
Learning Robotic Cloth Manipulation

Andreas Verleysen

Doctoral dissertation submitted to obtain the academic degree of
Doctor of Computer Science Engineering

Prof. Francis wyffels, PhD - Prof. Joni Dambre, PhD

Department of Electronics and Information Systems
Faculty of Engineering and Architecture, Ghent University

Supervisors

May 2022

Dankwoord

Dit boek is meer dan de som van gepubliceerde hoofdstukken in
wetenschappelijke tijdschriften. Het is de accumulatie van hard
werk en volharding, dat nietmogelijk is zonder de ondersteuning
van vele anderen. Ik ben een geluksvogel. Een bijzondere groep
personen rond mij schrijft mee aan dit verhaal. Ik wens dan
ook iedereen die betrokken was bij mijn onderzoek, zowel op
professioneel als op persoonlijk vlak, van harte te bedanken. In
het bijzonder zij die hier niet bij naam genoemd zijn.

Mijn eerste dankbetuiging gaat uit naar mijn hoofdpromotor
professor Francis wyffels. Francis, jouw technische bijdragen
aan dit doctoraat zijn vanzelfsprekend. Ik ben je in het
bijzonder dankbaar voor jouw toewijding. Je investeert in
iedere doctoraatstudent een stukje van jezelf. Jouw hulp gaat
veel verder dan wekelijkse feedbackmomenten. Je ging mee
op pad om kandidaat‐kledijvouwers te ronselen, bent 24/7
bereikbaar, helpt mee de grote lijnen en kleine onderzoekdetails
uit te pluizen, biedt oneindig veel kansen en waakt over ons
mentaal welzijn. Jouw bezieling straalt af op ons hele team en
maakt van het onderzoekslabo een aangename werkomgeving.
Voor die werksfeer dien ik ook mijn twee andere AIRO‐hoofden
te bedanken: mijn copromotor professor Joni Dambre en
professor Tony Belpaeme. Mijn waardering gaat ook uit naar
alle betrokken juryleden om dit proefschrift kritisch en met
volle aandacht onder handen te nemen. Uiteraard kan dit
alles niet gerealiseerd worden zonder de nodige financiële en
administratieve steun. Hiervoor ben ik dank verschuldigd aan

iii

de Vlaamse overheid en aan de administratieve ondersteuning
van onze vakgroep en de UGent.

De achtste verdieping in iGent, de AIRO onderzoeksgroep, is al
vijf jaar mijn tweede thuis. Er leeft een dynamische en intel‐
lectueel uitdagende sfeer, die te danken is aan de alumni en aan
de huidige collega’s: Lio, Dries, Alexander, Gabriel, Jonas, Ira,
Jeroen, Fréderic, Luthffi, Tom, Olivier, Matthijs, Victor, Thomas,
Remko, Dries, Matthias, Mathieu, Maxime, Pieter, Rembert, Nat‐
acha, Peter, Zimcke, Axel, Benedikt, Bjarne, Jeanne, Maria, Qiao‐
qiao, Ruben, Stefan en Tanguy.

Tom, zonder jou had mijn eerste jaar in het robotlabo een
eenzaam bestaan geweest. Olivier, jouw gekke LATEX tovenarij
bespaarde me vele uren tijdens het schrijven van dit doctoraat.
Onze gezellige babbels waren een welgekomen afwisseling.
Matthijs, jouw implementatiehulp en denkwerk waren
onmisbaar voor enkele spannende resultaten in dit boek.
Victor, het is steeds een uitdaging om onze brainstorms tot een
uur te beperken. Thomas, Remko en Dries, ik kijk al uit naar
jullie verwezenlijkingen.

De technische en wetenschappelijke hulp van mijn collega’s was
bijzonderwaardevol, net zoals demorele ondersteuning vanmijn
vrienden. Wieland, Jeroen, Thomas, Tim en Rik, we kennen
elkaar al sinds de kleuterklas. Bedankt voor jullie vriendschap.
Jaarlijks een week gamen in de Ardennen als detox is iets wat
ik aan weinig mensen uitgelegd krijg. Maura en Tom, ik kijk
iederemaandopnieuwuit naar onze kookpartijen enboardgame‐
avonden. Sam, jij bracht me in 2013 in contact met de groep
waarin ik nu dit doctoraat afrond. Bedankt. De band: Jeroen,
Lieven, Renaat, maar toch ook nog een beetje Laurens. We zijn
gekend onder drie namen (momenteel als Anna Lies, zoek ons op
Spotify!), maar we zijn toch al dertien jaar dezelfde individuen en
samen vormen jullie mijn grootste muzikale uitlaatklep.

Ik wil verder ook mijn ouders, mijn zus Anastasia en mijn broer
David bedanken voor het warme nest waarin ik opgroeide.
Mama en papa, bedankt voor alle onvoorwaardelijke steun. Ik
kon zorgeloos studeren en mezelf ontwikkelen tot de persoon
die ik nu ben. Het is niet vanzelfsprekend, maar ik heb het toch

iv

altijd zo mogen ervaren. Qliff en Storm, jullie zijn de liefste en
meest knuffelbare collega’s tijdens het vele thuiswerken door de
COVID‐19‐pandemie.

Tot slot, Stefanie, jij staat al zoveel jaar naast mijn zijde. Je
was erbij toen we van de middelbare schoolbanken kwamen,
we hebben samen gestudeerd, begonnen op hetzelfde moment
te werken en je steunde me voluit toen ik de stap naar de
academische wereld maakte. En je bent er nog steeds. Je geeft
me een reden om ’s avonds het computerscherm uit te zetten en
naar buiten te gaan in onze tuin, samen te koken, onze honden
te knuffelen en de wereld rond te reizen. Je maakt van ons huis
een thuis. Bedankt voor alles.

Andreas Verleysen, May 25, 2022

v

Summary

Endowing robots with dexterous manipulation skills could spur
economic welfare, create leisure time in society, reduce harmful
manual labour, and provide care for an ageing population. How‐
ever, while robots are producing our cars, we are still left to our
own devices for doing the laundry at home. This shortcoming
is due to the major difficulties in perceiving and handling the
variability the real world presents. Robots in modern manu‐
facturing require engineers to produce a safe and predictable
environment: objects arrive at the same location, in the same
orientation, and the robot is preprogrammed to perform a spe‐
cific manipulation. Unfortunately, the need for a predictable en‐
vironment is undesirable in dynamic environments that handle
a wide range of objects, often in the presence of human activity.
For example, should a humanworker first unfold all clothes such
that a robot can easily find the corner points andperform folding?
Indeed, the high variability in modern production environments
and households requires robots to handle objects that can take
arbitrary shapes, weights, and configurations. This diversity ren‐
ders traditional robotic control algorithms and grippers unsuit‐
able for deployment in dynamic environments.

To find methods that can handle the ever‐changing nature of
human environments, we study the perception and manipula‐
tion of objects that provide an infinite amount of variations: de‐
formable objects. A deformable object changes shape on force
interaction. Deformable objects are omnipresent in industry and
society: food, paper, clothes, fruit, cables and sutures, among

vii

others. In particular, we study the task of automating the folding
of clothes. Folding clothes is a common household task that will
potentially be performed by service robots in the future. Han‐
dling cloth is also relevant in manufacturing, where technical
textile is processed, and in the fashion industry.

Dealing with the deformable nature of textiles requires funda‐
mental improvements in both hardware and software. Mechani‐
cal engineering needs to incorporate actuators, links, joints and
sensors into the limited space of a handwhile using softmaterials
similar to the human skin. In addition to engineeringmore capa‐
ble hands, control algorithms need to loosen assumptions about
the environment in which robots operate. It is unattainable to
expect highly deformable objects like cloth to always be in the
same configuration before manipulating them with a robot.

A solution for dealing with real‐world variability can be found
in the machine learning field. In particular, deep RL combines
the function approximation capabilities of deep neural networks
with the learn by trial‐and‐error formalism provided by RL. Deep
RL has shown to be capable of driving cars, flying helicopters and
manipulating rigid objects. However, the data requirements for
training highly parameterized functions, like neural networks,
are considerable. This data‐hungry property causes an incon‐
gruity between the representational learning features of deep
neural networks and the high cost of generating real robotic tri‐
als.

Our research focuses on reducing the required learning data for sys-
tems that perceive and manipulate clothing items. We implement a
cloth simulationmethod to generate synthetic data, utilize smart
textiles for state estimation of cloth, crowdsource a dataset of
people folding clothing, and propose a method to estimate how
well people are folding clothing without providing labels.

Actuating a physical robot is slow, expensive and potentially dan‐
gerous. For this reason, roboticists resort to physics simulators
that simulate the robot’s and environment’s dynamics. However,
there exists no integrated robot and cloth simulator for use in learning
experiments. Cloth simulators are built for offline render farms

viii

in the film industry, or for the game industry that sacrifices fi‐
delity for real‐time rendering. Unfortunately, cloth simulation
for robotic learning requires performance characteristics similar
to online rendering and accuracy aspects found in offline ren‐
dering. For this reason, we implement a custom cloth dynamics
simulation onGPUand integrate it in the robotic simulation func‐
tionality of the Unity game engine. We found that we can utilize
deep RL to train an agent in our simulation to fold a rectangular
piece of cloth twice within 24 hours of wall time on standard
computational hardware.

The developed cloth simulation assumes full accessibility to the
state of the cloth. However, state estimation of cloth in the real
world relies on complex vision-based pipelines or high-cost sensing
technology. We avoid this complexity and cost by integrating in‐
expensive tactile sensing technology into a cloth. The cloth be‐
comes an active smart cloth by training a classifier that uses the
tactile sensing data to estimate its state. Weuse this smart cloth to
train a low‐cost robotic platform to fold the cloth using RL. Our
results demonstrate that it is possible to develop a smart cloth
with off‐the‐shelf components and use it effectively for training
on a real robotic platform.

Our smart cloth bridges the gap between our cloth simulation on
GPU and state estimation in the real world. However, it is still re‐
quired to distil a scalar value that indicates task progress in order
to acquire manipulation skills using RL. We believe that learning
the reward function from demonstrationsmay overcome human
bias in reward engineering. Unfortunately, when starting our
research there existed no large dataset with people folding clothing.
We fill this gap by crowdsourcing a dataset of people folding
clothes. Our dataset consists of roughly 300.000multiperspective
RGB‐D frames, annotated with pose trajectories, quality labels
and timestamps indicating substeps. This dataset can be used to
benchmark research in action recognitionandbootstrap learning
by using example demonstrations.

Learning from demonstrations is a prevalent domain in the
robotics learning community. However, using our cloth folding
dataset requires mapping the movements of demonstrators to
the embodiment of a robot. Additionally, behavioural cloning is

ix

prone to blindly imitating trajectories instead of understanding
how actions relate to solving the task. For this reason, estimating
how well a process is being executed is preferred to learning
the policy from demonstrations. Unfortunately, existing
methods couple the learning of rewards with policy learning,
thereby inheriting all problems associated with RL. To decouple
reward and policy learning, we propose a method to learn
the task progression from multiperspective videos of example
demonstrations. We avoid incorporating human bias in the
labelling process by using time as a self‐supervised signal for
learning. We demonstrate the first results on expressing task
progression of people folding clothing, without labelling any
data.

General‐purpose robots are not yet among us. Robots that are ca‐
pable of working in dynamic environments will require a holistic
view of software and hardware. We demonstrated the benefits of
this approach by outsourcing the intelligence for state estimation
to the cloth instead of the robot. By developing a smart cloth, we
trained a robot to fold cloth in‐vivo within a day. Extrapolating an
integrated approach on hardware and software leads to embodied
intelligence in whichmorphology closes the loopwith control: co‐
optimizing the body and brain will allow evolving manipulators
tailored to the tasks, and use them to build a representation of
how theworldworks. Robots canuse that feedback to understand
how actions influence the environment and learn to solve tasks
by using human examples, instrumented objects and their own
experiences. This holistic process will enable future robots to
understand human intent and solve a large repertoire of manip‐
ulation tasks.

x

Samenvatting

Robots met gelijkaardige manipulatievaardigheden als de mens
zullen inde toekomst economischewelvaart bevorderen, tijd vrij‐
maken in de samenleving, gevaarlijke handenarbeid overnemen
en zorg voorzien aan een vergrijzende bevolking. Terwijl robots
onze auto’s produceren, zijn we helaas nog steeds op onszelf aan‐
gewezen om thuis de was te doen. Deze tekortkoming is te wijten
aan demoeilijkheden die we ondervinden bij het omgaanmet de
variabiliteit die te vinden is in de echtewereld. Robots die aanwe‐
zig zijn inmoderne productievestigingen vereisen van ingenieurs
dat zij een veilige en voorspelbare omgeving voorzien. Een ro‐
bot wordt namelijk geprogrammeerd om specifieke bewegingen
uit te voeren. Daardoor wordt er verwacht dat objecten steeds
op dezelfde locatie en op dezelfde manier aangeleverd worden.
Helaas is het inrichten van een voorspelbare en gestructureerde
omgeving ongewenst in dynamische omgevingenwaar een breed
scala aan objecten wordt verwerkt, vaak in de aanwezigheid van
menselijke activiteit. Bijvoorbeeld, moet een menselijke arbei‐
der in een textielbedrijf eerst alle kleren ontvouwen, zodat een
robot gemakkelijk de hoekpunten kan vinden en de kledij kan
vouwen? De grote variabiliteit inmoderne productieomgevingen
en huishoudens vereist immers dat robots voorwerpen verwer‐
ken die willekeurige vormen, gewichten en configuraties kun‐
nen aannemen. Deze diversiteit maakt traditionele robotbestu‐
ringsalgoritmen en robotgrijpers onbruikbaar om in te zetten in
dynamische omgevingen.

Om methodes te ontwikkelen die kunnen omgaan met de hoog
veranderlijke aard van menselijke omgevingen, bestuderen we

xi

de perceptie en manipulatie van objecten die een oneindige
hoeveelheid variaties bieden: vervormbare objecten. Een
vervormbaar object of voorwerp verandert van vorm als er
een kracht wordt uitgeoefend. Vervormbare objecten zijn
alomtegenwoordig in de industrie en de maatschappij: onder
andere voedsel, papier, kledij, fruit, kabels en hechtingen.
We bestuderen de taak van het automatiseren van het vouwen
van kledij. Het vouwen van kledij is een veelvoorkomende
huishoudelijke taak die in de toekomst mogelijk door
dienstrobots kan worden uitgevoerd. Het manipuleren van
kledij is ook relevant in de productie‐industrie, waar technisch
textiel wordt verwerkt, en in de mode‐industrie.

Het omgaanmet de vervormbare aard van textiel vereist vooruit‐
gang in zowel hardware als software. Op mechanisch vlak moe‐
ten actuatoren, scharnieren, sensoren en andere onderdelen in‐
gebouwd worden in de beperkte ruimte van een hand. Daarbij
dienen ze zachte materialen te gebruiken die gelijkaardige ei‐
genschappen delen met de menselijke huid. Naast de ontwik‐
keling van meer capabele handen moeten de besturingsalgorit‐
men minder assumpties maken over de omgeving waarin robots
werken. Het is bijvoorbeeld onrealistisch om te verwachten dat
sterk vervormbare voorwerpen zoals textiel zich altijd in dezelfde
toestand bevinden om ze door een robot te latenmanipuleren.

Omgaanmet de variabiliteit in de echte wereld kan gebeuren aan
de hand van machinaal leren. Meer concreet is er diep verster‐
kingsgebaseerd leren (RL) dat de functiebenaderingsmogelijkhe‐
den van diepe neurale netwerken combineert met het trial‐and‐
error formalisme van RL. RL wordt reeds gebruikt om auto’s te
besturen, met helikopters te vliegen en niet vervormbare voor‐
werpen te manipuleren. Helaas hebben neurale netwerken heel
veel data nodig om patronen te leren herkennen. Deze hoe‐
veelheid aan data is vaak te kostelijk om met een echte robot te
genereren.

xii

Het onderzoek in dit boek behandelt het reduceren van de dataset
benodigdheden om systemen te trainen die kledij kunnen herkennen
en manipuleren. We implementeren een kledijsimulatie om syn‐
thetische data te genereren, bouwen een slim textiel dat kan ver‐
tellen of het al dan niet gevouwen is, verzamelen een dataset van
mensen die kledij plooien, en stellen een systeem voor dat auto‐
noom leert te vertellen hoe goed mensen kledij aan het vouwen
zijn.

Een robot aansturen is duur, traag en mogelijks gevaarlijk. Ro‐
botici gebruiken daardoor simulatieomgevingen die het gedrag
van de robot en de omgeving simuleren. Er bestaat echter geen
robot simulator die compatibel is met bestaande kledijsimulaties. Tex‐
tielsimulatie wordt gebruikt in de filmindustrie, waar offline be‐
rekeningen worden uitgevoerd op velemachines. Er bestaan ook
textielsimulaties in videospellen. Deze zijn echter van lage kwali‐
teit opdat ze real‐time kunnen uitgerekend worden. Vanwege het
ontbreken van een geschikte kledijsimulatie, schrijven we onze
eigen kledijsimulator en integreren we deze in een bestaande ro‐
botsimulator. Onze experimenten tonen aan dat we onze simula‐
tor kunnen gebruiken om een robot kledij te leren vouwen, en dit
binnen 24 uur rekentijd op gewone computationele hardware.

Tijdens het autonoom leren met onze kledij‐ of textielsimulator
veronderstellen we dat onze robot de volledige toestand van het
textiel kan opvragen. De toestand van textiel berekenen vraagt echter
complexe berekeningen of dure sensortechnologie. Om deze com‐
plexiteit te vermijden, instrumenteren we het textiel door goed‐
kope voelsensoren te integreren. We maken het textiel slim door
methodes uit het machinaal leren te gebruiken die op basis van
de sensordata kunnen vertellen of het doek al dan niet gevouwen
is. Vervolgens gebruiken we het slimme textiel om een robot
te leren de was te plooien. Onze resultaten tonen aan dat het
gebruik van een slim textiel toestaat omop een goedkoop, fysisch
robotplatform te leren vouwen.

Het slimme textiel overbrugt de kloof tussen onze simulatieom‐
geving en de werkelijke wereld. Het is echter nog steeds nodig
om een scalaire waarde uit te rekenen die de taakvooruitgang
aangeeft tijdens de uitvoering ervan. We verwachten dat het

xiii

beter is om de taakvooruitgang te leren dan ze manueel te speci‐
fiëren. Het manueel specifiëren kan zorgen voor menselijke ver‐
tekening. Er bestaat echter nog geen grote dataset van mensen
die kledij vouwen. Omwille van deze reden verzamelen we onze
eigen dataset. Onze dataset bevat ruwweg 300.000RGB‐Dbeelden
die geannoteerd zijn met de positie van de armen, kwaliteitsla‐
bels en tijdstempels die de deelstappen aanduiden. Deze dataset
kan worden gebruikt voor onderzoek naar actieherkenning en
het versnellen van leren met gebruik van voorbeelden.

Het is vereist om de bewegingen van de menselijke voorbeelden
in onze dataset te vertalen naar de morfologie van de robot.

Om te vermijden dat deze vertaalslag leidt tot het blind na‐apen
van bewegingen, geven we er de voorkeur aan om een belonings‐
signaal te leren in plaats van de handelingen zelf. Er bestaat
echter nog geen methode die een beloningssignaal kan leren,
althans niet zonder simultaan ook het gewenste gedrag te leren.
Deze koppeling zorgt ervoor dat alle problemen die geassocieerd
worden met versterkingsgebaseerd leren worden overgenomen
bij het leren van beloningen. We introduceren een methode die
het leren van beloningen en gedrag ontkoppelt door rechtstreeks
het taakverloop te voorspellen op basis van camerabeelden van
menselijke voorbeelden. Aangezien onze methode niet vereist
om individuele beelden te voorzien van een vooruitgangsgetal,
vermijden we het insijpelen van menselijke vertekening. Onze
methode is het eerste systeem dat taakvooruitgang van mensen
die kledij vouwen uitdrukt in een prestatiemaatstaf.

De robotbutler is nog niet voor morgen. Robots moeten eerst
leren werken in dynamische omgevingen. Hiervoor moet toe‐
komstig onderzoek zich toespitsenophet integrerenvan software
en hardware. In ons onderzoek hebben we de kracht hiervan
aangetoond door middel van een slim textiel dat de robot ver‐
telt hoe het gevouwen is. Zo vermijden we dat de robot zelf de
toestand van het textiel moet leren. Door deze eigenschap kan
de robot binnen de dag leren om het textiel te vouwen. Het
verder doordrijven van deze geïntegreerde visie op hardware en
software leidt tot intelligentie die ingebouwd is in het lichaam
zelf. Het simultaan optimaliseren van het lichaam en het brein
staat toe om robotgrijpers te ontwikkelen die aangepast zijn om

xiv

specifieke taken uit te voeren. Robots kunnen deze grijpers ge‐
bruiken om representaties te leren die toestaan om te begrijpen
hoe de wereld werkt. Zo zullen robots de gevolgen van hun acties
leren begrijpen en uiteindelijk taken leren uitvoeren door te in‐
terageren met hun omgeving, te kijken naar hoe mensen de taak
uitvoeren en door feedback van geïnstrumenteerde objecten op
te vragen. Dit holistisch proces zal de toekomstige robotbutler
toestaan ommensen te begrijpen en een breed gamma aan taken
te leren uitvoeren.

xv

Contents

Dankwoord iii

Summary vii

Samenvatting xi

List of Figures xxiii

List of Tables xxvii

Acronyms xxix

1 Introduction 1

1.1 Deformable object manipulation and robotic
laundry . 4

1.2 Traditional control pipelines do not work for
folding clothes 6

1.3 From engineered pipelines to end‐to‐end learning 9
1.4 Accelerating learning of robotic manipulation of

deformable objects 10

1.4.1 Datasets 10
1.4.2 Simulation 11
1.4.3 Instrumentation 12
1.4.4 Understanding task intent 12

1.5 Research outline 13

xvii

1.6 Publications . 15

2 Background and review of related work 17

2.1 Manipulating deformable objects 20

2.1.1 Manipulating rigid objects 20
2.1.2 Deformable objects: definition,

categorization, tasks and solutions 22

2.2 Engineered cloth folding pipelines 27

2.2.1 Grasping 30
2.2.2 Pose estimation 31
2.2.3 Unfolding 31
2.2.4 Flattening 32
2.2.5 Folding 32
2.2.6 Full pipeline 33

2.3 Learning robotic manipulation tasks with labels 34

2.3.1 Supervised learning 35
2.3.2 Artificial Neural networks 36
2.3.3 Supervised learning and neural networks

in robotic manipulation research 42

2.4 Learning robotic manipulation tasks without
user‐provided labels 47

2.4.1 Unsupervised learning 47
2.4.2 Self‐supervised learning 50

2.5 Learning robotic manipulation tasks from
interaction . 54

2.5.1 Reinforcement learning 54
2.5.2 Reward learning 63

2.6 Datasets for robotic learning 66

xviii

2.7 Simulation environments to accelerate learning 69

2.7.1 Deformable object simulation methods . 71
2.7.2 Transferring simulation results to the

real world 74

2.8 Deformable object state perception through
instrumentation 77

2.9 Conclusion . 82

3 Robotic folding in simulation 83

3.1 Digital twins . 85
3.2 Robotic simulation 86

3.2.1 Qualitative comparison of popular robot
simulation technologies 89

3.3 Cloth simulation using particle systems 92

3.3.1 Representing cloth with particle systems 94
3.3.2 Advancing the particle simulation 98
3.3.3 Topology constraints 100
3.3.4 Collision 100
3.3.5 Rendering 102
3.3.6 Implementation results 102

3.4 Learning to fold in simulation 104

3.4.1 Deep reinforcement learning setup for
cloth folding in simulation 104

3.4.2 Results 106

3.5 Conclusion . 108

4 Learning to fold through cloth instrumentation 113

4.1 Vision‐based state estimation of cloth 116
4.2 Dual‐arm robotic setup 117

xix

4.3 Smart cloth . 118

4.3.1 Tactile sensing technologies 118
4.3.2 Cloth sensing using piezoresistive rubber 121
4.3.3 Learning a smart cloth 124

4.4 Results on learning to fold an instrumented cloth 127
4.5 Discussion . 128

4.5.1 Grippers for cloth manipulation 128
4.5.2 Future improvements 131

4.6 Conclusion . 133

5 Dataset for robotic folding through crowdsourcing 135

5.1 Crowd‐sourcing folding demonstrations 137
5.2 Folding demonstrations dataset 142

5.2.1 Folder structure 143
5.2.2 Data format 143
5.2.3 Project website and helper scripts 146

5.3 Conclusion . 147

6 Learning reward functions from demonstrations 151

6.1 Rationale and related work 154

6.1.1 Applications of process monitoring . . . 155
6.1.2 Data‐driven process monitoring in smart

manufacturing systems 155
6.1.3 Learning manipulation skills from

demonstration 157

6.2 Overview of the proposed framework to learn
reward functions 161

xx

6.3 Methodology for unsupervised learning of
reward functions 163

6.3.1 Learning semantic meaningful
embeddings using TCNs 163

6.3.2 Aligning expert video embeddings with
query videos 165

6.3.3 Extracting task progression from
embeddings 168

6.4 Results on folding clothing 169

6.4.1 Training results 170
6.4.2 Reward function results 173

6.5 Discussion . 176

6.5.1 Semantic Meaning of Learned TCN
Embeddings 176

6.5.2 Case‐based examples for post hoc
interpretability 179

6.6 Conclusion . 185

7 Towards learning robotic manipulation of clothing 189

7.1 Improving sample efficiency 191

7.1.1 Decouple end‐to‐end learning 192
7.1.2 Curriculum learning 194
7.1.3 Learning from demonstrations 195

7.2 Datasets . 196
7.3 Simulation . 199
7.4 Sim2Real . 203
7.5 Grippers for robotic folding 204
7.6 Sensing . 206
7.7 Representations 210
7.8 Future outlook on the field of robotic cloth

manipulation 211

xxi

8 Conclusion 213

8.1 Research conclusions 215
8.2 Future research directions 217

8.2.1 Extending cloth folding dataset 218
8.2.2 Instrumentation 218
8.2.3 Learning reward functions from

demonstrations 219

A Cloth simulation and training parameters 225

Bibliography 231

xxii

List of Figures

1.1 Task flow for robotic laundry. 5

2.1 Canonical engineered manipulation pipeline. . . . 21
2.2 Force closure examples. 23
2.3 Real‐life examples of deformable linear objects. . . 25
2.4 Examples of 2D deformable objects 27
2.5 Solid deformable objects 28
2.6 Cloth folding pipeline for robotic manipulation with

subtasks. 29
2.7 Computational model of a single neuron. 37
2.8 A three‐layered, feedforward, fully‐connected

neural network. 38
2.9 Canonical flow of the RL loop in the context of

robotics. 56
2.10 Example of instrumenting the robot. 80
2.11 Example of a smart textile implementation. 81

3.1 Comparison between generalized and Cartesian
coordinates for representing multibody kinematic
chains. 88

3.3 Example of a 3D modelled dress 95
3.4 Mesh of connected particles 97
3.5 Mass‐spring particle system. 101
3.6 Spring‐mass particle system for cloth demonstration. 103
3.7 Mean reward per episode for the subtasks during

training. 109
3.8 Success rate at test time for folding cloth twice in

simulation. 110

xxiii

4.1 Picture of the constructed Moveo arm. 119
4.2 Schematic overview of setup to learn to fold with

smart textile. 120
4.3 Schematic of the voltage divider principle. 121
4.4 Schematic presentation of electrodes of a

piezoresistive sensor organized in a single‐layered
pad. 122

4.5 Our production of a piezoresistive sensor with
electrodes in a single layer printed on a 0.2mm
thin, flexible PCB. 123

4.6 Exploded‐view drawing of the textile with
integrated tactile sensing. 123

4.7 Photo of smart textile implementation. 124
4.8 Zoom‐in photo on the electronics embedded in our

smart textile. 125
4.9 Example of the folding task on the real platform. . . 126
4.10 Visualization of the statistics over the tactile grid

cells. 126
4.11 Results of training the real robot from scratch to

learn how to fold a smart textile. 129
4.12 Demonstration of a folding trajectory of the learned

policy. 130
4.13 Alternative gripper designs we experimented with

for cloth manipulation tasks. 132

5.1 Picture of our folding table setup to crowdsource
video demonstrations in a public library. 138

5.2 Pictures of some of the textiles in our folding dataset. 139
5.3 Example output from our cloth folding dataset. . . . 141
5.4 Folder structure of the folding demonstration

dataset. 144

6.1 Hypothetical one‐dimensional embedding that
encodes the state of cloth. 159

6.2 High‐level overview of our reward‐learning
methodology. 162

6.3 Principle of using time as a supervisory signal. . . . 166
6.4 Dynamic Time Warping (DTW) without

monotonicity constraint. 169

xxiv

6.5 Neural network architecture for learning
time‐contrastive embedding. 171

6.6 Loss and training metrics of the TCN training
process with semi‐hard triplet loss as optimization
objective. 174

6.7 Task progression plot with corresponding video
frames of a single demonstration 175

6.8 2D projection of the learned TCN embedding 178
6.9 Interpretation of embedding using agglomerative

clustering . 180
6.10 Task progression plots and corresponding images of

out‐of‐sample cases to specifically test properties of
the learned process monitoring metrics (part 1). . . 186

6.11 Task progression plots and corresponding images of
out‐of‐sample cases to specifically test properties of
the learned process monitoring metrics (part 2). . . 187

7.1 Illustration of folding with a flip‐fold. 195
7.2 An example for crowdsourcing data for robotics

research. 198
7.3 Progress of cloth simulation for control tasks. . . . 201
7.4 Sim2Real illustration with a UR3 robot and cloth. . . 205
7.5 General‐purpose and task‐specific grippers for

folding. 207
7.6 Visual vs. electrical instrumentation. 209

8.1 Multimodal contrastive embedding. 220

xxv

List of Tables

2.1 Non‐exhaustive list of simulation parameters to
vary in domain randomization. 77

3.1 Qualitative comparison of the robotic simulation
technologies considered for learning to fold clothing. 91

4.1 Test set results of the linear classifier that detects
whether the cloth has been folded (511 samples). . . 126

5.1 Definitions used to label the subtasks in the folding
task . 143

5.2 Quality label definitions. 146

6.1 Fixed settings during training of the TCN embedding. 171
6.2 Selected hyperparameter values. 172

A.1 The used cloth simulation physical parameters. . . 228
A.2 The used training parameters to learn cloth folding

in simulation. 229

xxvii

Acronyms

AI Artificial Intelligence

ANN Artificial Neural Network

CNN Convolution Neural Network

DOF Degree Of Freedom

DQN Deep Q‐Network

FEM Finite Element Methods

GAN Generative Adversarial Network

GPU Graphical Processing Unit

HMM Hidden Markov Model

MDP Markov Decision Process

ML Machine Learning

NFQ Neural Fitted Q‐iteration

POMDP partially observable Markov decision process

ReLU Rectified Linear Unit

RL Reinforcement Learning

SVM Support Vector Machine

t-SNE T‐Distributed Stochastic Neighbor Embedding

TCN Time Contrastive Network

xxix

TD Temporal‐Difference

UMAP UniformManifold Approximation and Projection

xxx

1

Introduction

Robotic manipulation of clothing
presents challenges we need to
solve in order to build general‑
purpose robots.

1

1
Introduction

The research field of robotics promises to relieve humanity from
repetitive tasks. Yet, why is there currently no robot that ties our
shoelaces, weeds our gardens, and folds our shirts? These tasks
break the boundaries of the scripted environment for which ex‐
isting robot technologies are programmed. Programmed robots
follow routines to assemble cars andweldminiaturized electrical
components at astounding speeds and with fine‐grained preci‐
sion. However, these robots operate in a cage where every in‐
struction is precisely defined with minimal room for deviation.
Robots that do operate outside a safety cage are persistently su‐
pervised by humans. For example, the daVinci® robot allows per‐
forming surgery by teleoperating robotic arms through a hand‐
operated console. Bringing this robotic automation to our daily
lives will significantly impact industry and society. Robots will
sort and pack all types of objects in warehouses, install electrical
wiring in our cars, help elderly people dress, and clean up our
houses.

For the robot butler to become a reality, we need to endow robots
with dexterous manipulation skills. Similar to how you effort‐
lessly turn the page of this book by grasping and reorienting the
corner of the page, robot hands require dexterity to perform the
same impressive repertoire of tasks as the human hand can. This
revolution for robotic hand dexterity will occur at the frontiers
of both hardware and software. First, mechanical engineering
needs to incorporate actuators, links, joints and sensors into the
limited space of a hand while using soft materials similar to the
human skin. Second, control algorithms need to loosen assump‐
tions about the environment in which robots operate. Nowadays,
robotic manipulation solutions require environments to be fully

Chapter 1

specified and the object’s configuration to be fixed. However, the
real world presents an infinite supply of configurations. To find
solutions for this problem, we study the manipulation of objects
that provide an infinite amount of configurations: deformable
objects.

1.1 Deformable object manipulation and robotic
laundry

Many everyday objects deform upon force interaction: the wires
we use to charge our phones, the clothes we carry, and the su‐
tures doctors use for stitching wounds. In this research, we con‐
sider the problem of automating the task of folding clothing.
Folding clothing is part of the laundry cycle, visualized in Fig‐
ure 1.1, and a potential task for future household robots. With
ageing populations, increasing quality of life and importance of
work‐life balance, automating dull and repetitive tasks in house‐
holds merits benefits from a social and financial point of view.
Outsourcing tasks to robots allows freeing up time or budget if
a domestic helper is employed. For older people or people with
limited mobility, domestic task automation can give a feeling of
independence as the need for the assistance of home care work‐
ers is reduced. Additionally, there is a significant portion of the
industry working with garments, textiles and other deformable
objects that could also benefit from developments in general‐
purpose robotic automation.

Although automating domestic tasks offers a sound business
case, developments in automation have primarily focussed
on industrial automation. This is because industrial tasks are
much simpler to automate compared to domestic environments
where it is hard to exert exact control and enforce necessary
prerequisites. Even in research, folding clothing has received
little attention. The main reason is that robotics research
focuses primarily on grasping and manipulating rigid objects.
Rigid objects do not deform during interaction and significantly
reduce the required information. For example, grasping your
morning coffee cup requires only knowing the position of the

4

1.1 Deformable object manipulation and robotic laundry

no

yes

Washing
& drying

Clothes in pile Done

Isolate

Identify garment
shape and type

Unfold

Flattening

Fold

Stack

Figure 1.1 Task flow for robotic laundry. Figure adapted
from (Hamajima and Kakikura 1996).

5

Chapter 1

cup’s handle. On the contrary, if the handle is highly deformable,
you also need to reason about its shape and how it will deform as
a result of the planned manipulation. Unfortunately, planning
for deformations is not a part of traditional robotic control
pipelines.

1.2 Traditional control pipelines do not work for
folding clothes

A daily‐life example found in common kitchens illustrates the
workings of today’s industrial robots. Instead of manually slicing
food into smaller pieces for cooking, one can use a food pro‐
cessor to automate the slicing process. Using the food proces‐
sor requires structuring the environment: one needs to equip
the correct blade on the motor shaft, preprocess the food into a
manageable size for the blade and feed it through the tube while
activating the motor. Deviating from this setting can lead to mi‐
nor failures and even harmful situations. For example, inserting
oversized food slices might lead to motor stalling. More dan‐
gerously, there is no intelligence in consumer‐grade appliances
stopping themotor from turning the blades if you decide to insert
your hand into the feeding tube. Luckily, amanufacturer can eas‐
ily prevent such dangerous operations through the mechanical
design of the tube.

Current robotic control pipelines are organized similarly to the
given food processor example: structuring the environment
and decomposing the problem. Decomposing a large problem
into subproblems is a general problem‐solving and engineering
paradigm that allows making assumptions that simplify the
solution strategy. In robotics, this modular approach is
omnipresent and has led to incredible levels of automation
and an increase in productivity (Graetz and Michaels 2018). For
example, the pick‐and‐place contest in the Amazon Robotics
Challenges provided the participants with prior knowledge
about the objects that need to be grasped1 and allowed them to

1. In the last edition of 2017, this assumption was scaled back as the teams
knew 50% of the items only 45 minutes beforehand.

6

1.2 Traditional control pipelines do not work for folding clothes

design their own storage system. Winning solutions (Eppner
et al. 2017; Morrison et al. 2018) solve this structured problem
by breaking it down into simpler problems, solved by individual
modules for perception, planning and control. These modules
are then factorized into systems performing tasks like labelling
pixels to objects, segmenting the target object, and fitting it with
bounding boxes. However, fully modularized architectures that
do not adapt to deviations and failures elsewhere in the control
pipeline will repeatedly fail when variations occur in the routine.
Some of the most advanced robotics research and development
teams demonstrate this in the 2015 DARPA Robotics Challenge
Finals (DARPA 2015). The consequences of exposing robots to
unstructured environments can be viewed in published video
clips (Spectrum 2015): million‐dollar robots tumbling to the
ground in, frankly, hilarious ways. In one example, a robot is
supposedly turning a valve. However, the robot’s walking path is
misaligned, making it stand next to the valve instead of in front
of it. Consequently, the robot is performing a rotatingmovement
with its arm in thin air while assuming resistance of the valve
for balancing. The missing counterbalance causes the robot to
fall on the ground. The rotating valve failure brings the inner
working of control loops to light: a sequence of isolated modules
that solve decomposed tasks with insufficient regard for failures
down‐ or upstream in the pipeline.

Robots that manipulate deformable objects employ similar
pipelines: a sequence of modules with functionalities ranging
from garment type identification to corner point detection and
executing preprogrammed folding sequences. We visualize
a canonical pipeline for folding clothing in Figure 1.2a.
These approaches are assumption‐heavy and can have limited
generalization. Engineered pipelines also have difficulty scaling:
successful implementations require 24 minutes to fold a single
shirt (Maitin‐Shepard et al. 2010). This motivates our research to
look in the direction of employing learning-based methods to create
autonomous systems that can perform robust grasp synthesis
when faced with the high amount of variations that occur in the
real world.

7

Chapter 1

Im
age

H
igh‐

level
features

M
id‐

level
features

O
bject

classifier

Perception

Planning
m
odule

Control
m
odule

M
otor

com
m
ands

Class
=

shirt

(a)Canonicalrobotic
controlpipeline

forfolding
clothing.Each

m
odule

solvesan
isolated

task
and

passesthe
resultto

the
nextm

odule.

Im
age

D
e
n
s
e
N
e
t

(
3
x
3
)

c
o
n
v

s
t
r
i
d
e

1

r
e
l
u

x
4

2
8

2
8

5
1
2

f
c

+

r
e
l
u

1
0
2
4

2
8

2
8

5
1
2

l
i
n
e
a
r

f
c

2
0
4
8

3
2

f
c
1

c
o
n
v
[
1
-
4
]

D
eep

neuralnetw
ork

M
otor

com
m
ands

(b)End‐to‐end
robotic

controlpipeline
for

folding
clothing.

An
inputim

age
is
passed

to
a
black‐box

deep
neuralnetw

ork
w
hich

sends
directm

otorcom
m
ands.Figure

1.2
Standard

robotic
controlpipelinesversusend‐to‐end

architectures.

8

1.3 From engineered pipelines to end‑to‑end learning

1.3 From engineered pipelines to end‑to‑end
learning

Machine learning is a subset of AI methods that can learn
patterns from examples. The successes of deep reinforcement
learning, a machine learning method that learns by trial‐and‐
error, in playing Atari video games (Mnih et al. 2015) and beating
human champions at the game of Go (Silver et al. 2016), has
driven robotics researchers to adopt machine learning across
the whole pipeline. This led to an end‐to‐end learning approach
in which the robot has to figure out how to move its arms using
a single camera image. In the example pipeline of Figure 1.2a,
every functionalmodule is integrally replacedwith a deep neural
network, as shown in Figure 1.2b.

Unfortunately, end‐to‐end learning for robotics is privileged to
organizations that contain massive computational power and ex‐
pensive robotic farms. The robots in these farms operate inter-
actively in an environment: they perform actions by trial‐and‐
error to maximize predefined success criteria. Although robots
learning from scratch yield entertaining footage, similar to the
falling robots of DARPA 2015, it tires quickly as learning from
scratch on a real robot takes tremendous amounts of time and is
potentially unsafe. From the perspective of how humans learn,
it makes no sense to have a system learn from scratch. Imagine
asking a human baby to do the laundry while it still has to learn
how to move its limbs. An additional limitation is that many
robotic systems only use visual inputs. The popularity of this
approach can be explained by the accessibility of cameras and
the successes of deep learning in computer vision. Yet, interact‐
ing with the environment requires fusing multiple senses such
as vision and touch. Hence, if we want physical systems to solve
tasks in dynamic environments, they require some form of prior
knowledge and multimodal inputs to accelerate learning.

For cloth folding robots, wehave, on the onehand, robots that use
engineered pipelines and take 24 minutes to fold a shirt (Maitin‐
Shepard et al. 2010). On the other hand, there exist robots that
learn to fold from scratch but require over 100.000 physical robot‐
environment interactions (Matas, James, and Davison 2018). Our

9

Chapter 1

research explores solutions in the middle of the modelling and
learning paradigm.

1.4 Accelerating learning of robotic manipulation
of deformable objects

Learning is considered to be a central component for
autonomous systems to deal with real‐world variability
(Kroemer, Niekum, and Konidaris 2021). However, learning‐
based methods generally require many examples and
interactions with the environment. For example, Levine et
al. (2018) record 800.000 grasping attempts using 12 robots
to learn to grasp rigid objects. This dataset requirement is
problematic for robots that are expensive to operate. Supervising
multiple robots simultaneously for millions of interactions with
cloth is an unpractical and unscalable solution. For real robots
to learn to fold clothing articles, there is a need to accelerate the
learning process. In this dissertation, we research the following
four topics to accelerate learning: (i) generation of cloth folding
datasets for learning; (ii) using simulations as a safe and fast
environment for learning; (iii) facilitating state estimation of
cloth; and (iv) understanding task intent rather than copying
human behaviour. We discuss these topics in the following
sections.

1.4.1 Datasets

A critical piece of the puzzle for building intelligent systems
comes in the form of data. The standard paradigm in machine
learning is to provide a dataset with, for example, images of
folded and unfolded shirts and train a model that learns to
distinguish between the two. When learning how to solve tasks,
datasets in the form of task demonstrations have been used
for training autonomous driving cars (Bojarski et al. 2016),
learning quadruped robotic locomotion (Peng et al. 2020), drone
flight (Giusti et al. 2016) and learning to place dishes in a plate
rack (Finn, Levine, and Abbeel 2016). However, in the field of

10

1.4 Accelerating learning of robotic manipulation of deformable
objects

learning robotic manipulation skills for clothing, no dataset
with example demonstrations of people folding clothing exist.
The lack of folding datasets can be attributed to the domain
being less studied, the difficulty in collecting high‐quality,
diverse samples and the high state space nature of deformable
objects, making it hard to generalize example demonstrations
to unseen examples. We hypothesize that collecting a dataset of
people folding clothing can be used for bootstrapping learning
of manipulation skills. This dataset should be collected “in the
wild” to avoid biases and promote diversity. At the same time,
the data collection should be standardized in order to facilitate
ad‐hoc labelling and ensure data quality.

1.4.2 Simulation

Whereas a real‐world dataset can be expensive to obtain, syn‐
thetic approaches allow the generation of massive datasets and
quick experimentation. Hypotheses in robotics are often first
tested in a virtual environment to allow fast prototyping and val‐
idation. To utilize simulation for robotic learning, realistic mod‐
elling of the dynamic behaviour of robots and cloth is required.
The development of robot simulation technologies has come a
great way since the demonstration of deep learning methods for
robotics. However, cloth simulation has primarily been devel‐
oped for offline simulation used in the movie industry or real‐
time simulations in games where fidelity for cloth is secondary
to game‐play simulation. Cloth simulation for robotic learning
needs to be fast, but not real‐time as is the case in games, and
requires realistic dynamics. Realistic robot and cloth simulation
allow fast experimentation and facilitate transferring the results
from simulation to the real world. We believe that integrating
physically plausible cloth simulation with robotic simulators en‐
ables to learn cloth manipulation skills in simulation with trans‐
fer to the real world.

11

Chapter 1

1.4.3 Instrumentation

When we use our hands to crush a plastic cup, multiple sensors
of our body activate: our eyes observe the deformations, our
ears register the amplitude of the impact, our hands notify us
of how much force we are applying, and our proprioceptive sys‐
tem signals us to which extent our fingers are closed. This rich
interplay of multiple modalities in the human cognitive system
is in stark contrast to robotic manipulation pipelines that are
primarily vision‐based. Vision is important for roboticmanipula‐
tion: it helps to infer the object location relative to the robot end‐
effectors, it helps to understand the object’s geometry and some
of its physical properties. Furthermore, commercial cameras
are readily available and accessible compared to other sensors
such as tactile sensors. Nevertheless, considering the giant leaps
of object recognition with deep learning, robots still struggle to
recognize objects in more difficult contexts such as partial oc‐
clusion, transparent object and moving objects (Guo et al. 2014;
Sajjan et al. 2019; Ojha and Sakhare 2015). Incorporating het‐
erogeneous sources of information can alleviate problems when
state estimation cannot be directly observed from pixels. For
example, finding the occluded corner of a crumbled towel with
tactile sensing simplifies the folding process considerably. We
denote the process of adding sensory information to the learn‐
ing environment of a robot as instrumentation. The goal is to
redirect the large focus on using vision‐based state estimation
towards the application of other sensor modalities in the envi‐
ronment such as tactile sensing in a cloth and force sensing in
the fingers. Our hypothesis is that some modalities encode parts
of the state in amore compact way than vision. This semantically
moremeaningful encoding accelerates learning, which is impor‐
tant in robotics where real rollouts are expensive.

1.4.4 Understanding task intent

The human ability to infer task intent from demonstration is in
stark contrast with imitation learning approaches from the ma‐
chine learning field. Imitation learning for autonomous cars, for
example, answers the question “with howmany degrees would a

12

1.5 Research outline

humandriver turn the steeringwheel now that this tree is in front
ofme?”. Although the correct answer is probably to avoid coming
into the situation that a tree is in front of the car, no human driver
would likely be able to provide an exact answer.

Instead of creating a dataset of task scenarios with associated
human actions, the interactive trial‐and‐error approach of RL
shares more semantics with learning from a human perspective.
For example, humans encourage desirable behaviour in dogs by
means of treats or punishment. In this example, the snack is
the reward signal. Applying the idea of reward and punishment
to robotics is a popular learning approach but requires finding
the appropriate reward signal. In the case of cloth folding, it
is ambiguous to write down a mathematical formula that de‐
scribes how well a person is folding a clothing article. How
does one quantify the number of wrinkles to a performancemea‐
sure? Does itmatter that a folded towel does not contain perfectly
straight lines? What is the definition of a folded shirt? Finding
a reward signal requires identifying, measuring and quantifying
all aspects of performance. This might not be possible for all
problems, like cloth folding.

Compared to dogs, infants are known to understand task intent
behind human behaviour without requiring explicit reward sig‐
nals (Warneken and Tomasello 2006). We argue that a similar ap‐
proach can be applied for the case of robotic folding and learning
in general. By learning the reward function from human demon‐
strations, without labelling, one can use this reward signal in an
RL setting. This idea is generally known as inverse RL. However,
inverse RL learns a reward function in conjunction with learning
how to behave. We propose decoupling this process and learning
a reward function separately to speed‐up training and use it for
other applications like process monitoring.

1.5 Research outline

Our main goal is to investigate solutions to accelerate learning‐
based approaches for learning to fold clothes with robots. We

13

Chapter 1

focus on the domains described in the previous Section 1.4: gen‐
eration of real datasets, the use of simulation technologies, in‐
strumentation and learning a reward function for cloth folding.
Our main contributions can be listed as follows:

• Collecting a crowdsourced dataset of people folding cloth‐
ing articles.

• Estimating the state of cloth with smart textile and proving
its utility in a real‐world, low‐cost robotic setup.

• Proposing and validating a methodology to learn a reward
function without providing labels.

To structure the content of our research, we first provide an
overview of the field of robotic manipulation of deformable
objects in Chapter 2. We provide the introduction and state‐
of‐the‐art in a tutorial and survey style chapter. As a first
experiment, we study the use of robot and cloth simulation
for fast experimentation in Chapter 3. Next, we deal with a
shortcoming when transferring from simulation to the real
world: the unavailability of a full state specification of the cloth.
We measure the state of the cloth by developing a smart textile
in Chapter 4. This smart cloth consists of tactile sensors that
are used in a machine learning model to communicate whether
the cloth is crumbled, folded or unfolded. We demonstrate
the effectiveness of the smart cloth on a real robotic setup that
learns to fold cloth from scratch using RL. To speed up this
approach, we collect a crowdsourced dataset of people folding
clothing in Chapter 5. We use this dataset in Chapter 6 in which
we learn a reward function that expresses how well people are
folding clothing in this dataset. Notable in our approach is that
no progress labels are required. In the following Chapter 7, we
zoom out to take a birds‐eye perspective on the field of robotic
cloth folding in order to highlight future areas of improvement,
based on our experience and the research done in our work.
Finally, we summarize ourwork and provide concluding remarks
in Chapter 8.

14

1.6 Publications

1.6 Publications

All chapters in this book are based on work published during
the course of this research. The exceptions are the introduction
and conclusion of this book. The work described in Chapter 3
is not published as similar research was already being published
and the goal of our research is not to provide state‐of‐the‐art
technology for cloth simulation. We provide a list of publications
below:

• Chapter 2 and Chapter 7:Andreas Verleysen and Francis
wyffels. 2022 (expected). “Learning to fold cloth: a survey.”
The International Journal of Robotics Research, Submitted, un‐
der review

• Chapter 4: Andreas Verleysen, Thomas Holvoet, Remko
Proesmans, Cedric Den Haese, and Francis wyffels. 2020.
“Simpler learning of robotic manipulation of clothing
by utilizing DIY smart textile technology.” APPLIED
SCIENCES-BASEL 10 (12): 10. ıſſN: 2076‐3417. http://dx.doi
.org/10.3390/app10124088

• BasedonChapter 4: RemkoProesmans, AndreasVerleysen,
RobbeVleugels, PaulaVeske, Victor‐LouisDeGusseme, and
FrancisWyffels. 2022. “Modular piezoresistive smart textile
for state estimation of cloths.” Sensors 22 (1). ıſſN: 1424‐
8220. https://doi.org/10.3390/s22010222. https://www.mdpi
.com/1424-8220/22/1/222

• Chapter 5: AndreasVerleysen,Matthijs Biondina, andFran‐
cis wyffels. 2020. “Video dataset of human demonstrations
of folding clothing for robotic folding.” The International
Journal of Robotics Research, ıſſN: 0278‐3649. http ://dx.d
oi.org/10.1177/0278364920940408

• Chapter 6: AndreasVerleysen,Matthijs Biondina, andFran‐
cis wyffels. 2022. “Learning self‐supervised task progres‐
sion metrics: a case of cloth folding.” Applied Intelligence,
Accepted, https://doi.org/10.1007/s10489-022-03466-8

15

http://dx.doi.org/10.3390/app10124088
http://dx.doi.org/10.3390/app10124088
https://doi.org/10.3390/s22010222
https://www.mdpi.com/1424-8220/22/1/222
https://www.mdpi.com/1424-8220/22/1/222
http://dx.doi.org/10.1177/0278364920940408
http://dx.doi.org/10.1177/0278364920940408
https://doi.org/10.1007/s10489-022-03466-8

2

Background and review of related
work

This chapter provides a compre‑
hensive background on robotic
manipulation of deformable
objects in a survey style.

2

2
Background and review of related
work

The following chapter provides the preliminaries and a review of
relevant work in the field of robotic manipulation of deformable
objects. First, we introduce motor control architectures for rigid
body manipulation and review how they differ from deformable
object manipulation in Section 2.1. To give historical context, we
then discuss how standard robotic manipulation pipelines can be
used for manipulating deformable objects in Section 2.2. Next,
we discuss how the inherent limitations of engineered motor
control architectures can be overcome by using learning-based
methods. We distinguish between learning with (Section 2.3) and
without (Section 2.4) examples, and from interaction with the
environment (Section 2.5). Critical to robotic learning of manip‐
ulation skills is somemetric of task success, generally labelled as
the reward function. The role andmethods to obtain reward func-
tions for robotic learning, and deformable objects manipulation
in particular, is reviewed in Section 2.5.2. Given the general prop‐
erty that learning‐based methods are data‐hungry, we continue
this discussion by reviewing the role of large datasets for robotic
learning in Section 2.6. An alternative approach to generating
data is to use synthetic data. To this end, we discuss the role
of simulation and the corresponding transferability problems in
Section 2.7. Finally, we discuss the idea and related literature
of instrumenting the process with sensors to facilitate the learning
process in the manipulation environment in Section 2.8.

Chapter 2

2.1 Manipulating deformable objects

This sectionprovides important historical context andpriorwork
in the rigid and deformable object manipulation literature. First,
we discuss the traditional control approach to rigid object ma‐
nipulation for robots and how these methods are challenging to
generalize towards deformable object manipulation. Next, we
provide a definition and categorization of deformable objects.
For each category, we provide common tasks and solutions iden‐
tified in literature.

