt +

n∑

i=1

S(ζi). (11)

Note that, similar to De Boom et al. (2021), we average the KL
term over the number of open gates to ensure that having more
states does not lead to a higher KL term, as this would lead to
an additional influence on the dimensionality. Subsequently, the
gradient for the gate parameters ζi becomes

∇ζARM L =
λ

T

T∑

t=1

(
− log pψ (ot|st ⊙ z̄)+ log pψ (ot|st ⊙ z)

)

(
u−

1

2

)
+

n∑

i=1

∇ζi S(ζi), (12)

where z̄ = 1[u>S(ζ )].
Algorithm 2 sketches the workings of the on-line sleep

method. As a result of gating and GECO, pruning of latent
dimensions occurs within a single training loop and does not
require multiple training loops. Initially, the model starts out
with 95% of its gates open. It is then trained using Equation (11)
without regularization term until the reconstruction error
(accuracy) reaches the threshold value τ . Once the threshold has
been reached, gates can be opened and closed. Practically, this
means that, at this point, we start computing the gradient in
Equation (12) and add the regularization term in Equation (11).
Training thereupon continues until the model has trained a total
of E epochs.
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4. RESULTS

4.1. Environments
The methods presented in this article are evaluated using a
number of different environments. The environments were
selected to include a varying degree of difficulty. These include:
the mountain car environment (Figure 2A), the car racing
environment (Figure 2B) and a robot navigation environment
in the lab on a turtlebot (Figure 2C). Here, the mountain car
provides simple 1D observations, while the other environments
provide pixel-based observations. Furthermore, while the
mountain car and car racing environments are simulations, the
robot navigation environment is real-life.

4.1.1. Mountain Car
The mountain car environment is a classic, simple 1D
environment. It consists of an underpowered car that starts in
a valley and must drive up a steep mountain. Importantly, the
car cannot drive up the mountain in one go and must build up
momentum to reach the top of the mountain. The only actions it
has, are accelerate left or right, or do nothing.

The original OpenAI gym environment (Brockman et al.,
2016) returns observations with the position and velocity of the
car. In our experiments, we employed a modified version in
which only the position can be observed and noise is added to
the observations, turning the problem into a POMDP. Due to the
simplicity of the environment, we expect to only need 2 latent
space dimensions to solve the problem, i.e., position and velocity.
This allows for efficient evaluation of the proposed algorithms,
since the expected dimensionality is already known.

The data set is generated before training using a random
agent and consists of 100 sequences of length 200. When passing
the data to the model during training, we randomly extract a
subsequence of 100 consecutive steps out of each sequence. That
way themodel learns the dynamics of the environment. Similarly,
the test data set was generated using a random agent and consists
of 32 sequences of length 200.

4.1.2. Car Racing
The car racing environment (Brockman et al., 2016) consists of
a top-down view of a race car on a racetrack. The goal is for the
race car to remain on the racetrack. In our implementation, the
car can accelerate and turn right or left. The environment returns
observations as 96×96 pixel images. In other words, observations
are high-dimensional and the dynamics are more complicated
than in the mountain car environment. In this case, the optimal
number of latent dimensions cannot be known in advance.

In this case, the data set consists of 7 prerecorded sequences
of differing lengths: 568, 723, 482, 521, 669, 647, and 676. When
passing the data to the model during training, we randomly
extract a subsequence of 15 consecutive steps out of each
sequence. The test data set consists of a prerecorded sequence
of length 635.

4.1.3. Robot Navigation
Beside the previous environments, experiments were done on the
mobile robot data set provided by Çatal et al. (2021). The data set
consists of camera, lidar, and radar recordings of the industrial

IoT lab at UGent. For our purposes, we only require the camera
recordings which contain sequences of 240 × 320 pixel images.
Again, this is a high-dimensional environment with complicated
dynamics and the optimal number of latent dimensions is not
known beforehand. Moreover, the data originate from the real
world, albeit a controlled environment, and are not obtained
from simulation.

4.2. Mountain Car
By virtue of the simplicity of the mountain car environment, we
use this environment to inspect whether our methods are able
to converge to the optimal dimensionality, i.e., 2 dimensions.
Effective reduction, for both off-line and on-line sleep, depends
on the chosen threshold, α and τ , respectively.