2.1.1 Manipulating rigid objects

Grasping and manipulation problems in robotics are tradition‐
ally solved by manually engineering subsystems for perception,
planning and control (Siciliano, Khatib, and Kröger 2008). A
popular approach is using images as input observation to control
the robot’s motions. This approach is motivated by the advantage
that images enable closed‐loop control: non‐contact and real‐
time measurements of the environment can be used to provide
feedback to the motion trajectory of the robot. This principle
is generally known as visual servoing (Hutchinson, Hager, and
Corke 1996) and was first introduced in 1979 by Hill (1979). An
archetypical pipeline consists of the following steps to grasp and
manipulate an object (Corke et al. 1996). First, observations such
as images are used to estimate the state of the object. This state
estimation stage usually executes pixel manipulations and image
filtering in order to extract features. This object state is used to
interpret the scene to calculate the relative position of the target
object from the robot end‐effector. Once the object is identified,
it can be modelled to identify a suitable grasping point. Next,
these grasping points are given to a motion planning system that
calculates a trajectory to move the end‐effector to the desired
position and orientation. Finally, a low‐level controller sends
motor commands to the actuators tomove the robot. An example
of this archetype control pipeline is displayed in Figure 2.1.

Engineering modular, hand‐tuned motor control pipelines have
been successful for applications in manufacturing (Clocksin

20

2.1 Manipulating deformable objects

Observation
example

State estimation
example

Modelling and
prediction

example

Planning
example

Control

𝐾𝑝

𝐾𝑖
1
𝑠

𝐾𝑐 𝐿(𝑠)
𝜔dir

𝑀 (𝑠) 𝐸𝑣(𝑠) −

−

𝐼(𝑠) 𝑠𝜃𝑀 (𝑠)
−

𝐾𝑖.𝐾𝑑

−example

Figure 2.1 Canonical engineered manipulation pipeline with exam‐
ples of each module. Cameras record observations that are used to
estimate the state of the cloth downstream. Themodelling module cal‐
culates the deformations on the cloth if certain manipulations are exe‐
cuted. A planningmodule calculates the desired end‐effector trajectory
and sends the corresponding joint position to a low‐level controller.

21

Chapter 2

et al. 1985; Mochizuki, Takahashi, and Hata 1987), car steering
(Dickmanns and Graefe 1988), robotic ping‐pong (Andersson
1987), juggling (Rizzi and Koditschek 1993) as well as fruit
picking (Harrell, Slaughter, and Adsit 1989). However, all of
these applications operate under the condition of rigid objects:
the shape of the object will not change on contact. When
manipulating objects, this is of importance for determining
stable grasping points. More concretely, restraining rigid
objects relies on form closure (Nguyen 1988) or force closure
(Bicchi 1995): fully constraining relative motion of the object or
having contact points that can counteract an external wrench
through friction. However, in the case of deformable objects,
the object can deform during grasping and manipulation. This
leads to exponentially higher dimensional configuration spaces
compared to rigid object manipulation (Foresti and Pellegrino
2004). For example, achieving form closure becomes impossible
as it requires immobilizing every degree of freedom. Similarly,
force closure becomes computationally intractable as it requires
constantly incorporating the adapted shape of the object. For
example, we visually show (Figure 2.2) the deformations that
occur when grasping a plastic cup versus a rigid glass when
trying to achieve force closure. Furthermore, manipulation
requires reasoning about the target shape of the object. These
properties make many rigid object manipulation techniques
hard to extend in the deformable object domain. Unfortunately,
to date, the vastmajority of roboticmanipulationwork deals with
rigid objects whereas many objects are of deformable nature
(Siciliano, Khatib, and Kröger 2008).

2.1.2 Deformable objects: definition, categorization, tasks
and solutions

A deformable object is an object whose shape changes when be‐
ing subject to an external force. This deformation can be tempo‐
rary and reversible (elastic), permanent (plastic) or a combination
of both (elasto-plastic). Deformable objects are found in industrial
settings, agriculture and household items. A common catego‐
rization (Saadat and Nan 2002; Jiménez 2012) is based on the
geometry of the object: how many dimensions are significantly

22

2.1 Manipulating deformable objects

(a)

(b)

Figure 2.2 Force closure on a rigid glass (a) and a deformable, plastic
cup (b). The deformations of the plastic cup need to be taken into
account when calculating a grasping pose.

23

Chapter 2

larger than the other dimensions. The rationale for this catego‐
rization is given by small dimensions of the object having a negli‐
gible impact on the deformable properties. A canonical example
where this property is applied is found in the sheetmetal bending
industry: the thickness of metal sheets is neglected when com‐
puting the required manipulations for bending (Duflou, Váncza,
and Aerens 2005). A consequence of this categorization is that
3D objects can be considered as 2D deformable objects. For
example, both a hollow rubber ball and plush ball can be con‐
sidered 3D deformable objects based on their dimensionality.
However, when considering the dimensions that only impacts
the deformable properties, a hollow ball is 2D deformable object
as the thickness can be neglected for manipulation.

Deformable objects

A deformable object is an object whose shape changes on interac‐
tion and can be categorized based on the number of dimensions
negligible for manipulation planning.

In its simplest setting, the deformable object is one dimensional:
ropes, strings, cables, threads and catheters, among others.
Some of these examples are shown in Figure 2.3. These objects
are also known as deformable linear objects. The term linear
refers to one dimension being dominant over the other two
dimensions. Common tasks for deformable linear objects
involve grasping and manipulating ropes, for example, knot
tying. Early motor control architectures for solving tasks
regarding deformable linear objects used either an open‐loop
approach or simple visual servoing to execute the motion. An
early work clearly demonstrating modular control pipelines is
the project of Inaba and Inoue in 1987. Their method employs
visual servoing formanipulating a rope into a ring and then tying
the rope. Their perception module uses stereo images to detect
the rope and the ring. The planning module is hard‐coded to
iterate through a set of predefined steps while using the detected
centre of the ring and 3D coordinates of the endpoints of the rope
from the perception module. An inverse kinematics module
provides a target trajectory to the low‐level controller. Similar
modular pipelines can be found in (Remde, Henrich, and Wörn

24

2.1 Manipulating deformable objects

1999) for grasping a rope and in (Saha and Isto 2007) where knots
are tied with needles using probabilistic trajectories of the rope
from a simulated model. Incorporating motion primitives, i.e.
a predefined set of motor actions corresponding to high‐level
actions, in the planningmodule is used in (Yamakawa et al. 2008;
Vinh et al. 2012) to tie knots in a rope.

Figure 2.3 Examples of deformable linear objects and an application
of putting an electrical wire into a rigid pipe.

Deformable linear objects become deformable planar objects
when two dimensions are significantly larger than the third
dimension. In this case, the planning module can disregard
the thickness of the material for manipulation. Canonical
examples are given in Figure 2.4 and contain objects such as
clothing, thin‐shelled objects like plastic bottles, fabric, paper,
and plastic bags, deformable sheets, cards and foam materials.
A classic example of paper folding is robotic origami, in which
a robot has to sculpt a piece of paper into the desired shape by
folding. This problem was tackled with an open‐loop control
architecture in (Balkcom and Mason 2008) to produce a folded
hat. Elbrechter, Haschke, and Ritter (2012) takes this a step
further by using vision, simulation and fiducial markers on the
paper to grasp and fold a paper with a five‐fingered end‐effector.

25

Chapter 2

Related to origami is carton folding and metal sheet bending.
Typical control strategies (Lu and Akella 1999; Liu and Dai
2003; Aomura and Koguchi 2002) consist of finding the correct
locations and sequence of bending operations by modelling the
object as a collection of panes articulated through hinge joints.
Robotic manipulation of bags has been less studied due to the
complexity of modelling and manipulating bags. To circumvent
this complexity, dedicated hardware has been researched for
grasping (Kazerooni and Foley 2005) and unloading (Kirchheim,
Burwinkel, and Echelmeyer 2008) sacks. A general‐purpose
two‐fingered robotic gripper is used in (Klingbeil et al. 2011)
to grasp objects from a table, search the barcode and drop the
object into a bag. The planner uses 3D points clouds of depth
images taken by a camera. However, they assume the bag is
already open for insertion and do not consider any possible
deformations caused by touching or dropping an item into the
bag.

In the context of this research, it is of interest to note that
garments satisfy the same geometrical property of having one
negligible dimension as objects such as paper and plastic bottles.
However, the main characteristic distinguishing cloth is the
compression strength: compared to other two‐dimensional
deformable objects, cloth does not possess any significant
compression strength. Given that the current work deals with
manipulations of clothing items, we dedicate Section 2.2 to
elaborate on cloth manipulation pipelines.

The final category of deformable objects is volumetric deformable
objects whose deformations across all dimensions of the object
are of relevance. Some examples are shown in Figure 2.5: objects
such as food, plush toys and sponges. In the case of food prod‐
ucts, deformations can be caused by both grasping and process‐
ing operations such as slicing. In general, 3D deformable objects
are the least researched type of deformable objects (Sanchez et
al. 2018). An exception to this is soft tissue, which is important
for medical application. We refer the reader to the review paper
byTaylor et al. (2016) for an overviewofmedical robots in surgery
applications. An overview of robotic manipulation of food prod‐
ucts is given in Chua, Ilschner, and Caldwell (2003).

26

2.2 Engineered cloth folding pipelines

Figure 2.4 Examples of 2D deformable objects: origami, paper bag,
shirt, jumper and a cup.

2.2 Engineered cloth folding pipelines

A high‐level categorization of cloth tasks are sensing of material
properties, grasping a single clothing item in a cluttered environ‐
ment and task‐specific manipulation applications. Specific ap‐
plications dealing with manipulation of cloth are among others:
folding clothing items, hanging cloth on a rod and bedsheet fold‐
ing. In this dissertation, we focus on the application of cloth fold‐
ing. A complete cloth folding pipeline is visualized in Figure 2.6.
This folding pipeline typically consists of the following subtasks:
(1) grasping an isolated garment, (2) bringing it into a folded
configuration and (3) stacking it on top of other folded garments.
The second step in this process is often subdivided into unfold‐
ing, flattening and folding. Most of the work in robotic cloth
folding deals with a single subtask instead of providing solutions
to the complete pipeline. Two notable exceptions that consider
the whole robotic folding pipeline is the work of Doumanoglou
et al. (2016) and Maitin‐Shepard et al. (2010), which is discussed
at the end of this section.

27

Chapter 2

Figure 2.5 Examples of volumetric deformable objects: sponge, fruit
and plush toy

28

2.2 Engineered cloth folding pipelines

Isolate
example (a)

Unfold

single
clothing
item

example (b)

Flatten

unfolded
clothing
item

example (c)

Folding

wrinkle‐
free
clothing
item

example (d)

Stacking

folded
clothing
item

example (e)

Figure 2.6 Cloth folding pipeline for robotic manipulation with sub‐
tasks. Sources are the following: (a): (Ramisa et al. 2012), (b):
(Cusumano‐Towner et al. 2011), (c): (Doumanoglou et al. 2016), (d):
(Yinxiao Li et al. 2015), (e): (Maitin‐Shepard et al. 2010)

29

Chapter 2

An obvious solution for cloth folding is to use specialized hard‐
ware in a constrained environment. Gomesh et al. (2013) pro‐
pose an actuated flipfold1 that automates folding of shirts. More
complex commercially available products exist such as the Foldi‐
Mate®2. However, such products do not generalize towards gen‐
eral cloth folding, do not leverage general‐purpose robotic hard‐
ware and have proven difficult to bring commercially available3.
This is why most research considers the use of general‐purpose
robot arms, possibly with dedicated gripper and instrumenta‐
tion, as elaborated in Section 2.8.

Much of the literature around cloth folding deals with solving
subtasks of the folding pipeline. In the following subsections,
we summarise important work concerning solving each of the
subtasks. An exhaustive overview of methods on how to solve
particular subtasks, focusing on grasping type and manipulation
primitives, in the cloth folding pipeline is given (Borràs, Alenyà,
and Torras 2020a). Finally, we describe two important works that
provide an integrated system for solving the complete folding
pipeline.

2.2.1 Grasping

Grasping a piece of cloth requires isolating a single piece of gar‐
ment from a pile of clothing articles and making sure that one
functional piece is grasped. In (Ramisa et al. 2012), this is done
by grasping shirts via the collar. Visual servoing is used with
preprocessed features on depth data. Their method achieves a
grasping success rate of 70%. However, the performance drops
to 30% when other types of garments are present on the table.
Monsó, Alenyà, and Torras (2012) separate all clothing articles
with a robotmanipulator. Theirwork employs a POMDP tomodel

1. A flipfold is a device consisting of four panels joined by hinges. The four
panels lineup with the two sleeves, top‐centre and bottom‐centre of the shirt
respectively. The hinges allow the panels to rotate inwards. This movement
takes the cloth with it and as such makes the folds.

2. https://foldimate.com/
3. FoldiMate has been in prototype development for nine years at the time of

writing.

30

https://foldimate.com/

2.2 Engineered cloth folding pipelines

the uncertainty in the state estimation caused by the occlusion of
clothing articles.

2.2.2 Pose estimation

After grasping a clothing article, pose estimation is usually done
such that the type and configuration of the cloth can be brought
into an unfolded state, ready for folding. Garment pose esti‐
mation has been done by matching video images to simulation
models (Kita and Kita 2002), using machine learning models (Li,
Chen, and Allen 2014; Yinxiao Li et al. 2014) or instrumentation
via fiducial markers (Bersch, Pitzer, and Kammel 2011).

2.2.3 Unfolding

Unfolding is an important step as it allows to bring the article
into a known configuration fromwhich predefined folding strate‐
gies can be employed. A general approach to unfold clothing
articles is to exploit gravity; by grasping the article at strate‐
gic points, gravity will remove arbitrary folds. Hamajima and
Kakikura (1998) exploit this gravitational trick by regrasping the
hemlines of the garments. The hemlines are detected using the
shadows and shape of the cloth. Cusumano‐Towner et al. (2011)
unfolds shirts and trousers in a two‐staged pipeline using HMMs,
a cloth simulator and a planning algorithm. By inputting the
clothing article type, size and grasping points for the gripper to
the HMM, it can estimate the garment’s configuration. This con‐
figuration is used by the simulation model to find the minimum‐
energy configuration. This is the configuration in which the gar‐
ments triangulated mesh vertices have minimum gravitational
potential energy. Then, the planning module repeatedly exe‐
cutes trajectories to regrasp the clothing article until it is in a
known configuration. Then, the planningmodule brings the gar‐
ment into the hard‐coded, unfolded configuration. Theirmethod
achieves a 66% success rate. Doumanoglou et al. (2014) solves
the same task but reduces the number of software modules by
repeatedly regrasping the lowest hanging point of the garment.
This brings the clothing item into a known configuration. Next,

31

Chapter 2

the robot unfolds the article by searching two grasping points
using a POMDP.

2.2.4 Flattening

Before folding the cloth into the desired configuration, it is nec‐
essary to remove wrinkles caused by unfolding the cloth. More‐
over, folding often relies on template matching, which is made
more difficult when there are wrinkles present. A dedicated
method for cloth flattening is proposed in (L. Sun et al. 2015).
Their method assumes the clothing item is unfolded on a table.
They employ RGB‐D data to find wrinkles and represent them as
fifth‐order polynomials. The largest wrinkle is then flattened by
using preprogrammedmotions of the arms. In (BryanWillimon,
Stan Birchfield, and Ian Walker 2011), a washcloth is flattened
in two phases. In the first phase, they iteratively pull the cloth
away fromor towards its centroid to removeminorwrinkles. The
second phase utilizes depth information to determine regions of
interest with a high degree of wrinkles and the necessary direc‐
tion for removing them.

2.2.5 Folding

Bersch, Pitzer, and Kammel (2011) execute an open‐loop motor
control trajectory to fold clothing after unfolding it using fiducial
markers on the cloth. The folding loop exhibits a common hu‐
man strategy to fold cloth: grasp the garment by the shoulders,
rotate the sleeves inwards and fold the shirt inwards while plac‐
ing it on the table. In (Berg et al. 2010), they employ a geometry‐
based folding method that folds over predefined lines. Their
method relies on using gravity to immobilize parts of the gar‐
ment such that parts of the cloth become rigid objects. (Miller
et al. 2012) estimate the pose of the garment by fitting a user‐
specified polygon representation to the detected cloth contours.
Then, they apply the samemethod as (Berg et al. 2010) to fold the
cloth. (Yamakawa, Namiki, and Ishikawa 2011) start folding cloth
inmidair, held by its corners, with an algebraic representation of
the cloth. They use this simulation model to estimate the pose

32

2.2 Engineered cloth folding pipelines

of the end‐effectors at exact intervals such that the open‐loop
trajectory of the points describes a folded garment. Contrary
to previously mentioned approaches which rely on a dual‐robot
arm platform, (Petrík et al. 2017) considers folding with a single
robotic arm. They compute a trajectory in simulation based on
the grasping location and the folding line of the garment. How‐
ever, the literature concerning folding with a single robotic arm
is rather scarce due to its limited applications.

2.2.6 Full pipeline

The first example of a complete cloth folding pipeline is the work
of Maitin‐Shepard et al. (2010). The task starts from an unor‐
ganized pile of crumbled towels and ends when all articles are
stacked in a folded configuration on top of each other. Given
that the end of their pipeline consists of executing predefined
trajectories, much of their method relies on predecessor steps
to bring the clothing into an exactly known configuration. Their
method starts with colour segmentation on the image to select
the central clothing article. Next, the grasped towel is rotated
and regrasped in order to find and grasp the corners visually.
Unfolding is done by shaking, twisting and pulling the towel taut.
Finally, they run a predefined, open‐loop trajectory to lay down
the unfolded towel on the table and fold it. The pipeline takes 24
minutes to execute, with the grasp point detection phase being
the largest bottleneck.

The second full robotic cloth folding implementation is engi‐
neered by Doumanoglou et al. (2016). Their setup considers fold‐
ing a pile of shirts, towels and trousers. By segmenting an im‐
age from the pile on colour, an isolated piece is grasped. By
repeatedly regrasping the lowest hanging point of the garment,
they reduce the amount of possible cloth configuration to classify
the garment shape using random forests (Breiman 2001). The
unfolding procedure is equivalent to (Maitin‐Shepard et al. 2010)
and requires a garment classifier, grasp point detector, and a
pose estimation module. Flattening the shirt is done using a
brush tool on a dedicated cloth folding gripper. Wrinkles are de‐
tected by comparing the contourswith existing polygonalmodels

33

Chapter 2

of flattened cloths. Finally, the fold is executed using polygon‐
matching methods the contours to predefined templates. Their
system achieves a throughput of six minutes per garment with a
79% success rate. The slowest step in their pipeline is detecting
the desired grasping points for unfolding.

As a concluding remark of this section, we observe a reoccurring
theme: a divide‐and‐conquer methodology leads to a loss of in‐
formation between the different stages, resulting in the accumu‐
lation of errors. For example, Doumanoglou et al. (2016) report
difficulties when folding towels because the perception system
labels them as shirts. These individual components are built in
a laboratory environment with certain assumptions which are
likely to be violated in an unstructured, complex environment.
Togetherwith inaccurate sensor readings, the deformation of the
robot’s links deteriorates these systems’ accuracy. In order for
robots to be useful in unstructured environments with complex
dynamics, there is a need for controllers that are able to perform
robust grasp synthesis when faced with unseen conditions.

2.3 Learning robotic manipulation tasks with
labels

Machine learning, a domain of artificial intelligence, is the study
of algorithms that allow computers to learn from and make pre‐
dictions based on data. Machine learning provides a way to deal
with the inherent systematic and random errors in robotic sys‐
tems and variability in unstructured environments. This is be‐
cause learning‐based methods optimize for the grasping task,
which implicitly adapts the behaviour to imperfections in the
system, such as inaccurate sensor readings.

The following sections provide a short review of the fundamen‐
tals of relevant machine learning techniques. We discuss learn‐
ing with and without labels and by trial‐and‐error. We discuss
their relevant applications in robotic manipulation with a focus
on the manipulation of deformable objects.

34

2.3 Learning robotic manipulation tasks with labels

2.3.1 Supervised learning

Supervised learning is a machine learning paradigm that oper‐
ates under the setting where there is a set of input variables,
for example image pixels, that exert influence over other output
variables, for example whether there is a shirt or trouser in the
image.

Supervised learning

Supervised learning involves learning amapping from input data
𝐱 to the output data 𝑦, provided by the supervisor.

The components building up a machine learning system are the
dataset, the model, loss function and optimization algorithm.
These components are discussed next. Formally, we can denote
the input data as a set 𝒳 consisting of vector 𝐱(𝑖) ∈ 𝒳 with the
superscript 𝑖 referring to the 𝑖th observation. In the machine
learning domain, this set of predictor variables is often called
features. The set 𝒴 contains the output variables 𝑦(𝑖) ∈ 𝒴 . Con‐
catenating tuples of{(𝐱(𝑖), 𝑦(𝑖)

) , 𝑖 ∈ 1, … , 𝑁} , often called exam-
ples, leads to a dataset which can be used for learning. Central in
this learning procedure is the idea of function approximation in
which a function 𝑓 , parametrized by 𝛉, maps an input 𝐱(𝑖) to its
corresponding output 𝑦(𝑖):

𝑓(𝐱; 𝛉) ∶ 𝒳 ↦ 𝒴 .

This mapping, also called model or hypothesis, comes in many
forms such as linear models, tree‐basedmethods, support vector
machines and neural networks4. The goal of the learning proce‐
dure then becomes to adjust the parameters 𝛉 of the model such
that a certain performancemeasure𝒫 is optimized. Thismetric,
called loss function ℒ in machine learning jargon, is specific to
the task and domain in which the learning is taking place. In
robotic folding for example, the robot might be presented with
a candidate grasping pose 𝐮. The robot then has to predict the
probability ̂𝑦 = 𝑄𝛉(𝐮, 𝐱) = 𝔼 [𝑆|𝐮, 𝐱] of successfully grasping

4. We refer to Murphy (2012), Bishop (2006), and Hastie, Tibshirani, and
Friedman (2001) for a thorough exposition on supervised learning methods.

35

Chapter 2

(success denoted with 𝑆) a shirt, given some input image 𝐱. Note
that this example implies a heavy assumption; the availability of a
dataset containing tuples of ⟨grasping pose, object configuration,
probability of success⟩. In this situation, one couldminimize the
negative cross‐entropy loss:

ℒ = −𝑦(𝑖) ⋅ log ̂𝑦(𝑖) + (1 − 𝑦(𝑖)
) ⋅ log(1 − ̂𝑦(𝑖)

) ,

with ̂𝑦(𝑖) = 𝑓(𝐱; 𝛉) being the predicted output of the model for
observation 𝑖. The optimization problem then becomes to adjust
the parameters 𝛉 of the model 𝑓 using the examples (𝐱(𝑖), 𝑦(𝑖)

):

𝛉∗ = argmax
𝛉

𝔼𝑝(𝑆,𝐮,𝐱) [ℒ (𝑆, 𝑄𝛉(𝐮))] .

The dominantway for heavy parametrized functions such as neu‐
ral networks to optimize this objective is to use gradient descent.
The gradient expresses the direction of the steepest decrease of
the loss function ℒ with respect of the model parameters 𝛉. By
iteratively updating the parameters in the opposite direction of
the gradient, in the case of aminimization objective, we gradually
arrive at a local or global minimum:

𝜃𝑗 ∶= 𝜃𝑗 − 𝛼 𝜕
𝜕𝜃𝑗

ℒ(𝛉). (2.1)

𝛼 determines how large steps we take towards the estimated di‐
rection of the closest local minimum. Adaptive methods such
as Adam (Kingma and Ba 2014) allows taking variable step sizes
per variable based on the historical directions of the gradient.
Gradient‐based optimizationmethods have proven to be a crucial
for training highly parametrized functions such as deep neural
networks, which are discussed in the following paragraphs.

2.3.2 Artificial Neural networks

ANNs are theworkhorse ofmodern AI. ANNs are loosely inspired
by the neural network in a biological brain and the mechanisms
of learning in biological organisms. The human brain is build‐
up by interconnected processing units called neurons. The con‐
nection strength between these neurons changes in response to

36

2.3 Learning robotic manipulation tasks with labels

external stimuli. This way, neurons receive, process and send
information through the body and brain of biological organisms.
Although comparing artificial neural networks to their biological
counterpart is criticized as a far‐stretch from the inner workings
of the human brain, insights and knowledge of the neuroscience
field have been useful in designing neural network architectures.
The most common computational model of neurons, visualized
in Figure 2.7, simulates biological neurons as a node consisting
of inputs, weights, bias, activation function and an output value.
AnANN computes an output by propagating the computed values
from the input neurons to the output neurons. The artificial
neurons are connected throughweights that scale the given input
to the neuron. A single neuron performs a weighted sum of
the inputs in order to arrive at the neuron’s activation. Next, it
transforms the activation value through an activation function
before passing it to the successor neurons. The neuron’s acti‐
vation function is the source of nonlinearity in the network and
enables the handling of non‐linear relationships between inputs
and outputs.

𝑥0

𝑥1

𝑥2

𝑤0

𝑤1

𝑤2

𝑓(.)

Bias 𝑏

𝑦

Figure 2.7 Computational model of a single neuron. 𝑥0, 𝑥1, 𝑥2 rep‐
resent input examples or signals from other units within the network.
The bias term 𝑏 represents an external input to the unit. The activation
function is denoted by 𝑓 and applied on theweighted input entering the
unit.

37

Chapter 2

More formally, the output 𝑦 of an artificial neuron is computed
by

𝑦 = 𝑓
⎛
⎜
⎜
⎝
𝑏 +

𝐷

∑
𝑛=1

𝑤𝑖𝑥𝑖
⎞
⎟
⎟
⎠

, (2.2)

where 𝑓 is the activation function, 𝑏 is the bias, 𝑥𝑖 is the 𝑖th input
of the neuron which is weighted by weight 𝑤𝑖 connecting the 𝑖th
input. An example of an activation function𝑓 is theReLU (Glorot,
Bordes, and Bengio 2011) activation 𝑓(𝑥) = max(0, 𝑥). Other
common activation functions are sigmoid, hyperbolic tangents
or variations of ReLUs.

Hidden
layer 1

Hidden
layer 2Inputs Outputs

Figure 2.8 A three‐layered, feedforward, fully‐connectedneural net‐
work. This particular network contains three inputs, two hidden layers
and one output layer. All neurons of successive layers are intercon‐
nected but there are no connections within in a layer. The inputs are
propagated from front to back.

In order to perform computations with neurons, we organize
them in sequential layers. This gives rise to the name of artificial
neural networks as they chain together many different functions
in a directed acyclic graph. In fully‐connected feedforward net‐
works the input andoutput layer are separatedby so‐calledhidden
layers. The length of this chain is called the depth of the network.
This architecture is visualized in Figure 2.8. The name of the
layer often denotes the operation performed by the layer. For
example, a softmax layer performs a softmax operation: normal‐
ize an input vector of real numbers to probability distribution
proportional to the exponentials in the input numbers. Feedfor‐
ward architectures propagate the inputs sequentially from layer

38

2.3 Learning robotic manipulation tasks with labels

to layer with neurons performing calculations as given in Equa‐
tion (2.2) but in a vectorized way:

𝐱(𝑘) = 𝑓 (𝐛(𝑘) + 𝐖(𝑘)𝐱(𝑘−1)
) . (2.3)

In this Equation (2.3), the vector 𝐱(𝑘) contains the outputs of all
neurons in layer 𝑘 which is based on the input vector 𝐱(𝑘−1) from
previous layer, multiplied with weight matrix 𝐖(𝑘). The compu‐
tation occurring in the hidden layers solves a major problem in
real‐world problems where many applications require disentan‐
gling sources of variation by using high‐level abstract features.
Learned representations offer a solution for such problems be‐
cause they often result in much better performance compared
to hand‐designed features. Stacking multiple hidden layers in
a neural network allows learning representations based on raw
data which solves this central problem of finding features at ap‐
propriate levels of abstraction. This paradigm of stacking layers
of computational units is called deep learning. It takes a com‐
positional learning approach: upstream representations are ex‐
pressed in terms of other, simpler downstream representations.
Early layers learn primitives which are combined later to form
more complex features. In images for example, downstream
neurons learn edges and corners which are used in upstream
layers to learn to recognize for example the sleeve of a shirt.

Crucial in neural networks is that the representations are learned
instead of crafted by hand. Learning in neural networks occurs
by changing the strength of neurons’ connections. The weight
adjustment is a response to the network’s error and has as goal
to modify the computation to make the output maximize the
given objective. Training of these network weights is done us‐
ing gradient‐based optimization as discussed in Section 2.3. Al‐
though alternative training methods exist such as evolutionary
methods (Salimans et al. 2017), gradients provide the direction in
which to change the weights in order to maximize the objective
function. This is especially beneficial for highly parametrized
functions such as neural networks. Differentiation of multi‐layer
neural networks, called backpropagation, was already figured
out in (Rumelhart, Hinton, and Williams 1986) but was rediscov‐
ered by running the costly matrix‐vector multiplication step in

39

Chapter 2

parallel on GPU (Oh and Jung 2004). Although improved com‐
putational hardware and data availability was a crucial enabler
of the success of deep learning, many “tweaks” have proven as
important to stabilize the backpropagation algorithm. Gradients
assume an infinitesimal small step in each direction whereas the
actual step we make has a finite length in order to make any real
progress in optimization. The problem is that the gradients do
change during the course of this step. In the case ofmultivariable
optimization problems of considerable size, which is the case in
deep neural networks containing millions of parameters, the op‐
timization landscape is highly non‐convex. This treacherous op‐
timization landscape can change the gradients drastically leading
to unstable training. This is why gradient‐descent strategies such
asmomentum‐based learning, using parameter‐specific learning
rates and weight initializing schemes are standard tricks in the
deep learning practitioners toolkit. Gradients have also been
known to disappear and diverge in deep neural networks be‐
cause of repeated matrix multiplications when propagating the
information forward and backward through the network. This is
why ReLU activation functions are popular given that this piece‐
wise linear activation has a derivative of value 1 in certain inter‐
vals and zero elsewhere. Another problem caused by the highly
parametrized nature of deep neural networks is overfitting the
data. In machine learning jargon, this means that a model can
predict the training setwell but performspoorly onhold‐out sam‐
ples. A popular way to deal with overfitting is to regularize the
network weights. Regularization effectively reduces the network
computational power by imposing a penalty on weights in the
loss function:

𝐿(𝛉) = 1
𝑁

𝑁

∑
𝑛=1

𝑃 (𝑓 (𝐱(𝑛), 𝛉) , 𝑦(𝑛)
) + 𝛺(𝛉). (2.4)

In Equation (2.4), the function 𝑃 (.) is a chosen optimization met‐
ric that takes the output of the network 𝑓 (𝐱(𝑛), 𝛉) and the real
label 𝑦(𝑛) of sample 𝑛 and is domain‐dependent. The other term
𝛺(𝛉) is the regularization term which balances 𝐿1 and 𝐿2 norm

40

2.3 Learning robotic manipulation tasks with labels

of the weights:

𝛺(𝛉) = 𝛾 ∑
𝑘

∑
𝑖

∑
𝑗

|𝐖
(𝑘)
𝑖𝑗 |

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝐿1 regularization

+𝜆 ∑
𝑘

∑
𝑖

∑
𝑗

(𝐖(𝑘)
𝑖𝑗)

2

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝐿2‐regularization

. (2.5)

The hyperparameters 𝛾 and 𝜆 in the regularization term of Equa‐
tion (2.5) trade‐off the amount of 𝐿1 and 𝐿2 regularization. The
term 𝐖(𝑘)

𝑖𝑗 refers to the weight in layer 𝑘 connecting neuron 𝑖
to neuron 𝑗. 𝐿1 regularization achieves sparse weights while
the 𝐿2 norm leads to networks with smaller weights. Another
popular method to improve generalization properties of deep
neural networks is dropout (Srivastava et al. 2014), which zeroes
out different random neurons at training time, ensembling and
using data augmentation.

The feedforward models described above connect the neurons
between layers in a fully‐connected manner: every neuron from
a layer is connected to every neuron from the preceding and
succeeding layer with a unique weight. This dense connectivity
leads to an explosion in the number of trainable parameters.
However, when the input data contains topological structure,
like the ordering of image pixels in a grid, constraining the con‐
nectivity pattern between layers is a useful method to reduce
the number of parameters and exploit correlation. The most
common way to implement this is by replacing the matrix‐vector
product 𝐖(𝑘)𝐱(𝑘−1) of Equation (2.3) with a sum of convolutions.
This operation is equivalent to sliding a low‐dimensional filter
or kernel over the input image while performing a dot product.
This property leads to sparse connectivity and parameter shar‐
ing. Consequently, by connecting a local spatial region with
a shared set of parameters to the full spatial resolution of the
image, one imitates the cortical neurons in the visual cortex,
which respond only to stimuli within a receptive field (Hubel
and Wiesel 1959). It has been argued that these properties ex‐
plain the success of using trainable convolutions for computer
vision (Goodfellow, Bengio, and Courville 2016). Usually, the
convolution operation is followed by a downsampling operation
that provides a summary statistic of the nearby outputs. This
is most frequently implemented with an aggregation function,

41

Chapter 2

for example max pooling that takes the maximum value of a
rectangular neighborhood. The process of embedding convo‐
lution operations, optionally followed by pooling operations, is
known as a CNN. After demonstrating the effectiveness of CNNs
for large‐scale image classification (Krizhevsky, Sutskever, and
Hinton 2012), using deep hierarchical neural architectures have
been omnipresent in computer vision and natural language pro‐
cessing. In robotics, convolutional layers can provide a percep‐
tion module while the motor control module is implemented as
fully‐connected layers acting on the output of the filter banks.
However, in the case of motor control, the pooling operation is
ofted removed from the architecture as translational invariance
is not a desired property. Invariance to the position of a detected
object would not enable a robot to detect where the object is
located in the image. For more details about the history and
working of deep learning methods and architectures, we refer
the reader to the textbook of Goodfellow, Bengio, and Courville
(2016).

Supervised learning is an important paradigm for robotic learn‐
ing because labelled data provides a clear learning signal. This is
important because time spent on robots is expensive. On the con‐
trary, the learning signal in reinforcement learning (Section 2.5)
often does not optimize for direct task performance and might
lead to expensive learning times onphysical robot platforms. The
following paragraphs discuss relevant work in applying machine
learning methods for solving robotic manipulation tasks.

2.3.3 Supervised learning and neural networks in robotic
manipulation research

Traditionally, supervised learning methods are leveraged in the
perceptionmodule of a robotic manipulation pipeline. For rigid
bodymanipulation, the popularity of data‐driven grasp synthesis
approach took off with the work of Saxena, Driemeyer, and Ng
(2008). In their work, a logistic regression classifier is trained
on synthetic data using manually engineered features. This way,
they demonstrate that a robot is able to unload a dishwasher.
In the domain of deformable object manipulation, Ramisa et

42

2.3 Learning robotic manipulation tasks with labels

al. (2012) searches for quality grasping points of crumbled cloth
in order to maximize the unfolding upon lifting. They do this by
first labelling a dataset of shirts with bounding boxes containing
the appropriate grasping points. Next, they train a logistic re‐
gression model to obtain the probability of the desired grasping
point in a given bounding box using a bag of features from the
input image. By employing the logistic classifier in a sliding
window over the image, they pass image patches containing local
peaks to an SVM to obtain more accurate grasping candidates.
The candidate patch is converted to 3D space by working in a
calibrated environment, and motion planning is executed using
inverse kinematics. Similarly, P. C. Wang et al. (2011) folds socks
by having a perception system that uses manually engineered
features for training an SVM with Gaussian kernel to determine
the type of sock in front of the robot. SVMs have also been used
to identify garment category and pose (Li, Chen, and Allen 2014;
Yinxiao Li et al. 2014). The deformable nature of cloth leads to
self‐occlusions making the garment type and pose classification
ambiguous. The presence of this hidden state is explicitly mod‐
elled using a HMM in (Cusumano‐Towner et al. 2011). Learning
methods are also used to find regions of interest on the cloth.
For example, Doumanoglou et al. (2016) use random forests to
learn garment‐specific grasping points. In (Maitin‐Shepard et
al. 2010), RANSAC (Fischler and Bolles 1981) is used to find the
corners of the cloth. These corners are good candidate grasping
points for unfolding and identifying the type of cloth. Finally,
nearest neighbours have been used to identify wrinkled regions
in a washcloth in order to flatten it (B. Willimon, S. Birchfield,
and I. Walker 2011).

The earliest work using neural networks for deformable object
manipulation is (Howard and Bekey 2000). In their work, they
train a small feedforward neural network that learns the required
minimum grasping force for lifting a deformable object. They
collect the data by iteratively using more lifting force on objects
with certainmasses, deformability anddamping. With the break‐
through in deep learning in 2012 by Krizhevsky, Sutskever, and
Hinton (2012), deep neural networks have found their way into
robotic manipulation, starting in the rigid body manipulation
domain. A successful approach to training deep neural networks

43

Chapter 2

in a supervised setting for robotic manipulation is to use CNNs
as grasp success predictor. Levine et al. (2016) train a CNN on
a large dataset of 800.000 grasping attempts to learn to predict
the grasp success probability of a grasping pose, given an input
image. To sample candidate grasping points, they employ CEM
(Rubinstein and Kroese 2004). Dex‐Net (Mahler et al. 2017a) also
trains a CNN to predict the quality of a grasping candidate. This
network is trained using a simulated dataset where objects are
put into randomized poses on a plane. They use simulation to
evaluate different grasping wrenches using analytic grasp met‐
rics. Their model shows impressive generalizability to the real
world, on different models not seen during training. The Dex‐
Net framework has been extended to work with suction grippers
(Mahler et al. 2017b), use dual‐armed robots (Mahler et al. 2019)
and generate grasping candidates in the network (Satish, Mahler,
and Goldberg 2019).

Another strategy to train controllers using supervised learning
is behavioural cloning. Behavioural cloning is a type of imita‐
tion learning (Argall et al. 2009) in which task demonstrations
are used for learning task execution. In behavioural cloning, a
sequence of states and actions, as executed by a demonstrator,
is recorded as dataset for a supervised learning algorithm. The
goal then becomes for the model to predict the action a demon‐
strator would choose, given a certain state. An in‐depth view of
the field of learning from demonstration is given in (Argall et
al. 2009). In the case of robotic laundry, Jia et al. (2019) learns
single robotic laundry tasks for flattening, folding and twisting
cloth by imitating human examples. Notably in their work is rep‐
resenting the robotic controller using random forests (Breiman
2001) instead of neural networks. The rationale is given by the
non‐parametric nature of random forests to dynamically change
the number of leaf nodes based on the given imitation data and
new cloth configurations. Example demonstrations are also used
in deformable object manipulation to tie knots. Schulman et
al. (2016), for example, uses example demonstrations for non‐
rigid warping (Chui and Rangarajan 2003) based on point‐cloud
registration of the scene to tie knots with a robotic manipulator.
The general idea is to warp the demonstrated trajectory to match
the current setting, whichmay vary in initial conditions and knot

44

2.3 Learning robotic manipulation tasks with labels

geometry. Closely related is thework in (Morita et al. 2003) where
examples and solutions strategies from knot theory is embedded
to perform motor control. Neural network models have also
been a strong candidate for robot learning from demonstration
(Ravichandar et al. 2020). Given the cost associated with real
robot rollouts, it is beneficial to lower the dataset requirements
by having access to the motor control outputs or to decrease the
input dimensionality by, for example, avoiding learning from
pixels. This explains the popularity for teleoperated (T. Zhang
et al. 2018; Duan et al. 2017) and kinesthetic teaching (Finn et
al. 2017) approaches. However, it is difficult to teleoperate a
robot or physically manipulate a robotic arm to fold clothing
items. This is because the speed and forces associated while
executing the task is relevant for achieving proper folds. One
method to compensate for this difficulty is to solve the imitation
learning task in simulation and trying to transfer it to the real
world. This is explored in (Seita et al. 2020) that generates exam‐
ple demonstrations in simulation anduses behavioural cloning to
train a motor policy network to flatten a towel. To fine‐tune this
policy outside the seen dataset distribution, they employ dataset
aggregation (DAgger) in which an oracle policy is used to label
the unseen states during training. An alternative is given in (Sun‐
daresan et al. 2020) that uses simulated data to learn visual object
descriptors indicating the segments of a rope. Such embeddings
implicitly encode geometric structure which can then be used
for knot‐tying using example demonstrations. Although imita‐
tion learning is a viable alternative for learning to manipulate
objects, a general problem plaguing imitation learning methods
is generalizing to unseen scenarios. In the case of trajectory
execution, errors can accumulate which drastically increases the
probability of task failures. This is why existing methods apply
data augmentation, include teacher advice or use reinforcement
learning (Section 2.5).

Another approach to leverage the expressiveness of deep neural
networks in a supervised setting is to train a dynamics model.
This model, often called world model, is obtained by training on
⟨state, action,next state⟩ tuples. The problem that worldmodels
try to solve is finding the optimal sequence of actions that brings
the given input state to the desired output state by querying the

45

Chapter 2

world model. Or in other words, the robot knows how to act
while the user can tell the robotwhat it should do. Tomanipulate
a rope into the desired shape, for example an S‐shape, A. Nair
et al. (2017) let the robot make arbitrary manipulations on the
rope while recording the state transitions. This data is then used
for training the inverse dynamics model. Planning can then be
done using the world model by giving transitionary keyframes
that define subgoals to the robot. A similarworldmodel is trained
in (Ebert et al. 2018) where the model learns to predict future
pixels given the planned actions. The data collection is done in
a self‐supervised way in which the robot does motor babbling.
The trained world model then enables model predictive control
in which they show good performance for folding cloth and tow‐
els. Whereas the training data for the world model in (A. Nair et
al. 2017) is given by self‐supervision, in (Yang et al. 2016) the data
is given by teleoperating a humanoid robot with a virtual reality
headset. This training data is then passed into an autoencoder
which produces a time series in latent space. A second stage
neural network then learns cloth dynamics by sliding a window
over the encoded time series. A further attempt to embed the
world model into the control module can be done by sandwich‐
ing a fully‐connected network between the encoder and decoder
(Tanaka, Arnold, and Yamazaki 2018). Instead of embedding
a controller module, other work embed physics priors into the
network architecture. By assuming the deformable objects are
build‐up of small, connected particles, it is possible to represent
their connectivity and interactions in a graph neural network.
This allows to efficiently learn deformable object dynamics to
solve for downstream control tasks such as poking deformable
objects (Mrowca et al. 2018) and merging liquids (Yunzhu Li et
al. 2018).

Main finding

Label‐based learning for robotic manipulation tasks is efficient
but not always effective or possible.

To conclude, framing robotic manipulation of rigid and
deformable objects as a supervised learning problem has
been successful for estimating the state of deformable objects or

46

2.4 Learning roboticmanipulation tasks without user‑provided labels

manipulating cloth by means of behavioural cloning. However,
training with hand‐labelled or generated data has two main
issues (Pinto and Gupta 2016). The first issue is the human bias
towards preferring grasps poses that are similar to the way a
person would grasp an object. This discourages the exploration
of unconventional grasp configurations. The second issue is
the cost to exhaustively evaluate all possible grasps because an
object can be grasped in multiple ways. Therefore, learning
on robots requires a method that can work without human
supervision.

2.4 Learning robotic manipulation tasks without
user‑provided labels

Annotating datasets is an expensive effort that requires manual
labour in order to ensure high‐quality labels. For example, la‐
belling all wrinkles in a cloth of a human folding clothing in a
video of 60 s recorded at 60 fps, requires annotating 3600 frames.
Within machine learning, there exists a body of research that
avoids this costly annotation effort. We discuss two approaches
of learning without manually provided labels, using unsuper‐
vised and self‐supervised learning methods, next.

2.4.1 Unsupervised learning

Whereas supervised learning methods search for a mapping be‐
tween inputs and labels of observations, unsupervised learning
uncovers structure in the input data without the use of any la‐
bels.

Unsupervised learning

Unsupervised learning extracts regularities from unlabelled
datasets in order to reduce the description of the data to their
most characteristic elements.

The first class of unsupervised learning applications is clustering:
segmenting data into similar groups based on a similarity metric

47

Chapter 2

that calculates the distance between observations. In the case of
robotic folding, clustering is a popularmethod for segmenting an
input image in order to separate different clothing articles in the
scene (Doumanoglou et al. 2016; Maitin‐Shepard et al. 2010; Jia
et al. 2018). The second class of unsupervised learning is dimen‐
sionality reduction methods, which reduces the dimensionality
of the features of a dataset. Feature extraction, in particular,
looks at projecting the original input features to a new space of
smaller size while preserving asmuch of the significant structure
of the input space as possible. Reducing the input dimensionality
is important formachine learning algorithms because their com‐
plexity not only increases with the size of the input dataset but
also with the number of features. The practice of feature extrac‐
tion is present in the deformable object manipulation domain,
given that high‐dimensional camera streams are often used as a
sensor for estimating the state of cloth. Yinxiao Li et al. (2016)
for example, considers the problem of cloth flattening for robotic
ironing. To reduce the dimensionality of the image of a discon‐
tinuity scan of a cloth, they employ SIFT descriptors (Lowe 1999)
as input for a support vector machine classifier to assign the
probability of a discontinuity to be a permanent wrinkle. Other
work (Jia et al. 2018) observes that deformations on cloth can be
detected as shadows and shape variability. To exploit this visual
property, they apply a set of Gabor filters on the input image
and accumulate the filtered images into a histogram as a high‐
level state representation of the cloth. A noticeably early work
of using neural networks is the work of Foresti and Pellegrino
(2004) in which the problem of grasping fur tails from a con‐
veyor belt is considered. To segment the different furs present
in the image, they train self‐organizing maps (Kohonen 1982); a
neural network in which neurons compete to be activated by the
input signal. This results in disconnected regions of interest that
are joined using skeletonization. Finally, a heuristic is used to
determine and grasp the largest fur. Autoencoders, i.e. neural
networks trained with reconstruction tasks, are another useful
feature extractor. Yang et al. (2016) for example, use the latent
space of a deep convolutional autoencoder as input for a deep
fully‐connected neural network that acts as a dynamics model
of the cloth. Depth sensor streams is another high‐dimensional

48

2.4 Learning roboticmanipulation tasks without user‑provided labels

inputmodality for cloth state estimation, which canbe reduced to
a lower dimension. Ramisa et al. (2013) for example, transform
depth images to SIFT‐like descriptors that describe a patch based
on the distance between the normals in the patch and a reference
set of normal directions.

Together with data preprocessing, dimensionality reduction
methods also play an important role in data visualization. The
analysis of the underlying structure of a high‐dimensional
dataset can be facilitated when the data is represented in
fewer dimensions. In the context of deep learning, non‐linear
dimension reduction methods are being used to study the
semantics of what the hidden units are encoding. These
methods, in particular, look at reducing the input space to the 2D
plane in order to enable the plotting of the underlying patterns
in the data. Amongst non‐linear dimension reduction methods,
t‐SNE and UMAP are often chosen techniques for visualization
purposes. Both methods construct a graph and optimize a
subsequent low‐dimensional embedding that preserves the
structure of that graph. At the core, these methods employ loss
functions that make similar points attract each other and push
dissimilar points away. From a high‐level perspective, t‐SNE
defines distances between samples as conditional probabilities
and optimizes a low‐dimensional embedding in which the
relative distances between samples match those of the original
high‐dimensional distances. This optimization is defined as
minimizing a Kullback‐Leibler divergence between the pairwise
distances ins the low‐dimensional embedding and the high‐
dimensional input space. t‐SNE is, for example, being used
in TCNs of Sermanet et al. (2018) to show that the learned
embeddings semantically encode the same pose of robots and
humans close in embedding space. For example, both images of
a robot and a human crouching and extending the same arm are
encoded proximate in embedding space. Similarly, in Atari DQN
(Mnih et al. 2015) the last hidden layer is represented with t‐SNE
embeddings to discover that visually dissimilar states are close
in embedding space due to having the same expected reward.
UMAP is another state‐of‐the‐art dimensionality reduction
method that has been successfully employed in biology (Cao et
al. 2019),machine learning (Carter et al. 2019) and social sciences

49

Chapter 2

(Diaz‐Papkovich et al. 2019) to discover underlying structures
in high‐dimensional datasets. UMAP constructs a weighted
graph of nearest neighbours with the weights representing
the probability that two points are connected. Then, UMAP
optimizes a low‐dimensional representation of this graph that
is structural as similar as possible. This is done by minimizing
the cross entropy in order to measure the distance between the
high‐dimensional and low‐dimensional graph. UMAP has been
argued to better preserve global structure compared to t‐SNE
(Becht et al. 2019) resulting in semantically more meaningful
clusters.

2.4.2 Self‑supervised learning

A large class of successful ML methods rely on some form of su‐
pervision. In robotic folding, this supervision canbe labelling the
type of clothing item in front of the robot, specifyingwhich action
a human would take or which torques to exert on the motors.
Collecting this data is expensive, sometimes difficult and prone
to bias and errors (Mehrabi et al. 2021). Unsupervised learning is
on the other end of the supervision spectrum, but it is hard to know
which signal it will pick up for learning. Providing supervision
while building up a dataset, without manually labelling every
sample, is known as self-supervised learning. Therefore, by having
a data generation process that creates pseudolabels, one can use
well‐established supervised learning algorithms. The labelling
process allows us to inject prior knowledge about the task by
inventingmock tasks, also knownas pretext tasks. The goal of self‐
supervised learning is not to solve this invented task but rather
to learn meaningful representations that can be used for down‐
stream tasks. In cloth folding, for example, we can present the
network with a shirt, rotate it and ask the model to predict how
many degrees the shirt was turned. Although this example task
is only deployable in a narrow set of tasks, we do not care about
the accuracy. Instead, wewant the network to learn ameaningful
latent space.

There are two broad categories of self‐supervised learning. The
first category, generative methods, aims to reconstruct the input

50

2.4 Learning roboticmanipulation tasks without user‑provided labels

signal while learning a latent space. These methods are popular‐
ized by generative adversarial networks (Goodfellow et al. 2014).
The second category, discriminative methods, reframes the self‐
supervised problem as a classification task. In particular, con-
trastive self‐supervised learning looks at contrasting positive and
negative examples. More formally, let ℎ(𝐱) ∈ ℝ𝑑 be the encoding
of an input sample 𝐱, called the anchor. We define 𝐱𝑝 as a positive
sample and 𝐱𝑛 as a negative sample. The goal then becomes to en‐
code the anchor andpositive close in embedding space compared
to the anchor and the negative:

dist(ℎ(𝐱), ℎ(𝐱𝑝)) ≤ dist (ℎ(𝐱), ℎ(𝐱𝑛)).

The distance function dist measures how similar samples are.
For example, in the case of robotic folding, we would want the
embedding to push frames of folded shirts closer together than
completely crumbled shirts. The hypothesis is that by forcing
similar items to be close in embedding space, the network has
to learn relevant features and build a semantically meaningful
embedding this way. This is done by enforcing invariances in
the embedding. For example, if the network is presented with
an anchor image, a rotated anchor image and a random differ‐
ent image, the network learns to become rotational invariant.
Other popular pretext tasks in literature to learn different types
of invariances are learning to colourize images (Zhang, Isola, and
Efros 2016), reconstructing the original input (Pathak et al. 2016)
and predicting the relative position of two random patches (Do‐
ersch, Gupta, and Efros 2015).

Self‐supervised learning

Self‐supervised learning aims to learn semantically meaningful
embeddings by solvingmock tasks that force themodel to attend
to task‐relevant features while learning useful invariances.

Using contrastive objectives to learn good representations have
been popularized in the NLP domain. In (Mikolov et al. 2013),
contrastive training was done by using co‐occurring words as
semantically similar for learning word embeddings. Extensions
to images, video and speech data were popularized with con‐
trastive predictive coding (van den Oord, Li, and Vinyals 2018).

51

Chapter 2

Thismethodmaximizes themutual informationbetween thepre‐
dicted encodings and their corresponding positive samples. Sim‐
ilarly, SimCLR (Chen et al. 2020) maximizes agreement between
an image and its applied data augmentations by using a cosine
similarity loss.