Artificial neural networks are instantiated as in Çatal et al.
(2020). That is, prior, posterior and likelihood networks consist
of fully connected neural networks with two hidden layers which
each contain 20 neurons. Importantly, the size of the output
layer of the prior and posterior networks equals the size of the
latent space, and is therefore selected by the model reduction
algorithm. This also applies to the input layer of the likelihood
network. Baseline and off-line sleep runs are trained with a
batch size of 64 sequences of length 100 using the loss function
in Equation (8) with an additional factor 2 on the complexity
term and an additional regularization term with weight 0.001
comprised of the KL divergence between the posterior and a
standard normal distribution. On-line sleep runs are trained
with a batch size of 32 sequences of length 100 using the loss
function in Equation (11). All minimization occurs through the
Adam optimizer with learning rate 0.001. Additional details are
described in Çatal et al. (2020).

As mentioned in Section 4.1.1, the environment can be solved
using two latent dimensions i.e., position and velocity. As a
result, we expect to find a lower free energy when the model
has more than one latent dimensions, since a latent space with
only one dimension can only encode the position, but never
the velocity, while a latent space with more than one dimension
can encode position, velocity and (possibly) noise on the
observations. Figure 3A shows the free energy during training
for the mountain car environment for different latent space
dimensionalities. The figure shows that, after 60,000 training
iterations, the free energy for models with one latent dimension
is indeed significantly higher than for models with more than
one dimension. Note that the free energy for models with more
than one latent dimension does not decrease significantly when
increasing the number of dimensions. Small differences in free
energy are likely due to differences in how noise is encoded. If the
noise characteristics are better encoded, this can lead to a slightly
lower free energy.

Figure 4 shows singular values from off-line sleep after
training on the mountain car environment. The figure also
shows that performing off-line sleep with threshold α = 0.25
results in a reduction from 16 dimensions to 2 dimensions
through 16→ 4→ 3→ 2.

Figure 3B shows the number of dimensions obtained for the
mountain car environment for different values of the threshold
τ when the initial number of dimensions is 8. It also shows
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FIGURE 2 | (A) In the mountain car environment a car can throttle left and right and needs to reach the hill top. (B) The carracer environment provides top-down pixel

observations to race a car over a circuit. (C) The robot navigation scenario contains first person camera images and velocity control actions for a turtlebot driving

around in a lab environment.

FIGURE 3 | (A) Free energy during training on the mountain car environment for different latent space sizes (LOESS smoothed, span 0.02). (B) Number of dimensions

obtained with on-line sleep on the mountain car environment for different thresholds with initial number of dimensions 32.

how final dimensionality depends on the threshold. This makes
sense, when the threshold is set too low, the model will attempt
to obtain a very high accuracy by modeling noise, increasing
the dimensionality. When the threshold is set too high, not
enough information will be encoded in the latent space and the
dimensionality will continue to reduce. Note that for τ = −50,
the algorithm continues to attempt to reduce the dimensionality
to 0, but since this would lead to a very low accuracy, the
dimensionality shoots back up to 1.

4.3. Car Racing
Since the car racing environment provides high-dimensional
observations, it is a useful environment to assess the model’s
performance.We assess the evolution of themodel’s performance
both during and after training.

Again, neural networks are instantiated as in Çatal et al.
(2020). The posterior network consists of a fully connected neural
network, where feature vectors are extracted from observations
by convolutional layers and concatenated to action and state
vectors. Consequently, the likelihood network consists of a
deconvolutional neural network. Contrary to the architecture

for the car racing environment in Çatal et al. (2020), the
prior consists of an LSTM with 128 features to allow for more
temporal depth in the prior transition model. As in the case
with the mountain car, the size of the output layer of the
prior and posterior networks and the size of the input layer
of the likelihood network equal the size of the latent space.
More details on the network and architecture can be found in
Supplementary Material.

To assess model performance, the preferred state is defined by
taking an observation in which the car is located in the middle
of the track and translating it to state space (see Figure 5). In
practice, the environment is always initialized with the car in
the middle of the road, therefore, the first frame can be taken as
preferred observation. Performance is then evaluated through an
active inference agent with this preferred state and ρ = 0.0001.