In this work, we focus on extracting self‐supervised signals from
video task demonstrations. The inherent structure in videos is
the temporal dimension, which can be used as a supervisory
signal to provide contrasting examples. The goal then becomes
to recover the temporal coherence of a video. One of the first
works (Misra, Zitnick, and Hebert 2016) leveraging time as con‐
trastive signal inputs a sequence of frames and classifies whether
the frames are in the correct order. Later work (H.‐Y. Lee et
al. 2017; Fernando et al. 2017) also frames self‐supervised learn‐
ing as a classification task in which the correct temporal order
has to be determined. Follow‐up work has looked at using self‐
supervised embeddings as a reward or progression signal for
learning agents. In Singh et al. 2019, they construct a reward
function based on an image classifier trained on successful goal
states reached by teleoperating the robot towards the end state.
In Hartikainen et al. 2019, time is used as a learned distance
function for assigning environment rewards. However, their ap‐
proach requires human intervention in order to select the desired
goal states. S. Nair et al. 2020 also uses time as a supervisory
signal in videos of expert demonstrations to learn an optimal tra‐
jectory of states. However, they assume the possibility of visually
removing the end‐effector from the scene which is not possible
for all tasks. For example, it is not possible to drop a shirt in mid‐
air while being folded. Other work A. V. Nair et al. 2018 looks
at expressing the reward function as the distance in latent space
between the current state and the goal state. However, this is not
possible when there is a trajectory in latent space that has to be
followed in order to execute the task. This problem is enlarged
when the start state is very similar to the end state. In this sce‐
nario, the agent would not be incentivized to leave the start state
because it already receives high rewards due to being close to the
end state. Alternatively, it is possible to add a contrastive loss
as an auxiliary objective in RL as done in CURL Laskin, Srinivas,
and Abbeel 2020. The authors show that their method outper‐

52

2.4 Learning roboticmanipulation tasks without user‑provided labels

forms other learning methods on the DM Control Suite, i.e. a
set of continuous control tasks in simulation. An important self‐
supervised architecture we use in this work are TCNs (Sermanet
et al. 2018). The central idea in this approach is to leverage cross‐
modal inputs, such as different camera viewpoints, in order to
find differences in frames that cannot be attributed to a changing
viewpoint. We discuss this in detail in Chapter 6.

In the domain of deformable object manipulation, self‐
supervised methods have been used primarily to do the state
estimation of objects. A latent space describing the state of a rope
is learned using self‐supervised learning on simulated images in
(W. Yan et al. 2020). Thismodel is then used as forward dynamics
model in which an action trajectory is sampled that minimizes
the distance towards the given goal state. The actions are chosen
such that only points on the rope are considered. A similar
approach for bringing fabric into a desired state is explored in
(Hoque et al. 2020). They learn an image prediction model in
simulation, which can be used to solve arbitrary goals at test time
via model predictive control. They apply domain randomization
to transfer fabric smoothing policies to a real‐world surgical
robot. However, their approach fails to transfer folding tasks
successfully due to the sim‐to‐real gap. An alternative sim2real
solution is explored in (M. Yan et al. 2020) that also train an
autoencoder to predict the dynamics of deformable linear
objects. The encoder uses a transformer architecture (Vaswani
et al. 2017) that iteratively refines the estimation of the image
space coordinates of points on the rope. The network is then
fine‐tuned on real images using a self‐supervised objective. This
self‐supervised objective encodes a colour contrast cue: the
target deformable linear object has a different colour from the
background. This prior can bemodelledwith a Gaussianmixture
model that segments the input image. By rendering the output
rope state from the network to image space, a differentiable
loss can be defined on the segmented input image to refine the
network. This method leverages simulated data for pretraining
of the network, approximately 5000 real images for fine‐tuning
and is able to accurately manipulate a rope into a given target
state.

53

Chapter 2

2.5 Learning robotic manipulation tasks from
interaction

2.5.1 Reinforcement learning

In supervised learning, a clear learning signal allows training
models such that their output matches the labels given in the
training set. This requires obtaining a dataset that labels every
observation with the correct response. For example, in the case
of a robot folding a shirt, supervised learning requires providing
supervision on how tomove every joint for all arm and shirt con‐
figurations in the training set. This sequential decision‐making
process might alternatively better be solved by providing an in‐
dication on how good the model is behaving. For example, we
might give a robot a positive reward when it has folded a shirt
without wrinkles and penalize it when it throws the shirt of the
table. This approach of giving agents rewards in an environment
is formalized as RL and is an eminent approach for learning con‐
trol policies with minimum user intervention. RL has been suc‐
cessfully applied in domains ranging from game playing (Mnih
et al. 2015), helicopter flight (Ng et al. 2003), autonomous driving
(Sallab et al. 2017), locomotion (Tan et al. 2018) and robotic ma‐
nipulation (Levine et al. 2016).

Reinforcement Learning

Reinforcement learning is interactively observing and influenc‐
ing the environment while receiving rewards in order to learn
what to do in order to solve a task.

Sequential decision making is formalized as a MDP: given a se‐
quence of states, determine the action that will maximize the
expected discounted future reward. This statement implies that
an agent can observe its environment, exert influence on its en‐
vironment through actions and has a notion of what constitutes
good behaviour. More formally, an MDP is a tuple (𝑆, 𝐴, 𝑃 , 𝛾, 𝑅)
where:

1. 𝑆 is a set of states representing the environment. For exam‐
ple, the set of joint values of a robot arm and the position of

54

2.5 Learning robotic manipulation tasks from interaction

the sleeve of a shirt.

2. 𝐴 is a set of actions. These actions are performed by the
agent and influence the environment. For example,moving
the end‐effector of the robotic arm up or downwards.

3. 𝑃 are the state transition probabilities. This is a distribution
over states and actions indicating the probability to arrive
at a new state: 𝑃 (𝑠𝑡+1 ∣ 𝑠𝑡, 𝑎𝑡).

4. 𝛾 ∈ [0, 1[is the discount factor and used to discount future
rewards to the present.

5. 𝑅 = 𝔼[𝑅𝑡+1 ∣ 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎] is the reward function, based
on the action taken and the resulting state the environment
transitions to.

Decision making in an MDP goes as follows: the environment
is initialized in a certain state 𝑠𝑡. The agent chooses an action
𝑎𝑡 to execute in the MDP. This way, the state of the MDP transi‐
tions to a successor state 𝑠𝑡+1 governed by 𝑃 . Based on this new
state, the agent receives a reward 𝑟𝑡+1

5 and chooses a new action
𝑎𝑡+1. This process is visualized in Figure 2.9 and repeats until
the environment signals a terminal state, for example, a robot
manipulator successfully folds a shirt. MDPswith terminal states
are called episodic MDPs. Furthermore, a distinction is made
between states and observations. A state is assumed to contain all
relevant information to make an optimal decision. In technical
jargon, this is called theMarkov property: the future depends only
on the current state and action, but not on the past. However,
it is hard to capture all task‐relevant features with sensors. For
example, a single camera image of a crumbled shirt does not
satisfy the Markov property because the occlusions do not allow
to make informed decisions about the occluded parts. In such
cases, the states are called observations 𝑂 and the formalism a
POMDP.

The eventual factor driving the decision of the agent is the reward
function. The goal of an RL agent is to maximize the sum of

5. Both notation 𝑟𝑡 and 𝑟𝑡+1 are used in literature. We use 𝑟𝑡+1 to denote that
𝑠𝑡+1 and 𝑟𝑡+1 are jointly determined.

55

Chapter 2

Agent

Environment

Reward 𝑟𝑡+1

Action 𝑎𝑡
State 𝑠𝑡

Figure 2.9 Canonical flow of the RL loop in the context of robotics.

expected discounted rewards 𝐺𝑡:

𝐺𝑡 = 𝑅𝑡+1 + 𝛾𝑅𝑡+2 + 𝛾2𝑅𝑡+3 + ⋯ + 𝛾𝑇 −𝑡−1𝑅𝑇

=
𝑇

∑
𝑘=𝑡

𝛾𝑘−𝑡𝑅𝑘+1.
(2.6)

To cope with the difference between the immediate reward
𝑅𝑡(𝑠𝑡, 𝑎𝑡) of a state‐action pair and the long‐term value of taking
action 𝑎𝑡 in state 𝑠𝑡, we introduce the notion of value functions.
A value function denotes how good it is to be in a certain state.
More formally, the value function 𝑣𝜋(𝑠) expresses the expected,
cumulative, discounted, future reward of a state:

𝑣𝜋(𝑠) = 𝔼 [𝐺𝑡 ∣ 𝑆𝑡 = 𝑠] , (2.7)

or of a state‐action pair:

𝑞𝜋(𝑠, 𝑎) = 𝔼 [𝐺𝑡 ∣ 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎] . (2.8)

56

2.5 Learning robotic manipulation tasks from interaction

The function 𝑞𝜋(𝑠, 𝑎) is called the Q‐function. This notation in‐
troduces the policy 𝜋 in the subscripts 𝑣𝜋(𝑠) and 𝑞𝜋(𝑠, 𝑎) . This is
due to agents’ rewards depending on which actions they will take
in the future. A policy is a distribution over 𝑎 ∈ 𝒜(𝑠) for each
state 𝑠 ∈ 𝒮 : it maps the probability of selecting an action given a
certain state. Hence a Q‐value denotes the total reward the agent
receives in state 𝑠𝑡 for taking action 𝑎𝑡 and then following policy
𝜋(𝑠, 𝑎) in expectation. The goal of the agent then becomes to find
the policy that maximizes the value functions:

𝑣∗(𝑠) = max
𝜋

𝑣𝜋(𝑠) = max
𝑎

𝑞𝜋∗(𝑠, 𝑎). (2.9)

Writing out the expectation of Equation (2.7) gives rise to the
Bellman equation:

𝑣∗(𝑠) = max
𝑎 ∑

𝑠′
𝑝 (𝑠′ ∣ 𝑠, 𝑎) [𝑟 + 𝛾𝑣∗ (𝑠′)] , (2.10)

with 𝑠′ being the successor state of state 𝑠 after taking action 𝑎.
In the case of Q‐values the Bellman equation becomes:

𝑞∗(𝑠, 𝑎) = ∑
𝑠′

𝑝 (𝑠′ ∣ 𝑠, 𝑎) [𝑟 + 𝛾 max
𝑎′

𝑞∗ (𝑠′, 𝑎′)] . (2.11)

The Bellman equation provides recursive decomposition and
value functions that allow to reuse sub‐solutions. Hence, the
Bellman equation can be solved using dynamic programming.
However, dynamic programming algorithms, such as value
iteration and policy iteration (Sutton and Barto 2018), requires
knowing the transition and reward models of the MDP. Modern
RL algorithms are often divided on a spectrum ranging from
exclusively finding the value of states to finding how to behave
optimally without inferring any value function. This distinction
is discussed next.

Value‑based methods The first category of RL algorithms are
value‐based methods, also called critics, which try to discover
the value function by interacting with the environment. This
principle is known as TD learning (Samuel 1959) and is argued
to be themost unique contribution to RL (Sutton and Barto 2018).

57

Chapter 2

TD learning combines the ideas of dynamic programming (prob‐
lem decomposition and reusing subsolutions) and Monte Carlo
methods (averaging complete returns by sampling the probabil‐
ity distribution). The central idea is to learn the value function
directly from experiencewith bootstrapping, in amodel‐free and
online manner. A popular instantiation is Q‐learning (Watkins
and Dayan 1992) which iteratively updates the Q‐function as fol‐
lows:

𝑄(𝑠, 𝑎) ← 𝑄(𝑠, 𝑎) + 𝛼

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝑟 + 𝛾 max
𝑎′

𝑄 (𝑠′, 𝑎′) − 𝑄(𝑠, 𝑎)
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

TD error

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(2.12)

Representing the value function 𝑄(𝑠, 𝑎) has originally been done
with tables (Watkins and Dayan 1992) but do not scale to real
problem state and action spaces. Thememory and time required
to fill a table representing all possible states of, for example, a
camera image are infeasibly high. This is where reinforcement
learning borrows the idea of supervised learning, or more gen‐
erally function approximation, from the machine learning do‐
main. By using machine learning models as Q‐function repre‐
sentations, an agent can use seen data from interaction with the
environment to learn to generalize to states never seen before. A
broad handling and discussion of both tabular and approximate
RL methods is discussed in the textbook of Sutton and Barto
(2018). Neural networks, in particular, have been early candi‐
dates as function approximators for value functions, often called
Q‐networks. Gradient‐based optimization of the Q‐network is
then possible by backpropagating the TD error indicated in Equa‐
tion (2.12). Neural networks are notoriously difficult to train in a
TD setting because updating weights has unpredictable changes
at other places in the state‐action space. Mitigating this non‐
stationary property of the data has been central in making value‐
based RL methods work on real‐life tasks. In the context of con‐
trol, Riedmiller (2005) developed NFQ in which a three‐layered
feedforward neural network is trained to predict the state‐action
values of control tasks such as cartpole regulation. NFQ is charac‐
terized by using a replay buffer (Lin 1992): storing the experience
tuples (𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1) in memory for training purpose. NFQ em‐

58

2.5 Learning robotic manipulation tasks from interaction

ploys this replay buffer in a batchRLmanner: the neural network
is trained from scratch on the whole replay buffer each time the
training loop is called. Scaling this system up to working with
image‐based inputs using CNNs is called DQN (Mnih et al. 2015).
DQN learns online by sampling the replay buffer and computes
future Q‐values (𝑟 + 𝛾 max𝑎′ 𝑄 (𝑠′, 𝑎′)) in Equation (2.12)) with
older versions of the Q‐network, called the target network. A
major problem with value‐based methods is that they do not op‐
timize the task objective directly. Instead, value‐based agents
search for the correct value of state‐actionpairs instead of search‐
ing how to behave optimally. This problem is solved by the next
category of RL agents, policy‐based methods, which is discussed
in the next subsection.

Policy‑based methods The second category of RL algorithms is
labelled policy‐based methods, also called actor and actor‐critic
methods6, which optimize a parametrized policy directly. As‐
suming a differentiable policy 𝜋𝛉(𝑎 ∣ 𝑠) parametrized by 𝛉, the
goal of policy search becomes to find the optimal policy parame‐
ters 𝛉∗:

𝛉∗ = argmax
𝛉

𝔼𝛕∼𝑃𝛉(𝛕)
⎡
⎢
⎢
⎣

𝑇

∑𝑡
𝑟(𝑠𝑡, 𝑎𝑡)

⎤
⎥
⎥
⎦

. (2.13)

In this notation, 𝛕 denotes a trajectory of state‐action pairs
(𝑠0, 𝑎0, 𝑠1, 𝑎1, ⋯). Parametrization of the policy offers a natural
way to deal with applications in continuous action spaces,
compared to value‐based methods that require evaluating
all actions. Policy‐based methods also optimize for task
performance directly. However, policy‐based methods are less
sample efficient compared to value‐based methods because
new data needs to be sampled each time the policy changes.
Common policy search methods are A3C (Mnih et al. 2016), PPO
(Schulman et al. 2017) and TRPO (Schulman et al. 2015).

Value‐based methods have borrowed ideas from policy‐based
methods to extend Q‐learning to a continuous action space.

6. Historically, a distinction was made between actor methods and actor‐
critic methods depending onwhether a critic with parametrized value function
approximationwas used. However, modern policy‐basedmethods all use some
form of value function approximation rendering this distinction obsolete.

59

Chapter 2

Notably, DDPG (Lillicrap et al. 2015) and SAC (Haarnoja et
al. 2018) which learns a parametrized policy such that the max
operation in DQN of Equation (2.12) is differentiable with respect
to the action argument: max𝑎′ 𝑄𝜙(𝑠, 𝑎′) ≈ 𝑄𝜙(𝑠, 𝜇𝜃(𝑠)), with 𝑄𝜙
being the value function neural network parametrized by 𝜙 and
𝜇𝜃 the policy neural network parametrized by 𝜃. DDPG have
been succesfully used to train a seven degrees of freedom arm
for reaching and door opening tasks (Gu et al. 2017).

Comparison to supervised learning. The sequential decision
making of RL introduces some challenges not present in
supervised learning. In RL, the consequences of actions are
often delayed, making it hard to assign actions to outcomes.
For example, if a robot fails to fold a piece of cloth after 100
steps, it is hard to know whether this was due to the end‐effector
losing grip of the cloth at step 99 or the fast motor accelerations
at step 42. This problem is known as the credit assignment
problem. Additionally, the sequential nature of RL makes it
difficult to reuse data, making RL more data‐intensive. This is
due to many RL algorithms having an on-policy nature: each
time the policy that we want to optimize changes, we need to
collect new data of it. Another aspect of decision making is
trading‐off exploration and exploitation: if the robot knows
that folding a shirt via the sleeves leads to success, why would
it try other methods such as lifting the shirt in the air and risk
failing? This exploration‐exploitation dilemma has been coped
with by introducing randomness in policies or curiosity (Pathak
et al. 2017) but remains an unsolved problem (Sutton and Barto
2018).

RL in the context of optimal control. RL and classical optimal
control both address the problem of finding an optimal policy
that optimizes an objective function in a system described by
states, actions and a model governing the state transitions. How‐
ever, optimal control assumes perfect knowledge of the state
transitions while RL operates directly on measured data (i.e. re‐
wards from environment interaction). RL fills the gap in opti‐
mal control for tasks that are analytically intractable and can be

60

2.5 Learning robotic manipulation tasks from interaction

viewed as adaptive optimal control (Sutton, Barto, and Williams
1992).

RL in the context of robotics. Much of the work for learning
manipulation skills for deformable objects has been inspired by
work done in the rigid object’s domain. These methods, in turn,
often rely on work done on learning to play games and solve toy
tasks in simulation environments. First attempts at transferring
vision‐based DQN to visual servoing were attempted in (F. Zhang
et al. 2015) but failed. Their end‐to‐end approach to frame the
inherent continuous action spaces of robotic manipulation to a
discrete algorithm such as DQN is to discretize the joint motor
outputs into 9 motor actions bins. To further reduce the search
space, they reduce the number of joints of the robot from 7
DOF to 4 DOF. They train a DQN controller in simulation while
adding noise and task variations. However, transfer to the real
robot failed due to the low simulation fidelity and inappropriate
reward functions. Later work (James and Johns 2016) managed
to transfer virtually trained DQN agents on pixels by using
high‐fidelity simulation and careful reward tuning. With the
introduction of continuous action spaces for value‐based agents,
more specifically DDPG (Lillicrap et al. 2015), DQN variants
started being successfully applied in the robotic manipulation
domain (Gu et al. 2017). This success was mainly driven by
directly representing the continuous action space of robot
actuators, reusing past experiences for training and working in
parallel.

Deep RL for deformable object manipulation has arguably first
been used in (Matas, James, and Davison 2018). By training a
DDPGagent in simulation, they demonstrate limited transferabil‐
ity to the real world using domain randomization to fold a towel.
They find that a lack of simulation tools for cloth is the main
factor limiting their results. The same approach is improved in
(Jangir, Alenyà, and Torras 2020) by warm‐starting the learning
with example demonstrations. An additional speed‐up can be ob‐
tained by filling the replay buffer with example demonstrations
(Tsurumine et al. 2019). Wu et al. (2020) examines how to link
two policies, i.e. picking and placing cloth which are normally

61

Chapter 2

independently trained. They opt for structurally encoding the
relationship between picking and placing of cloth. This is done
by having the second learned policy, i.e. the place policy, receive
the last output of the picking policy. This way, the network can
optimize the picking point that gives the most value during plac‐
ing. Batch RL methods, a variant of RL in which the agent is
trained once on a dataset without interacting with the environ‐
ment, is explored in (R. Lee et al. 2020). Instead of generating an
interaction dataset with randommotor actions, they use a motor
control heuristic. Such heuristics allow collecting data that con‐
tainsmoremeaningful interactions compared tomotor babbling.
They train a fully convolutional DQN agent offline, resulting in a
Q‐value heatmap per possible action. This approach is successful
in achieving simple folds in rectangular cloth, with one hour of
real‐world data. Another DQN architecture is explored in (Seita
et al. 2021). They employ Transporter networks, an architecture
that predicts the spatial displacement of a local area, to learn to
fill deformable bags with objects in simulation.

Transitioning from solving problems with supervised learning to
using RL carries problems concerning data efficiency, general‐
izability, delayed rewards and exploration‐exploitation trade‐off.
These problems are enlarged in the robotics domain. Experi‐
ence on a real physical system is expensive to obtain, so reusing
past data and trading‐off exploration and exploitation becomes
even more important. Additionally, while RL is already faced
with reproducibility issues (Henderson et al. 2018), reproduction
and repetition on real robots are non‐trivial due to robot wear,
noisy state observation and stochastic action execution. This
real‐world reproducibility issue alsomakes it difficult to establish
a common ground for benchmarking RL algorithms on physical
robots. A category of RL algorithms improves the sample effi‐
ciency of RL by learning the system dynamics from interaction.
However, small errors under this model‐based RL approach ac‐
cumulate, making it hard to transfer the results to the real world.
Similarly, latency issues also plague effective learning: delays be‐
tween the real state and state observation and between the action
choice and action execution requires some form of memory in
order for the state to be Markovian. A problem often neglected
in the general RL community is safe exploration: a cloth folding

62

2.5 Learning robotic manipulation tasks from interaction

robot, for example, might tear a shirt to pieces. Finally, although
RL offers a significantly easier approach to control: specify the
reward instead of the behaviour, finding an appropriate and im‐
plementable reward function have proven difficult. Specifying
and finding a suitable reward function for RL problems is dis‐
cussed next.

2.5.2 Reward learning

Reinforcement learning holds amajor advantage over supervised
learning when it comes to output specification: generating a re‐
ward signal requires less knowledge about the domain compared
to specifying which actions to take. However, the reward func‐
tion is a crucial ingredient that needs to be tuned in order for
an RL agent to perform well (Sutton and Barto 2018). In partic‐
ular, the episodic nature of robotics tasks makes reward sparse
and difficult to learn from. Additionally, many robotic manip‐
ulation tasks are multi‐objective. For example, folding a shirt
often adheres to the subtasks discussed in Section 2.2: isolating
the clothing piece, unfolding, folding, flattening and stacking.
Therefore, the RL practitionerweights features that describe task
performance. For example, in the peg‐hole insertion task in (Ve‐
cerik et al. 2018), s the distance between the peg‐socket and the
peg‐hole. Notably, the authors conclude that assigningweights to
the features of the reward function is delicate and crucial for task
performance. In practice, constructing reward function compo‐
nents and weighting them is often done by trial‐and‐error or a
sweep over a predefined set of weights.

Learning reward functions is a viable alternative to manually
specifying rewards as a way to avoid bias, overfitting and under‐
specification.

This process is known as reward shaping (Laud 2004): tuning the
reward function based on empirical task performance. Hence,
reward shaping is a method to embed prior task knowledge in
the reward function in order to accelerate the learning process.
However, even this trial‐and‐error process requires specifying
which components constitute the reward function and how they

63

Chapter 2

are measured. For some domains, specifying and measuring the
reward function components is non‐trivial. A reward function for
autonomous driving for example, should take collisionwith other
objects, passenger comfort and in‐lane driving into considera‐
tion. Cloth folding suffers from the same specification problem
in addition to being hard to measure due to difficult state esti‐
mation caused by the deformations. Behavioural cloning is not a
suitable alternative to learning the task from demonstration be‐
cause it learns to copy the task execution instead of learning the
task intent. Additionally, differences between the learning agent
and thedemonstrator’smorphologymakecopyingbehaviour am‐
biguous.

Defining a reward function for the robotic folding task is difficult
because it requires the state estimation of the cloth. Previous
work (Doumanoglou et al. 2016; Miller et al. 2012) has extracted
the contour of the textile using colour segmentation. In (Bala‐
guer and Carpin 2011), a marked towel is tracked, allowing the
calculation of the distance between points on the towel from the
training sample and the example demonstrations so that it can
be used as a reward for the agent. Their method requires prior
information about the shape of the object in order to reconstruct
the missing market points. More recent work in using (deep)
reinforcement learning for robotic folding also used vision‐based
methods to define the reward function for the agent (Tsurumine
et al. 2019; Matas, James, and Davison 2018). However, relying
solely on visual inputs and marker clues does not scale well.

Another methodology to leverage example demonstrations is
inverse reinforcement learning. Inverse RL is a category of
algorithms that learn reward functions from demonstrations
(Ng, Russell, et al. 2000). Formally, inverse RL can be defined
using the MDP formalization of RL. RL tries to discover an
optimal policy 𝜋∗ by collecting rollouts 𝒟 ∶ {𝜏𝑖} ∼ 𝜋 from the
environment, with 𝜏𝑖 being a trajectory of state‐actions pairs
⟨𝑠0, 𝑎0, ⋯ , 𝑠𝑇 , 𝑎𝑇 ⟩, by maximizing the sum of expected rewards
(cfr. Equation (2.13)). By contrast, inverse RL tries to discover
the reward function ℛ that explains the observed behaviour 𝜋
in demonstrations 𝒟 . This learned reward function can then be
used by the agent to learn policies. Inverse RL is challenging

64

2.5 Learning robotic manipulation tasks from interaction

because it is an underdefined problem: there are multiple reward
functions that can explain example behaviour. It is also difficult
to evaluate the learned reward function because it requires
training the agent until convergence. Many IRL algorithms
assume optimal behaviour in the example demonstrations
which is not always the case. Finally, in inverse reinforcement
learning, there is an outer loop learning the reward function
while the inner loop executes a learning procedure for finding
an optimal policy given the current reward function. Recent
methods have looked at integrating deep neural networks as a
representation layer in inverse reinforcement learning (Finn,
Levine, and Abbeel 2016; Ho and Ermon 2016; Fu, Luo, and
Levine 2018). However, due to the two loops taking place, a lot
of computational power is required for training. Speeding up
the training process with a kinesthetic teach‐in and updating
instead of optimizing the reward function is explored in (Finn,
Levine, and Abbeel 2016). Unfortunately, manually moving the
end‐effector of a robot proves to be unfeasible for difficult tasks
like knot tying or folding clothing.

Ultimately, decoupling the dependency between reward learn‐
ing and policy learning can speed up the process significantly,
which is the topic explored in this work in Chapter 6. We fo‐
cus in particular on harnessing the expressiveness of deep neu‐
ral networks by using their latent space for constructing reward
functions. The underlying hypothesis is that if the latent space
contains relevant semantics, it can be used to extract reward
functions by labelling data, using distance in embedding space
or unsupervised learning. Labelling data is explored in (Singh
et al. 2019): they construct a reward function based on an im‐
age classifier trained on successful goal states reached by tele‐
operating the robot towards the end state. A potential way for
arriving at semantic‐meaningful embedding that can be used for
reward extraction is the self‐supervised learning paradigm dis‐
cussed in Section 2.4.2. Time, in particular, is a useful signal
for self‐supervision. This idea was pioneered in (Sermanet et
al. 2018) in which they introduce TCN: generating contrasting
examples based on the temporal dimensions in videos. TCNs
uses multi‐perspective video demonstrations as input and time
as a supervisory signal. TCNs are demonstrated to learn mean‐

65

Chapter 2

ingful semantic embeddings, which can be used for robotic pose
imitation of humans. This is done by aligning video frames using
nearest neighbours in embedding space. This is problematic in
case a certain state machine or trajectory in embedding space
has to be followed in order to solve the task. In (Dwibedi et
al. 2018), TCNs are trained over multiple input frames such that
the network is able to encode the position and velocity of objects
in the scene. In (Hartikainen et al. 2019), time is used as a learned
distance function for assigning environment rewards. However,
their approach requires human intervention in order to select
the desired goal states. (S. Nair et al. 2020) also uses time as a
supervisory signal in videos of expert demonstrations to learn an
optimal trajectory of states. However, they assume the possibility
of visually removing the end‐effector from the scene, which is
not possible for all tasks. In the cloth folding example, it is not
possible to stop and remove the end‐effector in mid‐air as the
cloth would drop. (Sermanet et al. 2018) and other work (A. V.
Nair et al. 2018) looks at expressing the reward function as the
distance in latent space between the current state and the goal
state. However, this is not possible when there is a trajectory in
latent space that has to be followed in order to execute the task.
For example, a cloth folding task can start the same way it ends:
some pieces of cloth lie crumbled on the table while others are
neatly folded and stacked on top of each other. Although TCNs
are shown to be capable of robotic imitation of human poses,
there is to the best of our knowledge no work that exclusively
distills processmonitoringmetrics or reward functions fromself‐
supervised representations trained on video demonstrations.

2.6 Datasets for robotic learning

The robotics community in general have accepted deep learning
to be a powerful tool (Sünderhauf et al. 2018). This acceptance
is evident from the surge in deep learning keywords in high‐tier
robotics conferences such as ICRA, the hosting of robotic ap‐
plication workshops at computer vision and machine learning
conferences such as CVPR (Angelova et al. 2017) and NeurIPS
(Posner et al. 2017) and the advent of a dedicated Conference

66

2.6 Datasets for robotic learning

on Robot Learning7. However, neural networks are known to
be data‐hungry due to their high parametrization. Additionally,
RL requires many interactions with the environment to learn
meaningful behaviour. Together with the high cost associated
with collecting data on real robotic platforms, there is a need for
datasets for robotic learning. This eminent need for high‐quality
datasets is also apparent in the general deep learning community
with the launch of the NeurIPS 2021 Datasets and Benchmarks
Track8. In addition to the availability of data, datasets need to up‐
hold a high quality for successful training, generalizability and to
avoid unwantedbiases. Amethod to ensure quality is for example
by standardizing the documentation process through datasheets
(Gebru et al. 2018).

The availability of high‐quality, real‐life datasets enables to train
robotic controllers that are unbiased, work on real problems and
can be benchmarked.

The applications in robotic manipulation for datasets lie in ap‐
plying supervised learning methods to train grasp quality pre‐
dictors, identify grasping points and object states. Alternatively,
offline RL, also known as batch RL and discussed in Section 2.5,
can be employed to learn policies from gathered state‐actions
tuples without letting the policy interact with the environment
itself. A successful approach to generate datasets for robotic
manipulation is implemented in theDex‐Net (Mahler et al. 2017a)
dataset containing 6.7 million synthetic robust grasps. Dex‐Net
offers RGB‐D images with candidate grasping pose and grasping
outcome of 1.500 object meshes. Generating synthetic grasping
data is also explored by other authors (Depierre, Dellandréa, and
Chen 2018; Redmon and Angelova 2015) but has the pitfall of
potential transferability issues to the real world. This sim2real
problem urges other authors to look at generating data in‐vivo.
However, human supervision for controlling robots is expensive
and biased. Hence, a popular approach is to self‐supervise the
data collection process: use a heuristic motor control rule to
execute grasps. In (Pinto and Gupta 2016), a dataset consisting of

7. http://www.robot-learning.org
8. https://blog.neurips.cc/2021/04/07/announcing-the-neurips-2021-dataset

s-and-benchmarks-track/

67

http://www.robot-learning.org
https://blog.neurips.cc/2021/04/07/announcing-the-neurips-2021-datasets-and-benchmarks-track/
https://blog.neurips.cc/2021/04/07/announcing-the-neurips-2021-datasets-and-benchmarks-track/

Chapter 2

50.000 grasp attempts with a dual‐armed robot is collected. After‐
wards, a network is trained to predict a good grasping orientation
from a given image patch. In (Levine et al. 2016), this approach
is scaled‐up. They generate two datasets containing 800.000 and
900.000 grasping attempts on two different clusters of roboticma‐
nipulators. They record images from a monocular RGB camera
mounted over the shoulder of the arm. They synchronize the
images with the delta end‐effector pose and grasp the success
outcome. Their dataset consists primarily of rigid objects, al‐
though some slightly deformable objects such as rubber ducks
are present. This dataset is then employed for training a grasp
quality predictor neural network. Robonet (Dasari et al. 2019) is a
follow‐up initiative thatmerges rollouts of 7 different robots from
4 different institutions in order to obtain 15 million frames con‐
taining variability across viewpoints, objects, robots and lighting
conditions. Other researchers (Mandlekar et al. 2018) argue that
self‐supervised data collection is inefficient and prone to errors.
This critique has led to RoboTurk (Mandlekar et al. 2018), an
online platform that allows remotely operating robots formanip‐
ulation tasks. They collect 111 hours of RGB‐D datamatchedwith
joint and effector sensor readings from 54 different robot oper‐
ators for different tasks. One of the tasks consists of unfolding
garments on a table andhave been shown to be useful for training
self‐supervised embeddings.

Compared to rigid objects, the deformable object domain is less
endowed with datasets. The largest cloth datasets are mainly
constructed for automating retail applications such as clothing
category identification, fashion landmark detection, image re‐
trieval and recommendations systems. The first annotated cloth
dataset is Fashion‐MNIST (Xiao, Rasul, and Vollgraf 2017) which
is a drop‐in replacement for the MNIST dataset, often used for
benchmarking ML algorithms. Fashion‐MNIST contains 70.000
grayscale images of size 28 × 28 of fashion products from 10
categories. A modern variant of Fashion‐MNIST is the Deep‐
Fashion (Liu et al. 2016) dataset, which contains 800.000 images
scraped from theGoogle image search engine and from shopping
websites. The dataset contains 8 different landmarks (i.e. collar,
sleeve, waistline, and hem for each side), 46 clothing categories
and 1.000 clothing attributes such as fabric material and fashion

68

2.7 Simulation environments to accelerate learning

shape. This dataset is extended in (Ge et al. 2019) which provides
more images, richer annotations andmultiple clothing per frame
to improve real‐world realism. To reduce the noise introduced
by scraping data, the FashionAI (X. Zou et al. 2019) dataset fo‐
cuses on improving the automated annotation process by pro‐
viding high‐quality labels and a dedicated network architecture
that assign attributes in a tree‐like way. The attributes represent
fashion semantics that are disassembled into hierarchical con‐
cepts. For example, a round collar bishop top is disentangled
into “top look → sleeve region → style → cuff → bishop” and
“top look → collar → round”. The neural network training uses
a DAgger‐like approach from behavioural cloning in which the
network requests expert labels for cases in which it is uncertain.
They collect 357.000 images of 6 categories of women’s clothing
and 245 high‐quality hierarchical structured annotations.

In contrast to annotated cloth data for retail applications, datasets
for robotic learning of manipulation skills for clothing and de‐
formable objects are not widely available. While a large body of
research exists on cloth modelling and garment reconstruction
from images (Bertiche, Madadi, and Escalera 2020; H. Zhu et
al. 2020; T. Y. Wang et al. 2018), the availability of dedicated cloth
folding data is scarce. To the best of our knowledge, the sole
example containing a small set of deformable objects manipu‐
lations with a robot is in (Mandlekar et al. 2018). Other work
concerning datasets for learning tomanipulate cloth or other de‐
formable object generate data in simulation, which is discussed
in the following Section 2.7.

2.7 Simulation environments to accelerate
learning

Physics simulators are a crucial tool for robotics researchers.
The community often first tests hypotheses and methodologies
in simulation and optionally transfers results to the real world.
The main reason for using virtual platforms is their low cost,
reproducibility and availability compared to real robots. Simula‐
tions can run faster than real‐time, do not need an active operator

69

Chapter 2

and can provide the large dataset requirement for deep learning
algorithms.

Simulation environments
Simulation environments are a virtual counterpart of the real
physical environment that enables fast and save experimenta‐
tion of robotic experiments but require transferring to the real
world.

While a wide array of physics simulators can model and simu‐
late a diverse set of phenomena, it is important for robotic re‐
searchers to have access to this physics engine within a robotic
simulator. This requires the engine to support common robotic
tools such as ROS integration for transfer to a real robotic plat‐
form, inverse kinematics, URDF import and models for joints,
actuators and sensors. Another important but often forgotten
feature is the ability for headless rendering. Running the sim‐
ulation without having a physical display attached allows to use
computation farms that often come without display. Common
robotic simulators (Collins et al. 2021) such as Gazebo (Koenig
and Howard 2004), MuJoCo (Todorov, Erez, and Tassa 2012) and
PyBullet (Coumans and Bai 2016–2021) support robotic object
manipulation tasks, however the deformable object simulation
functionality is limited.

The limited support for cloth simulation in existing robotics sim‐
ulators has led to many researchers implementing custom cloth
simulators. Matas, James, andDavison (2018) for example extend
the functionality of PyBullet to train a robot agent to fold cloth
completely in simulation. DeformableRavens (Seita et al. 2021)
and DEDO (Antonova et al. 2021) are other soft body simulation
implemented in the PyBullet physics engine that allows simu‐
lating robotic interaction with ropes, fabrics and bags. Unfor‐
tunately, the visual and physical fidelity is significantly lower
compared to other synthetically generated cloth data. SoftGym
(X. Lin et al. 2020) provides simulated benchmarks for fluid, cloth
and rope simulation. It uses Nvidia FleX particle system simu‐
lation, which is hardware‐accelerated on GPU. Because SoftGym
runs on the GPU, it allows doing more calculations in parallel,
leading to physically and visually more realistic cloth behaviour.

70

2.7 Simulation environments to accelerate learning

However, the authors anticipate fundamental challenges when
transferring policies trained on SoftGym to the real world. Fi‐
nally, other relevant work examines to make the simulation it‐
self differentiable. Differentiable physics simulation is a power‐
ful technique that applies gradient‐based methods to simulating
physical systems. This way, it enables gradient‐based optimiza‐
tion for control. Backpropagating gradients through a neural
network controller and through the physical system has been
shown to speed up the learning process for robot control tasks
(Degrave et al. 2019). Extending this work to soft body simula‐
tions has been explored in (Liang, M. C. Lin, and Koltun 2019; Z.
Huang et al. 2021) and have shown that gradient‐based optimiza‐
tion method outperforms RL but fails on multi‐stage tasks that
require long‐term planning.

2.7.1 Deformable object simulationmethods

Forces applied to a deformable object both move the object and
change the shape making high‐fidelity modelling more difficult
and computationally expensive compared to rigid object simu‐
lation. Deformable bodies require reasoning about the shape,
dynamics and material properties of the object. Techniques in
modelling cloth‐like behaviour fall on a spectrum based on the
computational budget allocated to the simulation. Offline simu‐
lation is on one side of the spectrum that prioritizes visual quality
bymeans of physical realism. Aprominent example canbe found
in themovie industrywhereGPU farms rendermultiple days for a
two‐hour video clip. In contrast, real‐time systems are interactive
and require running at a fixed frame rate. An important appli‐
cation of real‐time simulation systems is found in video games.
Games typically run between 30Hz and 60Hz leaving 15ms and
30ms computational budget per frame. Subtracting the time
needed for core game features such as handling user input, game
logic andAI leaves only a fewmilliseconds remaining for physical
simulation. Unfortunately, reducing the resolution of the simu‐
lated object often leads to unsatisfying results (Müller et al. 2008).
This is why real‐time methods focus on reproducing the visual
properties of physical processes. These constraints have driven

71

Chapter 2

the game industry to developmethods outside the offline physical
simulation domain.

Physical simulation of deformable objects for a robotic learning
environment requires characteristics of both real‐time and of‐
fline simulation. For learning in simulation, we need physical
realism for transfer to the real world and also needs to share re‐
sources for learning purposes and robot simulation. Offline cloth
simulations are notoriously slow. For example ArcSim (Narain,
Samii, and O’brien 2012), a realistic cloth simulator using FEM,
requires 50 s to render a single frame of a fully dressed human
character. Using these expensive simulations in a robotic learn‐
ing environmentwould consume the computational budget, leav‐
ing little time for learning. To understand the rationale involved
in selecting an appropriate simulator, we discuss the two major
steps for implementing a deformable object simulation.

A first step in modelling deformable objects is choosing a shape
representation. Choosing a representation changes theflexibility
of the model and impacts the modelling of the dynamics. There
are three major approaches for representing the shape of a de‐
formable object:

1. First, implicit curves and surfaces can be used as a repre‐
sentation. These shapes are defined by an implicit equation
𝑓 ∶ ℝ𝑛 → ℝ with 𝑓(𝐩) = 0 for which all points are on the
surface. Implicit equation representations are primarily
used in medical imaging in which level set methods are
used for tracking deformable objects (Cremers 2006).

2. Parametric curves and surfaces, the second option for
shape representation, are shapes controlled by a limited
set of parameters. A 3D parametric surface is generated
by a set of functions 𝐪 ∶ ℝ2 → ℝ3 with all cartesian points
evaluated directly from their functional expression
𝐪(𝑢, 𝑣) = {𝑥(𝑢, 𝑣), 𝑦(𝑢, 𝑣), 𝑧(𝑢, 𝑣)}𝑇 where 𝑢 and 𝑣 are
parameters. Splines and extensions such as B‐splines
and NURBS are parametric surfaces that can represent
any type of deformable object. They allow a compact
representation defined by control points that can move
and deform the surface. However, depending on the

72

2.7 Simulation environments to accelerate learning

spline parametrization, moving control points can lead
to erroneous deformations if for example the resulting
curves do not lie on the convex hull of the control points.
Learning in such a non‐linear dynamical environment
is difficult and a general solution for this is to date not
available (Arriola‐Rios et al. 2020).

3. A third possible shape representation is a mesh. A mesh
stores the topology and geometry of an object represented
by connected vertices. Meshes are the most used shape
representation for a deformable object in simulation.

The second step in simulating deformable objects is choosing a
dynamics model that will calculate how the chosen shape rep‐
resentation will deform on interaction with forces exerted on
the object. In robotics, the important characteristics influencing
the choice of dynamics model are computational cost, physical
accuracy, visual fidelity and ease of use. In the following para‐
graphs, we consider two main approaches: FEM and particle‐
based methods.

The FEM is a widely used method for offline simulation of solid
objects. FEM incorporates real physicalmaterial propertiesmak‐
ing simulations fairly realistic. This method generally works by
reducing the general partial differential equations that describe
the physical reality to systems of algebraic equations. Because
these equations are often non‐linear, solving the system in real‐
time becomes non‐trivial. A way to speed up the solver is by lin‐
earizing the equations. This works for cases where deformations
are small such as the analysis of buildings. However, the arte‐
facts caused by linear approximations become significant in the
case of cloth. This iswhy in real‐time applications, particle‐based
methods are often desired above FEM. Particle simulations con‐
sist of atomic masses called particles that undergo forces such as
gravity or a robot end‐effector grasp. These forces drive particles
to new positions solved by using Newton’s second law of motion
and a time integration scheme to solve the resulting differential
equations. In the case of cloth, the particles are connected with
their second‐order neighbours and exert forces on each other
in order to preserve the shape. These forces are modelled as

73

Chapter 2

springs, giving rise to a mass‐spring system of particles. Com‐
pared to FEM, particle systems are faster to simulate and easier
to implement. However, they are harder to tune and can be
plagued by instabilities. In particular, choosing the right spring
constant for the springs is notoriously difficult. Nonetheless, a
spring‐mass system approach for cloth simulation is a favourable
approach as it conveniently handles the two‐dimensional struc‐
ture of cloth. This finding is also apparent in the robotic learning
literature: modern research using cloth simulations implements
a particle‐based approach (Matas, James, and Davison 2018; Seita
et al. 2021; Antonova et al. 2021; X. Lin et al. 2020). An exception
is (Liang, M. C. Lin, and Koltun 2019) that utilizes FEM. We for‐
mally describe and implement a complete particle‐based cloth
simulation in Chapter 3.

2.7.2 Transferring simulation results to the real world

Simulation‐based trainingmethods allow for fast and safe experi‐
mentation for robotic tasks. However, differences between simu‐
lated physics and real‐world physics exist due to undermodelling
and errors in system parameter identification. This reality gap
causes policies trained in simulation to suffer performancewhen
deployed on the real platform. The resulting issue is labelled as
the Sim2Real problem in robotics.

Sim2Real problem

The Sim2Real problem deals with overcoming undermodelling
and system parameter identification errors in order to transfer
policies trained in simulation to the real world.

The reality gap for training robotic controllers in simulation with
deep RL became apparent in (F. Zhang et al. 2015), although
the problem is not new. In the field of control theory, calibrat‐
ing mathematical models of physical systems has been common
practice (Ljung and Söderström 1983). This approach is known
as system identification and consists of tuning the simulation pa‐
rameters such that the simulated behaviour is as close as possi‐
ble to the real behaviour. Control practitioners have calibrated

74

2.7 Simulation environments to accelerate learning

models using local search techniques that search for the opti‐
mum by using a gradient‐following technique (Ljung and Söder‐
ström 1983). Later, genetic algorithms have been shown to be
competitive to dealwith non‐differentiable andnon‐linear search
spaces (Kristinsson and Dumont 1992). Modern versions of sys‐
tem identification use machine learning methods (Chebotar et
al. 2019) and differentiable physic simulation (Heiden et al. 2021)
to learn complex dynamics, such as friction and contact parame‐
ters, from real data. A notable example in the deformable object
manipulation domain is the early work of Howard and Bekey
(2000) that deals with the system identification. In their work, a
mass‐spring‐damper simulation of a deformable object is tuned
to the real world by probing the object with the gripper contain‐
ing a force sensor.

Another viewon the reality gap is that it is an instance of a domain
adaptation problem in which the distribution of the data of the
source domain (i.e. the domain in which training is taking place)
is being transformed to resemble the distribution of the data of
the target domain (i.e. the test‐time domain). There are three
approaches to domain adaptation (Zhao, Queralta, and Wester‐
lund 2020). (1) Discrepancy‐based adaptation which measures
feature distance between source and target domain and aligns
their representation vector. (2) Adversarial‐based adaptation that
uses GANs as domain‐invariant feature representation for train‐
ing downstream neural network policies. (3) Reconstruction‐
based adaptation which learns domain‐invariant features by hav‐
ing a reconstruction task. In deep RL for robotics, domain adap‐
tation is used to improve the data efficiency of thework of (Levine
et al. 2016) by introducing synthetic data. The synthetic and real
data are used to train a GAN to transform synthetic images to
real images (Bousmalis et al. 2018). These pseudo‐real images
reduce some of the reality gaps but operate at the pixel level and
risk changing the semantics of the scene. Future work (Rao et
al. 2020) alleviates this issue by introducing a cycle‐consistency
loss which encourages the preservation of semantics when in‐
verse transforming the adapted image. Another approach is to
learn a joint feature representation for source and target domain
using GANs.James et al. (2019) for example, train a generator that
transforms both simulated, randomized images and real‐world

75

Chapter 2

images to a canonical representation which is used as a feature
vector for policy training of a robotic grasping task.

Another categoryof Sim2Realmethods is domain randomization.
Domain randomization introduces variability in the elements
constituting the simulation environment (Tobin et al. 2017). The
hypothesis underlying domain randomization is that if the agent
learns a policy successful in multiple variations of the same
environment, then it should transfer to the real world which is
just another permutation of all the variants seen during training.
More formally, the goal of domain randomization is to find a
parametrized policy 𝜋𝜃 that maximizes the expected reward over
a distribution of simulation models 𝜌𝜉:

𝜃∗ = argmax
𝜃

𝔼𝜉∼𝜌𝜉 [𝔼𝜏∼𝑝(𝜏|𝜋𝜃 ,𝜉)[𝑅(𝜏)]] , (2.14)

where 𝜉 represents a simulation configuration and 𝑝(𝜏|𝜋𝜃 , 𝜉) the
likelihood of trajectory 𝜏 under policy 𝜋𝜃 and simulation con‐
figuration 𝜉. Simulation parameters can be categorized into vi‐
sual randomizations and physical randomizations. Examples of
simulation parameters are given in Table 2.1. Domain random‐
ization has been successfully applied to transfer policies trained
in simulation in a zero‐shot manner to the real world (Tobin et
al. 2017; Peng et al. 2018; Akkaya et al. 2019). However, domain
randomization is known to require massive amounts of compu‐
tational power. An alternative is guided domain randomization
methods which uses domain randomization schedules, curric‐
ula (Raparthy et al. 2020), real‐world calibration (Chebotar et
al. 2019) or finds useful and informative randomizations (Mehta
et al. 2019). Domain randomization is a popular approach for
learning deformable object manipulation. For example, (Matas,
James, and Davison 2018; Wu et al. 2020) transfer cloth manipu‐
lation tasks trained in simulation to the real world using domain
randomization.

Finally, meta‐learning can be considered as a Sim2Real method
that takes the opposite approach to domain randomization.
Instead of learning robust policies across a distribution of
simulation environments, meta‐learning learns a policy that
is able to adapt rapidly to a changing environment and task.

76

2.8 Deformable object state perception through instrumentation

Table 2.1 Non‐exhaustive list of simulation parameters to vary in do‐
main randomization.

Category Simulation parameters

Visual Object color, shape and position
Visual Robot color, and position
Visual Material texture
Visual Lighting conditions
Visual Camera pose
Physical Object mass and friction
Physical Robot morphology, mass and joint friction
Physical Damping of physics integrator
Physical Latency between action selection and execution
Physical Observation noise

Domain randomization can then provide a task distribution for
meta‐learning.

2.8 Deformable object state perception through
instrumentation

A typical approach for the robotic folding of textile relies on
the use of vision in order to detect grasping points and to per‐
form texture segmentation and pose estimation (Maitin‐Shepard
et al. 2010; Doumanoglou et al. 2016; Bersch, Pitzer, and Kam‐
mel 2011), as well as to estimate the state (Matas, James, and
Davison 2018) and—in the case of reinforcement learning‐based
approaches—the reward function (Tsurumine et al. 2019). How‐
ever, while vision is instrumental for recognizing and localizing
objects, touch and force measurements become important once
contact occurs, and the object is explored using the end‐effector
(Billard and Kragic 2019). Recent work (Tian et al. 2019) has
illustrated this idea by applying a touch‐based controlmethod for
a ball repositioning task, rolling dice and the deflection of a stick.

77

Chapter 2

In line with other authors (Tian et al. 2019; M. A. Lee et al. 2019),
we believe the use of tactile input and its fusion with other sen‐
sory information is crucial to learn complex robot manipulation
tasks in an efficient way. We distinguish three functional loca‐
tions where sensors can be added: instrumentation on the robot,
on the target object and in the environment. We discuss these
applications in the robotic manipulation context.

Instrumentation
Instrumentation is theprocess of applying sensors in the learning
environment in order to accelerate learning.

A first location to instrument is on the robot itself. Vision‐only
sensors is the canonical approach to robotic manipulation task
given the popularity of visual servoing. H. Lin et al. (2015) for
example, pick up deformable objects by using a 3D laser scanner
that discretizes objects into a tetrahedral mesh. In (Navarro‐
Alarcon et al. 2016), the shape of a volumetric deformable is
adapted by quantifying the deformations using visual input.
Tactile‐only sensing has also been employed in, for example,
(Drimus et al. 2014) that equipped a parallel gripper with a
tactile array sensor to classify rigid and deformable objects.
An example exploded view of an implementation is shown in
Figure 2.10. Kappassov, Corrales, and Perdereau (2015) stresses
the importance of having high‐resolution tactile sensing in
order to detect small variations in the object’s shape. Similarly,
Kuppuswamy, Alspach, et al. (2020) pioneer soft‐bubble grippers:
parallel air‐filled finger membranes whose deformability allow
both compliant grasping and sensing. The instrumentation of
the finger with internal markers enable visuotactile sensing by
tracking the optical flow pattern of the membrane deformation.
They demonstrate how tactile information can be used for
material and object classification. In (Kuppuswamy, Castro, et
al. 2020), the soft‐bubble gripper technology is used to estimate
the pose of an object is by developing a contact patch tracking
model. Yuen et al. (2017) develop sensory fabric sleeves that
can be attached to end‐effector joints for determining joint
angles and end‐effector position. (Jennifer C. Case et al. 2019;
Jennifer C Case et al. 2018) implement a robotic skin containing
sensors and actuators using stretchable, flexible substrates.

78

2.8 Deformable object state perception through instrumentation

The sensory information of the robotic skin enables estimating
physical properties such as the state and stiffness of the objects,
which can be used for motor control tasks such a controlling
the segments of a finger. Fusing multiple heterogenous sensor
sources for deformable object manipulation is proposed in
(Khalil, Payeur, and Cretu 2010). This setup uses binary tactile
pads and a camera for contour tracking of deformable objects.
Frank et al. (2010) estimate physical properties for simulating
deformable objects using multi‐perspective visual and tactile
information. Multiple modalities can also be incorporated in the
learning frameworks discussed in Section 2.3. For a survey on
using deep neural networks for multimodal learning, we refer
to (Ramachandram and Taylor 2017). In the context of object
manipulation, (M. A. Lee et al. 2020) learn a self‐supervised
representation of pixels, force sensing and proprioception for
peg insertion task. Each input modality is processed through a
dedicated architecture; a CNN for the pixel input, a CNN with
causal convolutions similar toWaveNet (van den Oord et al. 2016)
and a fully connected neural network for proprioception and
sensor readings. Each of these architectures produces a feature
vector which is merged into a single feature vector using a
Product of Experts (Hinton 2002). Their ablation study reveals
that all modalities are used as the system performance drops
significantly when removing input streams. Similar approaches
and conclusions have been found in (Calandra et al. 2018;
Droniou, Ivaldi, and Sigaud 2015; Balakuntala et al. 2021).
Zambelli and Demirisy (2016) adds a microphone in addition to
cameras and tactile cells for a humanoid robot to play the piano.
They find that multimodal sensing is crucial for a multimodal
task such as piano playing.

A second location where instrumentation is applied is on the
target object to manipulate itself. A prominent example is the
instrumentedRubik’s cube in (Akkaya et al. 2019). To avoid letting
the robot learn to infer the Rubik’s cube state from the camera,
they equip the cube with rotary encoders to track face rotations.
In the deformable object manipulation domain, Bersch, Pitzer,
and Kammel (2011) and Elbrechter, Haschke, and Ritter (2012)
apply fiducial markers on cloth and paper for state estimation.
However, visual markers suffer from occlusion and make it hard

79

Chapter 2

Figure 2.10 Example of instrumenting a robot’s finger with tactile sen‐
sors. A grid‐like sensor array is attached to the finger and protected by
silicone pads.

to generalize for other clothing articles without markers. Smart
textiles, i.e. textiles that are able to sense stimuli from the envi‐
ronment and react accordingly (Schneegass and Amft 2017), are
being used in numerous applications such as health monitoring
(Cochrane, Hertleer, and Schwarz‐Pfeiffer 2016), sports (Lo Presti
et al. 2019) and robotics (Yuen et al. 2017). An example of textile
with integrated electronics is shown in Figure 2.11. Textile able
to infer its own state is of particular interest for learning to ma‐
nipulate clothing articles. To the best of our knowledge, there is
no work of physical smart textiles for learning deformable object
manipulation with robots.