Additional details on neural network architecture and model
performance assessment are described in Çatal et al. (2020).

4.3.1. Off-Line Sleep
Figure 6 shows the free energy during training for the car
racing environment. To make sure the latent space retains all
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FIGURE 4 | Boxplots of singular values after off-line sleep on the mountain car environment for different dimensionality. The red line indicates a threshold α = 0.25.

These figures show that sleeping with the chosen threshold would result in the reduction: 16→ 4→ 3→ 2.

FIGURE 5 | Reconstruction of preferred state used for car racing environment

evaluations.

information after pruning, it is important that the free energy
remain minimal. Note that the free energy does not decrease
for latent space dimensionality larger than 5. That is, adding
dimensions, when the dimensionality is larger than or equal to 5,
does not reduce the free energy. Inversely, removing dimensions,
when the dimensionality is less than or equal to 5, increases
the free energy. This suggests that the optimal latent space
dimensionality is 5, since this is the smallest value for which the
free energy remains minimal. As a result, this is the critical value
which the algorithm should attempt to achieve.

Figure 7 demonstrates the workings of the off-line sleep
algorithm. After training for 2,400 epochs, the model performs
SVD in an attempt to reduce the dimensionality. If the
dimensionality can be reduced, the excessive dimensions are

FIGURE 6 | Free energy during training on the car racing environment for

baselines runs with different latent space sizes (LOESS smoothed, span 0.02).

pruned and the model retrains with a reduced number of
dimensions, otherwise training stops.

4.3.2. On-Line Sleep
Since the regularization term consists of the sum of the Bernoulli
parameters of each gate, this term also indicates how many gates
are expected to remain open. Therefore, we use this number to
indicate the latent space dimensionality in the on-line sleep case.

Since initialization is important in the convergence of neural
networks, it is important to assess the impact of different
initial values on the final dimensionality. Two hyperparameters
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FIGURE 7 | Free energy during training over an off-line sleep process with α = 0.1 for the car racing environment (LOESS smoothed, span 0.02). This run required 9

cycles of off-line sleep and converged to 7 dimensions, where the model was trained for 2,400 epochs each cycle.

FIGURE 8 | Number of dimensions obtained with on-line sleep on the car racing environment (A) for different initial number of states with threshold τ = 800 over

4,800 epochs and (B) for different thresholds with initial number of dimensions 32 over 2,400 epochs.

are crucial here: initial dimensionality and threshold value τ .
Firstly, we investigate the effect of initial dimensionality on
final dimensionality when τ is fixed. Figure 8A shows the
number of dimensions obtained for the car racing environment
for different initial dimensionalities when the threshold is
fixed to 800. The figure shows that after 4,800 epochs the
number of gates that remain open is 5 for most runs when
τ = 800. This suggests that final dimensionality is largely
independent of initial dimensionality. The chosen threshold
was based on the reconstruction error obtained after training
the model without pruning. For this, we determined at which
point the reconstructions became good for the human eye.

It is likely that the reconstructions are good enough to
evaluate policies before they become good for the human eye.
However, the chosen threshold works well for our intents
and purposes.

Secondly, we investigate the effect of the threshold value τ on
final dimensionality. Figure 8B shows the number of dimensions
obtained for the car racing environment for different values of
the threshold τ when the initial number of dimensions is 32.
This figure shows the dependency of the number of dimensions
on the reconstruction threshold. A lower threshold leads to
a higher dimensionality and vice-versa. Furthermore, Figure 9
illustrates how the reconstructed observations change depending
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FIGURE 9 | Reconstructed observations from the car racing environment after on-line sleep (32 initial dimensions, 2,400 epochs) with varying threshold τ (from top to

bottom: ground truth, 750, 850, 950, 1,050, 1,150).