A final entity to instrument are elements found in the environ‐
ment. For example, a table can be equipped with force sensors
that provide the location of objects to a robot. A concrete exam‐
ple can be found in (Kimura et al. 2013) who place a scale on the
table with objects that have to be recognized and add the weight
as an input modality for control tasks.

80

2.8 Deformable object state perception through instrumentation

Figure 2.11 Example of a smart textile implementation using a
piezoresistive polymer attached inside the fabric.

81

Chapter 2

2.9 Conclusion

This chapter has reviewed the transition from traditional con‐
trol pipelines for deformable object manipulation to leveraging
learning methods. We have discussed methodologies, tools and
approaches to building a cloth folding pipeline while identifying
strengths, weaknesses and gaps. One of those gaps is the state
estimation of cloth in the modern deep learning era. We found
that the majority of work employ vision for estimating the state
of clothing articles. In our research, we step away from this
vast focus on vision‐only sensing and integrate tactile sensors in
order to create a smart cloth that can tell a robot its state. We
stressed the importance of simulation environments for robotic
learning and the importance of realistic cloth simulation. We
will examine a basic implementation and discuss its usefulness,
Sim2Real pitfalls and application for learning to fold clothing. We
highlighted the potential for example‐based learning and learn‐
ing from interaction using expressive representation methods in
deep learning. In this research, we combine both approaches to
exploit their strengths: we use human demonstrations as exam‐
ples for distilling task intent while letting the robot interact with
the environment. To avoid expensive data labelling, we will in‐
troduce a self‐supervised approach. Wewill start introducing our
research in the next chapter that explores the use of simulation
for robotic manipulation of deformable objects.

82

3

Robotic folding in simulation

We simulate cloth on GPU to
train a robot to fold cloth.

3

3
Robotic folding in simulation

The previous chapter discussed that simulators are omnipresent
in the robotics community. In this chapter, we zoom in on
this observation by exploring the use of simulation for training
robotic controllers for deformable object manipulation. First,
we define the components that make up a robotics simulator.
Then, we compare different simulation technologies and finally
discuss results on learning to fold in simulation.

3.1 Digital twins

Using a digital representation of a robot and the environment in
which it operates allows reducing costly time on the real robot.
This use‐case has given rise to the term digital twinmeaning that
the physical platform has a virtual representation which can be
utilized. This digital twin is a cost‐effective tool for learning and
safe experimentation. These benefits have proven their merit in
the robotics field which has led to a plethora of simulator choices
available to researchers (Collins et al. 2021). However, navigating
the simulation landscape is difficult and requires pinpointing
exact requirements. For researching the use of simulation for
learning to fold cloth, we discuss the following requirements in
this section:

• The simulation tool needs to be able to simulate robots and
the associated physics.

• In addition to the rigid body simulation, our research re‐
quires simulating cloth dynamics.

Chapter 3

• To bridge the virtual environment to the physical world, the
simulation requires functionality to communicate with the
physical robot.

• Machine learning and reinforcement learning libraries of‐
ten require a Python interpreter. Hence, the simulation
environment should be able to be interfaced with from a
Python runtime environment.

3.2 Robotic simulation

A robotic simulator encapsulates a physics simulator while ex‐
posing other functionalities specific to solving tasks with robots.
The physics simulation, also called physics engine, provides re‐
alistic modelling and simulation of physical phenomena. This
includes handling the construction and articulation of kinematic
chains, querying collision detection, providing friction models
and optionally has built‐in soft body support. The distinction
between physics and robotic simulations helps understanding
the simulators landscape as some physics engines have devel‐
oped into robotics engines and can be found as physics backend
in other robotic simulators. In Section 2.7, we discussed two
categories of physics engines: real‐time and offline. For robotic
learning purposes, we prioritize simulation speed above accu‐
racy soweonly consider real‐timephysic engines. There is awide
variety of real‐time physics simulators available such as Bullet
(Coumans 2015), PhysX (Nvidia 2021), Havok (Havok 2021), ODE
(Smith 2001) and MuJoCo (Todorov, Erez, and Tassa 2012). With
the exception of MuJoCo, these physics engines are primarily
developed for gamingpurposes that require real‐time simulation.
However, in gaming and modelling applications, most bodies
have few or even no joints or constraints. Consequently, many
physics enginesmodel physical bodieswith aCartesian represen‐
tation in which each rigid body has 6 degrees of freedom. The
joints of a body then become constraints imposed on the 6𝑁‐
dimensional space. This is in contrast to robots that are multi‐
body systems of 𝑁 constrained links that makes the system di‐
mensionality much closer to 𝑁 instead of 6𝑁. Hence, we have

86

3.2 Robotic simulation

a strong preference for robotic simulators that have underlying
physic engines using generalized joint coordinates that provide
better stability, speed and accuracy. The difference between gen‐
eralized coordinates versus Cartesian coordinates representation
is illustrated in Figure 3.1. This example demonstrates that an
inverted double pendulum can be represented as a 12 degrees of
freedom system with 10 constraints or as a 2 degrees of freedom
system without constraints.

On top of integrating a physics simulation, the robotic simulator
exposes functionality specific to the robotics domain. One of
these features is importing predescriped robot models that are
often expressed in the Unified Robot Description Format1. The
simulator must provide actuator models for position control, ve‐
locity control, and torque control in order to control the physical
arms. Forward kinematics and inverse kinematics are needed
for path planning functionality. Typically, robots for manipu‐
lation tasks are equipped with various sensors such as RGB‐D
cameras, torque and force sensors which need to be supported
by the simulator as well. Similarly to RGB‐D cameras, the simu‐
lator benefits from having a rendering pipeline for visualization
and debugging purposes. This rendering pipeline can be used
as RGB‐D camera and is preferably able to execute headless for
server‐side rendering. In order for the digital twin to communi‐
catewith its physical counterpart, it needsmessaging channels to
the real platform. The communication is often provided through
ROS2; amiddleware software suit providinghardware abstraction
through message‐passing nodes. Finally, we want the robotic
simulator to interface with Python interpreters given that the
large bulk of machine learning research and libraries are written
in Python. Python bindings also allows us to circumvent the
explicit need of a robotics simulator with ROS integration as the
robot used in this research has direct communication channels
in Python.

1. http://wiki.ros.org/urdf
2. https://www.ros.org

87

http://wiki.ros.org/urdf
https://www.ros.org

Chapter 3

𝛼1

𝛼2{
𝑥2, 𝑦2, 𝑧2
𝜙2, 𝜃2, 𝜓2

{
𝑥1, 𝑦1, 𝑧1
𝜙1, 𝜃1, 𝜓1

Figure 3.1 Comparison between generalized and Cartesian coordi‐
nates for representingmultibody kinematic chains. An inverted dou‐
ble pendulum can be represented as two links each having 6 degrees
of freedom: 3 possible translations and 3 possible rotations. The ro‐
tations 𝜙𝑖, 𝜃𝑖, 𝜓𝑖 refer to roll, pitch, yaw respectively. In this Cartesian
representation, indicated in red, all translations and 2 rotations are
constrained per link. The joint coordinate representation, indicated
in yellow, on the other hand does not have to impose any constraints
because it represents the system with 2 degrees of freedom 𝛼1 and 𝛼2.

88

3.2 Robotic simulation

3.2.1 Qualitative comparison of popular robot simulation
technologies

Performing an in‐depth, exhaustive comparison between
popular robotics simulators for manipulation tasks is non‐
trivial. A thorough comparison would require setting up
multiple scenarios, relevant metrics and experience with all
the considered simulation technologies. For example, it is
unclear whether we should compare accuracy, scalability,
stability or speed. Furthermore, it is hard to concretely quantify
such metrics. For example, accuracy is difficult to quantify
in the absence of analytical solutions. Another metric we
could consider is performance in the context of the robotic
manipulation tasks. However, the task performance also
depends heavily on the used controller. Giovanni and Yin (2011)
for example, found that the simulation engine does not matter
when using robust controllers for generating gaits. Given that
all robotic simulators at the time did not provide adequate cloth
simulation support, we instead performed a qualitative tradeoff,
consulted the documentation, forums and the limited amount
of literature available at the time comparing the simulators
(Staranowicz and Mariottini 2011; Erez, Tassa, and Todorov
2015). We compare the following robotic simulators next:
PyBullet, MuJoCo, Gazebo and Unity. Other notable simulators
like Taichi (Hu et al. 2019), Isaac3 and ThreeDWorld (Gan et
al. 2021) are excluded from the current comparison due to not
being available or just being released at time of implementing
our simulation. A summary of the simulators we considered can
be found in Table 3.1.

PyBullet is a robotics framework written in the Python program‐
ming language on top of the Bullet physics engine. It provides
robot functionality with Python bindings. PyBullet has a focus on
machine learning in robotics. At time of executing this research,
PyBullet was recently introduced and a one‐man effort making
the implementation immature. Many features needed yet to be
implemented or were not exposed to the Python API. In addition,
Bullet recently switched from Cartesian to joint coordinates rep‐

3. https://developer.nvidia.com/isaac‐sdk

89

Chapter 3

resentation which was not thoroughly debugged. Compared to
main‐stream game engines, the rendering capabilities of PyBul‐
let are subpar. Finally, PyBullet provides an experimental soft
body implementation which we, among other authors (Matas,
James, and Davison 2018; Seita et al. 2021), found unusable. The
soft body physics caused cloth to tunnel or explode on grasping
attempts and only wireframe rendering was possible at the time.
PyBullet has been used for learning to fold cloth (Matas, James,
and Davison 2018), learning via virtual reality demonstrations
(Mahjourian et al. 2019) and learning quadruped locomotionwith
Sim2Real transfer (Tan et al. 2018).

Mujoco® is a general purpose physics engine developed specif‐
ically for robotics research. MuJoCo is generally known for its
stable and efficientmultibody system dynamics (Erez, Tassa, and
Todorov 2015) and has been used for learning robotic manipula‐
tion (Rajeswaran et al. 2017), dexterous manipulation (Akkaya et
al. 2019) and locomotion (Heess et al. 2017). Most of our required
features are supported by MuJoCo with the notable exception of
inverse kinematics and path planning. At time of executing our
research, MuJoCo required a paid license which made it unfit for
our purposes to be able to run simulations on remote servers4.
MuJoCo provides volumetric soft body simulation of which the
generalization towards planar soft bodies is unclear.

Gazebo is an open‐source robotics simulation environment sup‐
ported by ROS. It exposesmultiple physics engines, most notably
Bullet andODEby default. The Bullet physics engine suffers from
the shortcomings we mentioned while ODE only offers Carte‐
sian multibody representation, making it slow and potentially
unstable for robotics. Gazebo is strongly integrated with the ROS
ecosystem, making it very feature‐complete for transfer to real
robots. None of the physics engines underpinning Gazebo offer
decent cloth simulation. Gazebo is widely used in the robotics
community, for example autonomous navigation (Imanberdiyev
et al. 2016) and visual servoing (Shi et al. 2018).

Unity® is a game engine providing a software development envi‐
ronment and tools for game development. With the Unity ML‐

4. MuJoCo was made freely available in October 2021.

90

3.2 Robotic simulation

Agents toolkit5and Unity Robotics Hub6, Unity is laying down
a strong footing in the robotics machine learning community.
The Unity Robotics Hub enables pulling in functionality from
the ROS ecosystem while the Unity ML‐Agents toolkit provides a
Python API to the underlying simulation environment. Addition‐
ally, Unity has integrated the reduced articulation functionality
from the PhysX physics engine7 making multibody simulation
like robots physically more accurate with minimal joint errors.
The rendering capabilities of Unity are of considerably higher
fidelity compared to the previously discussed simulators. The
high fidelity is due to the photorealistic rendering capabilities.
Unity is being used by AAA game development studios and pop‐
ular among solo game developers due to the rapid software pro‐
totyping tools it provides. Unity has been used for robotic ma‐
nipulation of soft tissues (Tagliabue et al. 2020) and as backend
rendering engine for learning dexterous manipulation (Akkaya
et al. 2019).

Table 3.1 Qualitative comparison of the robotic simulation tech‐
nologies considered for learning to fold clothing.

Requirement PyBullet MuJoCo Gazebo Unity

Stable physics ✓ ✓ ✓ ✓
URDF support ✓ ✓ ✓ ✓
Minimal coordinates ±* ✓ ±* ✓
Python bindings ✓ ±† ✓ ✓
High‐fidelity rendering — — — ✓
Soft body support ±* ±‡ ±* ±*

Inverse kinematics ✓ ±§ ✓ ±§

* Supported but immature
† Via community initiatives
‡ Mature but limited features
§ Indirectly, via ROS

5. https://github.com/Unity-Technologies/ml-agents
6. https://github.com/Unity-Technologies/Unity-Robotics-Hub
7. https://gameworksdocs.nvidia.com/PhysX/4.0/documentation/PhysXGuid

e/Manual/Articulations.html#reduced-coordinate-articulations

91

https://github.com/Unity-Technologies/ml-agents
https://github.com/Unity-Technologies/Unity-Robotics-Hub
https://gameworksdocs.nvidia.com/PhysX/4.0/documentation/PhysXGuide/Manual/Articulations.html#reduced-coordinate-articulations
https://gameworksdocs.nvidia.com/PhysX/4.0/documentation/PhysXGuide/Manual/Articulations.html#reduced-coordinate-articulations

Chapter 3

Ultimately, we decide to use Unity as robotics research tool. This
decision is rationalized by Unity covering most of our required
features as shown in Table 3.1. Notably their recent addition of
supporting a physics solver for minimal joint coordinate multi‐
bodies with the high definition render pipeline sets Unity apart
fromother simulation technologies. Unity demonstrates to be in‐
cumbent player in robotics by dedicating software teams to their
ML and robotics department. Compared to dedicated robotics
simulators, Unity produces much higher visual fidelity due to
photorealistic rendering. For example, we compare the visuals
of a simulated Baxter robot in PyBullet andUnity in Figure 3.2. In
addition, the Unity IDE is a professional and productive working
environment. The community is known to be supportive and
provides tools for other developers to use. This allows rapid
prototyping of new features and experiments. Rapid prototyping
together with the above discussed functionality makes Unity a
suitable candidate for PhD researchers that are not backed by a
large development team.

3.3 Cloth simulation using particle systems

Choosing a cloth simulation method requires trading off the ge‐
ometrical resolution, computational speed, robustness and real‐
ism. The geometrical complexity needs to be at a resolution that
can accurately represent small deformations and wrinkles that
typically appear in clothing items. The speed of the simulation
is important for generating massive datasets, which is required
when data‐hungry learning algorithms are used such as deep
neural networks. The computational speed depends on the cho‐
sen simulation algorithm, temporal and geometrical resolution.
With robustness, we cover requirements such as consistencywhen
repeating the same cloth manipulations and stability when large
forces are exerted. For example, game engines apply damping
in order to avoid implosion of the forces and corresponding dis‐
placements. Finally, realism refers to the realism of the physical
behaviour and visual quality. In this regard, we distinguish visual
plausibility versus physical plausibility. The former refers to the

92

3.3 Cloth simulation using particle systems

(a) Baxter robot visualization in PyBullet

(b) Baxter robot visualization in Unity

Figure 3.2 Simulated Baxter: PyBullet vs Unity. The difference in
rendering capabilities can be seen in, for example, Unity being able to
sample texture imageswhile Bullet uses solid colours. Unity also allows
defining the material’s roughness; in Unity there is a black, plastic
casing around the elbow leading to a complete diffuse light reflection.
In contrast, there is a visible specular reflection on elbow joint of Baxter
in Bullet.

93

Chapter 3

rendering quality while the latter indicates how realistic the sim‐
ulated behaviour is. Achieving realistic visualization is possible
with modern rendering technologies such as physically based
rendering methods that use the principles of physics to model
the interaction of light and materials. Contrarily, modelling and
tuning physical parameters of a simulation to achieve physical
behaviour that follows physics in the real world completely, is
difficult. This problem is enlarged in the case of high degree of
freedom objects such as clothing articles. Hence, in this regard
we prioritize visual fidelity above physical fidelity. Moreover,
when using a simulation method, one can tune the degree of
realism and geometrical resolution in order to achieve quicker
simulation times. In heart surgery simulators for example, it is
known that the simulated deformations of tissues do not need to
be physically accurate. Instead, the deformations should be con‐
sistent and look physically realistic (Bro‐Nielsen 1998) in order to
facilitate the suspension of disbelief.

Modelling consistent and seemingly realistic deformations is the
primary challenge for cloth simulation. For example, if we con‐
sider cloth to be constituted of 𝑛 elementary particles, then com‐
putation of the forces on a particle requires incorporating pair‐
wise interactions from all other particles leading to a 𝒪(𝑛2) com‐
putation. This computation is challenging to do in real‐timegiven
that cloth often uses many vertices. For example, simulating
the dress shown in Figure 3.3, requires calculating forces for the
17244 vertices leading to a computation of 𝒪(𝑛2) with 𝑛 = 17244.

3.3.1 Representing cloth with particle systems

In Section 2.7.1 we discussed two popular approaches for soft
body simulations: particle systems and FEM. To recapitulate;
FEM is a method to solve continuous equations that govern the
behaviour of soft body dynamics by discretizing and linearising
the geometry and material properties. The main advantage of
FEM is physical realism: we calculate approximate solutions to
the actual equations governing deformations based on elasticity
theory. However, the main problem with FEM is simulation

94

3.3 Cloth simulation using particle systems

Figure 3.3 Example of a close‐up of 3D modelled dress. The vertices
and edges are displayed on top of the mesh. The cloth model and
textures were designed by user mnphmnmn on turbosquid: https://ww
w.turbosquid.com/Search/Artists/mnphmnmn.

95

https://www.turbosquid.com/Search/Artists/mnphmnmn
https://www.turbosquid.com/Search/Artists/mnphmnmn

Chapter 3

speed: each simulation step requires solving a system of equa‐
tions which is a computationally expensive operation. On the
contrary, particle systems combine basic physics andmathemat‐
ical constraints in order to control the dynamic behaviour of
objects. The formulation of particle systems additionally allows
to easily exploit dedicated hardware like GPUs. For these rea‐
sons, we employ a particle‐based approach to cloth simulation in
this research. We describe particle systems for simulating cloth
next.

The computer graphics community has taken a different
approach for modelling natural phenomena such as fire, water,
foliage, smoke and deformable objects compared to standard
computer image synthesis techniques for rigid objects. This
is due to the continuously changing, irregular shapes and
positions of the elements that make up these phenomena. A
well‐established method to model such systems is representing
each modular atom of the system by a point mass, labelled
particle, whose position and velocity are governed by physical
laws. This proceduralmethod falls under the category of particle
systems. When organizing particles in a fixed topology and
connecting neighbouring particles with springs that govern the
shape deformation, a spring‐mass system is formed.

A cloth 𝒞 is constructed by bundling a collection of connected
particles 𝑖 ∈ 𝒞 . An example mesh is demonstrated in Figure 3.4.
Each particle contains mass and inertia but does not take up
volume. A particle 𝑖 is defined by a 3D position 𝐱𝑖 ∈ ℝ3 and
velocity 𝐯𝑖 ∈ ℝ3. We can organize all positions and velocities of
the cloth 𝒞 with 𝑁 particles in a vector data structure:

𝐱 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑥(0)
𝑥

𝑥(0)
𝑦

𝑥(0)
𝑧
⋮

𝑥(𝑁−1)
𝑥

𝑥(𝑁−1)
𝑦

𝑥(𝑁−1)
𝑧

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, 𝐯 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑣(0)
𝑥

𝑣(0)
𝑦

𝑣(0)
𝑧
⋮

𝑣(𝑁−1)
𝑥

𝑣(𝑁−1)
𝑦

𝑣(𝑁−1)
𝑧

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (3.1)

The position 𝐱 and velocity vector 𝐯 make up the state of the par‐

96

3.3 Cloth simulation using particle systems

𝑝𝑖−1,𝑗

𝑝𝑖,𝑗−1

𝑝𝑖,𝑗

𝑝𝑖,𝑗+1

𝑝𝑖+1,𝑗

Figure 3.4 A mesh of connected particles. A particle 𝑝𝑖,𝑗 is located
in row 𝑖 and column 𝑗 of the mesh. In this example, each particle is
connected only to its first‐order neighbourhood.

ticle system or cloth 𝒞 . The individual positions and velocities
are indexed by 𝑣(𝑖)

𝑥 in which superscript (𝑖) indicates particle 𝑖
and subscript 𝑥 refers to the 𝑥‐component of the position and
velocity vector. The positions 𝐱 and velocities 𝐯 will change over
time based on internal spring forces in the cloth and external
forces like gravity and interaction with the robot and environ‐
ment. These forces obey Newton’s second law of motion:

𝐟 = 𝑚𝐚, (3.2)

where 𝐟 is force,𝑚 themass and 𝐚 acceleration; the first derivative
of velocity 𝐯 or the second derivative of position 𝐱.

A spring connects two particles. The types of springs we em‐
ploy will determine the topology and physics behaviour of the
cloth. We elaborate in Section 3.3.3 the type of springs we use for
achieving cloth‐like behaviour. The springs follow Hook’s law:
the force exhibited by the spring on the connecting particles is
linear in the displacement from the resting distance of the spring.
Concretely, the force 𝐬𝑖𝑗 exhibited by the spring connecting par‐

97

Chapter 3

ticles 𝑖 and 𝑗 is given by:

𝐬𝑖𝑗 = 𝑘𝑖𝑗 (𝑙𝑖𝑗 − ‖𝐝𝑖𝑗‖)
𝐝𝑖𝑗

‖𝐝𝑖𝑗‖
. (3.3)

In this equation, 𝑘𝑖𝑗 is the spring stiffness of the spring connect‐
ing particle 𝑖 and particle 𝑗. Similarly, 𝑙𝑖𝑗 is the resting distance
of this particular spring. 𝐝𝑖𝑗 represents the distance between
particles 𝑖 and 𝑗: 𝐝𝑖𝑗 = 𝐱𝑖 − 𝐱𝑗 . Equation (3.3) is negative when
the particles move away and stretch the spring past its resting
distance. In this case, the spring will exert a negative force to
attract the particles back together. Similarly, the spring will repel
the particles when they are closer together than the nominal
distance.

Incorporating external forces 𝐟ext = ∑𝑒 𝐟𝑒 working on the par‐
ticle 𝑖, the dynamics of the particle is given by filling in Equa‐
tion (3.2):

𝑚𝑖𝐚𝑖 = ∑
𝑗

𝐬𝑖𝑗 + 𝐟ext. (3.4)

Determining how to calculate the new positions based on the
dynamics Equation (3.4), is discussed next.

3.3.2 Advancing the particle simulation

Differential equations arise when simulating physics. This is a
consequence of finding new positions based on the forces work‐
ing on the simulated objects. Common numerical methods to in‐
tegrate the differential equations linearize the equations around
a small time step in order to arrive at newpositions of the objects.
Practically, this means we have to translate the net force on each
particle to an acceleration vector. Using this acceleration vector,
we can calculate new velocities for the next time step. We can
then update the positions by moving the particles according to
the new velocity vectors. Concretely, to solve the second order
differential equation given in Equation (3.4), one can express
the equation as two first order differential equations that can be
solved with standard methods, for example, Euler integration

98

3.3 Cloth simulation using particle systems

or Runga Kutta. Euler integration for example uses following
update rule based on the Taylor series expansion:

𝐱(𝑡 + 𝛥𝑡) = 𝐱(𝑡) + 𝛥𝑡 ⋅ 𝐯(𝑡)
𝐯(𝑡 + 𝛥𝑡) = 𝐯(𝑡) + 𝛥𝑡 ⋅ (𝐟ext/𝑚).

(3.5)

This type of Euler integration is often denoted as explicit Euler in‐
tegration to contrast with the implicit Euler or backward euler in‐
tegrationmethod that uses quantities of next time step. Although
explicit Euler integration is simple to compute, it is inherently
unstable because of the linearization. By assuming the force is
constant during the timestep 𝛥𝑡, the simulation can overshoot,
gain energy and eventually explode. We can reduce this risk by
minimizing the timestep 𝛥𝑡, often denoted delta time. However,
reducing 𝛥𝑡 leads to longer simulation time.

In our work, we use a different integration scheme called Verlet
integration, popularized in (Jakobsen 2001) for real‐time cloth
simulation. Verlet integration combines one forward and one
backward third‐order Taylor expansion of the positions 𝐱(𝑡) lead‐
ing to the following update rule:

𝐱(𝑡 + 𝛥𝑡) = 𝐱(𝑡) + (1 − 𝛼)𝐯(𝑡)𝛥𝑡 + 𝐟ext
𝑚 (𝛥𝑡)2

𝐯(𝑡 + 𝛥𝑡) = 𝐱(𝑡 + 𝛥𝑡) − 𝐱(𝑡)
𝛥𝑡 .

(3.6)

Similarly to the update rule discussed in Equation (2.1) for updat‐
ing theweights of a neural network, we apply damping byweight‐
ing the old and the new positions using the damping factor 𝛼.
This reduces the energy in the simulation. Equation (3.6) shows
that Verlet integration operates on positions only, which is com‐
patible when using position based dynamics (Müller et al. 2007).
Position based dynamics directlymanipulates the position of par‐
ticles instead of integrating forces. The benefit of this is that we
avoid choosing the spring constants 𝑘𝑖𝑗 in Equation (3.3). This
formulation also allows handling collisions straightforward: in‐
stead of applying forces to resolve penetration, one can project
the objects to valid locations.

Note that at this point, we have discretized the cloth 𝒞 in two
dimensions:

99

Chapter 3

1. Discretization in space: a continuous cloth is represented
by interconnected particles.

2. Discretization in time: continuous time will be divided into
discrete time steps of size 𝛥𝑡 to advance the physics in the
simulation.

3.3.3 Topology constraints

The springs introduced in Section 3.3.1 function as constraints
and flow of energy in the particle system. Hence we will use
the terms spring and constraint interchangeably. The topology
of these connections will determine the global behaviour of
the cloth. In Figure 3.5, we create a rectangular grid with
particles that are evenly spaced. We connect each particle with
its second‐order neighbourhood which leads to three types of
springs (Provot 1995). The first type of springs are the structural
springs, drawn in blue, that resist stretching the lattice. The shear
springs, indicated in red, connect diagonal neighbours and resist
shearing forces. This prevents the cloth from collapsing inwards.
The last spring type, the bending spring drawn in yellow, connect
the second order horizontal and vertical neighbours. This type
of spring allows resisting bending for local patches when the
resolution is high.

3.3.4 Collision

Collision handling in the cloth simulation is split into two differ‐
ent types:

• Cloth‐object collision: collisions between rigid object and
the cloth.

• Cloth‐cloth collision: intercollision of the cloth with itself.

Conceptually, we split the collision handling into two phases: (1)
collision detection phase and (2) collision response phase. First,
we find the colliding parts and second, we resolve the collision to
make sure objects do not penetrate.

100

3.3 Cloth simulation using particle systems

Particle

Structural spring

Shear spring

Bending spring

Figure 3.5 Mass‐spring particle system: a rectangular grid of particles
connected by different types of springs.

We consider the following types of collisions in our simulation
that require detection and resolving:

• For the cloth-table collision, we represent the top of the
table as a plane. Collision can then be detected when any
particle position passes the plane. Collision is resolved by
projecting the penetrating particle back to the surface.

• Cloth-sphere and cloth-cuboid collision is detected by check‐
ing whether every particle lies inside the sphere or cuboid.

• To implement cloth-cloth collision, we utilize a brute‐force
approach in which we compare every particle on the mesh
with every other particle. This exhaustive comparison is
feasible because we implement the simulation on GPU that
allows checking every particle in one pass.

• Cloth-gripper contact modelling is simplified considerably
by assuming the end‐effector snaps the cloth once it is in
close proximity. We utilize this magnetic‐like approach to
avoid complex contact modelling.

101

Chapter 3

3.3.5 Rendering

Although we stated that a particle is a volumeless entity, we can
choose how to represent the point mass. The idea is that if we
know the location of a particle, we canplace the desired graphical
representation at that location. We visualize the cloth by placing
vertices at the locations of the particles. Then, we triangulate by
connecting east and south neighbours. We calculate the normal
vector on this triangle for shading using Blinn‐Phong shading
(Blinn 1977). Texturing is done by sampling cloth texture im‐
ages.

3.3.6 Implementation results

We implement the cloth simulation described in this section us‐
ing Unity8. In order to speed up calculations, we implement the
simulation on GPU using shaders. We advance the simulation
using a fixed delta time of 0.02 s for all physics steps in order to
have deterministic physics. We subdivide each physics step in
multiple cloth physics step in order to have more accurate cloth
physics.

Figure 3.6 shows the resulting cloth. The cloth mesh can be
generated procedurally as for example the cloth in Figure 3.6a
or from an existing mesh as shown in Figure 3.6c. Translating
arbitrarymeshes tomass‐spring systems is doneby clustering the
mesh vertices and applying springs based on the mesh tangents.
The rectangular mesh has a resolution of 100 × 100 particles and
achieves 250 fps. We verify the stability of the simulation by
moving particles around and penetrating the mesh with cuboids
and spheres.

8. The implementation of the simulation is developed in context of a soft‐
ware engineering course with the following students: Niels Dossche, Glenn
Feys, Jonas Bovyn, Tibo Vande Moortele, Stefan Croes, Julien Marbaix, and
Laurens Debackere.

102

3.3 Cloth simulation using particle systems

(a) A 100 × 100 rectangular cloth attached with two points to the bar. An
invisible sphere on the right of the picture demonstrates sphere collisions.

(b)A 100 × 100 rectangular cloth draped on a table with spheres of different
sizes.

(c) A simulated shirt and trousers from arbitrary meshes.

Figure 3.6 Spring‐mass particle system for cloth demonstration.

103

Chapter 3

3.4 Learning to fold in simulation

3.4.1 Deep reinforcement learning setup for cloth folding in
simulation

In order to learn to fold cloth in simulation with a dual robotic
arm, we use the DQN algorithm with small stabilization and ac‐
celerations improvements. We first describe DQN, followed by
our task setup.

Deep Q‑learning algorithm

DQN is a variant of the Q‐learning algorithm (Watkins and Dayan
1992) using deep neural networks using a replay buffer and stabi‐
lization tricks, as described in Section 2.5. On top of the two stabi‐
lization improvements, we implement two additional ways to ac‐
celerate learning: prioritized replay and double DQN. Prioritized
replay (Schaul et al. 2015) recognizes that not all observations in
the replay buffer are equally important. By sampling the replay
buffer proportional to the TD‐error (see Equation (2.12)), experi‐
ences in which the agent made large prediction errors are more
sampled. Prioritized sampling introduces bias that can be solved
by annealed importance sampling. Double DQN (Van Hasselt,
Guez, and Silver 2016) addresses overestimation bias caused by
the argmax operator in theDQNupdate rule Equation (2.12). This
is done by selecting the next best action using the online network
while use the target network for getting the corresponding Q‐
value. The full pseudocode is given in Algorithm 1.

Task description

We define the task as performing a double fold in a rectangular
piece of cloth by using a task structure. The tasks consist of
grasping the corners of the cloth, then folding it inwards and
releasing it. Afterwards, a second fold is executed by regrasp‐
ing the corners and performing the final fold. The state space
𝒮 ∈ ℝ114 consists of the 14 joint angles of the Baxter robot and

104

3.4 Learning to fold in simulation

Algorithm 1: Double DQN with prioritized experience re‐
play
Input: Discount factor 𝛾, minibatch size 𝑘, target network

update frequency 𝐶, prioritization factor 𝛼 and
importance sampling exponent 𝛽, learning rate 𝜂

1 Initialize prioritized replay memory ℋ = ∅, 𝛥 = 0, 𝑝1 = 1
2 Initialize online action‐value function 𝑄𝜃 with random

weights 𝜃
3 Initialize target action‐action function 𝑄𝜃′ with weights 𝜃′

4 foreach episode do
5 Observe 𝑠0
6 foreach step of episode do
7 Sample action 𝑎𝑡 ∼ 𝜋𝜃(𝑠𝑡)
8 Execute action 𝑎𝑡
9 Observe reward 𝑟𝑡, new state 𝑠𝑡+1

10 Store transition ⟨𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1⟩ in ℋ with maximal
priority 𝑝𝑡 = max𝑖<𝑡 𝑝𝑖

11 for 𝑗 = 1 to 𝑘 do
12 Sample transition 𝑗 ∼ 𝑃 (𝑗) = 𝑝𝛼

𝑗 / ∑𝑖 𝑝𝛼
𝑖

13 Compute importance‐sampling weight
𝑤𝑗 = (𝑁 ⋅ 𝑃 (𝑗))−𝛽 /max𝑖 𝑤𝑖

14 Compute TD‐error 𝛿𝑗 = 𝑟𝑗 +
𝛾𝑄𝜃′ (𝑠𝑗 , argmax𝑎 𝑄𝜃 (𝑠𝑗 , 𝑎)) − 𝑄𝜃 (𝑠𝑗−1, 𝑎𝑗−1)

15 Update transition priority 𝑝𝑗 ← |𝛿𝑗|
16 Accumulate weight‐change

𝛥 ← 𝛥 + 𝑤𝑗 ⋅ 𝛿𝑗 ⋅ ∇𝜃𝑄𝜃 (𝑠𝑗−1, 𝑎𝑗−1)
17 end for
18 Update weights 𝜃 ← 𝜃 + 𝜂 ⋅ 𝛥
19 Reset gradients 𝛥 = 0
20 Every 𝐶 steps: update target network 𝜃′ ← 𝜃
21 end foreach
22 end foreach

105

Chapter 3

the 10 × 10 positions of the cloth particles relative to the robot
end‐effectors. The action space 𝒜 ∈ ℝ42 is in joint space: for
each of the seven joints, the agent can move according to a fixed
angle in any six directions. We provide a distance‐based reward
function 𝑅 which incorporates the distance between the corner
points of their current location and target location. Additionally,
we include auxiliary objectives to provide a more rich reward
signal to the agent: maximize the stretch of the cloth in order
to minimize wrinkles.

Cost =𝑤1 ∑
𝑝∈𝒞 𝑓

dist(𝐱𝑝, 𝐱∗
𝑝)+

𝑤2 ∑
𝑝∈𝒞 𝑓

dist(𝐱ee, 𝐱𝑝)+

𝑤3 ∑
𝑝∈𝒞 𝑏

∑
𝑝′∈𝒞 𝑏,𝑝′≠𝑝

dist(𝐱𝑝, 𝐱𝑝′) (3.7)

The coefficients 𝑤1, 𝑤2, 𝑤3 are weights for trading‐off the reward
function components. The particles in 𝒞 𝑓 are the particles for
which we manually specified a target location in order to fold.
𝐱∗

𝑝 is the target location of the particle and 𝐱ee is the current
position of the end‐effector. 𝒞 𝑏 are the particles lying at the
boundary of the cloth. We aim tomaximize the distance between
the boundary nodes in order to minimize wrinkles. We multiply
the cost function Cost with minus one for passing a reward for
the agent. In our experiments, we represent the Q‐function with
a feedforward neural network containing two layers with 128 × 64
hidden neurons. We train a separate network for each of the
four tasks. At test time, we evaluate the task sequentially and
switch the network by detecting whether a subtask is solved. We
consider a subtask to be solved when target particles are within
2.5 cm of their respective goals.

3.4.2 Results

When training the agent to learn how to fold a cloth twice, we
notice a significant difference in learning speed between the dif‐
ferent stages of the task. We are able to quickly learn how to

106

3.4 Learning to fold in simulation

grasp the cloth when it is in two unfolded configurations. In
Figure 3.7a, the cloth initial layout is completely unfolded and the
agent progressively learns to grasp the cloth. In the succeeding
grasping task in Figure 3.7c, the cloth is already folded once.
In this scenario, we see the agent learning the task at a similar
pace to the first grasp. On the other hand, learning to fold when
grasping the cloth is more difficult and requires roughly 31 times
more interactions with environment as visible in Figure 3.7b and
Figure 3.7d. Themain reason for the folding task requiringmore
interactions compared to grasping can be found by consider‐
ing the dynamics complexity of both tasks. The grasping tasks
are essentially reaching tasks in which the agent must find the
optimal path from the starting pose of the end‐effector to the
target particles. Once the agent finds the target locations, the
particles are snapped to the end‐effector due to undermodelling
the contact dynamics. In contrast, during folding, the agent
must find a trajectory that achieves the foldwithout causingwrin‐
kles or sliding the cloth from the table. Small perturbations
and random action exploration then leads to large changes in
the received reward which renders the optimization landscape
more difficult. Nevertheless, we find that the agent is able to
learn the task within 24 h of training time. The success rates and
training times we find are comparable to similar experiments in
other work (Matas, James, and Davison 2018; Jangir, Alenyà, and
Torras 2020). However, exact comparisons and benchmarking
is difficult due to each work using different robotics simulators,
cloth physics simulation models and learning algorithms.

In Figure 3.8, we evaluate the success rate per stage in the task.
We run this evaluation by letting the agent sequentially execute
the task: grasping the corners, performing a first fold, regrasping
the corners that are now at a different position and performing
the second fold. This task is performed 100 times with different
starting locations of the robot grippers. We find that the robot
successfully executes this task with 97% up to performing the
second fold. During the last stage, the success rate drops due
to the second folding operation failing 26% of the time. We
hypothesize this is due to the cloth being in a more difficult con‐
figuration containing more energy caused by the first fold. In
addition, slightly hitting the cloth can cancel the resulting first

107

Chapter 3

fold whereas hitting the cloth in the first fold causes some local
wrinkles. Finally, the first fold is easier due to resetting the cloth
repeatedly to the same starting configuration. Contrarily, the
second fold starts from the result of the first fold which contains
more variability. We show visualizations of the learned grasping
and folding behaviour in Figure 3.9.

3.5 Conclusion

Simulation is an indispensable tool for the robotics researcher as
it allows fast experimentation andmassive, inexpensive data gen‐
eration. The robotics simulator landscape is large, and choosing
a specific technology requires specifying and trading‐off domain‐
specific requirements. For our application of cloth folding, we
found the support for cloth simulation in existing robotics sim‐
ulators to be lacking. Therefore, we decided to use Unity as
robotics simulator and implement a custom cloth simulation on
GPU using a mass‐spring methodology. We found that a DQN
agent can learn to fold a rectangular piece of cloth twice in sim‐
ulation within 24 h of wall time on standard computational hard‐
ware. However, it is unclear whether such an approach transfers
to the real world. First, Sim2Real methods like domain random‐
ization can be used for transfer but require a lot of computational
power. Second, we require a lot of interactions in simulation.
Learning from scratch on a real robot would take an exorbitant
amount of time. Assuming a roll‐out would consume oneminute
of robot time, this experiment would almost last half a year to
complete. Third, the cloth state is used both as input observation
for the agent and calculating the reward function. However,
obtaining the state of the cloth in the real world is non‐trivial.
In the next chapter, we will provide a solution for these issues:
estimating the cloth state using sensors and learning directly on
the physical platform.

108

3.5 Conclusion

0 2000 4000 6000 8000 10000 12000 14000
Episode

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

Re
w
ar
d

(a) Reward per episode for executing
the first grasp.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Episode 1e5

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

Re
w
ar
d

(b) Reward per episode for executing
the first fold.

0 10000 20000 30000 40000 50000
Episode

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

Re
w
ar
d

(c) Reward per episode for executing
the second grasp.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Episode 1e5

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

Re
w
ar
d

(d) Reward per episode for executing
the second fold.

Figure 3.7 Mean reward per episode for the subtasks of learning how
to fold a cloth twice in simulation. Each plot represents the progress
for a certain subtask.

109

Chapter 3

Grasp 1 Fold 1 Grasp 2 Fold 2
Stage

0%

20%

40%

60%

80%

100%

Su
cc

es
s

Success rate Failure rate Total

Figure 3.8 Success rate per subtask at test time for folding cloth twice
in simulation.

110

3.5 Conclusion

(a) Baxter reaching towards cloth corner points.

(b) Baxter successfully performing the first fold.

(c) Baxter performing the second fold.

Figure 3.9 Visualizations of the learned grasping and folding be‐
haviour.

111

4

Learning to fold through cloth
instrumentation

We bridge the gap between
simulation and the real world
by estimating the state of cloth
using smart textile technology.

4

4
Learning to fold through cloth
instrumentation

In simulation environments, fully estimating the state of cloth is
trivial because any point can be queried for information (Chap‐
ter 3). For example, bringing a cloth into a known configuration
by grasping the corners can be done by querying the location of
the corner points in simulation and planning a grasping trajec‐
tory. In the real world, finding corner points is more difficult due
to sensor noise and self‐occlusions. Chapter 2 concluded that ex‐
isting folding researchestimates the cloth state only in simulation
or by using cameras and visual trackers in the real world. This
chapter steps away from the vast focus on vision‐based solutions
and explores an alternative approach by embedding tactile sens‐
ing within a cloth and training a classifier to enable a smart cloth
to communicate its own state. We show how this smart textile
can be used for learning to fold a cloth on a low‐cost, dual robotic
arm.

First, we give a summary of our motivation for researching alter‐
natives to vision‐based cloth state estimation in Section 4.1. We
refer to Chapter 2 in this book for a full review on the existing lit‐
erature on cloth state estimation. Next, we introduce the robotic
platformwe utilize in our experiments in Section 4.2. Section 4.3
introduces our smart cloth technology and Section 4.4 discusses
the real‐world folding results we achieved with it. We provide
a discussion on our future perspectives on grippers and cloth
instrumentation in Section 4.5. Finally, Section 4.6 summarizes
the main findings of our work on instrumentation.

Chapter 4

4.1 Vision‑based state estimation of cloth

When calculating the required trajectories for deformable object
manipulation, the deformations need to be taken into account
(Foresti and Pellegrino 2004). One approach to incorporate de‐
formations is in simulationwhere the state is fully accessible. For
example, Matas, James, and Davison (2018) use deep RL to train
a neural network to learn to manipulate a towel. The reward sig‐
nal consists of the simulated cloth state and the policies learned
in simulation are transferred to the real platform using domain
randomization. In their approach, the agent learns from thepixel
input only, while tactile sensing coud lead to a more informa‐
tional representation of the cloth. Another approach is to learn
a forward dynamics model of the cloth in simulation (Tanaka,
Arnold, and Yamazaki 2018). The learned dynamics model can
then be used to bring cloth into the desired configuration. In our
ownwork (Chapter 3), we calculated the distance between corner
points that need to be close together in order to achieve a fold
(Equation (3.7)). However, transferring results in simulation to
the real world have proven to be challenging due to the difficulty
in generating high‐fidelity, simulated rollouts.

Sim2Real issues render state estimation of cloth in the physical
setup a viable alternative. State estimation methods rely heavily
on detecting points of interest like the corners of clothes. Maitin‐
Shepard et al. (2010), for example, regrasp a cloth until a corner
point is found. However, this process is the largest bottleneck in
their system, taking up to 24minutes to fold a shirt. State estima‐
tion is also a requirement for RL approaches to cloth folding: a
reward function is required to signal task success (Tsurumine et
al. 2019; Matas, James, and Davison 2018). Balaguer and Carpin
(2011) apply visual marks on a towel in order to track the state.
The markings allow calculating the distance between points on
the towel from the training sample and the example demonstra‐
tions so that it can be used as a reward for the agent. Their
method requires prior information about the shape of the object
in order to reconstruct the missing market points. However,
relying solely on visual inputs and marker clues does not scale
well. Another approach to find a reward function was explored
in (Abbeel and Ng 2004; Finn, Levine, and Abbeel 2016), where

116

4.2 Dual‑arm robotic setup

inverse reinforcement learning (IRL) was used to learn a reward
function from expert demonstrations. Because IRL learns a re‐
ward function and a policy separately, it requires RL to be run
in an inner loop, making it computationally expensive to train.
Learning the reward function offline decouples reward learning
and policy learning andmakes training on a real robot feasible.

To conclude, a typical approach for the robotic folding of textile
relies on the use of vision in order to detect grasping points and
to perform texture segmentation and pose estimation (Maitin‐
Shepard et al. 2010; Doumanoglou et al. 2016; Bersch, Pitzer, and
Kammel 2011), as well as to estimate the state (Matas, James, and
Davison 2018) and—in the case of reinforcement learning (RL)‐
based approaches—the reward function (Tsurumine et al. 2019).
However, while vision is instrumental for recognizing and local‐
izing objects, touch and force measurements become important
once contact occurs and the object is explored using the end‐
effector (Billard and Kragic 2019). Recent work (Tian et al. 2019)
has illustrated this ideaby applying a touch‐based controlmethod
for a ball repositioning task, rolling a dice and the deflection of
a stick. In line with other authors (Tian et al. 2019; M. A. Lee
et al. 2019), we believe the use of tactile input and its fusion
with other sensory information is crucial to learn complex robot
manipulation tasks in an efficient way.

4.2 Dual‑arm robotic setup

Cloth manipulation is inherently bimanual because a second
grasp is required for most tasks to bring cloth into desired
configurations. There exist bimanual robotic platforms like
Baxter® and PR2®. However, the spirit behind our research
for instrumentation is one of democratization of hardware. A
PR2 robot, for example, can cost $400.000. Sensors similar to
the one we are proposing to construct, require advanced and
financially expensive tools like photonic sintering systems (You
et al. 2016). We aim to use off‐the‐shelf components and a DIY
approach to instrumentation and robotics research. For this

117

Chapter 4

reason, we constructed the BCN3D Moveo robot arms1. The
Moveo arm is an open‐source initiative to enable the robotics
community to build a low‐cost robotic arm. The arm has five
degrees of freedom. It can be fabricated by rapid prototyping
techniques and off‐the‐shelf components. We show a picture of
the constructed Moveo arm in Figure 4.1.

The task we propose is folding a rectangular patch of smart tex‐
tile. We only consider the manipulation task of folding the cloth
and assume the textile is already grasped by attaching the cloth
to the two‐fingered gripper by means of a hook‐and‐loop fas‐
tener. We place the arms opposable as visible in the setup in
Figure 4.2.

4.3 Smart cloth

To detect the folded state of the cloth, we propose creating a
smart cloth with integrated tactile sensing. We can then record
a dataset of cloth states associated with sensor values to train a
classifier that is able to recognize whether the cloth is folded. We
first discuss the hardware options and our tactile sensing imple‐
mentation, followed by our methodology and results to train a
smart cloth.

4.3.1 Tactile sensing technologies

While tactile sensing always seems to be lagging behind com‐
pared to vision (Siciliano, Khatib, and Kröger 2008), the field has
been growing in recent years (Chi et al. 2018). This growth can
be attributed to novel fabricationmethods (L. Zou et al. 2017) and
a renewed interest in multimodal sensing for robotics (Lambeta
et al. 2020). A complete overview of tactile sensing technologies
can be found in (Siciliano, Khatib, and Kröger 2008) with updates
about recent developments in (L. Zou et al. 2017; Chi et al. 2018).
This section gives a short overview and discusses tradeoffs con‐
cerning various tactile sensing solutions.

1. https://github.com/BCN3D/BCN3D-Moveo

118

https://github.com/BCN3D/BCN3D-Moveo

4.3 Smart cloth

Figure 4.1 Picture of the constructed Moveo arm.

119

Chapter 4

Figure 4.2 Schematic overview of the setup: dual robot arms hold
a smart textile piece and have to learn to fold it from scratch us‐
ing sensory feedback of the textile and proprioceptive input of the
robotic arms.

The transductionmechanisms for external forces differ widely in
the following properties: sensitivity, resolution, dynamic range,
cost, ease of production and reliability. Common transduction
mechanisms are capacitive, piezoresistive, piezoelectric and op‐
tical (Chi et al. 2018). Capacitive pressure sensing arrays form
capacitors by separating a grid of electrodes by a dielectric ma‐
terial. A deformation in the dielectric material then induces a
change in capacitance. Capacitive sensors are characterized by
having high sensitivity and resolution but requires dealing with
noise due to stray capacitances. Piezoresistive sensors operate
on the principle of variable resistors: the change in resistance
of a material acts as a proxy for force sensing. These sensors
have a simple working principle and are low‐cost to fabricate.
For example, the strain gauge is a popular piezoresistive sensing
technology available in many DIY electronics shops. Piezoelec‐
tric materials generate charges when being subjected to forces.
However, the induced charges dissipate quickly, making it hard
to use piezoelectric sensors to detect static contact. This is neces‐
sary when it is required to, for example, detect whether the cloth
is still being grasped. Optical sensors analyze changes of internal
light or track optical markers inscribed on a membrane. For
tactile sensing with robot fingers, a growing class of visuotactile
sensors measures the deformation of a gel or a membrane. Ex‐
amples are GelSight (Yuan, Dong, and Adelson 2017), Soft‐bubble
(Kuppuswamy, Castro, et al. 2020) and Digit (Lambeta et al. 2020).
However, we scope our requirements to tactile sensing to be em‐

120

4.3 Smart cloth

bedded inside clothing. Hence, the used technology should exert
minimal influence on the deformable properties of the textile.

For robotics in general, capacitive and piezoresistive are popular
choices due to the mentioned advantages. Our application
requires the sensing technology to be low‐cost, accessible to
fabricate and contain a high degree of sensitivity to detect
folds. Piezoresistive sensors are simple and low‐cost to produce,
and have a high spatial resolution. The dynamic range can
be configured with the fixed reference resistor in front of the
variable resistor material. The low reproducibility of different
piezoresistive sensors can be mitigated by using machine
learning methods trained on different, uncalibrated batches
of sensors. This makes piezoresistive sensing technology for
our case more suitable compared to capacitive sensing, which
requires relatively more complex measurements circuits to read
out the capacitances and deal with noise and cross‐talk.

4.3.2 Cloth sensing using piezoresistive rubber

The general principle behind the piezoresistive sensor is to con‐
struct amatrix of variable resistors. The voltage over the variable
resistors is related to the pressure and can be calculated via the
voltage divider principle shown in Figure 4.3. The voltage 𝑉 over
a variable resistor 𝑅 becomes:

𝑉 = 𝑅𝐴
𝑅𝐴 + 𝑅 ⋅ V𝑖𝑛 (4.1)

with 𝑅𝐴 being the fixed resistor that can be optimized to maxi‐
mize the range of 𝑉 .

𝑉𝑖𝑛
𝑅

𝑉

𝑅𝐴

Figure 4.3 Schematic of the voltage divider principle. The voltage
divider measures the voltage 𝑉 over the variable resistor 𝑅 and uses
the fixed resistor 𝑅𝐴 as reference.

121

Chapter 4

Our implementation uses a piezoresistive rubber, commercially
available as Velostat®. Velostat is a polymer injected with a car‐
bonaceous powder called carbon black that provides electrical
properties similar to graphite (Dzedzickis et al. 2020). By com‐
pressing Velostat, the carbon particles get pushed together, in‐
creasing the conductivity of the material.

The electrodes canbeorganized into a gridwith a single or double
layer. The first option to form a single layer of electrodes is
visible in Figure 4.4. This design allows placing the electrical
components on a flexible PCB with a Velostat layer on top. We
show one of our implementations in Figure 4.5. The individual
pressing points, called taxels, are measured by applying a ref‐
erence voltage on the row electrode and iterating through the
column points while measuring the input voltage on their input
pins. The data is processed locally on the sensor by using an
ATtiny1634 microprocessor. While this design integrates natu‐
rally for robotic fingertips, we found the electrodes in the copper
wire to be fragile, the production cost is higher than two‐layered
copper threads and less scalable to integrate into the textile due
to miniaturization on the flexible PCB.

Figure 4.4 Schematic presentation of electrodes of a piezoresistive
sensor organized in a single‐layered pad.

Instead of organizing the electrodes in a single layer, we create a
grid using a layer with horizontal electrodes and a second layer
with vertical electrodes. The electrodes aremade of copper strips
that are insulated with a polyimide film. We sandwich the Velo‐

122

4.3 Smart cloth

Figure 4.5 Our production of a piezoresistive sensor with electrodes in
a single layer printed on a 0.2mm thin, flexible PCB.

stat between these two conductive layers. The layers in the smart
textile can be seen in Figure 4.6. This results in amatrix of 12 by 7
tactile cells. The signal conditioning for measuring the pressure
appliedover a tactile cell is basedon the above‐mentionedvoltage
divider principle. More specifically, the voltage is measured be‐
tween the tactile cell, which acts as a variable resistor, and a fixed
resistor𝑅𝐴 of 5.6 kΩ. A standardmicrocontroller, a ArduinoMKR
WiFi 1010, measures and processes the voltage. A LiPo battery
powers the circuit and the wireless WiFi module of the Arduino
allows communicating with the cloth remotely.

Figure 4.6 Exploded‐view drawing of the textile with integrated tactile
sensing. Conductive threads organized in a 12 by 7 grid are applied on
piezoresistive rubber, creating a variable resistor. The resulting voltage
acts as a proxy for local forces applied on the cloth.

Finally, the stacked layers of electronics is embedded in a cot‐

123

Chapter 4

ton sleeve to form a smart cloth. The resulting textile can be
seen in Figure 4.7. The electronics slightly influence the cotton’s
deformability, although we have not quantified the change in
deformability. However, the primary deformable characteris‐
tic of the cotton is not changed, making it suitable for folding
experiments. The main component making the cotton stiffer is
the Velostat sheet of 0.1mm thickness and weights roughly 15 g.
The wires have a lesser impact because they run to the terminal
endpoints of the copper electrodes, as can be seen in the zoom‐in
photo in Figure 4.8.

Figure 4.7 Our resulting implementation of a smart textile which is
able to detect and translate local forces to a state configuration (for ex‐
ample, folded or unfolded). The smart textile is made using accessible
off‐the‐shelf materials and tools.

4.3.3 Learning a smart cloth

We aim to use the integrated tactile sensors to make the textile
able to sense and react to its surrounding environment, making
it an active smart textile (Stoppa and Chiolerio 2014). To make
the cloth smart, we train a linear classifier to predict the garment
state: folded or unfolded. Therefore, we first collected data from
the 12 by 7 tactile cells by bringing the cloth into multiple con‐
figurations while hand‐labelling the associated state. We define

124

4.3 Smart cloth

Figure 4.8 Zoom‐in photo on the electronics embedded in our smart
textile.

the folded state of the cloth with some slack because of the way
in which the robots are positioned in order to avoid a collision;
this is illustrated in Figure 4.9. The collected data were split into
a training set of 1418 samples and a test set of 511 samples. In
Figure 4.10, the average voltage and standard deviation of the
tactile cells for both garment states are shown. One can observe
that there is a clear voltage peak in the centre column, implying
that the tactile cells in the centre of the textile experience higher
pressure due to the folded state.

The classifier was trained using logistic regression with l2‐norm
regularization on 1418 training samples in a five‐fold cross‐
validation setting. The regularization parameter was optimized
by performing a random search and by using the F1‐score as
a performance metric. In order to verify the usability of the
classifier, we tested it on an unseen test set of 511 samples which
resulted in an average F1‐score of 0.97. The full results of the
test set are summarized in Table 4.1.

We are able to classify different shape configurations for the tex‐
tile piece with high accuracy, making the smart textile useful

125

Chapter 4

Figure 4.9 Example of the folding task on the real platform. The
robotic arms are positioned in such a way that they cannot collide,
making it physically impossible to fold the cloth fully. Thus, we do not
require a fully folded state of the textile from the agent.

Figure 4.10 The average and standard deviation of the collected data
from the 12 by 7 tactile cells show a higher voltage in the center
column—where the fold is—when the cloth is in the folded state.
These figures qualitatively indicate that the tactile cells in the textile
react to different folding configurations.

Table 4.1 Test set results of the linear classifier that detects whether
the cloth has been folded (511 samples).

Samples Precision Recall F1‐score

Unfolded 342 0.98 0.98 0.98
Folded 169 0.96 0.95 0.96

126

4.4 Results on learning to fold an instrumented cloth

for learning purposes. Other desired features such as wrinkle
detection are hard to measure with this technology given the
limited sensitivity of the piezoresistive rubber.

4.4 Results on learning to fold an instrumented
cloth

As described in Section 4.2, the task consists of folding a rectan‐
gular textile piece by using a low‐cost dual robotic arm. The arms
are positioned in an opposing manner to avoid a collision. In
order to avoid damaging the smart textile, we limited the move‐
ment of each robot arm to threedegrees of freedom(DOF) instead
of the available five DOF. Consequently, the movements of the
robots are limited to one plane.

In order to find the control policy for folding, we formulated
the problem as a fitted Q‐learning problem (Watkins and Dayan
1992). The state‐space 𝑆 = ℝ6 is defined by the joint space of the
dual‐arm robot, with six motor angles in total. For each joint, we
define two actions: ±𝛥 with 𝛥 equal to 4°. The reward function 𝑅
is sparse and defined by

𝑅 =
{

100 on success
−1 penalty for wandering

(4.2)

We approximate the Q‐function with a simple MLP with six input
neurons (one for each of the controlled joints), two hidden layers
with 128 and 64 ReLu neurons, respectively, and 12 output (lin‐
ear) neurons (one for each of the possible actions). In order to
find a good set of parameters, we implemented a simple forward
kinematicmodel of the robot arms in a reaching task setting. This
allowed us to sweep across various hyperparameter settings. The
optimizer we used is stochastic gradient descent with a learning
rate of 0.01 and batch size of 64 samples. The target network is
updated each 1000 steps. Exploration is done using an 𝜖‐softmax
policy with 5000 exploration steps. Thus, the agent will first
execute fully randommotor actions and gradually start choosing
actions that maximize the expected q‐values.

127

Chapter 4

After the selection of the hyperparameters, we trained our dual
robotic arm setup from scratch in the real world. As shown in
Figure 4.11a, after approximately 60 episodes (17.000 steps, or
8 h), the robot successfully learned to complete the folding task.
Figure 4.11b shows the number of steps the robot needs to fold
the cloth per episode. The low dimensional state space of the
agent and the learned reward function from tactile information
using supervised learning allows the agent to learn to fold the
cloth after relatively few training examples.

An example trajectory of the learned policy is shown in
Figure 4.12. The action probabilities show that at the start of the
episode, the agent primarily moves the shoulder joints, as they
lead to the largest movement of the end‐effector. This behaviour
has the benefit that it minimizes the penalty associated with
wandering or other suboptimal movements. As the episode
progresses, the agent has a higher probability of actuating the
elbow and end‐effector motors for more refined movement.
The end‐effector trajectories, shown in yellow, are not smooth
given that the policy is an action probability function calculated
over the Q‐values of the neural network. Because there are
multiple reaching points in the plane to fold the cloth, the agent
has multiple options to move during the first part of the episode,
leading to jagged end‐effector trajectories.

As our experiment illustrates, it is possible to avoid the need for
complex vision‐based state estimation to learndifficult tasks such
as the folding of clothing with low‐cost robots. The use of other
input modalities such as a smart textile allows a reward function
to be learned with simple linear models and is applicable to use
for learning on real robotic platforms.

4.5 Discussion

4.5.1 Grippers for clothmanipulation

The task we solved in this setup was essentially one of low
complexity to demonstrate the applications of accessible sensing
technology. When considering more complex cloth‐related tasks

128

4.5 Discussion

(a) The folding success rate and exploration probability per episode.
The success rate grows to 100% after training for 8 h on the real robot.

(b) The number of steps required per episode to solve the task; the
number of motor commands needed to fold the cloth decreases after
relatively few training examples.

Figure 4.11 Results of training the real robot from scratch to learn how
to fold a smart textile.

129

Chapter 4

Figure 4.12 Demonstration of a folding trajectory of the learned policy
broken down into three steps: start, middle and end of the episode. The
robot state on thefigure is visible from the stance of the robot arms. The
action probabilities are given in red next to each joint. The executed
trajectory is shown with a yellow line.

130

4.5 Discussion

like grasping and flattening, the question ofwhich gripper design
is appropriate arises. We have experimented with different
underactuated designs, illustrated in Figure 4.13. However,
it is non‐trivial to determine what types of end effectors and
grasps are needed for optimally manipulating cloth‐like objects.
Recently, Borràs, Alenyà, and Torras (2020a) provided a holistic
overview of the known gripper designs for manipulating textile.
In this work, a systematic classification of grasps in the cloth
literature is given based on opposing geometric primitives.
Their work brings the important observation that most prior
research uses a pinch grasp with both general‐purpose and
specialized cloth‐specific grippers. The proposed framework is
used to demonstrate that adapting the gripper type to the cloth
manipulation task lead to more robust control. We believe this
initiative to be a good starting point before resorting to arbitrary
cloth manipulation tasks with off‐the‐shelf parallel grippers.

4.5.2 Future improvements

The instrumented learning process proposed in this chapter is
feasible to scale up to other instances of clothmanipulation tasks
given the low computational requirements and the tactile sensi‐
tivity of the sensor matrix. The accessible fabrication procedure
of the smart textile allows the implementation of this technology
for any type of clothing, such as shirts and trousers. The influ‐
ence on the deformable properties of the cloth can be reduced by
miniaturizing the electronics, by using conductive thread instead
of copperwires, and by only applying tactile cells in crucial areas.
The Arduino we mount on the cloth contains unused function‐
ality and can be replaced by a smaller PCB customized for this
task.

Future work includes exploiting the sensitivity of the tactile sen‐
sor grid to classify more complex cloth configurations and using
more powerful, non‐linear classifiers compared to the logistic
regression model used in this work. Future research should be
directed towards fusing the tactile informationwith visual data in
order to generate a database of self‐labelled images of arbitrary

131

Chapter 4

(a) Underactuated finger printed with
flexible PLA material.

(b) Finger tips with profile to increase
friction for grasping.

(c) Gripper based on the deformation
of the fin of a fish (Crooks et al. 2016).

(d) Compliance increases safety and
adapts to the shape of the object.

(e) Pneumatic gripper. (f) Bending range.

Figure 4.13 Alternative gripper designs we experimented with for
cloth manipulation tasks. In collaboration with Peter Verdru, Robbe
Nuyttens and Stijn Fierens, former master students at our lab.

132

4.6 Conclusion

cloth configurations. These data can be produced by manipulat‐
ing the cloth while recording its state with cameras. In order
to detect and grasp the cloth and train policies that minimize
wrinkles, visual feedback will have to be included. A suitable
approach for integrating visual and tactile information is to learn
amultimodal latent space, as shown in (M. A. Lee et al. 2019). We
discuss our ideas for multimodal learning in Chapter 7.

4.6 Conclusion

The difficulty in estimating the state of clothes causes problems
for robotic vision pipelines and hindersmaking reward functions
for RL. In this chapter, we proposed a cost‐effective and com‐
putationally efficient solution for estimating the state of cloth.
We have shown that an inexpensive dual robotic platform can
learn to fold a textile piece in the real world with neural fitted
Q‐learning and without reward engineering. This is done by
including tactile sensing in the learning process. We have shown
that the high sensitivity of the proposed tactile cells allows the
capture of arbitrary cloth configurations. We demonstrated that
the tactile data can be used to train a simple logistic regression
classifier to detect the cloth state; thus, we create a smart textile
piece that is able to accurately detect whether it is folded.

We are aware that we will have to integrate vision for the state
estimation to scale up our tasks to real clothing. Consequently,
we do not advocate vision‐free solutions, but we argue for an
interdisciplinary approach in which vision, proprioception and
tactile information is combined in order to find the simplest so‐
lution of state and reward function estimation.

An important bottleneck of the researchpresented in this chapter
can be found in the reward function in Equation (4.2). The scalar
value received each step, and on completing the task, are arbi‐
trarily chosen. Our experiments from Chapter 3 also confronted
us that the issue of reward shaping (discussed in Chapter 2) is
also present for cloth folding tasks. We believe that learning
the reward function from demonstrationsmay overcome human
bias in reward engineering. However, as discussed in Section 2.6,

133

Chapter 4

the prerequisite for learning is unavailable; there exists no high‐
quality dataset of people folding clothing. The lack of a folding
dataset is tackled in the next chapter.

134

5

Dataset for robotic folding through
crowdsourcing

We collect the first large‑scale
video dataset of people folding
clothing to bootstrap learning in
robotics.

5

5
Dataset for robotic folding through
crowdsourcing

Deep neural networks lie at the heart of modern methods to
acquire complex robotic manipulation skills. For example,
Matas, James, and Davison (2018) use a deep CNN that maps
input images to motor commands to fold cloth. However, a
prerequisite for learning is the availability of data. In the case
of using deep learning models, the amount of data required is
considerably high. Unfortunately, datasets for robotic learning
of manipulation skills for clothing and deformable objects are
not widely available. While a large body of research exists
on cloth modelling and garment reconstruction from images
(Bertiche, Madadi, and Escalera 2020; H. Zhu et al. 2020; T. Y.
Wang et al. 2018), the availability of dedicated cloth folding data
is scarce. To fill in the gap of the lack of a high‐quality and
high‐volume cloth folding dataset, we collect a dataset of people
folding clothes. Our dataset fulfils two roles: (1) we aim to
provide the community with a high‐quality and heterogeneous
dataset of people folding clothing; and (2) this dataset connects
the former and next chapter in this book where we learn, instead
of engineer, a reward function.

5.1 Crowd‑sourcing folding demonstrations

We gathered a heterogeneous dataset of folding demonstrations
using a community‐based participatory approach (English,
Richardson, and Garzón‐Galvis 2018). We involve citizens by
requesting them to demonstrate their method to fold clothing

Chapter 5

Kinect
RGB‐D
cameras

Basket
with
clothes
to fold

Folding
space

Figure 5.1 Picture of our folding table setup to crowdsource video
demonstrations in a public library. There are three Kinect cameras
mounted on top of the table that capture the human folding demonstra‐
tions. We provide easy and clear instruction to introduce consistency
in the demonstrations.

on a folding table with cameras. Using posters, an instructional
video and warning symbols around the folding table setup,
we made it explicit that participants will be recorded on video
for the purpose of research in the domain of robotics and AI.
We collected no demographics or other personal information.
This setup allows us to capture different folding strategies
and manipulation varieties within a folding method. The
participants consist of a combination of students and visitors of
a public library in the third‐largest city in Belgium. This avoids
selection bias in the dataset. Furthermore, we place our setup
within a small exhibition on research in robotics to inform the
public about learning strategies for robots and give an answer to
an innate fear in society that self‐learning robots could lead to a
loss in jobs (Fleming 2019).

To capture video task demonstrations, a special‐purpose folding
table was designed and constructed, which can be seen in Fig‐
ure 5.1. The table is a beam‐like, wooden skeleton structure con‐
sisting of a tabletop, a bench, camera mounting points, a basket,

138

5.1 Crowd‑sourcing folding demonstrations

(a) The towels in the dataset contain
different textures and are of similar
size.

(b) The sizes of the t‐shirts range from
small to extra large and consists of a
multitude of colours.

(c) The hoodies are arguably the hardest piece of textile to fold
in the set. There are two hoodies with a different colour.

Figure 5.2 The set of textiles that has to be folded by the participants
consists of hoodies, t‐shirts and towels with a variety of sizes, colours
and textures.

139

Chapter 5

and a locker. The participant is required to fold the clothing on
the working surface. The tabletop is detachable in order to apply
different tablecloths as a means to introduce additional variety
in the dataset. As we require the demonstrator to sit while per‐
forming the task, we place a large bench attached to the wooden
frame. The bench also obstructs observers to prevent occlusion
and distraction during task execution. There are three Kinect v2
cameras mounted on top of the table. They capture the perspec‐
tive from the task executor and two top corner video streams to
deal with occlusion. They are placed approximately 160 cm and
183 cm from the centre of the folding table in order to capture the
complete folding sequence demonstration. The Kinect cameras
provideRGBanddepth information at a resolution of respectively
1920 × 1080 and 512 × 424 pixels. The wooden basket is attached
to the bench and serves as a proxy for a laundry basket. Finally, a
locker safeguards theworkstation embedded in the table. We use
the libfreenect2 driver (Xiang et al. 2016) to capture the frames
and process the six video streams, RGB and depth information,
online using anAMDRyzen 1700XCPU.Because of thehighband‐
width requirements of the Kinect cameras, we limit the frame
rate to 10 FPS.

To structure the participants’ task demonstrations, we provided
a four‐step instruction list: (1) place randomly selected clothing
out of thebasket on the left side of the table, (2) fold one textile at a
time in themiddle of the table, (3) collect it at the right of the table
and (4) put all textile back in thebasket. Wemadean instructional
video1 and put up a poster containing these instructions to avoid
high variance in task execution.

Because the folding table is stationed in a public space with
mostly no human supervision, we leave it recording throughout
the project. To avoid running out of storage and filtering frames
without human activity, we run an activity detection heuristic
based on changes in the pixel values of the video stream. To
guarantee ample observations, we also actively visited the setup
to attract and inform visitors about the project. We noticed our
presence had a positive effect on the number of visitors willing

1. The instructional video can be viewed at https://www.youtube.com/watc
h?v=p99T5H8yK38.

140

https://www.youtube.com/watch?v=p99T5H8yK38
https://www.youtube.com/watch?v=p99T5H8yK38

5.1 Crowd‑sourcing folding demonstrations

Figure 5.3 Example output from our dataset. We provide RGB im‐
ages, depth registrations and skeleton keypoint trajectories of 6.5 hours
of human demonstrations of folding clothing. The RGB images are
anonymized without compromising image fidelity or disturbing the
folding demonstration. The videos are segmented such that one sample
represents the folding of one piece of textile.

141

Chapter 5

to participate in the data crowdsourcing project.

The included types of textiles in the basket are towels, t‐shirts,
and hoodies. Examples are shown in Figure 5.2. We excluded
trousers as they are hard to flatten from a sitting position. Socks
were also excluded from the set because folding socks require
high‐dexterous, fine manipulation actions that would not be vis‐
ible from the mounting position of the cameras.

After capturing the example demonstrations, we cleaned all false
positive recordings from the database, sliced the recordings into
single‐piece folding demonstrations and manually labelled sub‐
tasks. The subtasks consist of grasping isolated clothing, unfold‐
ing, flattening, folding and stacking it on top of each other. We
defined exact definitions of these subtasks in Table 5.1 in order
to consistently label the video fragments. As data quality plays
an important role for learning algorithms, we annotated the data
ourselves to ensure there is consistency in the labelling between
samples. These subtask labels can, for example, be used in rein‐
forcement learning for reward engineering or hierarchical learn‐
ing and for the training of action recognition systems. Skeleton
keypoints were extracted from all frames in post‐processing us‐
ing AlphaPose (Fang et al. 2017).

5.2 Folding demonstrations dataset

The observations in the datasets are captured over the course
of two months at two different public locations. The set con‐
tains 1000 folding demonstrations of three different types of tex‐
tiles. This amounts up to 8.5 hours of folding recorded in 304.820
frames. We registered four different types of folding methods.
We segment each video into chunks of single folding demonstra‐
tions and provide RGB frames, depth information, annotations,
pose trajectories and timestamps of the different steps in the
folding task. The content and how to access and use our dataset
is described in the remainder of this section.

142

5.2 Folding demonstrations dataset

Subtask Definition

Isolated grasping The subject selects grasping points to remove a
piece of textile from a heap of multiple textile
pieces and isolates the selected textile.

Unfolding The subject selects grasping points and executes
manipulation trajectories in order to remove a
fold.

Flattening The subject executes manipulations in order to
removewrinkles from a piece of textile which can
be in any state.

Folding The subject selects grasping points and executes
manipulation trajectories in order to bring the
textile into a folded configuration.

Stacking The subject grasps the textile andmoves it outside
the folding area, possibly stacking it on top of a
pile of folded textiles.

Table 5.1 Definitions used to label the subtasks in the folding task

5.2.1 Folder structure

The dataset is segmented into folding demonstrations of a single
piece of textile. This structure is visible in the folder hierarchy in
Figure 5.4. For each example demonstration, wefind annotations
and timestamps indicating the subset of the task. Because we
have three camerasmounted on fixed positions on the folding ta‐
ble, we put the colour, depth and pose registrations in the folders
left,middle and rightwhich represent the viewpoint in front of the
table.

5.2.2 Data format

The RGB images captured with the Kinect cameras are
compressed with the x265 codec. We use the intrinsic camera
calibration parameters to modify the images according to the
depth correction. All RGB frames are anonymized by applying
colour quantization to the corners of the frame and pasting an

143

Chapter 5

Figure 5.4 Folder structure of the folding demonstration dataset.
There is a folder per folding demonstration, indicated with <index>.
Each sample contains labelled data in the annotations json file. The
images are grouped per perspective and contain rgb and depth images.
There are also joint positions available per video perspective.

144

5.2 Folding demonstrations dataset

ellipsoid colour patch around the face of the demonstrator which
was tracked using AlphaPose (Fang et al. 2017).

Each sample in the dataset contains annotations in the annota-
tions.json file. The labelled information and data format can be
seen in Listing 1. We label which type of textile is being folded
andwhich foldingmethod is being used. We distinguish four cat‐
egories of foldingmethods, labelled from a to d. These categories
represent an increasing amount of complexity to learn a certain
folding strategy. For example, folding method a extensively uses
the table tomake folds. In contrast, method b represents demon‐
strators making vertical folds while lifting the cloth in the air.
Method c categorizes folding strategies which requires crossing
the hands. Finally, method d captures all different strategies not
described by the former folding categories, for example rolling
up the cloth. All four folding strategies can be used on all types
of cloth in the dataset. The different types of textile are labelled
as hoodie, shirt or towel. The distribution of the folded clothing
is as follows: 88% of the folded clothing are shirts, 9% are towels
and 3% hoodies. The timestamp is in YYYY-MM-DD HH:MM:SS for‐
mat. Given that the data is crowdsourced, some variation exist in
theway participants followed the high‐level process instructions.
For example, some demonstrators fold the clothing immediately
out of the basket instead of first collecting the pieces on the left
side of the table. To indicate to which extent the given process
instructions are being followed, we included a quality label in
the annotations. This label is useful if consistent, high‐quality
samples need to be sampled. In the dataset, 86% follow the given
instructions, 12% make one deviation while 2% do not follow the
given high‐level instructions. The exact definitions of the quality
label are shown in Table 5.2.

We labelled each part of the video with a descriptor indicating
which step in the folding process the demonstrator is going
through. The different steps are named isolated_grasping,
unfolding, flattening, folding and stacking.

We provide human skeleton keypoint trajectories in the file
pose.json. There are pose trajectories available for each camera
perspective per folding sample. The joint positions are stored in
the JSON format visible in Listing 2. There is a score associated

145

Chapter 5

Quality label Definition

Follows instruc‐
tions

The instructionswere followed exactly.

Slight variation on
instructions

One deviation was made from the in‐
structions.

Very different from
instructions

Two or more deviations were made
from the instructions.

Table 5.2 Quality label definitions: because not all demonstrators fol‐
low the given high‐level task instructions, we define a quality label of
which the definitions are given in this table.

with each pair of 𝑥 and 𝑦 coordinates. This variable, ranging
from 0 to 1 indicates the detection confidence that a certain joint
is at the given location. In general, the coordinates for every
joint positioned beneath the shoulders are less reliable because
the subject is sitting on a bench with the legs occluded by the
table. We consider this not a problem because the coordinates
of the joints of the two arms are reliable and are of importance
for the folding task.

5.2.3 Project website and helper scripts

Along with the data, we provide helper scripts in Python which
are available at https://github.com/adverley/folding-demonstratio
ns. The data can be loaded by calling
FoldingDemonstrationDataSet(home_dir). We expose the
data as a nested dictionary, embedded in a list. This enables an
intuitive interface for accessing the data by iterating over the
FoldingDemonstrationDataSet object and querying specific
fields with corresponding key in square brackets. For example,
data[0].annotations['clothing_type'] queries the type of
clothing being folded in demonstration 0 while
dataset[42][0]['rgb']['left'] returns the first RGB image of
video demonstration 42. A more complete and general‐purpose
example can be found in Listing 3.

146

https://github.com/adverley/folding-demonstrations
https://github.com/adverley/folding-demonstrations

5.3 Conclusion

{
"id": 0,
"timestamp": "2018-09-30 19:35:06",
"cloth_type": "hoodie",
"location_id": 0,
"nb_frames": 579,
"folding_method": "a",
"demonstration_id": 0,
"nb_folds": {

"0": 0,
"66": 1,
"94": 2,
"118": 3

},
"subtask_changes": {

"0": "isolated_grasping",
"42": "unfolding",
"112": "folding",
"300": "stacking"

},
"quality": "follows instructions"

}

Listing 1 annotations.json description that provides metadata about a
single folding demonstration.

5.3 Conclusion

In this chapter, we introduced a video dataset with human
demonstrations of folding textile, captured via a citizen
crowdsourcing project. With this unique dataset, we aim to fill a
gap in learning deformable objects manipulation, bootstrapped
by human examples. We provide 1000 demonstrations with
RGB images, depth frames, and joint pose trajectories captured
from three perspectives simultaneously. We labelled the data
with subtask annotations, folding method, and textile type.
Our goal is to provide robotics researchers with a real‐world

147

Chapter 5

{
frame_nr: {

"LElbow": [x, y, score],
"RElbow": [x, y, score],
"LShoulder": [x, y, score],
"RShoulder": [x, y, score],
"LWrist": [x, y, score],
"RWrist": [x, y, score],
...
"confidence": 100.0

}
}

Listing 2 pose.json description that gives image coordinates of the
joints of demonstrator folding clothing.

dataset to accelerate the learning from human demonstrations
for deformable object manipulation.

Our dataset can be employed for multiple purposes. A first use‐
case is action recognition on multiple temporal levels, for exam‐
ple detecting different folding methods and detecting the steps
associated with folding textile. A second application is to use the
data to bootstrap learning via learning from demonstration. We
explore the latter in the next chapter.

148

5.3 Conclusion

from folding_demonstrations.dataset import
FoldingDemonstrationDataSet↪

Set to the directory where the folding
demonstrations dataset is stored↪

home_dir = '/media/data/folding_data_output'

Load the data
dataset = FoldingDemonstrationDataSet(home_dir)

Iterate over data and query available
information↪

for sample in dataset:
random_frame_nr = 42
frame = sample[random_frame_nr]
rgb_left = frame['left']['rgb']
rgb_middle = frame['middle']['rgb']
rgb_right = frame['right']['rgb']
depth_l = frame['left']['depth']
depth_m = frame['middle']['depth']
depth_r = frame['right']['depth']
subtask = frame['subtask']
reward = frame['reward']
pose = frame['pose']

Listing 3 Example code how to query the dataset

149

6

Learning reward functions from
demonstrations

We present the first system that
expresses the progress of people
folding clothing without labelling
video frames.

6

6
Learning reward functions from
demonstrations

We employ our dataset of people folding clothes (Chapter 5) to
distil the task intent and express it as a scalar value. This scalar
value is a metric representing task progression which can be
used for monitoring processes or as reward function in RL. To
achieve this reward metric, we present a method that uses the
multiperspective video demonstrations to train an embedding
by using time as a contrastive signal. This self‐supervised ap‐
proach enables label‐free learning. By aligning demonstrations
to a small set of hand‐picked expert samples, we can extract a
reward signal. The contributions of the research presented in
this chapter are threefold:

1. A novel method to generate task progression metrics from video
without labelling data: We propose an integrated approach
to overcome expensive data labelling in data‐drivenprocess
monitoring in order to generate self‐learned task progres‐
sion metrics. Our approach also allows decoupling reward
and policy learning in reinforcement learning.

2. The first solution for tracking cloth folding progression: We pro‐
vide the first results for the challenging case of quantifying
cloth folding progression.

3. In-depth, case-based robustness analysis: We demonstrate the
robustness of our approach with adversarial cases to test
the use‐cases and limits of our proposed method.

This chapter is organized as follows. First, we describe our ra‐
tionale and related work in Section 6.1. Next, we give a high‐
level overview of our proposed approach in Section 6.2 and then

Chapter 6

discuss all components in Section 6.3. We demonstrate quanti‐
tative results of learning progression metrics in Section 6.4. The
discussion sections of this book frequently touch on the subject
that a progression metric for folding cloth is ill‐defined. For this
reason, we provide an in‐depth discussion in Section 6.5. This
discussion decodes which visual features the progression metric
is attending to in the scene. We also conduct case‐based adver‐
sarial experiments to test which invariances are learned and how
robust our method is. Finally, Section 6.6 concludes our work on
learning perceptual reward functions.

6.1 Rationale and related work

We draw inspiration from how humans and animals acquire new
skills to capture the many required details involved in capturing
task progression. Primates and humans are known to possess a
mirror neuron system that is at the basis ofmirroring actions and
behaviour of other individuals (Gallese, Keysers, and Rizzolatti
2004). This idea has been transferred to the field of robotics
(Argall et al. 2009) in which a robot can acquire new skills by
imitating the behaviour of the demonstrator. However, learning
to solve a task fromexperts is suspect to copying the exactmanip‐
ulations of the demonstrator. This is due to the learning agent not
understanding the essence of the task. Moreover, no guidance
is available when the agent arrives in unseen areas of the state
space. A final problem preventing transferring expert demon‐
strations across actors is the correspondence problem (Nehaniv,
Dautenhahn, et al. 2002): the embodiment of the demonstrator
often differs from the learning actor. For example, the kinematic
chain of a delta robot differs significantly from a human arm.
Consequently, learning fromdemonstrations requires amapping
between different morphologies. Hence, a task progression met‐
ric needs to be invariant to the actor executing the task (i.e., the
correspondence problem) and needs to be able to generalize to
unseen situations.

In order to construct process monitoring metrics from demon‐
strations that capture the task intent, we need to (1) learn task‐

154

6.1 Rationale and related work

relevant representations, (2) solve the correspondence problem,
and (3) translate the representation to ametric that indicates task
progression and solution quality. This task progression metric
can then be used for process monitoring. Additionally, this met‐
ric can be used as a reward function in a reinforcement learning
setting such that the task can be learned from environment inter‐
action.

6.1.1 Applications of process monitoring

The primary application we target is acquiring manipulation
skills throughRL. RL requires a reward function to signal the task
performance to the agent. Contrary to popular approaches that
use demonstrations in an imitation learning framework, we distil
a reward function instead of a policy from the demonstrations.

The second application domain we target is process monitoring
in manufacturing systems. An important challenge for smart
manufacturing systems is finding relevant metrics that capture
task quality and progression for process monitoring to ensure
process reliability and safety. Data‐driven process metrics con‐
struct features and labels from abundant raw process data, which
incurs costs and inaccuracies due to the labelling process. This
cost can be prevented by having process metrics that are learned
without supervision.

We will use the terms “reward function” and “task progression
metric” interchangeably to denote these two applications.

6.1.2 Data‑driven process monitoring in smart
manufacturing systems

Modernmanufacturing systems are becoming increasingly com‐
plex due to high requirements on process quality and econom‐
ical incentives (Yin et al. 2014). In order to ensure the reliabil‐
ity and quality of the outcome of industrial processes, process
monitoring techniques are utilized (Ge, Song, and Gao 2013).
Among process monitoring methods, data‐driven process mon‐
itoring methods are a popular approach as they do not require

155

Chapter 6

modelling complex physical processes and can conveniently be
collected with sensors and cameras. Data‐driven process mon‐
itoring methods are of relevance for smart manufacturing sys‐
tems that collect data at high volumes and frequencies (Wang
2012). The availability of this data enables data‐driven meth‐
ods to train models for process monitoring and fault detection
(Yin et al. 2014). Machine learning methods, in particular, have
been used to discover valuable patterns in manufacturing data
by manually constructing features (Pham and Afify 2005). This
way, virtual sensors can be trained to estimate product quality
and process metrics based on historical measurements of easy‐
to‐measure process variables. For example, in (Li and Zhu 2004)
the quality metric of a paper pulping process is inferred from
chemical process features constructed from surrounding sen‐
sors. To avoid the need of manually engineering features, deep
learning methods are becoming increasingly popular for fault
diagnosis (Zhao et al. 2019). In (Wen et al. 2018), they show
that a deep neural network can outperform traditional process
monitoring methods on three widely‐used datasets. Other work
looks at directly inputting process images to the neural network.
For example, in (Lyu, Chen, and Song 2019) flame images of a
furnace are used for monitoring the combustion process. In
(Janssens et al. 2018) infrared thermal videos are used as training
data for a deep neural network to estimate the health conditions
of rotatingmachinery. In (Lei et al. 2016) rawmanufacturing data
is converted to latent features learned by an autoencoder neural
network. In practice, many of these applications assume the
availability of process experts in order to carefully label the data
(Wuest et al. 2016). However, this is costly and ambiguous to do
for some domains. To avoid labelling data, existing work (Kang,
Kim, and Cho 2016) uses semi‐supervised learning to exploit both
labelled and unlabelled data for predicting wafer quality dur‐
ing semiconductor manufacturing. Another work (Malhotra et
al. 2016) avoids theneedof labelling the remaininguseful lifetime
of industrial machines by compressing the input sensor data to a
latent space using a recurrent neural network autoencoder. By
reconstructing the latent space to a machine health index, they
can match the resulting time series and use the reconstruction
error to compute the health index used for estimating the system

156

6.1 Rationale and related work

remaining useful lifetime. However, their method still requires
finding example health index curves. We utilize a similar idea
to leverage data under nominal operating conditions while bor‐
rowing insights from the learning from demonstration research
in order to learn a task progression metric.

6.1.3 Learningmanipulation skills from demonstration

In Chapter 2, we already reviewed the background material on
learning from demonstration. In this section, we reprise the
main findings.

Learning from demonstrations Learning from demonstrations
is a prevalent domain in the robotics learning community. In
the learning from demonstration survey of (Argall et al. 2009), a
distinction ismade between giving demonstrations and imitation
learning depending on whether an embodiment mapping exists.
In case the teacher executions aredemonstrated, an embodiment
mapping is implicit. In contrast, imitation implies that the corre‐
spondence problem needs to be solved. These definitions place
our work as imitation learning from external observations: sen‐
sors external to the executing entity are used to train a learning
agent that can have a different morphology. One instance of
learning from demonstration is behavioural cloning, in which
supervised learning is used to predict the actions an expertwould
do in a given state (Ross, Gordon, and Bagnell 2011). However,
behavioural cloningmethods are known to copy end‐effector tra‐
jectories instead of understanding how actions relate to task per‐
formance. Moreover, errors accumulate when an agent takes a
wrong action, which pushes him into an unseen part of the state
space. A more general way to force the agent to attend to which
actions increase task performance, is to learn the reward from
demonstrations instead of the policy.

Inverse Reinforcement Learning RL is a domain that shares sim‐
ilar semantics with process monitoring: both require metrics

157

Chapter 6

indicating task progression and quality. In RL, the task pro‐
gression metric is known as the reward function. This signal
guides the learning agent towards task solutions. A sub‐domain
known as inverse RL (Ng, Russell, et al. 2000) deals with learning
reward functions from demonstration. In inverse RL, an outer
loop learns the reward function while the inner loop executes a
learning procedure for finding an optimal policy given the cur‐
rent reward function. Recentmethods have looked at integrating
deep neural networks as a representation layer in inverse RL
(Finn, Levine, andAbbeel 2016; Ho andErmon 2016; Fu, Luo, and
Levine 2018). However, much computational power is required
for training due to the two loops taking place. Speeding up the
trainingprocesswith kinesthetic teach‐in andupdating insteadof
optimizing the reward function is explored in (Finn, Levine, and
Abbeel 2016). Unfortunately, manually moving the robot’s end‐
effector proves to be unfeasible for tasks with difficult dynamics
like knot tying or folding clothing. Othermethods (HoandErmon
2016; Fu, Luo, and Levine 2018) leverage expert demonstrations
based on adversarial training. In these setups, the goal is to learn
the task directly and not infer a reward function. In contrast, we
aim to learn a reward function completely decoupled frompolicy
optimization. This way, it can be used for multiple purposes,
such as learning and process monitoring.

Self‑supervised learning An emerging method for sample‐
efficient learning of task‐relevant features is self‐supervised
learning. Self‐supervised learning exploits the structure
present in a dataset to learn rich representations used for a
downstream task such as image classification. Both natural
language processing and computer vision has seen large leaps
in self‐supervised methods with, for example, BERT (Devlin
et al. 2019). The general idea is to provide an artificial task to
learn meaningful representations. Example tasks are learning to
colourize images (Zhang, Isola, and Efros 2016), reconstructing
the original input (Pathak et al. 2016) and predicting the relative
position of two random patches (Doersch, Gupta, and Efros
2015). An instance of self‐supervised learning is contrastive
learning, in which representations are learned by providing
contrasting examples. In the case of video demonstrations,

158

6.1 Rationale and related work

time can be used as a supervisory signal to provide contrasting
examples. The goal then becomes to recover the temporal
coherence of a video. One of the firsts works leveraging time
as contrastive signal (Misra, Zitnick, and Hebert 2016) inputs
a sequence of frames and classifies whether the frames are in
the correct order. Later work (H.‐Y. Lee et al. 2017; Fernando
et al. 2017) also frames self‐supervised learning as a classification
task in which the correct temporal order has to be determined.
Several prior works construct reward functions, or equivalently
process monitoring metrics, in latent spaces trained with time
as a supervisory signal.

Using time as self‐supervisory signal has been used in multiple
works for learning from demonstrations (S. Nair et al. 2020; A. V.
Nair et al. 2018; Sermanet et al. 2018; Dwibedi et al. 2018; Har‐
tikainen et al. 2019). However, prior approaches assume the
possibility of teleoperation, or express the reward as distance in
embedding space which is not possible when a trajectory of steps
has to be followed to arrive at the goal state. This is in fact the
main reason for us to innovate beyond using Euclidean distance
in TCNs embeddings: the distance between start and goal state in
an embedding space that encodes the state of textile is not useful
when a sequence of states need to be visited to arrive at the goal
state. Consider the hypothetical one‐dimensional embedding
that encodes the state of cloth in Figure 6.1. In this example, the
initial state is the unfolded shirt and the target state is a folded re‐
sult. To get to the target state, the agent needs to pass through the
intermediate states of folding both sleeves. However, the agent
has no incentive to move from the initial state as the reward, i.e.
distance between current and target state, will decrease when
trying to go to the intermediate states.

Unfolded Folded Left sleeve
folded

Right sleeve
folded

Figure 6.1 Hypothetical one‐dimensional embedding that encodes the
state of cloth.

Solving the problem of initial and target state being close in em‐

159

Chapter 6

bedding space can be solved in multiple ways. For example, it is
possible to tweak the loss function to force a certain structure in
the embedding. An example of adding extra structure in the loss
function is adding a cycle‐consistency loss (Dwibedi et al. 2019)
term. Cycle consistencymeans that a sample can cycle back to it‐
self in embedding spacewhen going to its nearest neighbour. For
example, taking the nearest neighbor of sample 𝐱𝑖 in embedding
space (𝑓(𝐱𝑖)) arrives at sample 𝐱𝑗 . Taking the nearest neighbour
of sample 𝐱𝑗 in embedding space should arrive back at sample
𝐱𝑖. They demonstrate impressive results on aligning video pairs
of an action recognition dataset. However, it is unclear how
their method behaves on long video demonstrations containing
multiple, possibly suboptimal and heavily out‐of‐phase solutions
to achieve the same task. In our approach, we lookmore broadly
at time series alignment methods.

Time series alignment In order to match the latent space trajec‐
tory of an expert demonstration to a learning agent, the latent
space progressions must be compared. Given the presence of a
time dimension, a time series alignment problem arises. Time
series alignment is studied extensively in natural language pro‐
cessing (Myers, Rabiner, and Rosenberg 1980), bioinformatics
(Seyler et al. 2015) and human activity recognition (Machado et
al. 2015). Biological sequence alignment methods arrange the
sequences of DNA to identify regions of similarity that may in‐
fluence functional relationships. Path Similarity Analysis (Seyler
et al. 2015) for example, quantifies the similarity and difference
between protein transition paths.

Another broad class of algorithms for comparing a series of val‐
ues with each other is Dynamic Time Warping (DTW). In DTW,
the time series are assumed to be similar in amplitude but locally
out of phase. DTW was introduced in (Bellman and Kalaba 1959)
and had the goal to find an optimal alignment between sequences
by warping the time axis iteratively. DTW has been used for a va‐
riety of domains such as speech recognition applications (Myers,
Rabiner, and Rosenberg 1980), sign language recognition (Kuz‐
manic andZanchi 2007) and time series clustering (Niennattrakul
and Ratanamahatana 2007). Although many improvements on

160

6.2 Overview of the proposed framework to learn reward functions

the original DTW algorithm exists (Folgado et al. 2018), we exper‐
imentally show that the canonical DTW with minor adjustments
can be used to align the latent space progression between expert
and learner.

6.2 Overview of the proposed framework to learn
reward functions

We define the problem of using multiperspective images with
task demonstrations to construct a metric indicating task pro‐
gression and solution quality. We want the task progression met‐
ric to increase on important moments when progression is made
towards solving the task. Central in our framework is (1) gen‐
erating a meaningful semantic embedding that indicates task
progression and solution quality and (2)mapping this embedding
to a scalar value. A high‐level overview is given in Figure 6.2.
Our method consists of three main steps. First, we use multi‐
perspective video frames to train an embedding using contrastive
learning. This is done by using time as a self‐supervisory signal.
This method allows to learn useful invariances and forces the
network to focus on task‐relevant properties, as we will show
in Section 6.4. We take a small sample of the demonstrations
which we label experts as they will be used as a reference for
indicating task progression. Second, we align the embeddings
of the demonstrations to the task executions of experts using
dynamic time warping. Third, we use this alignment to query
the ensemble of experts for predicting task progress.

Ourmethod assumes the availability of task demonstrations with
corresponding process metrics. The demonstrations can range
from teleoperatedmachinery to sensor recordings external to the
executing body. We particularly focus on using recorded process
metrics in the form of multiperspective camera streams. Our
method is deployable for arbitrary processes and tasks for which
example demonstrations are available. These demonstrations
are allowed to contain sub‐par solution strategies. The method
requires selecting a small part of the data, in our experiments
5%, as a reference for a good task solution. We focus on task

161

Chapter 6

Learn TCN embedding

Align embedding time series

Extract task progression

Exper t

Quer y

positive

anchor

negative

e
m
b
e
d
d
i
n
g

triplet lossdeep
network

all data

expertsquery

video

demonstrations

Figure 6.2 High‐level overview of our methodology. We train an
embedding by using time as contrastive learning signal. We then align
all embeddings to a small set of high‐quality demonstrations (labelled
as experts). Finally, we extract a progressionmetric using an ensemble
of the resulting alignment.

162

6.3 Methodology for unsupervised learning of reward functions

demonstrations given by humans, but any entity solving the task
can be used as input. Our methodology is applicable in settings
where process monitoring is essential for output quality. We ex‐
ploit temporal coherence, which requires the process to contain
measurable inputs along a temporal dimension. For example,
multiple cameras filming how human workers are sewing the
front and back of a shirt together. Another major application
we target is learning robotic manipulation skills using RL. Our
method allows learning a reward function from visual demon‐
strations, which can be used downstream for a learning agent
requiring supervision in the form of a scalar value expressing
task progression.

6.3 Methodology for unsupervised learning of
reward functions

In the previous section, we gave a high‐level overview of our
framework to extract task progression metrics from crowd‐
sourced RGB images. Here, we discuss the framework in detail.
We break down the threemain steps into separate subsections.

6.3.1 Learning semantic meaningful embeddings using TCNs

Central in the proposed framework is learning task‐relevant rep‐
resentations containing the notion of task progression and so‐
lution quality. We use Time‐Contrastive Networks (Sermanet et
al. 2018) in which time serves as a supervisory signal. TCNs are
a self‐supervised method for training abstract representations
of the progression of a task. The core concept is to push video
frames distant in time away and pull them together when they
are near in time. Multiple cameras are used to capture several
perspectives of the samedemonstration synchronized. This prin‐
ciple is shown in Figure 6.3. Any pair of frames from different
camera angles that co‐occurredmust be close together in embed‐
ding space. Frames from the same camera angle separated by
time are forced to be distant in embedding space. This principle
encourages the network to attend to high‐level features relevant

163

Chapter 6

to the task. Attending to irrelevant background noise or low‐level
features would attract negative pairs from the same perspective
and repulse positive pairs from different perspectives. This way,
the correspondence problem (Brass and Heyes 2005) for imita‐
tion learning can be solved. In case the network tries to explain
the visual difference between two temporal distant frames by
looking at the demonstrator, it would pull the anchor and neg‐
ative close together, leading to a higher loss. The only way to
achieve a lower loss is by looking at task‐relevant features: what
is consistently changing in the scene that cannot be attributed to
changes in viewpoint, lighting, occlusion, and background.

Formally, if the embedding of an input is given by 𝑓(𝐱) ∈ ℝ𝑑 , the
goal then becomes to put the anchor 𝐱𝑎

𝑖 and positive 𝐱𝑝
𝑖 closer in

embedding space compared to the anchor 𝐱𝑎
𝑖 and negative frame

𝐱𝑛
𝑖 (Schroff, Kalenichenko, and Philbin 2015):

‖𝑓 (𝐱𝑎
𝑖) − 𝑓 (𝐱𝑝

𝑖)‖
2

2
+ 𝛼 < ‖𝑓 (𝐱𝑎

𝑖) − 𝑓 (𝐱𝑛
𝑖)‖

2
2 ,

∀ (𝑓 (𝐱𝑎
𝑖) , 𝑓 (𝐱𝑝

𝑖) , 𝑓 (𝐱𝑛
𝑖)) ∈ 𝒯 ,

with 𝛼 being the margin enforced between positive and nega‐
tive pairs. 𝒯 represents all possible triplets, i.e. all anchor-

positive-negative combinations. The term ‖𝑓 (𝐱𝑎
𝑖) − 𝑓 (𝐱𝑝

𝑖)‖
2

2
is

the squared 𝐿2 norm of the distance between the anchor and
positive in embedding space. The loss we are trying to minimize
then becomes:

𝑁

∑
𝑖 [‖𝑓 (𝐱𝑎

𝑖) − 𝑓 (𝐱𝑝
𝑖)‖

2

2
− ‖𝑓 (𝐱𝑎

𝑖) − 𝑓 (𝐱𝑛
𝑖)‖

2
2 + 𝛼]+

.

To gather the triplets 𝒯 , we use a semi‐hard triplet mining strat‐
egy with an increasing difficulty level. The goal of this strategy
is to guide the training process to focus on increasingly harder
anchor-positive-negative triplets. We do this by first sampling ran‐
dom anchors and positive frames from all possible perspectives.
Positive frames are temporal neighbours at a maximum 𝜖 frames
sampled around the anchor. Frames further away are labelled as
negatives. This principle is visible in Figure 6.3. For each anchor

164

6.3 Methodology for unsupervised learning of reward functions

during training, we select the most difficult positive, i.e., where
the distance between anchor and positive is the largest. For this
anchor-positive pair, we calculate the distance between the semi‐
hard negatives and anchor. Semi‐hard negatives are defined as
contrastive samples to the anchor which are of moderate diffi‐
culty: the distance between anchor-negative pair is marginally
larger than the distance between the anchor-positive pair. Intu‐
itively, this corresponds with pushing the fail‐cases out of the
minimal distance range one by one, starting with the easiest. We
define the cost function of the batch as the average loss scores
overall anchor frames. We provide the pseudocode for our train‐
ing procedure in Algorithm 2.

6.3.2 Aligning expert video embeddings with query videos

The TCN embedding trained in the previous section gives rise
to a multivariate time series. Our goal is to compare the time
series embedding of a demonstrator 𝑋 = (𝑥1, … , 𝑥𝑖, … , 𝑥𝑁) to
that of a chosen expert 𝑌 = (𝑦1, … , 𝑦𝑖 … , 𝑦𝑀) in order to judge the
quality of the folding demonstration. To calculate the alignment
between these time series, we useDynamic TimeWarping (DTW)
(Bellman and Kalaba 1959). DTW is an algorithm for measur‐
ing the similarity between time series under time distortions.
It minimizes the effects of shifting in time by allowing elastic
transformations of the time series, subject to time‐normalization
constraints. This allows accounting for nonlinear task execution
rate differences between two demonstrations. In DTW, an opti‐
mal path 𝑃 ∗ mapping time series 𝑋 and 𝑌 are found:

𝑃 ∗ = argmin
𝜙𝑥,𝜙𝑦

T

∑
𝑡=1

𝑑(𝑥𝜙𝑥(𝑡), 𝑦𝜙𝑦(𝑡)),

with 𝑑() being a local distance function, for example, Euclidean
distance. The alignment between the two time series is estab‐
lished through the mapping functions (𝜙𝑥(𝑡), 𝜙𝑦(𝑡)). The warp‐
ing functions are limited by certain constraints in order to be
meaningful. Common warping constraints (Rabiner and Juang

165

Chapter 6

Figure6.3
U
sing

tim
e
asa

supervisory
signalin

TCN
s.A

random
ly
selected

anchorfram
e
(in

blue)and
a
nearby

tem
poral

neighbour
from

a
differentperspective

(in
green)

are
encouraged

to
be

close
in

the
em

bedding
space

com
pared

to
the

anchorfram
e
and

a
distanttem

poralneighbour(in
red).Thisallow

sthe
netw

ork
to

learn
to

explain
changesin

the
physical

w
orld.

166

6.3 Methodology for unsupervised learning of reward functions

Algorithm 2: Training loop of time‐contrastive network
Input: training set of videos 𝒱 ,

temporal distance 𝜖,
neural network tcn parametrized by 𝜃,
margin 𝛼,
mini‐batch size 𝑘

1 foreach epoch do
2 loss = 0;
3 for 1 to 𝑘 do
4 select random video demonstration 𝑣 from 𝒱 with

frames ℱ ;
5 select random anchor 𝑎 from ℱ ;
6 generate positives

𝒫 = {𝑝 ∈ 𝒱 ∶ temporalDistance (𝑎, 𝑝) ≤ 𝜖};
7 find hardest positive

𝑝∗ = argmax𝑝∈𝒫 {dist (tcn (𝑎), tcn (𝑝))};
8 generate negatives

𝒩 = {𝑛 ∈ 𝒱 ∶ temporalDistance (𝑎, 𝑛) > 𝜖};
9 generate semi‐hard negatives 𝒩𝑠ℎ =

{𝑛 ∈ 𝒩 ∶ dist (tcn (𝑎), tcn (𝑝∗)) < dist (tcn (𝑎), tcn (𝑛))}∩
{𝑛 ∈ 𝒩 ∶ dist (tcn (𝑎), tcn (𝑛)) < dist (tcn (𝑎), tcn (𝑝∗)) + 𝛼};

10 find easiest semi‐hard negative 𝑛∗ with distance 𝜖
from 𝑎 with 𝑛∗ = min𝑛∈𝒩𝑠ℎ {dist(tcn (𝑎), tcn (𝑛))};

11 loss +=
dist(tcn (𝑎), tcn (𝑝∗)) − dist(tcn (𝑎), tcn (𝑛∗)) + 𝛼;

12 end for
13 cost = loss/𝑘;
14 Perform a gradient descent step on cost with respect to

the network parameters 𝜃 of the neural network tcn;
15 end foreach

167

Chapter 6

1993) are (1) start‐ and endpoint constraints as a clear start and
end are manually specified by preprocessing the data, (2) mono‐
tonicity constraint which maintains temporal order during time
normalization, and (3) local continuity constraints, also known
as step patterns, to minimize loss of information. Compared to
the canonical version of DTW, we relax the monotonicity con‐
straint, which specifies that the alignment path does not go back
in time. By allowing the time index of the expert time series 𝑌
(i.e., the reference signal) to go back in time, we can account
for demonstrators restarting part of the task execution or even
executing the task backward. This also allows for coping with a
failed task execution. We also relax the formulation to open‐end
DTW (Tormene et al. 2009) by removing the endpoint constraint
to incorporate thepossibility that demonstrators arenotfinishing
the task optimally or completely. A visual interpretation on how
we align a demonstration to video frames of an expert is given in
Figure 6.4. We show the single component of two fictitious one‐
dimensional embeddings. The demonstration of which we need
to calculate the task progression is labelled as the query. This is
aligned to the embedding time series of the expert. The warping
path is drawn in the global cost matrix. The coloured sections
on the time series and alignment path represent subtasks. The
background colours represent similar task progression or the
same subtasks in the videos of the expert and query sample.

6.3.3 Extracting task progression from embeddings

The last step in our methodology is to extract task progression
indicators using the aligned embeddings. First, we search which
frame of each expert aligns best with each frame of the demon‐
stration. This is done by selecting the expert’s frame with the
lowest alignment cost. We then express the alignment cost as
an alignment score by taking the reciprocal of the cost. Then,
we select the temporal index of the best matching frame of every
expert and express it as progress in percentage. Next, we average
the experts’ progress ratings byweightingwith the normalized fit
scores of the DTW phase of the pipeline. Finally, we remove any
outliers by rejecting progress predictions of experts that deviate

168

6.4 Results on folding clothing

Figure 6.4 Dynamic Time Warping (DTW) without monotonicity
constraint. We align amultivariate time series embedding of a demon‐
stration (the query) to the video frames of an expert. The time index is
allowed to go back in time in order to correctly align a demonstration
in which executed actions undo the made progress.

too much from the median of the absolute deviations (Leys et
al. 2013).

6.4 Results on folding clothing

We use the multi‐perspective dataset of people folding clothing
collected and processed in Chapter 5. We manually select 5% of
the data as experts, which will later represent the signal to align
other video demonstrations using DTW. This selection was based
on two simple criteria: (1) the resulting fold looks successful, and
(2) the demonstrator executes substeps to solve the task in one go.
The last criterion implies that to go from an initial state to a target
state, the fold is executed in one flow and not paused in between
or divided into multiple intermediate states. The data contains
multiple sources of randomization as the recordings took place
at two different locations, of which one is a public library. This
makes it useful to learn multiple invariances.

169

Chapter 6

We first discuss quantitative results on training the embedding
and extracting the reward functions. Afterwards, we conduct
a qualitative assessment by inferring what the embeddings are
encoding and testing the reward functions for specific adversary
cases.