FIGURE 10 | Evolution of (A) number of states and (B) median reward obtained (over 20 rollouts) over number of epochs for baseline, off-line sleep (α = 0.1), and

on-line sleep (τ = 800) runs with 64 states initial latent space dimensions. Error bars show 25 and 75% quantiles. For off-line sleep, each step of the reward curve

shows the median reward obtained at the end of the training run for the corresponding dimensionality, i.e., after training for 2,400 epochs at the corresponding

dimensionality.

on threshold τ . A higher threshold tends to lead to a slightly
blurrier image and less accurate image features.

To evaluate how the model performs, we used the reward
obtained from the car racing environment. This reward increases
with 1, 000/R with every new track tile visited, where R is the
total number of track tiles, and decreases by 0.1 per frame. If
the car exits the playing field, it loses 1, 000 reward per frame
instead. If the reward drops below 0, we consider the rollout as

failed and set the reward to 0. We used a rollout length of 300
time steps. Figure 10A compares the evolution of the number
of latent space states during baseline runs, off-line sleep with
α = 0.1 and on-line sleep with τ = 800 for 64 initial latent space
dimensions. Both off-line and on-line sleep are able to effectively
reduce the dimensionality of the latent space. However, on-
line sleep manages to reduce the latent space to 5 dimensions
over 4,800 epochs, while off-line sleep requires 21,600 epochs
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FIGURE 11 | Number of dimensions obtained with on-line sleep on the robot

navigation environment with threshold τ = 12, 000. After 600 epochs,

reduction stopped at 15 dimensions.

to reduce to 7 dimensions. Furthermore, Figure 10B compares
the evolution of the reward during the same runs. Importantly,
for off-line sleep, each step of the reward curve shows the
average reward obtained at the end of the training run for the
corresponding dimensionality, i.e., after training for 2,400 epochs
at the corresponding dimensionality. The performance of the off-
line sleep run remains in range of the baseline run. This makes
sense, as off-line sleep can simply be seen as a concatenation of
baseline runs with decreasing dimensionalities. In comparison,
the performance of the on-line sleep run diminishes slightly
during training. The lower performance can be attributed to the
fact that the model needs to adapt to less dimensions each time
the dimensionality reduces.

4.4. Robot Navigation
To score performance in this real-world application, we compare
the reconstructed observations from full (baseline) and reduced
models as a proxy for model evidence (c.f., classification accuracy
based upon posterior predictive densities).

The architecture is similar to the one used for the car
racing environment. Details on the layers can be found in the
Supplementary Material. Again, the size of the output layer of
the prior and posterior networks and the size of the input layer of
the likelihood network equal the size of the latent space. Models
are trained with a batch size of 8 sequences of length 10. Loss
function minimization occurs through the Adam optimizer with
learning rate 0.0001.

Figure 11 shows the number of dimensions obtained with
on-line sleep on the robot navigation environment with τ =
12, 000 and an initial dimensionality of 128. Over 600 epochs,
the number of dimensions reduces to 15. Again, the threshold
was based on the reconstruction error obtained after training
the model without pruning. We determined at which point the
reconstructions became good for the human eye.

Reconstructed observations are shown in Figure 12. Here,
the top row shows ground truth observations, the second row
shows reconstructions for a model trained with 128 latent space
dimensions (which reaches a reconstruction error of 9, 460),
and the third row shows reconstructions for the model trained
with on-line sleep (at τ = 12, 000) displayed in Figure 11.
No significant differences are visible, suggesting that while
on-line sleep is able to reduce the number of latent space
dimensions, it does not significantly reduce the quality of the
reconstructions. In other words, on-line sleep enables us to
obtain a quality of reconstructions similar to baseline using fewer
latent space dimensions.

5. DISCUSSION

The results show that both methods are able to effectively prune
dimensions in the latent space of a deep active inference model.
However, there is an important trade-off. While the off-line sleep
method requires multiple training runs to converge, on-line sleep
only requires a single training run. On the other hand, while the
performance can reduce slightly during on-line sleep, each off-
line sleep cycle trains for a specific latent space dimensionality
and therefore maintains performance.

Performance evaluations show that there is indeed a slight
decline in performance when using on-line sleep compared
to baseline training runs. This decline can be attributed
to the small number of epochs that the model trains for
a certain dimensionality. While baseline runs have 2,400
epochs to optimize for a given dimensionality, on-line sleep
runs continually reduce dimensionality and, therefore, must
continually adjust to the dimensionality. This could potentially
be resolved by, once again, training without regularization
and without updating the gate parameters after the model has
finished training.