6.4.1 Training results

The first step in our methodology is to train TCNs using mul‐
tiperspective images of task demonstrations. The neural net‐
work architecture we used is given in Figure 6.5. We utilize the
DenseNet (G. Huang et al. 2017) architecture pre‐trained on Ima‐
geNet (Deng et al. 2009) as it already contains semantic relevant
features for general‐purpose vision‐based tasks. Depending on
the application, other neural network architectures can be used
as a backbone. We append four trainable convolutional layers to
the output of the DenseNet architecture. Afterwards, the output
is passed to a spatial softmax layer (Levine et al. 2016). The spatial
soft arg‐max layer produces the expected image‐space positions
of the points of maximal activations of the features in the former
convolutional layer. This allows decoding of the relative posi‐
tion of salient objects in the scene. The spatial softmax layer
is succeeded by two fully‐connected layers of 2048 and 32 neu‐
rons. The neurons in the last layer represent the compact low‐
dimensional representation of the task execution, which we will
use downstream to generate a task progression metric. We train
the network for 500 epochs using Adamoptimization. Other fixed
parameters during our experiments are given in Table 6.1.

To tune the hyperparameters of our method, we split the dataset
into a training, validation and test set. We define the split at the
level of the demonstration and not at the collective set frames.
This means that a validation and test sample is a complete, novel
example demonstration of folding a piece of cloth. We define a
range for each identified hyperparameter in Table 6.2. Then, we
evaluate all possible combinations of the hyperparameters using
the semi‐hard triplet loss, the number of semi‐hard triplets and
the fraction of successful hard negatives. We explain these quan‐
titativemetrics in the next paragraph. Finally, we select the set of

170

6.4 Results on folding clothing

hyperparameters that performs best on these trainingmetrics on
the validation set. The test set is used for the subsequent steps of
translating the learned embedding to a scalar progression value.
We provide the final hyperparameters used in our experiments
in Table 6.2.

Figure 6.5 Neural network architecture. We use a pre‐trained
DenseNet backbone appendedwith four trainable convolutional layers.
It is followed by a spatial softmax layer, which produces the expected
2D coordinates of the region of maximal activation in each channel of
conv4. These coordinates are manipulated by a fully connected layer,
which is finally passed through to the compressed embedding space.

Table 6.1 Fixed settings during training of the TCN embedding.

Hyperparameter Value

Optimizer Adam
Weight initialization Glorot initialization
Epochs 500
Image size 224 × 224 pixels
GPU 1 NVIDIA Quadro P6000

In Figure 6.6, we show quantitative results of training the TCN.
The loss quickly and steadily improves, as visible in Figure 6.6a.
This indicates that transfer learning from the DenseNet back‐
bone advances smoothly. However, the semi‐hard triplet mining
strategy presents more difficult training triplets over time to the
network. This might result in oscillating loss functions making
it necessary to monitor additional metrics. In particular, we
monitor the number of semi‐hard triplets still available in the
batches and the percentage of successful hard negatives. Fig‐
ure 6.6b shows that pushing a new semi‐hard negative out of
the margin does not lead to an increased number of new semi‐
hard triplets re‐entering themargin. Figure 6.6c examines which

171

Chapter 6

Table6.2
H
yperparam

etersused
forlearning

an
em

bedding
to

extracttask
progression

m
etricsforfolding

clothing
item

s.

H
yperparam

eter
Bestvalue

Value
range

Learning
rate

0.001
[0.0001,0.001,0.01,0.1]

Batch
size

32
sam

ples
[16,32,64]

Em
bedding

dim
ension

32
neurons

[16,32,64]
M
ax

tem
poraldistance

betw
een

anchorand
positive

3s
0.5s,1s,3s

M
argin

0.2
[0.1,0.2,0.4,0.8]

N
N
backbone

D
enseN

et
VG

G
,ResN

et,D
enseN

et

172

6.4 Results on folding clothing

fraction of the anchor-hardest positive pairs are closer in embed‐
ding space compared to the anchor-hardest negative pairs. This
metric steadily increases, indicating that meaningful clusters are
formed in embedding space to temporally separate images from
different viewpoints.

6.4.2 Reward function results

We align the resulting embeddings using DTW as described in
Section 6.3.2. We use a symmetric stepping pattern (Rabiner
and Juang 1993) with a maximum step size up to 10 frames, cor‐
responding with approximately 1 second. Figure 6.7 shows the
task progression, or reward function, of a sample in the dataset.
We annotated points in the plot with the corresponding image in
the video demonstration. This shows that the task progression
metric increases at meaningful moments in the demonstration.
For example, when the demonstrator grasps the shirt to unfold
on the table, the progression score increases from 0% to 40%.
Afterwards, the progression scalar value stagnates because the
demonstrator slowly moves the right sleeve to the middle. Once
the sleeve is folded, the progression indicator climbs. Next, the
demonstrator grabs the left part of the shirt relatively quickly and
moves it to the centre. This action is reflected in the progression
value raising more quickly compared to the previous fold. Fi‐
nally, the demonstrator receives maximum progression on com‐
pletely folding the shirt. We find these results to be consistent
among samples in the dataset. We provide videos of the task
progression metric of other samples on https://youtu.be/_HJh
n8Hbv5s. The whole pipeline requires 63ms to process a single
frame, with the slowest step being the alignment.

In conclusion, we find training of the embeddings in a self‐
supervised manner to be stable and efficient by using a semi‐
hard triplet function loss where we push out the easiest hard
cases out of the margin first. Aligning the resulting embeddings
with DTW on manually selected reference samples and using
the alignment to express task progression increases progression
scores on meaningful moments in the demonstration. This
suggests that the embeddings encode task‐relevant features.

173

https://youtu.be/_HJhn8Hbv5s
https://youtu.be/_HJhn8Hbv5s

Chapter 6

(a) Semi‐hard triplet loss

(b)Number of semi‐hard triplets (c) Percentage of hard negatives
successfully separated

Figure 6.6 Loss and training metrics of the TCN training process with
semi‐hard triplet loss as optimization objective.

174

6.4 Results on folding clothing

Fi
gu

re
6.
7

Ta
sk

pr
og

re
ss
io
n
pl
ot

w
ith

co
rr
es
po

nd
in
g
vi
de

o
fr
am

es
of

a
si
ng

le
de

m
on

st
ra
tio

n.
Ea

ch
im

ag
e
is
an

no
ta
te
d

w
ith

w
ha

ti
sh

ap
pe

ni
ng

in
th
e
sc
en

e.

175

Chapter 6

We analyze to which extent the embedding encodes important
features for folding clothing in the next section.

6.5 Discussion

In the previous section, wehave shown that TCNembeddings can
be temporally aligned to extract useful task progression metrics.
We now analyze the embeddings for post hoc interpretability.
The goal is to discover which semantics are learned from the in‐
put images. However, neural networks lack decomposability into
intuitive and understandable components. This is why we lever‐
age the following two methods to understand what the network
is encoding. First, we look at the semantic meaning of the em‐
beddings at multiple temporal levels in Section 6.5.1. Second, we
employ a case‐based reasoning approach to interpret the learned
representations and run robustness tests in Section 6.5.2.

6.5.1 Semantic Meaning of Learned TCN Embeddings

To discover the encoded semantics in the learned representa‐
tions, we examine how the embedding progresses over time
while linking it to what is happening in the scene. First, we
examine how the embedding changes during the progress of
a demonstration. To make the visualization interpretable, we
project it to a lower dimension. Second, we examine whether we
can extract meaningful information when searching for clusters
in latent space.

To qualitatively analyze the results of training the embedding, we
project the 32D embedding space to 2D using UMAP (McInnes
et al. 2018). In Figure 6.8 we plotted the resulting projection
mapped to the corresponding frame at different time shots. The
time index is indicated with the colour of the scatter plot: from
magenta to red, yellow, green, and blue.

A reoccurring observation is the projection of the embedding
jumping at meaningful moments during task progression. In
Figure 6.8, we notice that while grasping the shirt from the pile,

176

6.5 Discussion

the embedding stays in the first quadrant. Once the shirt is un‐
folded on the table, the embedding jumps to quadrant two. Dur‐
ing the execution of the required folding steps, the embedding
jumps to other locations. For example, the embedding gently
transitions from quadrant two to three when folding the right
and left sleeves. This suggests that the embedding can recognize
different substeps in the folding task. When performing the final
fold, the embedding is positioned between the first and fourth
quadrant. We find this observation to be consistent among other
samples. Consequently, the embedding at the start and the end
of a trial is very similar. The explanation can be found in the
observations starting and ending with a pile of unfolded shirts
on the right side of the table and a pile of folded shirts on the
left side. A similar start and end encoding in embedding space
imply that the network potentially has problems distinguishing
the start and end of the trial from a single image when there is no
notion of memory.

Another observation is the embedding following a trajectory to go
from grasping a piece of unfolded clothing to completely folding
it on the table. Given that, in general, the third quadrant encodes
folding the shirt’s sleeves, it is possible that folding methods that
do not fold the sleeves will not be assigned the correct progres‐
sion score as there is no alignment available. In other words,
for the DTW alignment to work, there needs to be a trajectory
followed in embedding space in order to arrive at the solution.
We explore this in Section 6.5.2.

To further analyzewhether the embedding candistinguishmean‐
ingful moments during task execution, we generate clusters in
the embedding hyperspace. We perform agglomerative cluster‐
ing with ward linkage on each demonstration separately. Be‐
cause our data is temporally sorted, we set the connectivity ma‐
trix as a square matrix with ones on the superdiagonal and sub‐
diagonal, and zeros elsewhere. This way, we enforce the bottom‐
up cluster formation to consider temporal neighbours, reflect‐
ing the temporal ordering. We select five clusters to identify
as they reflect the substeps in the task: grasping, flatten, fold
one side, fold another side, fold in the middle. We visualize the
results of the clustering in Figure 6.9. Here, we show the 2D

177

Chapter 6

Figure 6.8 2D projection of the learned embedding. We annotate
some points in the quadrants with the corresponding images to offer
insight in to what is happening in the scene. Colors in the scatter plot
indicate time progression frommagenta to yellow, green and finally to
blue.

178

6.5 Discussion

projection of using UMAP on the embedding, with the colour
representing the cluster membership instead of the temporal di‐
mension. Qualitatively, we find the emergence of subtasks in the
cluster membership when running agglomerative clustering in
embedding space. The task starts in quadrant I in the projected
embedding space. This is indicated with the red cluster mem‐
bership. Once the demonstrator unfolds the shirt on the table,
the cluster membership switches to green while the embedding
transitions towards quadrant II. The same process repeats when
transitioning between the other subtasks. This indicates that the
embedding encodes relevant aspects of the task, which down‐
stream algorithms can use. However, we have no guarantees
that the network picks up other signals from the environment
during training. For example, the network might be encoding
the position of the hands, or the size of the shirt. We examine
which features the network is attending to in the following sub‐
section.

6.5.2 Case‑based examples for post hoc interpretability

For the learned task progression metrics to be useful, they must
be able to capture and generalize to specific situations that arise
during the execution of the task, not seen in the training set.
For example, a task executor can be performing random manip‐
ulations without actually performing meaningful contributions
towards progressing the given task. This is also the case for
learning purposes; many RL algorithms start with an exploration
phase in which the robot acts randomly. To research the gener‐
alizability of our method, we employ a case‐based approach in
which we input certain scenarios and qualitatively analyze the
result of our pipeline. We first describe the relevant scenario,
followed by the resulting task progression scores, and offer in‐
sight into why a specific scenario succeeds or fails. Figure 6.10
andFigure 6.11 contains the visualizations of the caseswediscuss
below. We annotated the plotted task progression with specific
frames from the demonstration to explain changes in the as‐
signed progression. Videos of these hold‐out samples are avail‐
able at https://youtu.be/ZvK0pQWH8ec.

179

https://youtu.be/ZvK0pQWH8ec

Chapter 6

Figure 6.9 Interpretation of embedding using agglomerative clus‐
tering. Colors in the scatterplot indicate cluster membership. One
point in the scatterplot represents an embedded video frame, projected
onto a 2DplaneusingUMAP. The line links images to the corresponding
embedding.

180

6.5 Discussion

Change of environment with background distractions. Practical
reasons and safety concerns make it possible that workers per‐
form the designed process flow in another environment com‐
pared to the demonstrators. To test whether the learned pro‐
gression metric can cope with this, we set up the folding table
in a location not seen during training and fold clothing while
putting random objects on the table. The images corresponding
to the annotated parts of the plotted task progression in Fig‐
ure 6.10a show that adding distractor objects such as a safety
helmet, a flashlight, and a quadruped robot, do not prevent the
learned taskprogressionmetric fromassigning a correct progres‐
sion score. There are two potential reasons for this. First, the
data is recorded in a public environment where distractions are
inherently present. Second, the TCNs are forced to attend high‐
level, task‐relevant features. This filters out distractions in the
image.

Meaningful manipulations compared to random behavior. Non‐
meaningful, randommanipulations in the process execution oc‐
cur in both process monitoring and scenarios where agents are
learning to solve a task. Because fully random behaviour is not
present in our crowdsourced dataset, it is uncertain how the
learned progression metric associate this with process quality.
We explore how the progression metric evolves by first doing
a meaningful manipulation of the shirt, followed by randomly
moving the hands above the shirt. This experiment is displayed
in Figure 6.10b. We find that the progression metric correctly
assigns an intermediate score on unfolding the shirt. For the
subsequent randommovement of the arms of the demonstrator,
no additional progress is assigned. In similar experiments where
demonstrators move their arms without any shirts on the table,
we noticed that the network tries to distil meaningful manip‐
ulations. For example, a frequently reoccurring movement is
performing the final fold where demonstrators grab the shirt at
the bottom and fold it to the top. In some of those cases, we
notice that the progression score increases due to the trajectory
of the hands being recognized. However, the progression cor‐
rectly drops when the network detects that there is no shirt being
folded. We explore this further in the next paragraph.

181

Chapter 6

Attention to the essence of the task. In the previous paragraph,
we examined the effect of random behaviour on the learned
task progression metric. Here we compare non‐meaningful
behaviour to meaningful manipulations to test to which extent
the neural network is paying attention to the essence of the task.
We do this by setting up a scenario to test to which extent the
neural network looks at the hand trajectories while monitoring
the state of the textile. Concretely, we try to fool the network:
we first solve a subtask and then execute the required arm
trajectories to solve the task but without touching the clothing.
We hypothesize that in case the embedding is solely looking
at the executed trajectories and not the clothing, the assigned
task progression will increase. The result in Figure 6.10c.
shows that the progression value increases when the shirt is
unfolded. It is followed by stagnation of the progression score
because the demonstrator is not manipulating the clothing. This
demonstrates that our method looks at task‐relevant features,
like the state of the clothing, to indicate task progression. This
feature is what sets our method apart from behavioural cloning; our
method searches for the essence of the task instead of imitating
end‐effector trajectories.

Different task execution speed. The resulting progression met‐
ric should cope with different task execution speeds resulting
from using different demonstrating entities. Given our crowd‐
sourced dataset, this issue is already present in the training data.
It is solved by aligning the resulting embedding time series with
DTW. We verify that this is working as intended by performing
the folds of a shirt at different speeds. We provide the results of
this experiment in Figure 6.10d. We label the start and end of the
folds in order to indicate the different speeds at which the task is
solved. For example, the first fold is executed rapidly, leading to
a quick increase in task progression values. Contrary, the second
fold is executed by moving the right sleeve very slowly to the
centre of the shirt. Once the sleeve is folded, a sudden increase
in task progression is given.

182

6.5 Discussion

Different task executor morphology. Industrial processes can
be performed by any human actor or machine. In order for
the learned progression metric to be useful, it has to generalize
across actors with different morphologies. We test this by
folding the shirt with two people, such that four arms are
manipulating the clothing. The results, visible in Figure 6.10e,
show that the resulting progression metric behaves correctly.
This demonstrates that our trained embedding is invariant to the
actor executing the task.

Variations in task execution. Task progression metrics should
cope with different variations in executing the task. We test this
in multiple ways: we fold the task by lying out the shirt diago‐
nally, undo, and repeat some of the substeps and doing excessive
wrinkle flattening. We find that the given progression value is
correct and consistent in all these scenarios. In particular, we ex‐
amine the case inwhich a shirt is folded and then unfolded again.
Theunfolding is executedby the demonstrator andnot byplaying
the video in reverse. The resulting task progression, visible in
Figure 6.10f, shows that the maximum progression is reached
when the shirt is folded. When the demonstrator starts undoing
the fold step by step, the task progression correctly drops. This
hold‐out sample demonstrates that our alignment step does not
contain an upward drift. This is important as the training data
only exist of successful folds, leading to alignments that primar‐
ily run from start to end of the anchor and demonstrator. Hence
the DTW step extracts useful information from the embedding to
cope with failing task executions.

Generalization towards other folding methods. In extension to
examining how well the learned task progression metric copes
with variations on task execution, we look at how well they gen‐
eralize when unseen folding methods are used. We test the case
in which the demonstrator uses an alternative, unseen folding
method where folds are executed on the table and in the air.
In Figure 6.11a, we find that the assigned progression increases
while folds are realized. We notice that the progression score
suddenly drops on the stepunfolded square (annotated in grey font

183

Chapter 6

above the corresponding image). By looking at the embeddings,
as demonstrated in Section 6.5.1, we find that is due to the em‐
bedding state transitioning to the unfolded step. Afterwards, the
progression correctly increases to the maximum level while per‐
forming the last folding steps. We also test the case when folding
only two steps instead of four. The results of this experiment are
visible in Figure 6.11b. In this case, the process monitoring met‐
ric only detects the folded shirt very late in the folding process.
The explanation can be found in the training data: the experts
have never seen folding solutions with four steps. Given that the
alignment process expects a certain trajectory to be followed in
embedding space, the alignment fails.

Generalization towards other instances of the target object. We
introduce shirts with other colours, textures, and reflective ma‐
terial to investigate how well our method generalizes to other
shirt instances. We provide an example demonstration of a shirt
with reflective material in Figure 6.11c. Reflective objects are
known to cause problems for object recognition neural networks
(Sajjan et al. 2019). In this case, the learned process monitoring
metric detects increasing progression on meaningful moments
when solving the task. One instance in which the progression
metric did not react appropriately is when folding tiny shirts, for
example, in Figure 6.11d. When increasing the size of the shirt
to normal proportions, the progression metric starts behaving
appropriately. We hypothesize this is due to the embedding not
reacting to very small handmovements and changes in the shirt,
which lead to small pixel value changes in the image.

Task quality. We investigate to which degree the learned
process monitoring metric incorporates the quality of the end
result. We do this by examining how the task progression
evolves when small and large disruptions are made in the
resulting fold of the shirt. In Figure 6.11e, we disarrange the end
fold of the shirt considerably. This leads to the demonstrator
not achieving the maximum task progression at the end of
the episode because the sleeves are partly hanging out of the
shirt. However, in the experiment visualized in Figure 6.11f,

184

6.6 Conclusion

we apply a small perturbation of the folded shirt, which is
not picked up by the process monitoring metric. We find that
a rectangular folded shape with many wrinkles receives the
same progression score as a perfectly flattened one. This can
potentially be solved by using cameras closer to the shirt, using
depth information to incorporate wrinkles in the embedding, or
manually constructing triplets of end results with good and bad
flattening.

To summarize, we find that our method captures meaningful
events in the task by looking at relevant features in the scene. By
examining the assigned task progression values on the discussed
hold‐out samples, we show that the learned process monitor‐
ing metric is invariant to the demonstrator’s morphology, back‐
ground scene, execution speed and distractions. Our method is
largely invariant to the shirt beingmanipulated, except thatwhen
the shirt gets too small, the resulting folds are not detected. Ad‐
ditionally, our method is not fooled by performing the expected
arm trajectories without actually folding the shirt. We notice that
the maximum progression value achieved during a successful
folding demonstration consistently corresponds to the end‐fold
of the shirt. However, it is not possible to makemeaningful com‐
parisons in the end‐quality of the fold of different demonstra‐
tions. We find meaningful reactions to highly visible disruptions
in the shirt, but not to small wrinkles and small imperfections in
the fold. In general, we find that the learned process monitoring
metric effectively captures task progression and small degrees of
output quality.

6.6 Conclusion

Learning the intention of a task from example demonstrations is
an important step for process monitoring in manufacturing sys‐
tems and reinforcement learning of robotic manipulation skills.
In particular, evaluating the progress of folding clothing requires
dealing with an infinite amount of states and occlusions caused

185

Chapter 6

(a)

(b)

(c)

(d)

(e)

(f)

Figure 6.10 Task progression plots and corresponding images of out‐
of‐sample cases to specifically test properties of the learned process
monitoring metrics (part 1).

186

6.6 Conclusion

(a)

(b)

(c)

(d)

(e)

(f)

Figure 6.11 Task progression plots and corresponding images of out‐
of‐sample cases to specifically test properties of the learned process
monitoring metrics (part 2).

187

Chapter 6

by deformations. While state estimation can be donewith instru‐
mentation of the cloth (Chapter 4), the requirement of translating
the state to a scalar reward is still required.

In this chapter, we proposed a method to encode task intent by
assigning a progression value during task execution. We do this
by learning semantically relevant features by using time as a self‐
supervisory signal on videos with task demonstrations captured
frommultiple perspectives. We align the resulting embedding to
express task progression and task quality. We used our method
to demonstrate the first results on expressing task progression
for the challenging case of folding clothing. We find that the
process monitoringmetric assigns correct progression values on
meaningful moments during task execution. With case‐based
examples, we show that ourmethod learns task progressionmet‐
rics that are invariant to noise, actor morphology and execution
speed. An important characteristic is that our approach does
not require labelling task progression of existing demonstrations
manually. Therefore, our methodology circumvents the need
to engineer task progression metrics by learning the task intent
from existing task demonstrations. Future work can explore the
use of our learned reward function in a RL setting, incorporating
multiple modalities, using probabilistic embeddings and explor‐
ing different loss functions. We discuss these ideas in detail in
Section 8.2.3. In the following chapter, we also reflect on future
work but from a high‐level perspective, based on the experience
of conducting the research presented in this book.

188

7

Towards learning roboticmanipu‑
lation of clothing

Future general‑purpose robots
are multi‑modal systems lever‑
aging preprogrammed priors and
data with embodied intelligence
to understand and act on the
world.

7

7
Towards learning robotic
manipulation of clothing

In this dissertation, we considered the problem of learning
robotic folding of clothing items by using simulation,
smart clothing and learning task progression from human
demonstrations. In this chapter, we zoom out to take a birds‐eye
perspective on the field of robotic cloth folding in order to
highlight future areas of improvement. Our goal is to describe
high‐potential areas of research that, according to the research
done in this dissertation, require further investigation for the
field to advance towards learning robotic manipulation of
clothing articles.

7.1 Improving sample efficiency

Data‐driven approaches have triggered new developments
for solving robotic manipulation problems. In the context of
robotic cloth folding, we believe data‐driven robotic perception
and control will remain omnipresent to learn cloth dynamics,
material properties and sensorimotor skills by interacting with
the environment. In order to capitalize on learning‐based
methods, future research has to focus on improving the sample
efficiency of these data‐hungrymethods. This need is imperative
for the robotics domain, where experimentation with real robots
is expensive.

Chapter 7

7.1.1 Decouple end‑to‑end learning

Learn submodules instead of the complete system

End‐to‐end learning optimizes a task in unstructured environ‐
ments with system imperfections by viewing the system holis‐
tically. However, it can lead to an immoderate amount of re‐
quired training data. Hence, a first evident way to reduce data re‐
quirements is decoupling end‐to‐end learning into pipelineswith
dedicated modules. We have demonstrated deconstructing end‐
to‐end learning in Chapter 4, where we used a smart cloth that
autonomously communicates its state. This is in stark contrast to
research that engineers vision pipelines (Wu et al. 2020) or incor‐
porate learning the state implicitly in the model (Matas, James,
and Davison 2018). The disadvantage of the latter approaches is
potentially failing outside laboratory environments.

Another instance of decoupling the pipeline can be done by
learning as much as possible offline. Batch reinforcement
learning (Section 2.5) aims to maximally distil the knowledge in
a static dataset. Theoretically, this is what Q‐learning achieves:
learn an optimal policy with suboptimal demonstrations (Sutton
and Barto 2018). However, the deep variants have shown to be
susceptible to performance collapse when only off‐policy data
is used (Hausknecht and Stone 2016). Current research in batch
RL is ongoing and merits high potential for reducing the amount
of data required for learning. Using batch RL is also a way to
commit to the appeal to make learning look as much as possible
as supervised learning. Indeed, the same way that supervised
learning has turned data into strong pattern recognizers, batch
RL can turn data into strong decision‐making engines.

The last implementation of learning offline is shown in this re‐
search (Chapter 6), where we learned a semantically meaningful
representation for the task using demonstrations. By generating
pseudotasks, the agent can self‐supervise its own learning pro‐
cess and acquire task‐relevant representations without requiring
real robot time. We elaborate on learning and using representa‐
tions in Section 7.7.

192

7.1 Improving sample efficiency

Do not learn every submodule

Ultimately, not every part of the pipeline has to be learned. The
data requirement of learned systems can be circumvented by in‐
corporating available prior knowledge about the task. The body
of knowledge described in Section 2.2 can be used as a prior
for learning. For example, when learning from interaction to
achieve wrinkle‐free folding, the canonical way of defining the
reward is a sparse signal indicating whether the cloth is folded
or not. However, when end‐to‐end learning was not prevalent
in the robotics folding community, researchers exploited gravity
as a way to unfold clothing and remove wrinkles (Doumanoglou
et al. 2016; Maitin‐Shepard et al. 2010). This prior knowledge of
exploiting gravity can be structured into the reward or task by
driving the agent towards lifting the piece of cloth in the air.

Besides incorporating task knowledge, analytical models can im‐
prove the required learning time. For example, the work of F.
Zhang et al. (2015) and our work in Chapter 3 define the action
space in joint space, with each action being a movement of one
joint with a fixed delta angle in each direction or remaining sta‐
tionary. However, in both cases, the inverse kinematics of the
robot is known, which implies that the action space can be de‐
fined as delta movements of the end‐effector in Cartesian space.
In the case of a 7 DOF arm, this example reduces the options
in action space from 21 options (7 joints each having 3 options)
to 6 options (forward, up, right, and the reverse options). Ad‐
ditionally, the robot does not require learning the inverse kine‐
matics when an external module already solves it. However, this
example would be difficult to realize if the kinematics are ill‐
defined, for example, when the robot arm contains a large degree
of kinematic redundancy. For example, our pneumatic gripper
implementation in Figure 4.13e is a heavily underactuated sys‐
tem.

193

Chapter 7

7.1.2 Curriculum learning

A second approach for improving sample efficiency is adjust‐
ing the task instantiation to the skills already acquired by the
agent. This principle of gradually ramping up the task difficulty is
known as curriculum learning (Selfridge, Sutton, and Barto 1985).
Differentmethods exist for introducing curricula. In robotic fold‐
ing, it is possible to first learn how to fold stiff shirts by, for exam‐
ple, modelling planes joined with hinge joints. This is similar to
the flip‐fold device illustrated in Figure 7.1. Once the first task is
learned, some deformability in the planes can be introduced and
eventually scaffold the difficulty to a real shirt. Despite adding
domain knowledge about the task difficulty can accelerate learn‐
ing, finding which domain parameters are important to scaffold
requires research and fine‐tuning per domain. This ambiguity
makes learning the curriculum a promising alternative. Hind‐
sight experience replay (Andrychowicz et al. 2017), for example,
maps states to goals and uses heuristics to carefully select which
goal‐trajectory sequences to replay. Otherwork proposes to learn
the curricula via self‐play to generate goal states (Sukhbaatar et
al. 2017) or randomize the domain (Raparthy et al. 2020). Despite
demonstrating successful results, the scope of tasks considered
in the former work is limited to artificial environments contain‐
ing a small state space. There is, to the best of our knowledge, no
automatic curricula generating method that is able to overcome
the instability associated with multiagent systems where both
agents are learning in complex environments.

The two former approaches of using curriculum learning
seemingly indicate an incongruity between manually‐specified
and fully‐learned curricula. In reality, setting the curriculum
is a spectrum in which elements of both manual and adaptive
specification appear. Rudin et al. (2021) for example, learn
quadruped locomotion by using a curriculum heuristic that
adapts the slope and stairs in the environment based on how far
the agent has learned to walk. We believe combining heuristic
curricula with adaptive and manually‐tuned environment
elements avoids the instability and premature convergence
associated with fully‐learned curricula. In fact, this observation
is the overarching theme; we advocate there is a spectrum

194

7.1 Improving sample efficiency

Figure 7.1 First learning to fold a flip‐fold can be considered as an
instance of curriculum learning towards learning to fold cloth.

to be leveraged between programming and data. Finding the
balance between engineering and learning the curriculum is an
important way forward to accelerate learning, enable Sim2Real
transfer and uncover the aspects of the task that makes learning
difficult.

7.1.3 Learning from demonstrations

Other potential gains for accelerating learning can be found by
leveraging demonstration data in RL. Learning from demonstra‐
tion has a long‐standing history in robotics (Argall et al. 2009).
Using demonstrations usually incurs one of the following prob‐
lems. First, learning fromdemonstration is known to suffer from
generalization and exploration issues in the case of behavioural
cloning and dataset aggregation (Ibarz et al. 2021). Second, it is
not always possible to collect a dataset of demonstrations. For ex‐
ample, recent work for combining RL and imitation learning in‐

195

Chapter 7

sert kinaesthetically (Vecerik et al. 2018) or teleoperated demon‐
strations (Y. Zhu et al. 2018). However, teleoperating or moving
the robot armmanually can be difficult for tasks where dynamics
are important, like cloth folding or throwing darts. This is why
we investigated the use of demonstrations external to the body
of the robot in this research. However, using external observa‐
tions as bootstrap for learning requires solving a correspondence
problem between demonstrator and learner. For this reason, we
believe that further gains can be found in the avenue of using ex‐
ternal demonstrations as self‐supervised representation learning
method to be used for downstream tasks. We discuss possible
technical future work of our method in Section 8.2.

An alternative form of providing demonstrations is in the form
of supervision using a scripted policy. Residual RL, in particular,
exploits the spectrum between programming and data by learn‐
ing a policy that is additively combined with a scripted policy.
The residual approach retains a scripted component which al‐
lows pushing the agent to the successful and important regions in
the state space. In cloth folding for example, a hand‐engineered
controller can navigate the agent towards the cloth using simple
segmentation methods that were discussed in Chapter 2 of this
dissertation.

7.2 Datasets

Among computational resources and algorithm‐centric
advances, the availability of large amounts of data was important
for deep learning to break through at the turn of the century.
Datasets have played a similar role for the success of data‐driven
methods in robotic manipulation. In the case of learning
to grasp objects, Dex‐Net (Mahler et al. 2017a) puts forward a
methodology to frame grasping as a supervised learning problem
which leads to a qualitative learning signal. Dex‐Net relies on
generating a massive dataset in simulation containing 6.9 million
images. This size is approximately seven times the size of
the largest real‐life data collection setup of a single institution
containing robotic grasping attempts (Levine et al. 2016). In

196

7.2 Datasets

contrast to rigid object manipulation, there is a dataset scarcity
in the domain of cloth folding. The publicly‐shared cloth datasets
by researchers are primarily vision‐based. Augmenting such
datasets with tactile sensing is of importance for dealing with
occlusions in cloth manipulation. The field could advance
forward with Dex‐Net‐like datasets containing a data generator
with multiple objects having different physical properties. A
recent initiative towards such datasets is executed in I. Huang
et al. (2021) where grasp metrics for volumetric deformables are
generated in simulation. Similar implementations for grasping
andmanipulating cloth could drive the field significantly forward
for learning manipulation strategies and understanding cloth
dynamics.

Although synthetic data is easily available using a simulator, it is
plagued with transferability problems. These problems empha‐
size the importance of researching realistic simulations, robust
algorithms and system identification. Using real datasets would
alleviate these problems, but datasets in the field of cloth folding
are rare. Datasets containing multiple modalities of different
types of cloths and materials could help learning representa‐
tions and understanding cloth interactions. Inspiration can be
found in the retail fashion that contains high‐quality datasets (Liu
et al. 2016; Ge et al. 2019; X. Zou et al. 2019). Unfortunately,
the modalities and item interaction are limited, making it non‐
trivial to find possible application avenues for robotic manipula‐
tion tasks. A future direction consists of applying the methodol‐
ogy FashionAI (X. Zou et al. 2019) uses to scale up the data col‐
lection and labelling. FashionAI relies on experts to disentangle
attributes and label a small fraction of the data. Then, they train a
network to label the remainder of the dataset. Training is halted
when the networkmakes toomany errorswhich could jeopardize
the label quality. Such an approach can be used for labelling and
understanding human interaction with cloth.

Real datasets containing example demonstrations of the task, can
be used for bootstrapping learning. We filled in this gap with
our research by providing a dataset of humans folding clothing
((Verleysen, Biondina, and wyffels 2020), Figure 7.2). A large‐
scale dataset with physical robot‐cloth manipulations, similar to

197

Chapter 7

(Levine et al. 2016) does not exist at the time of writing. Ide‐
ally, future efforts are directed towards gathering multimodal
data of cloth interaction, possibly enriched with large‐scale sim‐
ulated data similar to Dex‐Net. This dataset can then be used to
understand the cloth’s material properties, bootstrapping learn‐
ing from the example demonstrations and learning semantically
meaningful representations.

Figure 7.2 Towards letting robots learn from humans: our folding
table setup to crowdsource data. A citizen science approach to crowd‐
sourcing data can minimize researcher’s bias in datasets. The folding
table provides structure in the observations between demonstators.

Finally, benchmarking robotic manipulation is an important step
towards progressing the field of object manipulation. Bench‐
marking manipulation is challenging due to the diverse set of
robots, object availability and costly robot interaction time. An
additional difficulty is caused by the deformable nature of cloth:
the cloth can be initialized in an infinite amount of starting con‐
figurations which makes it hard to start the task from a common
initialization. A significant step towards filling this gap has re‐
cently been addressed in thework of (Garcia‐Camacho et al. 2020)
and Garcia‐Camacho et al. (2021) where a standard set of objects,

198

7.3 Simulation

tasks and protocols are introduced for benchmarking common
cloth manipulation tasks ranging from folding cloth to partial
dressing. Future work can expand on this by including different
clothing articles into the object set, considering multiple solu‐
tion strategies for tasks like folding and extending the task set
to cases where multiple objects are in the set. Concerning the
evaluation of task performance, the field could use calibrated
environments and software tools tomeasure task performance in
a standardized way. Alternatively, our work in Chapter 6 poten‐
tially integrateswith benchmarks asweprovide amethodology to
extract a task progression metric. The work of Garcia‐Camacho
et al. (2020) additionally proposes evaluating the performance of
the entire system. However, given that the state perception of
cloth is of fundamental importance, we find an ImageNet‐like
dataset for cloth currently missing in the community. This per‐
ception cloth dataset should contain multiple types of clothing
articles, diverse configurations, interactions and heterogeneous
input modalities. Ideally, benchmarks and datasets containing
real objects are enrichedwith a simulated counterpart, calibrated
on the real data. Given the success of simulation in robotics, re‐
searchers could run quick experiments in simulation and trans‐
fer results to the real world. These benchmarks fundamentally
help the field forward as it brings best practices, standardization
and comparison of experiments into the complex field of robotic
cloth manipulation.

7.3 Simulation

Data‐driven methods from the machine learning domain have
proven extremely powerful for adaptive and robust control.
However, they require many examples which are expensive
to generate on real, physical systems. The outlook remains
that highly parameterized functions, such as neural networks,
will keep on requiring and improving on large amounts of
data (C. Sun et al. 2017). Hence, simulation remains an
important tool for robotic learning to generate large datasets. As
distilled in Chapter 2, there are roughly two roads for exploiting
simulations: learning from interaction or constructing large

199

Chapter 7

datasets with realistic grasping examples, similar to Dex‐Net
(Mahler et al. 2017a). As of today, it appears the second road, i.e.
generating datasets, has proven to be commercially exploitable
in comparison to learning from interaction. Dex‐Net, for
example, has been commercialized two years after its advent1.
Pursuing a similar path for robotic cloth folding contains merit
but first requires further research and development in soft
body simulators. Specifically, realistic simulation of friction,
material deformation and other physical properties will have to
be further developed before the deformable object manipulation
domain can follow along the same path as its rigid counterpart.
The outlook is promising as existing and new simulations
started supporting soft body simulation, for example MuJoCo
2.0, Isaac2, and SoftGym. In addition, state‐of‐the‐art research
in cloth simulation recently addresses real‐time simulation
of realistic cloth and solves inverse control problems like
human‐assisted dressing and material properties estimation
(Liang, M. Lin, and Koltun 2019; Yifei Li et al. 2021). However,
the support for robotics integration is limited. It appears
that current robotics researchers have to trade‐off simulation
fidelity and cloth features versus integration possibilities with
robotics and control. Hence, future directions should consider
a tighter integration between high‐fidelity cloth simulation and
practicable robot control. For example, the cloth simulator
in Figure 7.3a models no explicit contact dynamics but has
integration with a robotics simulator. The more realistic cloth
simulator in Figure 7.3b models contact dynamics but has no
robotics simulator integration.

An important characteristic of the cloth simulation is the de‐
gree of parallelization. Running many learning environments
in parallel has shown to allow learning quadruped locomotion
on a single machine within a single day (Rudin et al. 2021). We
believe this is a strong example that advocates for future cloth
simulations to run on GPU in order to run learning environments
massively in parallel. Our research addresses this idea with our
cloth simulation on GPU developed in Chapter 3.

1. https://www.ambirobotics.com/
2. https://developer.nvidia.com/isaac‐gym

200

7.3 Simulation

(a) Source: (Matas, James, and Davison 2018)

(b) Source: (Yifei Li et al. 2021)

Figure 7.3 Towards more realistic cloth simulation and contact dy‐
namics. From grasp implementations using constraints (Figure 7.3a)
to realistic modelling of contact dynamics (Figure 7.3b)

201

Chapter 7

Deformable bodies require reasoning about the shape, dynamics
and material properties of the object. This makes neural net‐
works a viable replacement for analytical models in simulations.
Neural networks can learn the forward dynamics of cloth from
sensory input. Moreover, forward passes through the network
can be faster than a forward pass through all simulation sub‐
steps. However, dataset bias is an issue when training machine
learning models to predict physics dynamics: world models are
trained on a dataset, making it is unclear how well they gen‐
eralize. Complex, learned dynamics models might show visu‐
ally unrealistic deformations, lose volume over time and cannot
deal with occlusion, which is bound to happen when manipu‐
lating with an end‐effector (Mrowca et al. 2018; Yunzhu Li et
al. 2018). Therefore, future research efforts should deal with
occlusion by incrementally learning the object properties. Once
again, insights from analytical models of cloth can be exploited
in parametrizing the learning model. Graph neural networks,
for example, reflect the interconnected particle nature of mass‐
spring simulation approach to cloth and show promising results
for realistic and efficient cloth simulation (Pfaff et al. 2021). Al‐
ternatively, residual physics uses learned physics on top of an
analytical model to predict the error in the forward dynamics
(Golemo et al. 2018) or learn fine‐grained, unmodelled effects in
the simulator from data (Heiden et al. 2021).

Finally, differentiable simulations allow backpropagating gradi‐
ents through the physical consequences of actions. Differen‐
tiable cloth simulation has been shown to be an effective ap‐
proach for control problems and estimating material properties
(Liang, M. Lin, and Koltun 2019; Yifei Li et al. 2021). A future
avenue worth exploring is the co‐optimization of body and brain:
howwould the robotmorphology evolve if the parametrization of
the end‐effector is taken into the optimization loop. Outsourcing
intelligence from the brain to the body is a principle known as
morphological computation (Pfeifer 2006) and is highly visible
in nature. For example, legged animals have their muscles ar‐
ranged in a way that enables them to use simple neural signals
for control (MacKay‐Lyons 2002). This principle of outsourcing
computation to morphology has been shown to be transferrable
to quadruped locomotion by using compliance (Urbain et al.,

202

7.4 Sim2Real

2021). The same idea can be used to study how gripper em‐
bodiment and control can be co‐learned to handle a variety of
objects. This research would answer questions about which end‐
effector designs are optimal for manipulation of cloth and how
different material properties lead to different gripper designs.
For the application of cloth manipulation, it has already been
shown that the choice of gripper design influences the complex‐
ity of the task dynamics (Borràs, Alenyà, and Torras 2020a). In
order to optimize for such a co‐design objective, a differentiable
simulation can be used. By making the simulation and physics
differentiable, gradient‐based optimization can be used as an
alternative to evolutionary strategies or RL. Gradients provide
a direction in which to change the control parameters locally,
leading to much quicker convergence (Degrave et al. 2019; Yifei
Li et al. 2021). We prospect that by simultaneous evolving body
and brain, new and innovative gripper concepts with competitive
grasping performance will arise.

To summarize, we strongly advocate for further developing the
realism and parallelism of cloth simulations that allow for semi‐
realistic robot‐cloth interactions. Ideally, the simulator exposes
numerical or analytical gradientswhich allow gradient‐based op‐
timization of inverse problems and robot morphology. Nonethe‐
less, the question remains on how far we can drive the realism
of the simulation. A high‐quality cloth simulation of Blender, for
example, is shown to be not transferrable to the real world in the
work of (Tanaka, Arnold, and Yamazaki 2018). Hence, Sim2Real
transfer remains an important research direction which we dis‐
cuss next.

7.4 Sim2Real

Transferring skills learned in simulation to the real world will
remain relevant because further increasing the accuracy of sim‐
ulators like Bullet and Mujoco(cfr. Chapter 2), and making more
robust controllers alone will not bridge the Sim2Real gap (Fig‐
ure 7.4). In literature, there are a lot of success stories of domain

203

Chapter 7

randomization as a method for training robust controller in sim‐
ulation. However, domain randomization, or more broadly sim‐
ulation randomization, samples environment parameters uni‐
formly which leads to demanding computational resources. Fur‐
ther research should pinpoint important environment parame‐
ters to vary and impose a curriculum for efficient learning. An‐
other useful approach is system identification inwhich the physi‐
cal parameters of the simulation are tuned. The discussed differ‐
entiable programming approaches for simulation in Section 7.3
merit potential in this regard.

As a final note, cognitive sciences deem it plausible that humans
operate under an intuitive understanding of physics rather
than constructing exact physical models of reality (Baillargeon
et al. 2010). This raises the question of how much importance
should be dedicated to Sim2Real solutions that focus on tuning
the simulation towards the real world as compared to developing
models and representations that interpret physics and act on
the understanding of these dynamics. We discuss sensing the
environment and building representations in the following
sections.

7.5 Grippers for robotic folding

Billard and Kragic (2019) bring to the attention that most robotic
applications utilize parallel jaw grippers that are unable to solve
tasks requiring dexterous manipulation. Similarly, Siciliano,
Khatib, and Kröger (2008) note that dexterous, multi‐fingered
hands have not really been applied to any major application
due to reliability, complexity and cost. Recently, Borràs,
Alenyà, and Torras (2020a) brought a similar observation to the
domain of cloth manipulation that most prior work uses a pinch
grasp with both general‐purpose and cloth‐specific grippers.
Indeed, the robot‐cloth manipulation community is uncertain
about what types of end‐effectors are needed for optimally
grasping and constraining cloth‐like objects. For this purpose,
Borràs, Alenyà, and Torras propose a framework to characterize
grasps and manipulation primitives which has given rise to

204

7.5 Grippers for robotic folding

(a)UR3 robot arm and cloth in simulation.

(b)UR3 robot arm and cloth in the real world.

Figure 7.4 Sim2Real illustration with a UR3 robot and cloth. There
is an accurate mapping between robot state by using proprioceptive
sensors. Mapping the state of the cloth in simulation and the real world
is an active research topic (cfr. Section 7.6)

205

Chapter 7

novel gripper designs in (Donaire et al. 2020) for performing
cloth‐related tasks. The next step towards designing beyond
anthropomorphic hands requires replacing rigid components
with soft elements. Compliant elements lead to easier control
and more safety. Soft‐bubble (Kuppuswamy, Alspach, et al. 2020)
for example, uses air‐filled finger membranes for simultaneous
compliant control and tactile sensing. These developments
align with the philosophy that intelligence can be outsourced
to the embodiment. As discussed in Section 7.3, we can extend
these insights and methodologies by co‐optimizing embodiment
and control. We have argued that simultaneous optimization
of body and brain is a research direction containing a lot
of potential for optimizing the gripper shape for the robotic
cloth manipulation task at hand (Figure 7.5). Differentiable
programming allows computationally efficient co‐design of
embodiment and control, which will be the ultimate step
towards truly effective multifunctional grippers.

7.6 Sensing

Deep learning has proven to be a strong representation learning
method that builds complex concepts out of primitive represen‐
tations. The bulk of the robotics manipulation research that uses
deep learning, leverages vision as input modality for training a
deep neural network. While camera images are useful for ex‐
tracting a global perspective on the shape of the object, capturing
small‐scale deformations in noisy environments with occlusions
and changing lighting conditions is difficult. Moreover, sensing
and reasoning about contact forceswith the environment remain
aproblem for data‐driven controllers. This iswhy future research
should capitalize on acquiring and fusing multiple modalities.
The work of (M. A. Lee et al. 2020) introduces a solution by learn‐
ing a multi‐modal latent space for robotic control tasks. In the
deformables domain, tactile information is being used for esti‐
mating cloth properties (Yuan et al. 2018). However, a large bar‐
rier to using tactile sensing is the sensor hardware accessibility.
Siciliano, Khatib, and Kröger note that “tactile sensing always
seems years away from widespread utility compared to vision”

206

7.6 Sensing

(a) Source: (Twardon and Ritter 2015) (b) Source: (Doumanoglou et al. 2016)

(c) Source: (L. Li et al. 2019) (d)

Figure 7.5 New designs for general‐purpose (Figure 7.5a) and task‐
specific grippers (Figure 7.5b) for folding canbe foundby co‐optimizing
the morphology with control (for example, Figure 7.5c shows a pneu‐
matic gripper based on themorphology of an seahorse and our gripper
in Figure 7.5d is based on the fins of fish).

207

Chapter 7

(Siciliano, Khatib, and Kröger 2008). While many types of tactile
sensors exist, for example GelSight (Donlon et al. 2018) and Fin‐
gerVision (Yamaguchi and Atkeson 2017), it is difficult to create a
sensor that is inexpensive, has afine‐grained resolutionwithhigh
sensitivity and is easy to integrate and use. Nonetheless, research
recognizes the need for tactile sensing with cost‐effective off‐the‐
shelf sensors like Digit (Lambeta et al. 2020). In addition, sensors
like Soft‐bubble (Alspach et al. 2019), where the sensing is intrin‐
sically part of the gripper’s morphology, allow both high contact
area grasping and high‐resolution sensing. Future robots are
preferably equipped with similar soft fingers containing tactile
sensing by default.

Another aspect of tactile sensing is the integration of sensors into
the object, a process we labelled instrumentation in this disserta‐
tion. We explored this in Chapter 4 by creating a smart textile
embedded with tactile sensing that can communicate the state
of the cloth (Figure 7.6). Future work should focus on increasing
the type of forces beingmeasured by embedding pressure, shear,
strain and IMU sensors among others. The sensing hardware
preferably resembles a sensor skin where instrumentation takes
place on the surface of the object whileminimizing the impact on
material properties. This implies that the electronics inside the
soft skin should be able to deform to irregular shapes. Inspiration
for soft sensor skins can be found in the field of humanoid robots
where for example iCub has embedded tactile sensing (Tomo et
al. 2018). Our outlook here is that research in stretchable circuit
technology allows further miniaturization for soft skin instru‐
mentation of objects. The soft sensor skin in turn allows using
compressed representations for learning downstream tasks on
the real platform.

A missing piece of the instrumentation puzzle is generalization
from instrumented objects to non-instrumented objects. Similar to the
human ability to estimate the outline and texture of an object us‐
ing touch only, cross‐modal predictionmodels can learn to see by
feeling and vice versa. Generally, cross‐modal predictionmodels
aim to predict data in one domain from the other. This is an active
research domain in the vision and NLP domain in which they
seek to generate captions for images, for example (Donahue et

208

7.6 Sensing

(a) Source: (Bersch, Pitzer, and Kammel 2011)

(b) Source: (Verleysen et al. 2020)

Figure 7.6 Instrumentation facilitates state estimation and can reduce
the required training time to acquire manipulation skills. A multidis‐
ciplinary approach goes beyond the vast focus on vision pipelines (in‐
strumenting the shirt with visual markers Figure 7.6a) by integrating,
for example, tactile sensing in cloth (piezoresistive sensing in cloth
Figure 7.6b)

209

Chapter 7

al. 2015). In robotics, cross‐modal generative models have been
used to generate an image based on tactile data and vice versa
(Yunzhu Li et al. 2019). We postulate that similar methods can
be used to learn representations that contain invariance to input
modality. We elaborate on these ideas, based on our research, in
the concluding Chapter 8.

7.7 Representations

A general question is how to generate appropriate
representations from a rich, high‐quality and multimodal
dataset. Our work has demonstrated that useful representations
can be learned by using contrasting examples that are mined
in a self‐supervised manner. Therefore, we support the idea
that applying contrastive representation learning methods on
cloth datasets lead to rich representations that are useful for
downstream tasks. A remaining question is where to insert
the representation in the cloth manipulation pipeline. Our
work has used a smart cloth (Chapter 4) and cloth folding
representation (Chapter 6) in the reward function. An open
question remains how to avoid a learning agent exploiting
learned reward functions. For this, we draw inspiration from
the residual RL and residual physics domain. We hypothesize
that residual reward functions, an additive reward function of
an engineered and data‐driven component, could prevent the
agent from exploiting the reward function. Alternatively, the
learned representation can be used as a state variable. This
promising direction is, for example, explored in CURL (Laskin,
Srinivas, and Abbeel 2020) where contrastive representations are
optimized jointly with the RL objective.

A final outlook concerns the fundamental question on the ap‐
propriateness of deep neural networks in robotics and, more
specifically, in RL that is characterized by incremental learn‐
ing. Neural networks tend to forget what has been learned when
new patterns are acquired. Although replay buffers are used
in order to mitigate catastrophic forgetting, approaching neural
networks differently on a conceptual level aremore promising in

210

7.8 Future outlook on the field of robotic cloth manipulation

our opinion. For example, memory‐augmented neural networks
represent memory explicitly and train a controller module that
learns to store and manipulate memory (Graves, Wayne, and
Danihelka 2014). An architecture with explicit memory can, for
example, learn and retrieve different folding strategies depend‐
ing on the situation. Furthermore, research should explore be‐
yond connectionist methods. An example is given in the work
of Jia et al. (2019) who demonstrate that tree‐based methods can
still be competitive in an era dominated by deep learning. Their
work considers cloth manipulation tasks by exploiting the non‐
parametric nature of random forests to dynamically change the
number of leaf nodes based on the given imitation data and new
cloth configurations.

7.8 Future outlook on the field of robotic cloth
manipulation

The field of robotic manipulation of clothing items has evolved
from highly‐engineered pipelines to data‐driven methods over
the past decade. The impressive results of RL prompted the
community to shift from one end of the spectrum, i.e. fully‐
decomposed sub‐systems, to the other end, i.e. end‐to‐end
pipelines. Recent trends show that researchers discovered the
limitations of end‐to‐end RL and are now finding the centrum
of this spectrum. This centrum involves renewing the attention
on hardware. Democratizing hardware developments allow fast
and broad adoption by the community and smaller research labs
that do not contain budgets to, for example, buy a $400.000 PR2
robot and equip it with $165.000 Shadow Hands to contribute
towards learning bimanual dexterous manipulation skills. This
is why future hardware development efforts should prioritize
accessibility in terms of reproducibility, price and open‐sourcing
the implementation, similar to our instrumentation work of
Chapter 4. For robotic cloth manipulation, the importance
of hardware has recently been revived with a framework
for understanding the relation between grasp types and
gripper for cloth. A major insight that helps in this regard
is outsourcing intelligence to the hardware embodiment for

211

Chapter 7

robust control. By co-optimizing the body and brain, the chain
is closed and task‐effective gripper designs with integrated
control arise. Using soft materials and integrated sensing will
play a vital role in the fabrication of grippers as clothing items
have notoriously difficult state estimation. To facilitate state
estimation, we foresee an important role for instrumentation
towards smart cloth using robot sensing skin from stretchable
circuit technology. We hypothesize that the resulting gripper and
smart cloth implementations should be used for the generation
of a multimodal dataset and benchmarks containing cloth‐robot
interactions. Ideally, such datasets contain a virtual counterpart
calibrated on the real data. However, we believe that simulations
should not pursue 100% realism. Rather, the community should
focus on developing models and representations that help to
understand and act on physics in order to reduce the Sim2Real
gap. The multi‐modalities of the simulated and real data can
be used to learn meaningful representations of deformations for
downstream tasks. These tasks can be factorized at a level that
interactions among sub‐problems are small and most of the
complexity is handled by the sub‐systems. Finding solutions
for the tasks contained in the sub‐systems requires striking a
balance between programming and leveraging data. A central
philosophy we deem important is the presence of a residual
component that merges prior knowledge of analytical models
with the data‐driven components of morphology, simulation,
imposed curriculum, reward signals and finally, control
policies.

Ultimately, the progress in deformable object manipulation will
be determined by the available hardware options and control
algorithms in order to acquire a large repertoire of manipulation
skills. A holistic view where hardware and morphology close
the loop with control will allow evolving manipulators tailored
to the tasks and use them to build a representation of how the
world works. Robots can use that feedback to understand how
actions influence the environment and learn to solve tasks by
using human examples, instrumented objects and their own ex‐
periences. Such progress would lead to a comprehensive set of
deformable object manipulation skills and, ultimately, general‐
purpose robots.

212

8

Conclusion

We summarize our main findings
from using simulation for robotic
learning, developing smart
textile, collecting a dataset and
learning perceptual progression
metrics.

8

8
Conclusion

Deformable objects change shape on interaction. These changes
lead to an infinite amount of configurations that need to be
considered when manipulating deformable objects like clothing
items. This is problematic as rigid body manipulation methods
are not easily transferrable to objects that deform. A solution
for dealing with real‐world variability is using learning‐based
methods by interacting with the environment. However, deep
learning, the dominant learning paradigm, requires tremendous
amounts of data to work. Several issues need to be addressed
to effectively employ machine learning methods. These issues
range fromdedicated hardware for handling cloth to accelerating
learning with priors to avoid generating months of training data
on real robots.

8.1 Research conclusions

In this research, wefilled in gaps towards learning robotic folding
of clothing items. We started our dissertation by providing a
self‐contained chapter introducing the fundamentals of robotic
manipulation of folding cloth (Chapter 2). We have discussed
methodologies, tools and approaches to building a cloth fold‐
ing pipeline while identifying strengths, weaknesses and gaps.
This exposition gave rise to themotivations behind this research:
solving the lack of data and quick learning methods for learn‐
ing to fold cloth.

As a first solution to accelerating learning, we developed a cloth
simulation environment (Chapter 3). A salient feature of our

Chapter 8

cloth simulator is that it leverages GPU acceleration, similar to
howdeepneural networksprofit fromconcurrent calculationson
GPU. Our robotic‐cloth simulator successfully uses deep RL to
learn to fold a cloth two times, sequentially. However, transfer
to the real world is non‐trivial as the simulation uses the cloth’s
full state, which is inaccessible in the real world.

To make state estimation of cloth possible in the real world, we
developed a smart cloth (Chapter 4). Our smart cloth employs
off‐the‐shelve components and can be fabricated DIY and low‐
cost. It sandwiches a piezoresistive rubber between two layers of
conductive threads, forming a grid of tactile cells. By recording
a dataset of labelled cloth states, we demonstrate that standard
machine learning methods can classify the cloth state. The main
feature of our smart cloth is that it can serve as a state observation
or reward function in an RL framework. In our experiments, we
employ the smart cloth as a sparse reward function indicating
whether the cloth is folded or not. Our results demonstrate that
our low‐cost smart textile can learn to fold a cloth on a low‐cost
dual robotic arm platform in‐vivo.

Data is a critical element for building intelligent systems. Yet, the
field of folding clothing is less endowed with datasets compared
to its rigid body counterpart. For this reason, we constructed a
datacollectionsetup tocrowdsourceadatasetofpeople folding
clothing articles (Chapter 5). The benefit of taking a citizen
science approach to collecting our data is the diversity it gener‐
ates in example demonstrations. Our dataset consists of roughly
300.000multi‐perspective RGBD images and is available online
for researchers and practitioners to use. We labelled the frames
to include pose information and annotated folding quality and
substeps. With this dataset, we aim to fill in a gap in learning
deformable objectsmanipulation, bootstrapped by human exam‐
ples.

Learning from interaction with the environment, formalized by
RL, is a potential way to acquire robotic manipulation skills as it
shares principles with howhumans learn skills. Amajor element
is the reward function that signals howwell an agent is solving the
task. In the case of folding cloth, constructing a reward signal is

216

8.2 Future research directions

non‐trivial: it is required tomeasure the state of the cloth, includ‐
ing folds andwrinkles, and translate it to a scalar value. Although
this engineering is possible with instrumentation (Chapter 4), it
is difficult to express how well a cloth is being folded. The field
of RL solves this problem by considering the inverse problem:
instead of finding the optimal policy using a reward function,
what is the reward function given some optimal policy. However,
inverseRL follows a computationally expensive approachby opti‐
mizing policy and reward simultaneously. For this reason, we de‐
couple policy and reward learning. We have proposed a method
for learning reward functions in the form of progression met‐
rics without labelling any data (Chapter 6). Our labelling‐free
approach is achievedbyutilizing self‐supervised learningon time
as contrastive signal. We validated our method on the dataset
collected in Chapter 5. Using case‐based experiments, we have
found that our method learns task‐relevant features and useful
invariances, making it robust to noise, distractors and variations
in the task and shirts. The experimental results have shown that
the proposed method can monitor processes in domains where
state representation is inherently challenging, such as folding
clothing items.

Finally, we have compiled our vision for future directions of the
field of robotic folding (Chapter 7). We have stressed the impor‐
tance of democratized hardware, sensing, data and the integra‐
tion between morphology and control.

8.2 Future research directions

While Chapter 7 provided our high‐level perspectives on the field
of robotic folding, this section zooms in on specific improve‐
ments and future directions for the methods and contributions
of our research. We categorize future work in the following cate‐
gories: (a) extending our cloth folding dataset; (b) improving the
scope of our instrumentation process; and (c) learning reward
functions from demonstrations.

217

Chapter 8

8.2.1 Extending cloth folding dataset

Chapter 5 introduced our crowdsourced dataset of humans fold‐
ing clothing items. As future work, the dataset can become a
general‐purpose cloth manipulation dataset. This is possible by
adding novel clothing types to the set, such as trousers and socks.
We noticed in our reward function experiments (Section 6.5) that
the embedding is unable to distinguish small perturbations in the
folds. Hence, adding a detailed view on the cloth being manip‐
ulated is useful in better identifying wrinkles and small pertur‐
bations on the cloth. This can be done by placing cameras with
larger focal length focussed on the cloth. Alternatively, instru‐
mented cloth (Chapter 4) can be added to the mix to provide an
extra source of modality.

Our dataset can also evolve to a benchmark for cloth state classifi‐
cation and action recognition. A classification task can be added
as a category to our folding dataset. A classification task of state
configuration or tactile sensing reconstruction can be defined by
recording the same clothing articles in different configurations,
optionally with instrumentation. The clothing articles can op‐
tionally be linked to a virtual twin, using the cloth simulation we
developed (Chapter 3). Eventually, these inclusions can lead to
the dataset becoming a general benchmark instead of the role it
now plays, i.e. providing example demonstrations to bootstrap
learning.

8.2.2 Instrumentation

The smart textile introduced in Chapter 4was improved by Proes‐
mans et al. (2022) to a modular, wireless sensing technology able
to classify the state of larger cloths. With the availability of link‐
ing multiple sensing patches, future work can consider classify‐
ing more complex states, similar to the substeps defined in our
dataset (Chapter 5), for example, left sleeve folded. An interesting
follow‐up is fusing the tactile information of the smart cloth with
camera images in order to generate a multimodal database of
self‐labelled images of arbitrary cloth configurations. This data
is produced by manipulating the cloth while recording its state

218

8.2 Future research directions

with cameras. Themultimodal dataset can thenbeused to learn a
multimodal latent space as in (M. A. Lee et al. 2019). We elaborate
on this idea in the following section.

8.2.3 Learning reward functions from demonstrations

A key component in the reward learning framework proposed
in Chapter 6 is the manner in which the embedding is trained.
Training is done in a self‐supervised way by building a dataset
of anchor‐positive‐negative triplets from different perspectives
using time as a contrastive signal. The central philosophy behind
this training design is to learn useful invariances. By forcing
two frames from a different viewpoint to be closer in embedding
space than two temporal distant frames from the sameviewpoint,
we achieve viewpoint invariance. Similarly, we hypothesize that
some form of input modality invariance can be learned by in‐
troducing different modalities. In this scenario, a camera image
and tactile sensing of a cloth from the same timestamp should be
closer in embedding space compared to the same camera image
and the tactile input of the robot’s finger from different times‐
tamps. We visualize this idea in Figure 8.1. Another approach to
includingmultiple modalities is similar to the approach in (M. A.
Lee et al. 2019): different backbone architectures per modality
fused into an embedding trained on pseudotasks like predicting
optical flow and contact.

Generating meaningful representations when modalities can be
dropped is an open research question. This question is of rele‐
vance for the smart textile we developed in Chapter 4: it is im‐
possible to instrument all clothing articles. We believe ourmulti‐
modal contrastive learning approachproposed above holdsmerit
in dealingwithmissingmodalities on certain clothing items. Our
idea is to train amultimodal embeddingwith instrumented cloth‐
ing and tactile finger sensing in the way described above. At
test time, non‐instrumented cloth sensing can be swapped by im‐
ages as we hypothesize that the embedding is trained to become
invariant to the input modality to some extent. Although this
does not eliminate the difficulty estimating the state caused by
occlusions of the cloth self‐collisions, webelieve that this training

219

Chapter 8

Embedding

RGB �

RGB �

RGB �

(a) Three camera images from different perspectives as input.

Embedding

Smart
textile

RGB

Tactile
sensing

(b)Multiple modalities as input.

Figure 8.1 Contrastive embedding trained with RGB images from dif‐
ferent perspectives vs. trained with multiple modalities.

220

8.2 Future research directions

procedure can enable the network to estimate to which sensor
reading it should belong in embedding space.

Wedemonstrated ourmethodology in the context of taskprogres‐
sion metrics for folding clothing. A next application is to use our
work on learning progressionmetrics as reward functions for RL
tasks. However, neural networks are easily fooled with adversar‐
ial examples (Nguyen, Yosinski, and Clune 2015) and RL agents
are known to exploit simulator and reward function dynamics.
More generally, the problem of ensuring that a reinforcement
learning agent’s goal is aligned with our own goals is unsolved
(Sutton and Barto 2018). However, we can aim to make our task
progression metrics as robust as possible. One way to achieve
more robustness is by adding a state machine to our framework,
for example, by using HMMs. An alternative can be found in the
work of Borràs, Alenyà, and Torras (2020b) where a representa‐
tion of the environment is embedded in a graph of manipulation
primitives.

Loss functions are an important component for training neural
networks as they determine the criteria for optimization. In this
regard, future work can experiment and compare different ex‐
isting loss functions like InfoNCE (van den Oord, Li, and Vinyals
2018) and cycle‐consistency loss (Dwibedi et al. 2019). Further‐
more, new contrastive loss functions can be researched in order
to learn a more fine‐grained representation in the last stages of
training. This is of relevance for cloth folding in order to distin‐
guish between folding results with and without wrinkles.

Similar to research in the contrastive loss function, architectural
design choices influence the performance of the embedding.
This is due to borrowing a backbone neural network from
supervised learning and appending transform heads on top
of it. However, choosing the appropriate transform head is
non‐trivial. For example, we found that using a multi‐layered
transform head performed better than a single non‐linear
readout layer. This observation suggests that a potential area of
research is the architectural design and tradeoffs associated with
representation pretraining and how it compares to supervised
learning.

221

Chapter 8

A final, future avenue we propose comes in the form of the
representation. Currently, our embedding is specified as a
vector of scalar values. However, throughout this research
we have stressed the difficulty of cloth state estimation due to
self‐occlusions. This uncertainty is something humans deal
intuitively with. For example, we can implicitly construct a
heatmap of the most likely places a folded corner of a cloth to
be at. Similarly, a probabilistic embedding can denote a range
of values and uncertainty about the encoding of the inputs to
embedding space. This way, the inherent uncertainty of the state
estimation can be taken into account in the reward function.
This can be done by appending, for example, Gaussian mixture
layers on top of a base encoder network. The results discussed
in Chapter 6, then become to interpret the probability of being
in a certain space in the embedding. Figure 8.2 demonstrates
preliminary results when following a similar training approach
with a probabilistic embedding. The benefit of this approach is
that it naturally encodes uncertainty when not all information
is available. This uncertainty is present in our folding dataset:
when demonstrators fold, for example, a sleeve and return their
hands, it is expected that they move their hands to the other
side of the shirt to fold the other sleeve. However, sometimes
the demonstrators return their hands to the same sleeve to
further refine the fold. Such uncertainty can be modelled by,
for example, a Gaussian mixture model containing multiple
distributions in the mixture to express the input image is
possibly at two places in embedding space. In addition to the
benefit of modelling uncertainty in a domain where uncertainty
is inherently present, a probabilistic approach integrates
well within the paradigm of distributional RL where an agent
receives a distribution of return rather than the expectation
of this return (Bellemare, Dabney, and Munos 2017). It has
been shown that learning a value distribution outperforms
maximizing an expected return, especially in the presence of
the instabilities caused by function approximators such as deep
neural networks.

222

8.2 Future research directions

(a) Deterministic embedding trained with the methodology of Chap‐
ter 6. Note that this image contains a temporal dimension encoded in
the color of the points.

(b) Probablistic embedding trained with the methodology of Chapter 6.
The colors represent the probability of the image being in a certain part
of the embedding space. Compared to the image above, this image
shows the encoding of one image and does not encode a temporal
dimension.

Figure 8.2 Deterministic vs. probabilistic embedding. A probabilistic
embedding space allows expressing how certain the network is about
the state of the environment.

223

A

Cloth simulation and training
parameters

A

A
Cloth simulation and training
parameters

Simulation parameter tuning is necessary for the cloth simula‐
tion developed in Chapter 3 to be stable and resemble cloth‐like
behavior. In Table A.1, we give the used parameters we found
to be stable and useful in our simulation setup. Table A.2 sum‐
marizes the parameters used for training the agent to learn to
fold the simulated cloth. The weights of the reward functions
components were tuned empirically by trial‐and‐error.

Chapter A

Table A.1 The used cloth simulation physical
parameters.

Parameter Value

Gravity multiplier 0.25
Cloth time subdivision 20
Integration scheme Verlet
Elastic spring constant 5400
Shear spring constant 3000
Bending spring constant 2400
Inverse mass 0.125
Physics damping 38
Restitution constant* 0.025
Friction constant† 0.95
Elastic spring constant for meshes 2400
Shear spring constant for meshes 2400

* Remaining relative velocity after collision.
† Friction on surfaces due to collision.

228

TableA.2 Theused training parameters to learn
cloth folding in simulation.

Parameter Value

Learning rate 0.001
State space size ℝ114

Action space size ℝ42

Reward function weight 𝑤1 0.45
Reward function weight 𝑤2 0.45
Reward function weight 𝑤3 0.1
Neural network architecture MLP
Nr hidden layers 2
Nr hidden neurons 128 × 64
Discount factor 𝛾 0.95
Minibatch size 𝑘 1024
Target network update freq 𝐶 4096
Prioritization factor 𝛼 0.6
Importance sampling exponent 𝛽 0.4

229

Bibliography

Abbeel, Pieter, and Andrew Y Ng. 2004. “Apprenticeship learning
via inverse reinforcement learning.” In Proceedings of the
twenty-first international conference on Machine learning, 1.
ACM.

Akkaya, OpenAI: Ilge, Marcin Andrychowicz, Maciek Chociej,
Mateusz Litwin, Bob McGrew, Arthur Petron, Alex Paino, et
al. 2019. Solving Rubik’s cube with a robot hand. arXiv: 1910.07
113 [cs.LG].

Alspach, Alex, KunimatsuHashimoto, Naveen Kuppuswamy, and
Russ Tedrake. 2019. “Soft‐bubble: A highly compliant dense
geometry tactile sensor for robot manipulation.” In 2019 2nd
IEEE International Conference on Soft Robotics (RoboSoft), 597–
604. https://doi.org/10.1109/ROBOSOFT.2019.8722713.

Andersson, R. L. 1987. “Real time expert system to control a robot
ping‐pong player.” UMI Order No. GAX87‐14001. PhD diss.

Andrychowicz, Marcin, Filip Wolski, Alex Ray, Jonas Schneider,
Rachel Fong, PeterWelinder, BobMcGrew, JoshTobin, Pieter
Abbeel, andWojciech Zaremba. 2017. “Hindsight experience
replay.” arXiv preprint arXiv:1707.01495.

Angelova, Anelia, Gustavo Carneiro, KevinMurphy, Niko Sünder‐
hauf, Jürgen Leitner, Ian Lenz, Trung T Pham, Vijay Kumar,
Ingmar Posner, and Michael Milford. 2017.Workshop on deep
learning in robotic vision.

https://arxiv.org/abs/1910.07113
https://arxiv.org/abs/1910.07113
https://doi.org/10.1109/ROBOSOFT.2019.8722713

Bibliography

Antonova, Rika, Peiyang Shi, Hang Yin, Zehang Weng, and Dan‐
ica Kragic Jensfelt. 2021. “Dynamic environments with de‐
formable objects.”

Aomura, Shigeru, and Atsushi Koguchi. 2002. “Optimized bend‐
ing sequences of sheet metal bending by robot.” Robotics and
Computer-Integrated Manufacturing 18 (1): 29–39.

Argall, Brenna D, Sonia Chernova, Manuela Veloso, and Brett
Browning. 2009. “A survey of robot learning from demon‐
stration.” Robotics and autonomous systems 57 (5): 469–483.

Arriola‐Rios, Veronica E., Puren Guler, Fanny Ficuciello, Danica
Kragic, Bruno Siciliano, and Jeremy L. Wyatt. 2020. “Model‐
ing of deformable objects for roboticmanipulation: a tutorial
and review.” Frontiers in Robotics and AI 7:82. ıſſN: 2296‐9144.
https://doi.org/10.3389/frobt.2020.00082. https://www.fronti
ersin.org/article/10.3389/frobt.2020.00082.

Baillargeon, Renée, Jie Li, Yael Gertner, and Di Wu. 2010. “How
do infants reason about physical events” [in English (US)]. In
The Wiley-Blackwell Handbook of Childhood Cognitive Develop-
ment, Second edition, 11–48. United States: Wiley‐Blackwell,
July. ıſBN: 9781405191166. https://doi.org/10.1002/97814443
25485.ch1.

Balaguer, B., and S. Carpin. 2011. “Combining imitation and re‐
inforcement learning to fold deformable planar objects.” In
2011 IEEE/RSJ International Conference on Intelligent Robots
and Systems, 1405–1412. September. https ://doi . org/10 .11
09/IROS.2011.6094992.

Balakuntala, Mythra V., Upinder Kaur, Xin Ma, Juan Wachs, and
Richard M. Voyles. 2021. Learning multimodal contact-rich
skills from demonstrations without reward engineering. arXiv:
2103.01296 [cs.RO].

Balkcom,Devin J., andMatthewT.Mason. 2008. “Robotic origami
folding.” The International Journal of Robotics Research 27 (5):
613–627. https://doi.org/10.1177/0278364908090235. eprint:
https://doi.org/10.1177/0278364908090235. https://doi.org/1
0.1177/0278364908090235.

232

https://doi.org/10.3389/frobt.2020.00082
https://www.frontiersin.org/article/10.3389/frobt.2020.00082
https://www.frontiersin.org/article/10.3389/frobt.2020.00082
https://doi.org/10.1002/9781444325485.ch1
https://doi.org/10.1002/9781444325485.ch1
https://doi.org/10.1109/IROS.2011.6094992
https://doi.org/10.1109/IROS.2011.6094992
https://arxiv.org/abs/2103.01296
https://doi.org/10.1177/0278364908090235
https://doi.org/10.1177/0278364908090235
https://doi.org/10.1177/0278364908090235
https://doi.org/10.1177/0278364908090235

Bibliography

Becht, Etienne, Leland McInnes, John Healy, Charles‐Antoine
Dutertre, Immanuel WH Kwok, Lai Guan Ng, Florent Gin‐
houx, and Evan W Newell. 2019. “Dimensionality reduction
for visualizing single‐cell data using UMAP.” Nature biotech-
nology 37 (1): 38–44.

Bellemare, Marc G, Will Dabney, and Rémi Munos. 2017. “A dis‐
tributional perspective on reinforcement learning.” In Inter-
national Conference on Machine Learning, 449–458. PMLR.

Bellman, Richard, and Robert Kalaba. 1959. “On adaptive control
processes.” IRE Transactions on Automatic Control 4 (2): 1–9.

Berg, Jur van den, Stephen Miller, Kenneth Goldberg, and Pieter
Abbeel. 2010. “Gravity‐based robotic cloth folding,” 68:409–
424. January. ıſBN: 978‐3‐642‐17451‐3. https://doi.org/10.100
7/978-3-642-17452-0_24.

Bersch, Christian, Benjamin Pitzer, and Sören Kammel. 2011.
“Bimanual robotic cloth manipulation for laundry folding.”
In 2011 IEEE/RSJ International Conference on Intelligent Robots
and Systems, 1413–1419. https://doi.org/10.1109/IROS.2011.6
095109.

Bertiche, Hugo, Meysam Madadi, and Sergio Escalera. 2020.
“CLOTH3D: clothed 3D humans.” In European Conference on
Computer Vision, 344–359. Springer.

Bicchi, Antonio. 1995. “On the closureproperties of robotic grasp‐
ing.” The International Journal of Robotics Research 14 (4): 319–
334. https ://doi .org/10.1177/027836499501400402. eprint:
https://doi.org/10.1177/027836499501400402. https://doi.org
/10.1177/027836499501400402.

Billard, Aude, andDanica Kragic. 2019. “Trends and challenges in
robot manipulation.” Science 364 (6446): eaat8414. https://do
i.org/10.1126/science.aat8414.

Bishop, Christopher M. 2006. “Pattern recognition.” Machine
learning 128 (9).

233

https://doi.org/10.1007/978-3-642-17452-0_24
https://doi.org/10.1007/978-3-642-17452-0_24
https://doi.org/10.1109/IROS.2011.6095109
https://doi.org/10.1109/IROS.2011.6095109
https://doi.org/10.1177/027836499501400402
https://doi.org/10.1177/027836499501400402
https://doi.org/10.1177/027836499501400402
https://doi.org/10.1177/027836499501400402
https://doi.org/10.1126/science.aat8414
https://doi.org/10.1126/science.aat8414

Bibliography

Blinn, James F. 1977. “Models of light reflection for computer syn‐
thesized pictures.” In Proceedings of the 4th Annual Conference
on Computer Graphics and Interactive Techniques, 192–198. SIG‐
GRAPH ’77. San Jose, California: Association for Computing
Machinery. ıſBN: 9781450373555. https://doi.org/10.1145/56
3858.563893. https://doi.org/10.1145/563858.563893.

Bojarski, Mariusz, Davide Del Testa, Daniel Dworakowski,
Bernhard Firner, Beat Flepp, Prasoon Goyal, Lawrence D
Jackel, Mathew Monfort, Urs Muller, Jiakai Zhang, et al.
2016. “End to end learning for self‐driving cars.” arXiv
preprint arXiv:1604.07316.

Borràs, Júlia, Guillem Alenyà, and Carme Torras. 2020a. “A
grasping‐centered analysis for cloth manipulation.” IEEE
Transactions on Robotics 36 (3): 924–936. https://doi.org/10.11
09/TRO.2020.2986921.

. 2020b. Encoding cloth manipulations using a graph of states
and transitions. arXiv: 2009.14681 [cs.RO].

Bousmalis, Konstantinos, Alex Irpan, Paul Wohlhart, Yunfei
Bai, Matthew Kelcey, Mrinal Kalakrishnan, Laura Downs,
et al. 2018. “Using simulation and domain adaptation to
improve efficiency of deep robotic grasping.” In 2018 IEEE
international conference on robotics and automation (ICRA),
4243–4250. IEEE.

Brass, Marcel, and Cecilia Heyes. 2005. “Imitation: is cognitive
neuroscience solving the correspondence problem?” Trends
in cognitive sciences 9 (November): 489–95. https://doi.org/10
.1016/j.tics.2005.08.007.

Breiman, Leo. 2001. “Random forests.” Machine learning 45 (1):
5–32.

Bro‐Nielsen, M. 1998. “Finite element modeling in surgery simu‐
lation.” Proceedings of the IEEE 86 (3): 490–503. https://doi.org
/10.1109/5.662874.

234

https://doi.org/10.1145/563858.563893
https://doi.org/10.1145/563858.563893
https://doi.org/10.1145/563858.563893
https://doi.org/10.1109/TRO.2020.2986921
https://doi.org/10.1109/TRO.2020.2986921
https://arxiv.org/abs/2009.14681
https://doi.org/10.1016/j.tics.2005.08.007
https://doi.org/10.1016/j.tics.2005.08.007
https://doi.org/10.1109/5.662874
https://doi.org/10.1109/5.662874

Bibliography

Calandra, Roberto, Andrew Owens, Dinesh Jayaraman, Justin
Lin, Wenzhen Yuan, Jitendra Malik, Edward H. Adelson,
and Sergey Levine. 2018. “More than a feeling: Learning to
grasp and regrasp using vision and touch.” IEEE Robotics
and Automation Letters 3, no. 4 (October): 3300–3307. ıſſN:
2377‐3774. https : / / doi . org / 10 . 1109 / lra . 2018 . 2852779.
http://dx.doi.org/10.1109/LRA.2018.2852779.

Cao, Junyue, Malte Spielmann, Xiaojie Qiu, Xingfan Huang,
Daniel M Ibrahim, Andrew J Hill, Fan Zhang, Stefan
Mundlos, Lena Christiansen, Frank J Steemers, et al. 2019.
“The single‐cell transcriptional landscape of mammalian
organogenesis.” Nature 566 (7745): 496–502.

Carter, Shan, Zan Armstrong, Ludwig Schubert, Ian
Johnson, and Chris Olah. 2019. “Activation atlas.”
Https://distill.pub/2019/activation‐atlas, Distill, https://doi.or
g/10.23915/distill.00015.

Case, Jennifer C, Joran Booth, Dylan S Shah, Michelle C Yuen,
and Rebecca Kramer‐Bottiglio. 2018. “State and stiffness es‐
timation using robotic fabrics.” In 2018 IEEE International
Conference on Soft Robotics (RoboSoft), 522–527. IEEE.

Case, Jennifer C., Michelle C. Yuen, Jane Jacobs, and Rebecca
Kramer‐Bottiglio. 2019. “Robotic skins that learn to control
passive structures.” IEEE Robotics and Automation Letters 4
(3): 2485–2492. https://doi.org/10.1109/LRA.2019.2906552.

Chebotar, Yevgen, Ankur Handa, Viktor Makoviychuk, Miles
Macklin, Jan Issac, Nathan Ratliff, and Dieter Fox. 2019.
Closing the sim-to-real loop: adapting simulation randomization
with real world experience. arXiv: 1810.05687 [cs.RO].

Chen, Ting, Simon Kornblith,MohammadNorouzi, and Geoffrey
Hinton. 2020. “A simple framework for contrastive learning
of visual representations.” In International conference on ma-
chine learning, 1597–1607. PMLR.

Chi, Cheng, Xuguang Sun, Ning Xue, Tong Li, and Chang Liu.
2018. “Recent progress in technologies for tactile sensors.”
Sensors 18 (4). ıſſN: 1424‐8220. https://doi.org/10.3390/s1804
0948. https://www.mdpi.com/1424-8220/18/4/948.

235

https://doi.org/10.1109/lra.2018.2852779
http://dx.doi.org/10.1109/LRA.2018.2852779
https://doi.org/10.23915/distill.00015
https://doi.org/10.23915/distill.00015
https://doi.org/10.1109/LRA.2019.2906552
https://arxiv.org/abs/1810.05687
https://doi.org/10.3390/s18040948
https://doi.org/10.3390/s18040948
https://www.mdpi.com/1424-8220/18/4/948

Bibliography

Chua, Ping Yong, T Ilschner, and Darwin G Caldwell. 2003.
“Roboticmanipulation of food products–a review.” Industrial
Robot: An International Journal.

Chui, Haili, and Anand Rangarajan. 2003. “A new point matching
algorithm for non‐rigid registration.” Computer Vision and
Image Understanding 89 (2‐3): 114–141.

Clocksin, W.F., J.S.E. Bromley, P.G. Davey, A.R. Vidler, and C.G.
Morgan. 1985. “An implementation of model‐based visual
feedback for robot arc welding of thin sheet steel.” The In-
ternational Journal of Robotics Research 4 (1): 13–26. https://d
oi.org/10.1177/027836498500400102. eprint: https://doi.org
/10.1177/027836498500400102. https://doi.org/10.1177/0278
36498500400102.

Cochrane, C., C. Hertleer, and A. Schwarz‐Pfeiffer. 2016. “Smart
textiles in health: An overview.” In Smart Textiles and their
Applications, edited by Vladan Koncar, 9–32. Woodhead
Publishing Series in Textiles. Oxford: Woodhead Publishing.
ıſBN: 978‐0‐08‐100574‐3. https://doi.org/https://doi.org/10.1
016/B978-0-08-100574-3.00002-3. https://www.sciencedirect
.com/science/article/pii/B9780081005743000023.

Collins, Jack, Shelvin Chand, Anthony Vanderkop, and David
Howard. 2021. “A review of physics simulators for robotic
applications.” IEEE Access 9:51416–51431. https://doi.org/10
.1109/ACCESS.2021.3068769.

Corke, Peter I, et al. 1996. Visual control of robots: high-performance
visual servoing. Research Studies Press Taunton, UK.

Coumans, Erwin. 2015. “Bullet physics simulation.” In ACM SIG-
GRAPH 2015 Courses. SIGGRAPH ’15. Los Angeles, California:
Association for ComputingMachinery. ıſBN: 9781450336345.
https://doi.org/10.1145/2776880.2792704. https://doi.org/10
.1145/2776880.2792704.

Coumans, Erwin, and Yunfei Bai. 2016–2021. PyBullet, a Python
module for physics simulation for games, robotics and machine
learning. http://pybullet.org.

236

https://doi.org/10.1177/027836498500400102
https://doi.org/10.1177/027836498500400102
https://doi.org/10.1177/027836498500400102
https://doi.org/10.1177/027836498500400102
https://doi.org/10.1177/027836498500400102
https://doi.org/10.1177/027836498500400102
https://doi.org/https://doi.org/10.1016/B978-0-08-100574-3.00002-3
https://doi.org/https://doi.org/10.1016/B978-0-08-100574-3.00002-3
https://www.sciencedirect.com/science/article/pii/B9780081005743000023
https://www.sciencedirect.com/science/article/pii/B9780081005743000023
https://doi.org/10.1109/ACCESS.2021.3068769
https://doi.org/10.1109/ACCESS.2021.3068769
https://doi.org/10.1145/2776880.2792704
https://doi.org/10.1145/2776880.2792704
https://doi.org/10.1145/2776880.2792704
http://pybullet.org

Bibliography

Cremers, Daniel. 2006. “Dynamical statistical shape priors for
level set‐based tracking.” IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence 28 (8): 1262–1273.

Crooks, Whitney, Gabrielle Vukasin, Maeve O’Sullivan, William
Messner, and Chris Rogers. 2016. “Fin ray® effect inspired
soft robotic gripper: From the robosoft grand challenge to‐
ward optimization.” Frontiers in Robotics and AI 3:70.

Cusumano‐Towner, Marco, Arjun Singh, Stephen Miller, James
F. O’Brien, and Pieter Abbeel. 2011. “Bringing clothing into
desired configurations with limited perception.” In 2011
IEEE International Conference on Robotics and Automation,
3893–3900. https://doi.org/10.1109/ICRA.2011.5980327.

DARPA. 2015. “DRC final 2015.” Accessed December 10, 2021. htt
ps://archive.darpa.mil/roboticschallenge/.

Dasari, Sudeep, Frederik Ebert, Stephen Tian, Suraj Nair,
Bernadette Bucher, Karl Schmeckpeper, Siddharth Singh,
Sergey Levine, and Chelsea Finn. 2019. “Robonet: large‐scale
multi‐robot learning.” arXiv preprint arXiv:1910.11215.

Degrave, Jonas,Michiel Hermans, Joni Dambre, and Francis wyf‐
fels. 2019. “A differentiable physics engine for deep learning
in robotics.” Frontiers in Neurorobotics 13:6. ıſſN: 1662‐5218.
https://doi.org/10.3389/fnbot.2019.00006. https://www.fronti
ersin.org/article/10.3389/fnbot.2019.00006.

Deng, Jia, Wei Dong, Richard Socher, Li‐Jia Li, Kai Li, and Li
Fei‐Fei. 2009. “ImageNet: a large‐scale hierarchical image
database.” In CVPR09.

Depierre, Amaury, Emmanuel Dellandréa, and Liming Chen.
2018. “Jacquard: a large scale dataset for robotic grasp
detection.” In 2018 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 3511–3516. IEEE.

237

https://doi.org/10.1109/ICRA.2011.5980327
https://archive.darpa.mil/roboticschallenge/
https://archive.darpa.mil/roboticschallenge/
https://doi.org/10.3389/fnbot.2019.00006
https://www.frontiersin.org/article/10.3389/fnbot.2019.00006
https://www.frontiersin.org/article/10.3389/fnbot.2019.00006

Bibliography

Devlin, Jacob, Ming‐Wei Chang, Kenton Lee, and Kristina
Toutanova. 2019. “BERT: Pre‐training of deep bidirectional
transformers for language understanding.” In Proceedings
of the 2019 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language
Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June
2-7, 2019, Volume 1 (Long and Short Papers), edited by Jill
Burstein, Christy Doran, and Thamar Solorio, 4171–4186.
Association for Computational Linguistics. https://doi.org/1
0.18653/v1/n19-1423. https://doi.org/10.18653/v1/n19-1423.

Diaz‐Papkovich, Alex, Luke Anderson‐Trocmé, Chief Ben‐Eghan,
and Simon Gravel. 2019. “UMAP reveals cryptic population
structure and phenotype heterogeneity in large genomic co‐
horts.” PLoS genetics 15 (11): e1008432.

Dickmanns, Ernst Dieter, and Volker Graefe. 1988. “Applications
of dynamic monocular machine vision.” Machine vision and
Applications 1 (4): 241–261.

Doersch, Carl, Abhinav Gupta, and Alexei A Efros. 2015. “Unsu‐
pervised visual representation learning by context predic‐
tion.” In Proceedings of the IEEE international conference on
computer vision, 1422–1430.

Donahue, Jeffrey, Lisa Anne Hendricks, Sergio Guadarrama,
Marcus Rohrbach, Subhashini Venugopalan, Kate
Saenko, and Trevor Darrell. 2015. “Long‐term recurrent
convolutional networks for visual recognition and
description.” In Proceedings of the IEEE conference on computer
vision and pattern recognition, 2625–2634.

Donaire, Sònia, Júlia Borràs, Guillem Alenyà, and Carme Tor‐
ras. 2020. “A versatile gripper for cloth manipulation.” IEEE
Robotics and Automation Letters 5 (4): 6520–6527. https://doi
.org/10.1109/LRA.2020.3015172.

Donlon, Elliott, Siyuan Dong, Melody Liu, Jianhua Li, Edward
Adelson, and Alberto Rodriguez. 2018. “Gelslim: A high‐
resolution, compact, robust, and calibrated tactile‐sensing
finger.” In 2018 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 1927–1934. IEEE.

238

https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.1109/LRA.2020.3015172
https://doi.org/10.1109/LRA.2020.3015172

Bibliography

Doumanoglou, Andreas, Andreas Kargakos, Tae‐Kyun Kim, and
Sotiris Malassiotis. 2014. “Autonomous active recognition
and unfolding of clothes using random decision forests
and probabilistic planning.” In 2014 IEEE International
Conference on Robotics and Automation (ICRA), 987–993.
https://doi.org/10.1109/ICRA.2014.6906974.

Doumanoglou,Andreas, Jan Stria, Georgia Peleka, IoannisMario‐
lis, Vladimir Petrik, Andreas Kargakos, LiborWagner, Václav
Hlaváč, Tae‐Kyun Kim, and Sotiris Malassiotis. 2016. “Fold‐
ing Clothes Autonomously: A Complete Pipeline.” IEEE trans-
actions on robotics 32, no. 6 (December): 1461–1478. ıſſN:
1552‐3098. https://doi.org/10.1109/TRO.2016.2602376.

Drimus, Alin, Gert Kootstra, Arne Bilberg, and Danica Kragic.
2014. “Design of a flexible tactile sensor for classification
of rigid and deformable objects.” Robotics and Autonomous
Systems 62 (1): 3–15.

Droniou, Alain, Serena Ivaldi, and Olivier Sigaud. 2015. “Deep
unsupervised network for multimodal perception,
representation and classification.” Emerging Spatial
Competences: From Machine Perception to Sensorimotor
Intelligence, Robotics and Autonomous Systems 71:83–98.
ıſſN: 0921‐8890. https://doi.org/https://doi.org/10.1016/j.ro
bot.2014.11.005. https://www.sciencedirect.com/science/articl
e/pii/S0921889014002474.

Duan, Yan, Marcin Andrychowicz, Bradly C Stadie, Jonathan Ho,
Jonas Schneider, Ilya Sutskever, Pieter Abbeel, andWojciech
Zaremba. 2017. “One‐shot imitation learning.” arXiv preprint
arXiv:1703.07326.

Duflou, Joost R., József Váncza, and Richard Aerens. 2005. “Com‐
puter aided process planning for sheet metal bending: A
state of the art.” Computers in Industry 56 (7): 747–771. ıſſN:
0166‐3615. https://doi.org/https://doi.org/10.1016/j.compind
.2005.04.001. https://www.sciencedirect.com/science/article/p
ii/S0166361505000710.

239

https://doi.org/10.1109/ICRA.2014.6906974
https://doi.org/10.1109/TRO.2016.2602376
https://doi.org/https://doi.org/10.1016/j.robot.2014.11.005
https://doi.org/https://doi.org/10.1016/j.robot.2014.11.005
https://www.sciencedirect.com/science/article/pii/S0921889014002474
https://www.sciencedirect.com/science/article/pii/S0921889014002474
https://doi.org/https://doi.org/10.1016/j.compind.2005.04.001
https://doi.org/https://doi.org/10.1016/j.compind.2005.04.001
https://www.sciencedirect.com/science/article/pii/S0166361505000710
https://www.sciencedirect.com/science/article/pii/S0166361505000710

Bibliography

Dwibedi, Debidatta, Yusuf Aytar, Jonathan Tompson, Pierre
Sermanet, and Andrew Zisserman. 2019. “Temporal cycle‐
consistency learning.” In The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). June.

Dwibedi, Debidatta, Jonathan Tompson, Corey Lynch, and Pierre
Sermanet. 2018. “Learning actionable representations from
visual observations.” In 2018 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS), 1577–1584. IEEE.
https://arxiv.org/abs/1808.00928.

Dzedzickis, Andrius, Ernestas Sutinys, Vytautas Bučinskas, Urte
Bubniene, Baltramiejus Jakstys, Arunas Ramanavicius, and
Inga Morkvenaite‐Vilkonciene. 2020. “Polyethylene‐carbon
composite (Velostat®) based tactile sensor.” Polymers 12 (De‐
cember): 2905. https://doi.org/10.3390/polym12122905.

Ebert, Frederik, Chelsea Finn, Sudeep Dasari, Annie Xie, Alex
Lee, and Sergey Levine. 2018. “Visual foresight:model‐based
deep reinforcement learning for vision‐based robotic con‐
trol.” arXiv preprint arXiv:1812.00568.

Elbrechter, Christof, Robert Haschke, and Helge Ritter. 2012.
“Folding paper with anthropomorphic robot hands using
real‐time physics‐based modeling.” In 2012 12th IEEE-RAS
International Conference on Humanoid Robots (Humanoids
2012), 210–215. https://doi.org/10.1109/HUMANOIDS.2012.6
651522.

English, P.B.,M.J. Richardson, and C. Garzón‐Galvis. 2018. “From
crowdsourcing to extreme citizen science: participatory re‐
search for environmental health.” PMID: 29608871, Annual
Review of Public Health 39 (1): 335–350. https://doi.org/10.11
46/annurev-publhealth-040617-013702. eprint: https://doi.org
/10.1146/annurev-publhealth-040617-013702. https://doi.org
/10.1146/annurev-publhealth-040617-013702.

240

https://arxiv.org/abs/1808.00928
https://doi.org/10.3390/polym12122905
https://doi.org/10.1109/HUMANOIDS.2012.6651522
https://doi.org/10.1109/HUMANOIDS.2012.6651522
https://doi.org/10.1146/annurev-publhealth-040617-013702
https://doi.org/10.1146/annurev-publhealth-040617-013702
https://doi.org/10.1146/annurev-publhealth-040617-013702
https://doi.org/10.1146/annurev-publhealth-040617-013702
https://doi.org/10.1146/annurev-publhealth-040617-013702
https://doi.org/10.1146/annurev-publhealth-040617-013702

Bibliography

Eppner, Clemens, Sebastian Höfer, Rico Jonschkowski, Roberto
Martín‐Martín, Arne Sieverling, Vincent Wall, and Oliver
Brock. 2017. “Lessons from the Amazon picking challenge:
four aspects of building robotic systems.” In Proceedings of
the Twenty-Sixth International Joint Conference on Artificial
Intelligence, IJCAI-17, 4831–4835. https://doi.org/10.24963/ijc
ai.2017/676. https://doi.org/10.24963/ijcai.2017/676.

Erez, Tom, Yuval Tassa, and Emanuel Todorov. 2015. “Simula‐
tion tools for model‐based robotics: Comparison of Bullet,
Havok, MuJoCo, ODE and PhysX.” In 2015 IEEE International
Conference on Robotics and Automation (ICRA), 4397–4404. htt
ps://doi.org/10.1109/ICRA.2015.7139807.

Fang, Hao‐Shu, Shuqin Xie, Yu‐Wing Tai, and Cewu Lu. 2017.
“RMPE: regional multi‐person pose estimation.” In ICCV.

Fernando, Basura, Hakan Bilen, Efstratios Gavves, and Stephen
Gould. 2017. “Self‐supervised video representation learning
with odd‐one‐out networks.” In Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, 3636–3645.

Finn, Chelsea, Sergey Levine, and Pieter Abbeel. 2016. “Guided
cost learning: Deep inverse optimal control via policy opti‐
mization.” In International Conference on Machine Learning,
49–58.

Finn, Chelsea, Tianhe Yu, Tianhao Zhang, Pieter Abbeel, and
Sergey Levine. 2017. “One‐shot visual imitation learning via
meta‐learning.” In Conference on Robot Learning, 357–368.
PMLR.

Fischler, Martin A, and Robert C Bolles. 1981. “Random sample
consensus: a paradigm for model fitting with applications to
image analysis and automated cartography.”Communications
of the ACM 24 (6): 381–395.

Fleming, Peter. 2019. “Robots and organization studies: why
robots might not want to steal your job.” Organization Studies
40 (1): 23–38. https ://doi .org/10 .1177/0170840618765568.
eprint: https : / / doi . org / 10 . 1177 / 0170840618765568.
https://doi.org/10.1177/0170840618765568.

241

https://doi.org/10.24963/ijcai.2017/676
https://doi.org/10.24963/ijcai.2017/676
https://doi.org/10.24963/ijcai.2017/676
https://doi.org/10.1109/ICRA.2015.7139807
https://doi.org/10.1109/ICRA.2015.7139807
https://doi.org/10.1177/0170840618765568
https://doi.org/10.1177/0170840618765568
https://doi.org/10.1177/0170840618765568

Bibliography

Folgado, Duarte, Marília Barandas, Ricardo Matias, Rodrigo
Martins, Miguel Carvalho, and Hugo Gamboa. 2018. “Time
alignmentmeasurement for time series.” Pattern Recognition
81:268–279. ıſſN: 0031‐3203. https://doi.org/https://doi.org
/10.1016/j.patcog.2018.04.003. http://www.sciencedirect.com
/science/article/pii/S0031320318301286.

Foresti, G. L., and F. A. Pellegrino. 2004. “Automatic visual recog‐
nition of deformable objects for grasping andmanipulation.”
IEEE Transactions on Systems, Man, and Cybernetics, Part C
(Applications and Reviews) 34, no. 3 (August): 325–333. ıſſN:
1094‐6977. https://doi.org/10.1109/TSMCC.2003.819701.

Frank, Barbara, Rüdiger Schmedding, Cyrill Stachniss, Matthias
Teschner, and Wolfram Burgard. 2010. “Learning the elas‐
ticity parameters of deformable objects with a manipulation
robot.” In 2010 IEEE/RSJ International Conference on Intelligent
Robots and Systems, 1877–1883. https://doi.org/10.1109/IROS
.2010.5653949.

Fu, Justin, Katie Luo, and Sergey Levine. 2018. “Learning robust
rewardswith adverserial inverse reinforcement learning.” In
International Conference on Learning Representations.

Gallese, Vittorio, ChristianKeysers, andGiacomoRizzolatti. 2004.
“A unifying view of the basis of social cognition.” Trends in
cognitive sciences 8 (9): 396–403.

Gan, Chuang, Jeremy Schwartz, Seth Alter, Damian Mrowca,
Martin Schrimpf, James Traer, Julian De Freitas, et al.
2021. “ThreeDWorld: A platform for interactive multi‐modal
physical simulation.” In Thirty-fifth conference on neural
information processing systems datasets and benchmarks track
(round 1). https://openreview.net/forum?id=db1InWAwW2T.

Garcia‐Camacho, Irene, Júlia Borràs, Berk Calli, Adam Norton,
and Guillem Alenyà. 2021.Household cloth object set: Fostering
benchmarking in deformable object manipulation. arXiv: 2111.0
1527 [cs.RO].

242

https://doi.org/https://doi.org/10.1016/j.patcog.2018.04.003
https://doi.org/https://doi.org/10.1016/j.patcog.2018.04.003
http://www.sciencedirect.com/science/article/pii/S0031320318301286
http://www.sciencedirect.com/science/article/pii/S0031320318301286
https://doi.org/10.1109/TSMCC.2003.819701
https://doi.org/10.1109/IROS.2010.5653949
https://doi.org/10.1109/IROS.2010.5653949
https://openreview.net/forum?id=db1InWAwW2T
https://arxiv.org/abs/2111.01527
https://arxiv.org/abs/2111.01527

Bibliography

Garcia‐Camacho, Irene, Martina Lippi, Michael C. Welle, Hang
Yin, Rika Antonova, Anastasiia Varava, Julia Borras, et al.
2020. “Benchmarking bimanual cloth manipulation.” IEEE
Robotics and Automation Letters 5 (2): 1111–1118. https://do
i.org/10.1109/LRA.2020.2965891.

Ge, Yuying, Ruimao Zhang, Xiaogang Wang, Xiaoou Tang, and
Ping Luo. 2019. “DeepFashion2: a versatile benchmark
for detection, pose estimation, segmentation and re‐
identification of clothing images.” In 2019 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR),
5332–5340. https://doi.org/10.1109/CVPR.2019.00548.

Ge, Zhiqiang, Zhihuan Song, andFurongGao. 2013. “Reviewof re‐
cent research on data‐based process monitoring.” Industrial
& Engineering Chemistry Research 52 (10): 3543–3562. https://d
oi.org/10.1021/ie302069q. eprint: https://doi.org/10.1021/ie3
02069q. https://doi.org/10.1021/ie302069q.

Gebru, Timnit, Jamie Morgenstern, Briana Vecchione, Jennifer
Wortman Vaughan, Hanna Wallach, Hal Daumé III, and
Kate Crawford. 2018. “Datasheets for datasets.” arXiv preprint
arXiv:1803.09010.

Giovanni, Stevie, and Kangkang Yin. 2011. “LocoTest: Deploy‐
ing and evaluating physics‐based locomotion on multiple
simulation platforms,” 227–241. November. ıſBN: 978‐3‐642‐
25089‐7. https://doi.org/10.1007/978-3-642-25090-3_20.

Giusti, Alessandro, Jérôme Guzzi, Dan C. Cireşan, Fang‐Lin He,
Juan P. Rodríguez, Flavio Fontana, Matthias Faessler, et al.
2016. “A machine learning approach to visual perception of
forest trails for mobile robots.” IEEE Robotics and Automation
Letters 1 (2): 661–667. https://doi.org/10.1109/LRA.2015.2509
024.

Glorot, Xavier, Antoine Bordes, and Yoshua Bengio. 2011. “Deep
sparse rectifier neural networks.” In Proceedings of the
fourteenth international conference on artificial intelligence
and statistics, 315–323. JMLR Workshop and Conference
Proceedings.

243

https://doi.org/10.1109/LRA.2020.2965891
https://doi.org/10.1109/LRA.2020.2965891
https://doi.org/10.1109/CVPR.2019.00548
https://doi.org/10.1021/ie302069q
https://doi.org/10.1021/ie302069q
https://doi.org/10.1021/ie302069q
https://doi.org/10.1021/ie302069q
https://doi.org/10.1021/ie302069q
https://doi.org/10.1007/978-3-642-25090-3_20
https://doi.org/10.1109/LRA.2015.2509024
https://doi.org/10.1109/LRA.2015.2509024

Bibliography

Golemo, Florian, Adrien Ali Taiga, Aaron Courville, and Pierre‐
Yves Oudeyer. 2018. “Sim‐to‐real transfer with neural‐
augmented robot simulation.” In Proceedings of The 2nd
Conference on Robot Learning, edited by Aude Billard,
Anca Dragan, Jan Peters, and Jun Morimoto, 87:817–828.
Proceedings of Machine Learning Research. PMLR, 29–31
Oct. https://proceedings.mlr.press/v87/golemo18a.html.

Gomesh, N., I. Daut, V. Kumaran, M. Irwanto, Y.M. Irwan, and
M. Fitra. 2013. “Photovoltaic powered t‐shirt folding
machine.” TerraGreen 13 International Conference
2013 ‐ Advancements in Renewable Energy and Clean
Environment, Energy Procedia 36:313–322. ıſſN: 1876‐6102.
https://doi.org/https://doi.org/10.1016/j.egypro.2013.07.036.
https://www.sciencedirect.com/science/article/pii/S187661021
3011223.

Goodfellow, Ian, Jean Pouget‐Abadie, Mehdi Mirza, Bing
Xu, David Warde‐Farley, Sherjil Ozair, Aaron Courville,
and Yoshua Bengio. 2014. “Generative adversarial nets.”
Advances in neural information processing systems 27.

Goodfellow, Ian J., Yoshua Bengio, and Aaron Courville. 2016.
Deep learning. Http://www.deeplearningbook.org. Cambridge,
MA, USA: MIT Press.

Graetz, Georg, and Guy Michaels. 2018. “Robots at work.” The
Review of Economics and Statistics 100, no. 5 (December): 753–
768. ıſſN: 0034‐6535. https://doi.org/10.1162/rest_a_00754.
eprint: https://direct.mit.edu/rest/article-pdf/100/5/753/19
18863/rest_a_00754.pdf. https://doi.org/10.1162/rest%5
C_a%5C_00754.

Graves, Alex, GregWayne, and Ivo Danihelka. 2014.Neural turing
machines. arXiv: 1410.5401 [cs.NE].

Gu, Shixiang, Ethan Holly, Timothy Lillicrap, and Sergey
Levine. 2017. “Deep reinforcement learning for robotic
manipulation with asynchronous off‐policy updates.” In
2017 IEEE international conference on robotics and automation
(ICRA), 3389–3396. IEEE.

244

https://proceedings.mlr.press/v87/golemo18a.html
https://doi.org/https://doi.org/10.1016/j.egypro.2013.07.036
https://www.sciencedirect.com/science/article/pii/S1876610213011223
https://www.sciencedirect.com/science/article/pii/S1876610213011223
Http://www.deeplearningbook.org
https://doi.org/10.1162/rest_a_00754
https://direct.mit.edu/rest/article-pdf/100/5/753/1918863/rest_a_00754.pdf
https://direct.mit.edu/rest/article-pdf/100/5/753/1918863/rest_a_00754.pdf
https://doi.org/10.1162/rest%5C_a%5C_00754
https://doi.org/10.1162/rest%5C_a%5C_00754
https://arxiv.org/abs/1410.5401

Bibliography

Guo, Yulan, Mohammed Bennamoun, Ferdous Sohel, Min Lu,
and Jianwei Wan. 2014. “3D Object Recognition in Cluttered
Scenes with Local Surface Features: A Survey.” IEEE transac-
tions on pattern analysis andmachine intelligence 36 (11): 2270–
2287. https://doi.org/10.1109/TPAMI.2014.2316828.

Haarnoja, Tuomas, Aurick Zhou, Pieter Abbeel, and Sergey
Levine. 2018. “Soft actor‐critic: off‐policy maximum entropy
deep reinforcement learning with a stochastic actor.” In
International conference on machine learning, 1861–1870.
PMLR.

Hamajima, K., and M. Kakikura. 1996. “Planning strategy for un‐
folding task of clothes ‐ isolation of clothes from washed
mass.” In Proceedings of the 35th SICE Annual Conference. In-
ternational Session Papers, 1237–1242. https://doi.org/10.1109
/SICE.1996.865443.

. 1998. “Planning strategy for task untangling laundry ‐ iso‐
lating clothes from a washedmass ‐.” J. Robotics Mechatronics
10:244–251.

Harrell, RC, DC Slaughter, and Phillip D Adsit. 1989. “A fruit‐
tracking system for robotic harvesting.” Machine Vision and
Applications 2 (2): 69–80.

Hartikainen, Kristian, Xinyang Geng, Tuomas Haarnoja, and
Sergey Levine. 2019. “Dynamical distance learning for
semi‐supervised and unsupervised skill discovery.” In
International Conference on Learning Representations.