Results from on-line sleep show that the final dimensionality
is robust with respect to initial dimensionality settings of the
algorithm. Any sufficiently large initial state space dimensionality
will lead to the same final dimensionality, given that the model
has trained long enough. This result makes sense, since the
initial dimensionality does not determine which or how much
information should be encoded in the latent space. Instead,
it simply provides the model with a larger initial latent space
in which to encode information. Excess dimensions are then
pruned by the algorithm. Conversely, final dimensionality does
depend on the chosen threshold value. Indeed, the reconstruction
threshold determines how much detail from the observations
should be retained. A low threshold ensures more detail is
retained, which in turn leads to more dimensions, and vice-versa.
Based on these results, a possible course of action would be to first
train amodel without sleep and a sufficiently large dimensionality
in order to find a good reconstruction threshold, and finally,
train a model with on-line sleep using the previously obtained
threshold and a sufficiently large dimensionality.

Moreover, in this work, themeasure for adapting the Lagrange
multiplier is the level of accuracy or reconstruction error. It
may be possible to use other measures. For example, in the
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FIGURE 12 | Reconstructed observations on the robot navigation environment. The top row contains ground truth observations, the second row contains

reconstructions for a model trained with 128 latent space dimensions (achieving a reconstruction error of 9, 460), and the third row shows reconstructions for a model

trained with on-line sleep with τ = 12, 000 (see Figure 11).

case of the car racing environment, a more sensible approach
to threshold selection could be to adapt the threshold based on
the performance of the model, in such a way that the model will
only reduce if the performance can be maintained. That is, as
long as the performance does not reach the same level as before
reduction, it should not reduce further. This is a research route
that will be explored in future work.

The number of epochs is also important for the final
dimensionality, because the dimensionality depends on the
number of epochs. One could inquire until what point models
should be trained. In the end, the purpose of on-line sleep is
to be able to learn a task and prune dimensions simultaneously
so as not to require spending (much) more time finding an
optimal latent space dimensionality through parameters sweeps
or off-line sleep. Observing that final dimensionality is largely
independent of initial dimensionality, it may be good practice to
spend around the same number of epochs as a baseline run would
require to converge.

Additionally, it is important to discuss the role that the data
(and the environment) play. In any type of learning, the data are
an integral part of the final result. For example, in deep learning
applications, overrepresentation of a certain aspect of the data
can lead to biases in the model. In our case, the data have an
effect on the final dimensionality. For the car racing example,
final dimensionality may depend on the complexity of the
observations given to the model. Observations that contain more
complex tracks could lead to more dimensions being necessary.

Off-line sleep can be compared to more traditional
dimensionality reduction techniques, e.g., principal component
analysis (PCA), non-negative matrix factorization (NMF), etc.,
in the sense that it reduces the state space post hoc by evaluating

linear combinations and correlations between dimensions.
Unfortunately, this method can only be applied after the model
has been trained, which can cause the reduction process to take a
considerable amount of time, since the model must be retrained.
On-line sleep, instead, is able to perform model reduction while
the model is training. This removes the need to retrain.

Reduction methods for MDPs mentioned in the literature are
typically designed to maintain the structure of the state space
after reduction. However, since our methods learn the state space
through neural networks, it is not necessary to maintain this
structure. Indeed, in the case of off-line sleep, a simple SVD
suffices, since the model must retrain after reduction. In fact,
any method that removes dimensions from the state space, i.e.,
prunes connections in the neural network, requires that the
network be retrained (or further trained), which defeats the
purpose of maintaining structure. In addition, since the structure
of the state space changes during training, most methods cannot
be used during training and must be applied post hoc. In the
case of on-line sleep, the model is trained during reduction,
which means it adjusts itself to the number of remaining
dimensions on-the-fly.

Crucially, the main increase in difficulty in the environments
throughout this work consists of the complexity of the
observations. The complexity increased from 1-dimensional
observations for the mountain car to high-dimensional rendered
images for car racing, and high-dimensional real world images
for the robot. In addition to complexity in observation space,
one could consider increasingly complex tasks that need to be
executed, i.e., increasing action spaces. In this case, an optimal
dimensionality and structure of the state (and action) space could
have an effect on the agent performance, for example in the
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context of hierarchical reinforcement learning (Asadi and Huber,
2004). However, this comparison will be further explored in
future work.

Finally, in this work, we investigate the latent space size
in relation to active inference. However, deep active inference
introduces neural networks, where the size of each layermust also
be specified. In the future, we will work on applying the gating
mechanism to layers in the neural network.

Although not pursued in this work, the use of Bayesian model
reduction also finesses the problem of sharp minima in neural
networks by automatically minimizing model complexity. This is
a subtle issue in the sense that most approaches to eluding local
minima involve adding extra parameters to destroy fixed points
on (e.g., variational free) energy landscapes. However, having
escaped local minima, it is then necessary to prune the network
to ensure generalization.

5.1. Bayesian Model Reduction
Bayesian model reduction is a relatively new procedure that
can be regarded as a special case of Bayesian model selection;
namely, selecting the model with the greatest marginal likelihood
or model evidence. The particular benefit of BMR is that the
evidence for a reduced model can be evaluated analytically, given
the evidence and posteriors of a parent or full model. This means
that models can be scored in terms of their evidence quickly
and efficiently, without any need for retraining, having learned
the full model. This efficient form of model selection rests on
casting reduced models as models in which certain parameters
(i.e., connections) are removed using precise shrinkage priors. It
can be regarded as a generalization of the Savage-Dickie ratio for
automatic model selection (c.f., automatic relevance detection).
Commonly used equations for BMR can be found in Friston
et al. (2019) for a variety of distributions over model parameters
(ranging from Gaussian densities to Dirichlet distributions).

To leverage the efficiency of BMR, it is necessary to have a
posterior over the model parameters that need pruning. This
presents a slight problem for deep active inference, because
we have replaced the parameters of a generative model with
neural networks with learnable weights that are treated as point
estimators, with no uncertainty. In vanilla treatments of active
inference, the approximate posterior covers latent states, policies
and parameters. Conversely, in deep active inference we only
have posteriors over the latent states and policies. To finesse this
problem, we have equipped the parameters with switching or
gating variables that play the role of sufficient statistics of a simple
posterior over model parameters (i.e., the connection weights).

We can now conjecture that the reduced variational free
energy of the implicit posterior over model parameters, under
different reduced models, can be approximated with the GECO;
namely, a generalized ELBO with constraint optimization. If this
conjecture is true, it suggests that the online sleep procedure
described above is, the Bayes optimal way to prune networks. As
with all BMR procedures, there remains the delicate issue of how
much data to acquire (i.e., the duration of the training periods),
before running BMR. This is usually dictated by the trade-off
mentioned above, in terms of the speed of optimization, relative
to the amount of time it takes. An upper limit on the amount of

training or data is clearly provided by the times over which the
model (i.e., generative process) does not change. Heuristically, a
lower limit depends on howmuch evidence is required to commit
to a simpler model.

6. CONCLUSION

In this article, we have examined and compared two methods
that are able to reduce the latent space in deep active inference
models: an off-line method that reduces a trained model post
hoc and reapplied multiple times, and an on-line method which
applies a gate to each dimension in the latent space and can prune
dimensions on-the-fly during training.

Experiments on the mountain car environment showed that
both methods were able to achieve the optimal number of
dimensions depending on the chosen threshold. Results from the
car racing environment showed that the off-line method was able
to retain performance, but used approximately five times more
epochs to converge, while the on-line method showed slightly
lower performance. Finally, the robot navigation environment
showed that even in real-world settings on-line sleep was able to
reduce dimensionality.

6.1. Future Work
Aside from the ideas already discussed in section 5, we would
like to explore one more point of interest: model expansion.
This work showed that it is possible to reduce latent space
dimensionality. A question that arises is what happens when
the agent obtains entirely new observations. One would expect
the state space to expand, since it must accommodate for new
information. Future work will call attention to this topic.
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