Hastie, Trevor, Robert Tibshirani, and Jerome Friedman. 2001.
The elements of statistical learning. Springer Series in Statis‐
tics. New York, NY, USA: Springer New York Inc.

Hausknecht, Matthew, and Peter Stone. 2016. “On‐policy vs.
off‐policy updates for deep reinforcement learning.” In Deep
Reinforcement Learning: Frontiers and Challenges, IJCAI 2016
Workshop.

Havok. 2021. “Havok.” Accessed October 10, 2021. https://www.h
avok.com/havok-physics/.

245

https://doi.org/10.1109/TPAMI.2014.2316828
https://doi.org/10.1109/SICE.1996.865443
https://doi.org/10.1109/SICE.1996.865443
https://www.havok.com/havok-physics/
https://www.havok.com/havok-physics/

Bibliography

Heess, Nicolas, Dhruva TB, Srinivasan Sriram, Jay Lemmon, Josh
Merel, Greg Wayne, Yuval Tassa, et al. 2017. Emergence of
locomotion behaviours in rich environments. arXiv: 1707.02286
[cs.AI].

Heiden, Eric, David Millard, Erwin Coumans, Yizhou Sheng, and
Gaurav S Sukhatme. 2021. “NeuralSim:Augmenting differen‐
tiable simulators with neural networks.” In 2021 IEEE Inter-
national Conference on Robotics and Automation (ICRA), 9474–
9481. IEEE.

Henderson, Peter, Riashat Islam, Philip Bachman, Joelle Pineau,
Doina Precup, and David Meger. 2018. “Deep reinforcement
learning that matters.” In Proceedings of the AAAI conference
on artificial intelligence, vol. 32. 1.

Hill, John. 1979. “Real time control of a robot with a mobile cam‐
era.” In 9th Int. Symp. on Industrial Robots, 1979, 233–246.

Hinton, Geoffrey E. 2002. “Training products of experts by min‐
imizing contrastive divergence.” Neural computation 14 (8):
1771–1800.

Ho, Jonathan, and Stefano Ermon. 2016. “Generative adversarial
imitation learning.” InAdvances in neural information process-
ing systems, 4565–4573.

Hoque, Ryan, Daniel Seita, Ashwin Balakrishna, Aditya Ganap‐
athi, Ajay Tanwani, Nawid Jamali, Katsu Yamane, Soshi Iba,
and Ken Goldberg. 2020. “VisuoSpatial foresight for multi‐
step,multi‐task fabricmanipulation.” InRobotics: Science and
Systems (RSS).

Howard, AyannaM, and George A Bekey. 2000. “Intelligent learn‐
ing for deformable object manipulation.” Autonomous Robots
9 (1): 51–58.

Hu, Yuanming, Tzu‐Mao Li, Luke Anderson, Jonathan Ragan‐
Kelley, and Frédo Durand. 2019. “Taichi: a language for
high‐performance computation on spatially sparse data
structures.” ACM Transactions on Graphics (TOG) 38 (6): 201.

246

https://arxiv.org/abs/1707.02286
https://arxiv.org/abs/1707.02286

Bibliography

Huang, Gao, Zhuang Liu, Laurens Van Der Maaten, and Kilian
Q Weinberger. 2017. “Densely connected convolutional net‐
works.” In 2017 IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), 2261–2269. https://doi.org/10.1109
/CVPR.2017.243.

Huang, Isabella, Yashraj Narang, Clemens Eppner, Balakumar
Sundaralingam,MilesMacklin, Tucker Hermans, and Dieter
Fox. 2021. DefGraspSim: Simulation-based grasping of 3D de-
formable objects. arXiv: 2107.05778 [cs.RO].

Huang, Zhiao, Yuanming Hu, Tao Du, Siyuan Zhou, Hao
Su, Joshua B Tenenbaum, and Chuang Gan. 2021.
“PlasticineLab: A soft‐body manipulation benchmark
with differentiable physics.” arXiv preprint arXiv:2104.03311.

Hubel, David H, and Torsten N Wiesel. 1959. “Receptive fields
of single neurones in the cat’s striate cortex.” The Journal of
physiology 148 (3): 574–591.

Hutchinson, S., G.D. Hager, and P.I. Corke. 1996. “A tutorial on
visual servo control.” IEEE transactions on robotics and au-
tomation 12 (5): 651–670. https://doi .org/10.1109/70.5389
72.

Ibarz, Julian, Jie Tan, Chelsea Finn, Mrinal Kalakrishnan,
Peter Pastor, and Sergey Levine. 2021. “How to train your
robot with deep reinforcement learning: Lessons we have
learned.” The International Journal of Robotics Research 40
(4‐5): 698–721. https://doi.org/10.1177/0278364920987859.
eprint: https : / / doi . org / 10 . 1177 / 0278364920987859.
https://doi.org/10.1177/0278364920987859.

Imanberdiyev, Nursultan, Changhong Fu, Erdal Kayacan, and I‐
Ming Chen. 2016. “Autonomous navigation of UAV by using
real‐timemodel‐based reinforcement learning.” In 2016 14th
International Conference on Control, Automation, Robotics and
Vision (ICARCV), 1–6. https://doi.org/10.1109/ICARCV.2016
.7838739.

247

https://doi.org/10.1109/CVPR.2017.243
https://doi.org/10.1109/CVPR.2017.243
https://arxiv.org/abs/2107.05778
https://doi.org/10.1109/70.538972
https://doi.org/10.1109/70.538972
https://doi.org/10.1177/0278364920987859
https://doi.org/10.1177/0278364920987859
https://doi.org/10.1177/0278364920987859
https://doi.org/10.1109/ICARCV.2016.7838739
https://doi.org/10.1109/ICARCV.2016.7838739

Bibliography

Inaba, Masayuki, and Hirochika Inoue. 1987. “Rope handling by
a robot with visual feedback.” Advanced Robotics 2 (1): 39–54.
https://doi.org/10.1163/156855387X00057. eprint: https://do
i.org/10.1163/156855387X00057. https://doi.org/10.1163/156
855387X00057.

Jakobsen, Thomas. 2001. “Advanced character physics.” In Game
Developers Conference Proceedings (January).

James, Stephen, and Edward Johns. 2016. “3d simulation for
robot arm control with deep q‐learning.” arXiv preprint
arXiv:1609.03759.

James, Stephen, Paul Wohlhart, Mrinal Kalakrishnan, Dmitry
Kalashnikov, Alex Irpan, Julian Ibarz, Sergey Levine,
Raia Hadsell, and Konstantinos Bousmalis. 2019. “Sim‐
to‐real via sim‐to‐sim: Data‐efficient robotic grasping
via randomized‐to‐canonical adaptation networks.” In
Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 12627–12637.

Jangir, Rishabh, Guillem Alenyà, and Carme Torras. 2020. “Dy‐
namic cloth manipulation with deep reinforcement learn‐
ing.” In 2020 IEEE International Conference on Robotics and
Automation (ICRA), 4630–4636. IEEE.

Janssens, Olivier, Rik Van de Walle, Mia Loccufier, and Sofie Van
Hoecke. 2018. “Deep learning for infrared thermal image
based machine health monitoring.” IEEE/ASME Transactions
on Mechatronics 23 (1): 151–159. https://doi.org/10.1109/TM
ECH.2017.2722479.

Jia, Biao, Zhe Hu, Jia Pan, and Dinesh Manocha. 2018. “Manip‐
ulating highly deformable materials using a visual feedback
dictionary.” In 2018 IEEE International Conference on Robotics
and Automation (ICRA), 239–246. https : / / doi . org / 10 . 1109
/ICRA.2018.8461264.

Jia, Biao, Zherong Pan, Zhe Hu, Jia Pan, and Dinesh Manocha.
2019. “Cloth manipulation using random‐forest‐based imi‐
tation learning.” IEEE Robotics and Automation Letters 4 (2):
2086–2093.

248

https://doi.org/10.1163/156855387X00057
https://doi.org/10.1163/156855387X00057
https://doi.org/10.1163/156855387X00057
https://doi.org/10.1163/156855387X00057
https://doi.org/10.1163/156855387X00057
https://doi.org/10.1109/TMECH.2017.2722479
https://doi.org/10.1109/TMECH.2017.2722479
https://doi.org/10.1109/ICRA.2018.8461264
https://doi.org/10.1109/ICRA.2018.8461264

Bibliography

Jiménez, P. 2012. “Survey onmodel‐basedmanipulation planning
of deformable objects.”Robotics and computer-integratedman-
ufacturing 28 (2): 154–163.

Kang, Pilsung, Dongil Kim, and Sungzoon Cho. 2016. “Semi‐
supervised support vector regression based on self‐training
with label uncertainty: an application to virtual metrology
in semiconductor manufacturing.” Expert Systems with
Applications 51:85–106. ıſſN: 0957‐4174. https://doi.org/https
://doi.org/10.1016/j.eswa.2015.12.027. https://www.sciencedir
ect.com/science/article/pii/S0957417415008295.

Kappassov, Zhanat, Juan‐Antonio Corrales, and Véronique
Perdereau. 2015. “Tactile sensing in dexterous robot hands
— Review.” Robotics and Autonomous Systems 74:195–220.
ıſſN: 0921‐8890. https://doi.org/https://doi.org/10.1016/j.ro
bot.2015.07.015. https://www.sciencedirect.com/science/articl
e/pii/S0921889015001621.

Kazerooni, H., and C. Foley. 2005. “A robotic mechanism for
grasping sacks.” IEEE Transactions on automation science and
engineering 2 (2): 111–120. https://doi.org/10.1109/TASE.200
5.844630.

Khalil, Fouad F, Pierre Payeur, and Ana‐Maria Cretu. 2010. “In‐
tegrated multisensory robotic hand system for deformable
object manipulation.” In Proc. Int. Conf. Robotics and Applica-
tions, 159–166. Citeseer.

Kimura, Daiki, Ryutaro Nishimura, Akihiro Oguro, and Osamu
Hasegawa. 2013. “Ultra‐fast multimodal and online transfer
learning on humanoid robots.” In Proceedings of the 8th
ACM/IEEE International Conference on Human-Robot
Interaction, 165–166. HRI ’13. Tokyo, Japan: IEEE Press.
ıſBN: 9781467330558.

Kingma, Diederik P, and Jimmy Ba. 2014. “Adam: a method for
stochastic optimization.” arXiv preprint arXiv:1412.6980.

Kirchheim, Alice, Matthias Burwinkel, and Wolfgang
Echelmeyer. 2008. “Automatic unloading of heavy sacks
from containers.” In 2008 IEEE International Conference on
Automation and Logistics, 946–951. IEEE.

249

https://doi.org/https://doi.org/10.1016/j.eswa.2015.12.027
https://doi.org/https://doi.org/10.1016/j.eswa.2015.12.027
https://www.sciencedirect.com/science/article/pii/S0957417415008295
https://www.sciencedirect.com/science/article/pii/S0957417415008295
https://doi.org/https://doi.org/10.1016/j.robot.2015.07.015
https://doi.org/https://doi.org/10.1016/j.robot.2015.07.015
https://www.sciencedirect.com/science/article/pii/S0921889015001621
https://www.sciencedirect.com/science/article/pii/S0921889015001621
https://doi.org/10.1109/TASE.2005.844630
https://doi.org/10.1109/TASE.2005.844630

Bibliography

Kita, Y., and N. Kita. 2002. “Amodel‐drivenmethod of estimating
the state of clothes for manipulating it.” In Sixth IEEE Work-
shop on Applications of Computer Vision, 2002. (WACV 2002).
Proceedings. 63–69. https://doi.org/10.1109/ACV.2002.118215
8.

Klingbeil, Ellen, Deepak Rao, Blake Carpenter, Varun Ganapathi,
Andrew Y. Ng, and Oussama Khatib. 2011. “Grasping with
application to an autonomous checkout robot.” In 2011 IEEE
International Conference on Robotics and Automation, 2837–
2844. https://doi.org/10.1109/ICRA.2011.5980287.

Koenig, Nathan, and Andrew Howard. 2004. “Design and
use paradigms for Gazebo, an open‐source multi‐robot
simulator.” In IEEE/RSJ International Conference on Intelligent
Robots and Systems, 2149–2154. Sendai, Japan, September.

Kohonen, Teuvo. 1982. “Self‐organized formation of topologically
correct feature maps.” Biological cybernetics 43 (1): 59–69.

Kristinsson, K., and G.A. Dumont. 1992. “System identification
and control using genetic algorithms.” IEEE Transactions on
Systems, Man, and Cybernetics 22 (5): 1033–1046. https://doi.o
rg/10.1109/21.179842.

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E Hinton. 2012.
“Imagenet classification with deep convolutional neural
networks.” Advances in neural information processing systems
25:1097–1105.

Kroemer, Oliver, Scott Niekum, and George Konidaris. 2021. “A
review of robot learning for manipulation: challenges, rep‐
resentations, and algorithms.” J. Mach. Learn. Res. 22:30–1.

Kuppuswamy, Naveen, Alex Alspach, Avinash Uttamchandani,
Sam Creasey, Takuya Ikeda, and Russ Tedrake. 2020. “Soft‐
bubble grippers for robust and perceptive manipulation.” In
2020 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), 9917–9924. https://doi.org/10.1109/IR
OS45743.2020.9341534.

250

https://doi.org/10.1109/ACV.2002.1182158
https://doi.org/10.1109/ACV.2002.1182158
https://doi.org/10.1109/ICRA.2011.5980287
https://doi.org/10.1109/21.179842
https://doi.org/10.1109/21.179842
https://doi.org/10.1109/IROS45743.2020.9341534
https://doi.org/10.1109/IROS45743.2020.9341534

Bibliography

Kuppuswamy,Naveen, AlejandroCastro, Calder Phillips‐Grafflin,
Alex Alspach, and Russ Tedrake. 2020. “Fast model‐based
contact patch and pose estimation for highly deformable
dense‐geometry tactile sensors.” IEEE Robotics and Automa-
tion Letters 5 (2): 1811–1818. https://doi.org/10.1109/LRA.201
9.2961050.

Kuzmanic, Ana, and Vlasta Zanchi. 2007. “Hand shape classifica‐
tion using DTW and LCSS as similarity measures for vision‐
based gesture recognition system.” In EUROCON 2007 - The
International Conference on ”Computer as a Tool”, 264–269. htt
ps://doi.org/10.1109/EURCON.2007.4400350.

Lambeta, Mike, Po‐Wei Chou, Stephen Tian, Brian Yang,
Benjamin Maloon, Victoria Rose Most, Dave Stroud, et
al. 2020. “DIGIT: A novel design for a low‐cost compact
high‐resolution tactile sensor with application to in‐hand
manipulation.” IEEE Robotics and Automation Letters 5, no. 3
(July): 3838–3845. ıſſN: 2377‐3774. https://doi.org/10.1109/lr
a.2020.2977257. http://dx.doi.org/10.1109/LRA.2020.2977257
.

Laskin, Michael, Aravind Srinivas, and Pieter Abbeel. 2020.
“CURL: Contrastive Unsupervised Representations for
Reinforcement Learning.” ArXiv:2003.06417, Proceedings
of the 37th International Conference on Machine Learning,
Vienna, Austria, PMLR 119.

Laud, Adam Daniel. 2004. Theory and application of reward shap-
ing in reinforcement learning. University of Illinois at Urbana‐
Champaign.

Lee, Hsin‐Ying, Jia‐BinHuang,Maneesh Kumar Singh, andMing‐
Hsuan Yang. 2017. “Unsupervised representation learning
by sorting sequence.” In IEEE International Conference on
Computer Vision.

251

https://doi.org/10.1109/LRA.2019.2961050
https://doi.org/10.1109/LRA.2019.2961050
https://doi.org/10.1109/EURCON.2007.4400350
https://doi.org/10.1109/EURCON.2007.4400350
https://doi.org/10.1109/lra.2020.2977257
https://doi.org/10.1109/lra.2020.2977257
http://dx.doi.org/10.1109/LRA.2020.2977257

Bibliography

Lee, Michelle A, Yuke Zhu, Krishnan Srinivasan, Parth Shah,
Silvio Savarese, Li Fei‐Fei, Animesh Garg, and Jeannette
Bohg. 2019. “Making sense of vision and touch: self‐
supervised learning of multimodal representations for
contact‐rich tasks.” In 2019 IEEE International Conference on
Robotics and Automation (ICRA). https://arxiv.org/abs/1810.1
0191.

Lee, Michelle A, Yuke Zhu, Peter Zachares, Matthew Tan,
Krishnan Srinivasan, Silvio Savarese, Li Fei‐Fei, Animesh
Garg, and Jeannette Bohg. 2020. “Making sense of vision and
touch: Learning multimodal representations for contact‐
rich tasks.” IEEE Transactions on Robotics 36 (3): 582–596.

Lee, Robert, Daniel Ward, Akansel Cosgun, Vibhavari Dasagi, Pe‐
ter Corke, and Jurgen Leitner. 2020. Learning arbitrary-goal
fabric folding with one hour of real robot experience. arXiv: 201
0.03209 [cs.RO].

Lei, Yaguo, Feng Jia, Jing Lin, Saibo Xing, and Steven X. Ding.
2016. “An Intelligent Fault DiagnosisMethodUsingUnsuper‐
vised Feature Learning Towards Mechanical Big Data.” IEEE
Transactions on industrial electronics 63 (5): 3137–3147. https:
//doi.org/10.1109/TIE.2016.2519325.

Levine, Sergey, Chelsea Finn, Trevor Darrell, and Pieter Abbeel.
2016. “End‐to‐end training of deep visuomotor policies.” The
Journal of Machine Learning Research 17 (1): 1334–1373.

Levine, Sergey, Peter Pastor, Alex Krizhevsky, Julian Ibarz, and
Deirdre Quillen. 2018. “Learning hand‐eye coordination for
robotic grasping with deep learning and large‐scale data col‐
lection.” The International Journal of Robotics Research 37 (4‐5):
421–436. https://doi.org/10.1177/0278364917710318. eprint:
https://doi.org/10.1177/0278364917710318. https://doi.org/1
0.1177/0278364917710318.

252

https://arxiv.org/abs/1810.10191
https://arxiv.org/abs/1810.10191
https://arxiv.org/abs/2010.03209
https://arxiv.org/abs/2010.03209
https://doi.org/10.1109/TIE.2016.2519325
https://doi.org/10.1109/TIE.2016.2519325
https://doi.org/10.1177/0278364917710318
https://doi.org/10.1177/0278364917710318
https://doi.org/10.1177/0278364917710318
https://doi.org/10.1177/0278364917710318

Bibliography

Leys, Christophe, Christophe Ley, Olivier Klein, Philippe
Bernard, and Laurent Licata. 2013. “Detecting outliers: do
not use standard deviation around the mean, use absolute
deviation around the median.” Journal of Experimental Social
Psychology 49 (4): 764–766. ıſſN: 0022‐1031. https://doi.org/h
ttps://doi.org/10.1016/j.jesp.2013.03.013. http://www.science
direct.com/science/article/pii/S0022103113000668.

Li, Haisheng, and Xuefeng Zhu. 2004. “Application of support
vector machine method in prediction of Kappa number of
kraft pulping process.” In Fifth World Congress on Intelligent
Control and Automation (IEEE Cat. No.04EX788), vol. 4, 3325–
3330 Vol.4. https://doi.org/10.1109/WCICA.2004.1343151.

Li, Long, Tao Jin, Yingzhong Tian, Fei Yang, and Fengfeng Xi.
2019. “Design and Analysis of a Square‐Shaped Continuum
Robot With Better Grasping Ability.” IEEE Access 7:57151–
57162. https://doi.org/10.1109/ACCESS.2019.2914124.

Li, Yifei, TaoDu, KuiWu, Jie Xu, andWojciechMatusik. 2021.Diff-
Cloth: Differentiable cloth simulation with dry frictional contact.
arXiv: 2106.05306 [cs.GR].

Li, Yinxiao, Chih‐Fan Chen, and Peter K. Allen. 2014. “Recogni‐
tion of deformable object category and pose.” In 2014 IEEE
International Conference on Robotics and Automation (ICRA),
5558–5564. https://doi.org/10.1109/ICRA.2014.6907676.

Li, Yinxiao, Xiuhan Hu, Danfei Xu, Yonghao Yue, Eitan Grin‐
spun, and Peter K Allen. 2016. “Multi‐sensor surface analysis
for robotic ironing.” In 2016 IEEE International Conference on
Robotics and Automation (ICRA), 5670–5676. IEEE.

Li, Yinxiao, Yan Wang, Michael Case, Shih‐Fu Chang, and Peter
K Allen. 2014. “Real‐time pose estimation of deformable ob‐
jects using a volumetric approach.” In 2014 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, 1046–1052.
IEEE.

253

https://doi.org/https://doi.org/10.1016/j.jesp.2013.03.013
https://doi.org/https://doi.org/10.1016/j.jesp.2013.03.013
http://www.sciencedirect.com/science/article/pii/S0022103113000668
http://www.sciencedirect.com/science/article/pii/S0022103113000668
https://doi.org/10.1109/WCICA.2004.1343151
https://doi.org/10.1109/ACCESS.2019.2914124
https://arxiv.org/abs/2106.05306
https://doi.org/10.1109/ICRA.2014.6907676

Bibliography

Li, Yinxiao, Yonghao Yue, Danfei Xu, Eitan Grinspun, and Peter
K. Allen. 2015. “Folding deformable objects using predictive
simulation and trajectory optimization.” In 2015 IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems (IROS),
6000–6006. https://doi.org/10.1109/IROS.2015.7354231.

Li, Yunzhu, Jiajun Wu, Russ Tedrake, Joshua B Tenenbaum, and
Antonio Torralba. 2018. “Learning particle dynamics for
manipulating rigid bodies, deformable objects, and fluids.”
arXiv preprint arXiv:1810.01566.

Li, Yunzhu, Jun‐Yan Zhu, Russ Tedrake, and Antonio Torralba.
2019. “Connecting touch and vision via cross‐modal predic‐
tion.” In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition (CVPR). June.

Liang, Junbang, Ming Lin, and Vladlen Koltun. 2019. “Differen‐
tiable cloth simulation for inverse problems.” In Advances in
Neural Information Processing Systems, edited by H. Wallach,
H. Larochelle, A. Beygelzimer, F. d’Alché‐Buc, E. Fox, and R.
Garnett, vol. 32. Curran Associates, Inc. https://proceedings
.neurips.cc/paper/2019/file/28f0b864598a1291557bed248a998
d4e-Paper.pdf.

Liang, Junbang,MingC. Lin, andVladlenKoltun. 2019. “Differen‐
tiable cloth simulation for inverse problems.” In Conference
on Neural Information Processing Systems (NeurIPS).

Lillicrap, Timothy P, Jonathan J Hunt, Alexander Pritzel,
Nicolas Heess, Tom Erez, Yuval Tassa, David Silver, and
Daan Wierstra. 2015. “Continuous control with deep
reinforcement learning.” arXiv preprint arXiv:1509.02971.

Lin,Huan, FengGuo, FeifeiWang, andYan‐Bin Jia. 2015. “Picking
up a soft 3D object by “feeling” the grip.” The International
Journal of Robotics Research 34 (11): 1361–1384. https://doi.or
g/10.1177/0278364914564232. eprint: https://doi.org/10.117
7/0278364914564232. https://doi.org/10.1177/027836491456
4232.

Lin, Long‐Ji. 1992. Reinforcement learning for robots using neural
networks. Carnegie Mellon University.

254

https://doi.org/10.1109/IROS.2015.7354231
https://proceedings.neurips.cc/paper/2019/file/28f0b864598a1291557bed248a998d4e-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/28f0b864598a1291557bed248a998d4e-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/28f0b864598a1291557bed248a998d4e-Paper.pdf
https://doi.org/10.1177/0278364914564232
https://doi.org/10.1177/0278364914564232
https://doi.org/10.1177/0278364914564232
https://doi.org/10.1177/0278364914564232
https://doi.org/10.1177/0278364914564232
https://doi.org/10.1177/0278364914564232

Bibliography

Lin, Xingyu, Yufei Wang, Jake Olkin, and David Held. 2020. “Soft‐
Gym: benchmarking deep reinforcement learning for de‐
formable object manipulation.” In Conference on Robot Learn-
ing.

Liu, Honghai, and Jian Dai. 2003. “An approach to carton‐folding
trajectory planning using dual robotic fingers.” Robotics and
Autonomous Systems 42 (1): 47–63.

Liu, Ziwei, Ping Luo, Shi Qiu, Xiaogang Wang, and Xiaoou Tang.
2016. “DeepFashion: powering robust clothes recognition
and retrieval with rich annotations.” In 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 1096–
1104. https://doi.org/10.1109/CVPR.2016.124.

Ljung, Lennart, andTorstenSöderström. 1983.Theory and practice
of recursive identification. MIT press.

Lo Presti, Daniela, Chiara Romano, Carlo Massaroni, Jessica
D’Abbraccio, Luca Massari, Michele Arturo Caponero,
Calogero Maria Oddo, Domenico Formica, and Emiliano
Schena. 2019. “Cardio‐respiratory monitoring in archery
using a smart textile based on flexible fiber bragg grating
sensors.” Sensors 19 (16). ıſſN: 1424‐8220. https://doi.org/10
.3390/s19163581. https://www.mdpi.com/1424-8220/19/16/3
581.

Lowe, David G. 1999. “Object recognition from local scale‐
invariant features.” In Proceedings of the seventh IEEE
international conference on computer vision, 2:1150–1157.
Ieee.

Lu, Liang, and S. Akella. 1999. “Folding cartons with fixtures:
a motion planning approach.” In Proceedings 1999 IEEE
International Conference on Robotics and Automation (Cat.
No.99CH36288C), vol. 2, 1570–1576 vol.2. https://doi.org/10
.1109/ROBOT.1999.772583.

Lyu, Yuting, Junghui Chen, and Zhihuan Song. 2019. “Image‐
based process monitoring using deep learning framework.”
Chemometrics and intelligent laboratory systems 189:8–17.

255

https://doi.org/10.1109/CVPR.2016.124
https://doi.org/10.3390/s19163581
https://doi.org/10.3390/s19163581
https://www.mdpi.com/1424-8220/19/16/3581
https://www.mdpi.com/1424-8220/19/16/3581
https://doi.org/10.1109/ROBOT.1999.772583
https://doi.org/10.1109/ROBOT.1999.772583

Bibliography

Machado, Inês P., A. Luísa Gomes, Hugo Gamboa, Vítor Paixão,
and RuiM. Costa. 2015. “Human activity data discovery from
triaxial accelerometer sensor: non‐supervised learning sen‐
sitivity to feature extraction parametrization.” Information
Processing & Management 51 (2): 204–214. ıſſN: 0306‐4573. ht
tps://doi.org/https://doi.org/10.1016/j.ipm.2014.07.008.
http://www.sciencedirect.com/science/article/pii/S030645731
4000685.

MacKay‐Lyons, Marilyn. 2002. “Central pattern generation of lo‐
comotion: A review of the evidence.” Physical Therapy 82, no.
1 (January): 69–83. ıſſN: 0031‐9023. https://doi.org/10.1093
/ptj/82.1.69. eprint: https://academic.oup.com/ptj/article-pdf
/82/1/69/31663381/ptj0069.pdf. https://doi.org/10.1093/ptj
/82.1.69.

Mahjourian, Reza, Risto Miikkulainen, Nevena Lazic, Sergey
Levine, and Navdeep Jaitly. 2019. Hierarchical policy design
for sample-efficient learning of robot table tennis through
self-play. arXiv: 1811.12927 [cs.RO].

Mahler, Jeffrey, Jacky Liang, Sherdil Niyaz, Michael Laskey,
Richard Doan, Xinyu Liu, Juan Aparicio Ojea, and Ken
Goldberg. 2017a. “Dex‐Net 2.0: deep learning to plan robust
grasps with synthetic point clouds and analytic grasp
metrics.”

. 2017b. “Dex‐Net 2.0: Deep learning to plan robust grasps
with synthetic point clouds and analytic grasp metrics.”

Mahler, Jeffrey, Matthew Matl, Vishal Satish, Michael
Danielczuk, Bill DeRose, Stephen McKinley, and Ken
Goldberg. 2019. “Learning ambidextrous robot grasping
policies.” Science Robotics 4 (26): eaau4984.

Maitin‐Shepard, J., M. Cusumano‐Towner, J. Lei, and P. Abbeel.
2010. “Cloth grasp point detection based on multiple‐view
geometric cues with application to robotic towel folding.” In
2010 IEEE International Conference on Robotics and Automa-
tion, 2308–2315. May. https://doi .org/10.1109/ROBOT.20
10.5509439.

256

https://doi.org/https://doi.org/10.1016/j.ipm.2014.07.008
https://doi.org/https://doi.org/10.1016/j.ipm.2014.07.008
http://www.sciencedirect.com/science/article/pii/S0306457314000685
http://www.sciencedirect.com/science/article/pii/S0306457314000685
https://doi.org/10.1093/ptj/82.1.69
https://doi.org/10.1093/ptj/82.1.69
https://academic.oup.com/ptj/article-pdf/82/1/69/31663381/ptj0069.pdf
https://academic.oup.com/ptj/article-pdf/82/1/69/31663381/ptj0069.pdf
https://doi.org/10.1093/ptj/82.1.69
https://doi.org/10.1093/ptj/82.1.69
https://arxiv.org/abs/1811.12927
https://doi.org/10.1109/ROBOT.2010.5509439
https://doi.org/10.1109/ROBOT.2010.5509439

Bibliography

Malhotra, Pankaj, Vishnu Tv, Anusha Ramakrishnan, Gaurangi
Anand, Lovekesh Vig, Puneet Agarwal, and Gautam Shroff.
2016. “Multi‐sensor prognostics using an unsupervised
health index based on LSTM encoder‐decoder.” 1st SIGKDD
Workshop on Machine Learning for Prognostics and Health
Management (August).

Mandlekar, Ajay, Yuke Zhu, Animesh Garg, Jonathan Booher,
Max Spero, Albert Tung, Julian Gao, John Emmons, Anchit
Gupta, Emre Orbay, et al. 2018. “Roboturk: a crowdsourcing
platform for robotic skill learning through imitation.” In
Conference on Robot Learning, 879–893. PMLR.

Matas, Jan, Stephen James, and Andrew J. Davison. 2018. “Sim‐
to‐Real Reinforcement Learning for Deformable Object Ma‐
nipulation.” In Proceedings of the 2nd conference on robot learn-
ing, edited by Aude Billard, Anca Dragan, Jan Peters, and
Jun Morimoto, 87:734–743. Proceedings of Machine Learn‐
ing Research. PMLR, 29–31 Oct. http://proceedings.mlr.press
/v87/matas18a.html.

McInnes, Leland, John Healy, Nathaniel Saul, and Lukas
Großberger. 2018. “UMAP: Uniform Manifold Approxima‐
tion and Projection.” Journal of Open Source Software 3 (29):
861. https://doi.org/10.21105/joss.00861. https://doi.org/10.2
1105/joss.00861.

Mehrabi, Ninareh, Fred Morstatter, Nripsuta Saxena, Kristina
Lerman, and Aram Galstyan. 2021. “A survey on bias and
fairness in machine learning.” ACM Computing Surveys
(CSUR) 54 (6): 1–35.

Mehta, Bhairav, Manfred Diaz, Florian Golemo, Christopher J.
Pal, and Liam Paull. 2019. Active domain randomization.
arXiv: 1904.04762 [cs.LG].

Mikolov, Tomas, Ilya Sutskever, Kai Chen, Greg S Corrado, and
Jeff Dean. 2013. “Distributed representations of words and
phrases and their compositionality.” In Advances in neural
information processing systems, 3111–3119.

257

http://proceedings.mlr.press/v87/matas18a.html
http://proceedings.mlr.press/v87/matas18a.html
https://doi.org/10.21105/joss.00861
https://doi.org/10.21105/joss.00861
https://doi.org/10.21105/joss.00861
https://arxiv.org/abs/1904.04762

Bibliography

Miller, Stephen, Jur vandenBerg,MarioFritz, TrevorDarrell, Ken
Goldberg, and Pieter Abbeel. 2012. “A geometric approach to
robotic laundry folding.” The International Journal of Robotics
Research 31 (2): 249–267. https://doi.org/10.1177/027836491
1430417. eprint: https://doi.org/10.1177/0278364911430417.
https://doi.org/10.1177/0278364911430417.

Misra, Ishan, C. Lawrence Zitnick, and Martial Hebert. 2016.
“Shuffle and learn: unsupervised learning using temporal
order verification.” In ECCV.

Mnih, Volodymyr, Adria Puigdomenech Badia, Mehdi Mirza,
Alex Graves, Timothy Lillicrap, Tim Harley, David Silver,
and Koray Kavukcuoglu. 2016. “Asynchronous methods for
deep reinforcement learning.” In International conference on
machine learning, 1928–1937. PMLR.

Mnih, Volodymyr, Koray Kavukcuoglu, David Silver, Andrei A
Rusu, Joel Veness, Marc G Bellemare, Alex Graves, Martin
Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al.
2015. “Human‐level control through deep reinforcement
learning.” Nature 518 (7540): 529.

Mochizuki, Jun, Michio Takahashi, and Seiji Hata. 1987. “Unpo‐
sitioned workpieces handling robot with visual and force
sensors.” IEEE Transactions on Industrial Electronics, no. 1, 1–
4.

Monsó, Pol, GuillemAlenyà, and CarmeTorras. 2012. “Pomdp ap‐
proach to robotized clothes separation.” In 2012 IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems, 1324–
1329. IEEE.

Morita, T., J. Takamatsu, K. Ogawara, H. Kimura, and K. Ikeuchi.
2003. “Knot planning from observation.” In 2003 IEEE
International Conference on Robotics and Automation (Cat.
No.03CH37422), vol. 3, 3887–3892 vol.3. https://doi.org/10.1
109/ROBOT.2003.1242193.

Morrison, D., A.W. Tow,M.McTaggart, R. Smith, N. Kelly‐Boxall,
S. Wade‐McCue, J. Erskine, et al. 2018. Cartman: The low-cost
cartesian manipulator that won the Amazon robotics challenge.
arXiv: 1709.06283 [cs.RO].

258

https://doi.org/10.1177/0278364911430417
https://doi.org/10.1177/0278364911430417
https://doi.org/10.1177/0278364911430417
https://doi.org/10.1177/0278364911430417
https://doi.org/10.1109/ROBOT.2003.1242193
https://doi.org/10.1109/ROBOT.2003.1242193
https://arxiv.org/abs/1709.06283

Bibliography

Mrowca, Damian, Chengxu Zhuang, Elias Wang, Nick Haber, Li
Fei‐Fei, Joshua B Tenenbaum, and Daniel LK Yamins. 2018.
“Flexibleneural representation forphysics prediction.”arXiv
preprint arXiv:1806.08047.

Müller, Matthias, Bruno Heidelberger, Marcus Hennix, and John
Ratcliff. 2007. “Position based dynamics.” Journal of Visual
Communication and Image Representation 18 (2): 109–118.

Müller, Matthias, Jos Stam, Doug James, and Nils Thürey. 2008.
“Real time physics: class notes.” In ACM SIGGRAPH 2008
classes, 1–90.

Murphy, Kevin P. 2012. Machine learning: a probabilistic perspec-
tive. 1st ed. Adaptive Computation and Machine Learning.
The MIT Press. ıſBN: 0262018020,9780262018029. http://ge
n.lib.rus.ec/book/index.php?md5=8ECFEEB2E1F9A19C770
FBA1FF85FA566.

Myers, Cory, Lawrence Rabiner, and Aaron Rosenberg. 1980.
“Performance tradeoffs in dynamic timewarping algorithms
for isolatedword recognition.” IEEETransactions onAcoustics,
Speech, and Signal Processing 28 (6): 623–635.

Nair, Ashvin, Dian Chen, Pulkit Agrawal, Phillip Isola, Pieter
Abbeel, JitendraMalik, and SergeyLevine. 2017. “Combining
self‐supervised learning and imitation for vision‐based rope
manipulation.” In 2017 IEEE international conference on
robotics and automation (ICRA), 2146–2153. IEEE.

Nair, Ashvin V, Vitchyr Pong,Murtaza Dalal, Shikhar Bahl, Steven
Lin, and Sergey Levine. 2018. “Visual reinforcement learning
with imagined goals.” In Advances in Neural Information Pro-
cessing Systems, 9191–9200.

Nair, Suraj, Mohammad Babaeizadeh, Chelsea Finn, Sergey
Levine, and Vikash Kumar. 2020. “TRASS: time reversal as
self‐supervision.” In 2020 IEEE International conference on
Robotics and Automation (ICRA), 115–121. https://doi.org/10
.1109/ICRA40945.2020.9196862.

259

http://gen.lib.rus.ec/book/index.php?md5=8ECFEEB2E1F9A19C770FBA1FF85FA566
http://gen.lib.rus.ec/book/index.php?md5=8ECFEEB2E1F9A19C770FBA1FF85FA566
http://gen.lib.rus.ec/book/index.php?md5=8ECFEEB2E1F9A19C770FBA1FF85FA566
https://doi.org/10.1109/ICRA40945.2020.9196862
https://doi.org/10.1109/ICRA40945.2020.9196862

Bibliography

Narain,Rahul, ArminSamii, and JamesFO’brien. 2012. “Adaptive
anisotropic remeshing for cloth simulation.” ACM transac-
tions on graphics (TOG) 31 (6): 1–10.

Navarro‐Alarcon, David, Hiu Man Yip, Zerui Wang, Yun‐Hui
Liu, Fangxun Zhong, Tianxue Zhang, and Peng Li. 2016.
“Automatic 3‐D manipulation of soft objects by robotic arms
with an adaptive deformation model.” IEEE Transactions on
Robotics 32 (March): 1–13. https://doi.org/10.1109/TRO.2016
.2533639.

Nehaniv, Chrystopher L, Kerstin Dautenhahn, et al. 2002. “The
correspondence problem.” Imitation in animals and artifacts
41.

Ng, Andrew Y, H Jin Kim, Michael I Jordan, Shankar Sastry, and
Shiv Ballianda. 2003. “Autonomous helicopter flight via rein‐
forcement learning.” In NIPS, vol. 16. Citeseer.

Ng, AndrewY, Stuart J Russell, et al. 2000. “Algorithms for inverse
reinforcement learning.” In Icml, 1:2.

Nguyen, Anh, Jason Yosinski, and Jeff Clune. 2015. “Deep neural
networks are easily fooled: High confidence predictions for
unrecognizable images.” In Proceedings of the IEEE conference
on computer vision and pattern recognition, 427–436.

Nguyen, Van‐Duc. 1988. “Constructing force‐ closure grasps.” The
International Journal of Robotics Research 7 (3): 3–16. https://d
oi.org/10.1177/027836498800700301. eprint: https://doi.org
/10.1177/027836498800700301. https://doi.org/10.1177/0278
36498800700301.

Niennattrakul, Vit, and Chotirat Ann Ratanamahatana. 2007. “On
clustering multimedia time series data using K‐means and
dynamic time warping.” In 2007 International Conference on
Multimedia and Ubiquitous Engineering (MUE’07), 733–738. h
ttps://doi.org/10.1109/MUE.2007.165.

Nvidia. 2021. “PhysX.” Accessed October 10, 2021. https://develop
er.nvidia.com/gameworks-physx-overview.

260

https://doi.org/10.1109/TRO.2016.2533639
https://doi.org/10.1109/TRO.2016.2533639
https://doi.org/10.1177/027836498800700301
https://doi.org/10.1177/027836498800700301
https://doi.org/10.1177/027836498800700301
https://doi.org/10.1177/027836498800700301
https://doi.org/10.1177/027836498800700301
https://doi.org/10.1177/027836498800700301
https://doi.org/10.1109/MUE.2007.165
https://doi.org/10.1109/MUE.2007.165
https://developer.nvidia.com/gameworks-physx-overview
https://developer.nvidia.com/gameworks-physx-overview

Bibliography

Oh, Kyoung‐Su, and Keechul Jung. 2004. “GPU implementation of
neural networks.” Pattern Recognition 37 (6): 1311–1314. ıſſN:
0031‐3203. https://doi.org/https://doi.org/10.1016/j.patcog.2
004.01.013. https://www.sciencedirect.com/science/article/pii
/S0031320304000524.

Ojha, Shipra, and Sachin Sakhare. 2015. “Image processing tech‐
niques for object tracking in video surveillance‐ A survey.” In
2015 International Conference on Pervasive Computing (ICPC),
1–6. https://doi.org/10.1109/PERVASIVE.2015.7087180.

Pathak, Deepak, Pulkit Agrawal, Alexei A Efros, and Trevor Dar‐
rell. 2017. “Curiosity‐driven exploration by self‐supervised
prediction.” In International conference on machine learning,
2778–2787. PMLR.

Pathak, Deepak, Philipp Krahenbuhl, Jeff Donahue, Trevor Dar‐
rell, and Alexei A Efros. 2016. “Context encoders: feature
learning by inpainting.” In Proceedings of the IEEE conference
on computer vision and pattern recognition, 2536–2544.

Peng, Xue Bin, Marcin Andrychowicz, Wojciech Zaremba, and
Pieter Abbeel. 2018. “Sim‐to‐real transfer of robotic control
with dynamics randomization.” 2018 IEEE International Con-
ference on Robotics and Automation (ICRA) (May). https://doi
.org/10.1109/icra.2018.8460528. http://dx.doi.org/10.1109
/ICRA.2018.8460528.

Peng, Xue Bin, Erwin Coumans, Tingnan Zhang, Tsang‐Wei Lee,
Jie Tan, and Sergey Levine. 2020. “Learning agile robotic
locomotion skills by imitating animals.” arXiv preprint
arXiv:2004.00784.

Petrík, Vladimír, Vladimír Smutný, Pavel Krsek, and Václav
Hlaváč. 2017. “Single arm robotic garment folding path
generation.” Advanced Robotics 31 (23‐24): 1325–1337.
https : / / doi . org / 10 . 1080 / 01691864 . 2017 . 1367325. eprint:
https://doi.org/10.1080/01691864.2017.1367325. https://doi
.org/10.1080/01691864.2017.1367325.

261

https://doi.org/https://doi.org/10.1016/j.patcog.2004.01.013
https://doi.org/https://doi.org/10.1016/j.patcog.2004.01.013
https://www.sciencedirect.com/science/article/pii/S0031320304000524
https://www.sciencedirect.com/science/article/pii/S0031320304000524
https://doi.org/10.1109/PERVASIVE.2015.7087180
https://doi.org/10.1109/icra.2018.8460528
https://doi.org/10.1109/icra.2018.8460528
http://dx.doi.org/10.1109/ICRA.2018.8460528
http://dx.doi.org/10.1109/ICRA.2018.8460528
https://doi.org/10.1080/01691864.2017.1367325
https://doi.org/10.1080/01691864.2017.1367325
https://doi.org/10.1080/01691864.2017.1367325
https://doi.org/10.1080/01691864.2017.1367325

Bibliography

Pfaff, Tobias, Meire Fortunato, Alvaro Sanchez‐Gonzalez, and Pe‐
ter Battaglia. 2021. “Learning mesh‐based simulation with
graph networks.” In International Conference on Learning Rep-
resentations. https://openreview.net/forum?id=roNqYL0_XP.

Pfeifer, Rolf. 2006. “Morphological computation – connecting
brain, body, and environment.” In AI 2006: Advances in
Artificial Intelligence, edited by Abdul Sattar and Byeong‐ho
Kang, 3–4. Berlin, Heidelberg: Springer Berlin Heidelberg.
ıſBN: 978‐3‐540‐49788‐2.

Pham, Duc T, and Ashraf A Afify. 2005. “Machine‐learning tech‐
niques and their applications inmanufacturing.” Proceedings
of the Institution of Mechanical Engineers, Part B: Journal of
Engineering Manufacture 219 (5): 395–412.

Pinto, Lerrel, and Abhinav Gupta. 2016. “Supersizing self‐
supervision: learning to grasp from 50k tries and 700 robot
hours.” In 2016 IEEE international conference on robotics and
automation (ICRA), 3406–3413. IEEE.

Posner, Ingmar, Raia Hadsell, Martin Riedmiller, Markus
Wulfmeier, and Rohan Paul. 2017. “Workshop on acting and
interacting in the real world: Challenges in Robot Learning.”
In Neural Information Processing Systems (NeurIPS).

Proesmans, Remko, Andreas Verleysen, Robbe Vleugels, Paula
Veske, Victor‐Louis De Gusseme, and Francis Wyffels. 2022.
“Modular piezoresistive smart textile for state estimation of
cloths.” Sensors 22 (1). ıſſN: 1424‐8220. https://doi.org/10.339
0/s22010222. https://www.mdpi.com/1424-8220/22/1/222.

Provot, Xavier. 1995. “Deformation constraints in a mass‐spring
model to describe rigid cloth behavior.”

Rabiner, Lawrence, and Biing‐Hwang Juang. 1993. Fundamentals
of speech recognition. USA: Prentice‐Hall, Inc. ıſBN:
0130151572.

262

https://openreview.net/forum?id=roNqYL0_XP
https://doi.org/10.3390/s22010222
https://doi.org/10.3390/s22010222
https://www.mdpi.com/1424-8220/22/1/222

Bibliography

Rajeswaran, Aravind, Vikash Kumar, Abhishek Gupta, Giulia Vez‐
zani, John Schulman, Emanuel Todorov, and Sergey Levine.
2017. “Learning complex dexterous manipulation with deep
reinforcement learning and demonstrations.” arXiv preprint
arXiv:1709.10087.

Ramachandram, Dhanesh, and Graham W Taylor. 2017. “Deep
multimodal learning: A survey on recent advances and
trends.” IEEE signal processing magazine 34 (6): 96–108.

Ramisa, Arnau, Guillem Alenyà, Francesc Moreno‐Noguer, and
Carme Torras. 2012. “Using depth and appearance features
for informed robot grasping of highly wrinkled clothes.” In
2012 IEEE International Conference on Robotics and Automa-
tion, 1703–1708. https://doi.org/10.1109/ICRA.2012.62250
45.

. 2013. “FINDDD: A fast 3D descriptor to characterize tex‐
tiles for robot manipulation.” In 2013 IEEE/RSJ International
Conference on Intelligent Robots and Systems, 824–830. https://d
oi.org/10.1109/IROS.2013.6696446.

Rao, Kanishka, Chris Harris, Alex Irpan, Sergey Levine,
Julian Ibarz, and Mohi Khansari. 2020. “Rl‐cyclegan:
Reinforcement learning aware simulation‐to‐real.” In
Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 11157–11166.

Raparthy, Sharath Chandra, Bhairav Mehta, Florian Golemo,
and Liam Paull. 2020. “Generating automatic curricula via
self‐supervised active domain randomization.” arXiv preprint
arXiv:2002.07911.

Ravichandar, Harish, Athanasios S Polydoros, Sonia Chernova,
and Aude Billard. 2020. “Recent advances in robot learning
from demonstration.” Annual Review of Control, Robotics, and
Autonomous Systems 3:297–330.

Redmon, Joseph, andAnelia Angelova. 2015. “Real‐time grasp de‐
tection using convolutional neural networks.” In 2015 IEEE
International Conference on Robotics and Automation (ICRA),
1316–1322. IEEE.

263

https://doi.org/10.1109/ICRA.2012.6225045
https://doi.org/10.1109/ICRA.2012.6225045
https://doi.org/10.1109/IROS.2013.6696446
https://doi.org/10.1109/IROS.2013.6696446

Bibliography

Remde, Axel, Dominik Henrich, andHeinzWörn. 1999. “Picking‐
up deformable linear objectswith industrial robots,” http://n
bn-resolving.de/urn:nbn:de:hbz:386-kluedo-9550.

Riedmiller, Martin. 2005. “Neural fitted Q iteration–first experi‐
ences with a data efficient neural reinforcement learning
method.” In European conference on machine learning, 317–
328. Springer.

Rizzi, Alfred A, and Daniel E Koditschek. 1993. “Preliminary ex‐
periments in spatial robot juggling.” In Experimental Robotics
II, 282–298. Springer.

Ross, Stéphane, Geoffrey Gordon, and Drew Bagnell. 2011. “A
reduction of imitation learning and structured prediction to
no‐regret online learning.” In Proceedings of the fourteenth
international conference on artificial intelligence and statistics,
627–635.

Rubinstein, Reuven Y., and Dirk P. Kroese. 2004. The cross en-
tropy method: a unified approach to combinatorial optimiza-
tion, Monte-Carlo simulation (information science and statis-
tics). Berlin, Heidelberg: Springer‐Verlag. ıſBN: 038721240X.

Rudin, Nikita, David Hoeller, Philipp Reist, and Marco Hutter.
2021. Learning to walk in minutes using massively parallel deep
reinforcement learning. arXiv: 2109.11978 [cs.RO].

Rumelhart, David E, Geoffrey E Hinton, and Ronald J Williams.
1986. “Learning representations by back‐propagating
errors.” nature 323 (6088): 533–536.

Saadat, Mozafar, and Ping Nan. 2002. “Industrial applications
of automatic manipulation of flexible materials.” Industrial
Robot: An International Journal.

Saha, Mitul, and Pekka Isto. 2007. “Manipulation planning for
deformable linear objects.” IEEE Transactions on Robotics 23
(6): 1141–1150. https://doi.org/10.1109/TRO.2007.907486.

Sajjan, Shreeyak S., MatthewMoore,Mike Pan, Ganesh Nagaraja,
Johnny Lee, Andy Zeng, and Shuran Song. 2019. ClearGrasp:
3D shape estimation of transparent objects for manipulation.
arXiv: 1910.02550 [cs.CV].

264

http://nbn-resolving.de/urn:nbn:de:hbz:386-kluedo-9550
http://nbn-resolving.de/urn:nbn:de:hbz:386-kluedo-9550
https://arxiv.org/abs/2109.11978
https://doi.org/10.1109/TRO.2007.907486
https://arxiv.org/abs/1910.02550

Bibliography

Salimans, Tim, Jonathan Ho, Xi Chen, Szymon Sidor, and
Ilya Sutskever. 2017. “Evolution strategies as a scalable
alternative to reinforcement learning.” arXiv preprint
arXiv:1703.03864.

Sallab, AhmadEL,MohammedAbdou, EtiennePerot, and Senthil
Yogamani. 2017. “Deep reinforcement learning framework
for autonomous driving.” Electronic Imaging 2017 (19): 70–76.

Samuel, Arthur L. 1959. “Some studies inmachine learning using
the game of checkers.” IBM Journal of research and develop-
ment 11 (6): 601–617.

Sanchez, Jose, Juan‐Antonio Corrales, Belhassen‐Chedli Bouzgar‐
rou, and Youcef Mezouar. 2018. “Robotic manipulation and
sensing of deformable objects in domestic and industrial
applications: a survey.” The International Journal of Robotics
Research 37 (7): 688–716.

Satish, Vishal, Jeffrey Mahler, and Ken Goldberg. 2019. “On‐
policy dataset synthesis for learning robot grasping policies
using fully convolutional deep networks.” IEEE Robotics and
Automation Letters 4 (2): 1357–1364.

Saxena, Ashutosh, Justin Driemeyer, and Andrew Y Ng. 2008.
“Robotic grasping of novel objects using vision.” The Interna-
tional Journal of Robotics Research 27 (2): 157–173.

Schaul, Tom, John Quan, Ioannis Antonoglou, and David
Silver. 2015. “Prioritized experience replay.” arXiv preprint
arXiv:1511.05952.

Schneegass, Stefan, and Oliver Amft. 2017. Smart textiles.
Springer.

Schroff, Florian, Dmitry Kalenichenko, and James Philbin. 2015.
“Facenet: A unified embedding for face recognition and clus‐
tering.” In Proceedings of the IEEE conference on computer vision
and pattern recognition, 815–823.

Schulman, John, Jonathan Ho, Cameron Lee, and Pieter Abbeel.
2016. “Learning from demonstrations through the use
of non‐rigid registration.” In Robotics Research, 339–354.
Springer.

265

Bibliography

Schulman, John, Sergey Levine, Pieter Abbeel, Michael Jordan,
and PhilippMoritz. 2015. “Trust region policy optimization.”
In International conference on machine learning, 1889–1897.
PMLR.

Schulman, John, Filip Wolski, Prafulla Dhariwal, Alec Radford,
and Oleg Klimov. 2017. “Proximal policy optimization algo‐
rithms.” arXiv preprint arXiv:1707.06347.

Seita, Daniel, Pete Florence, Jonathan Tompson, Erwin
Coumans, Vikas Sindhwani, Ken Goldberg, and Andy
Zeng. 2021. Learning to rearrange deformable cables, fabrics,
and bags with goal-conditioned transporter networks. arXiv:
2012.03385 [cs.RO].

Seita, Daniel, Aditya Ganapathi, Ryan Hoque, Minho Hwang, Ed‐
ward Cen, Ajay Kumar Tanwani, Ashwin Balakrishna, et al.
2020. “Deep imitation learning of sequential fabric smooth‐
ing from an algorithmic supervisor.” In IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS).

Selfridge, Oliver, Richard Sutton, andAndrewBarto. 1985. “Train‐
ing and tracking in robotics.,” 670–672. January.

Sermanet, Pierre, Corey Lynch, Yevgen Chebotar, Jasmine Hsu,
Eric Jang, Stefan Schaal, Sergey Levine, and Google Brain.
2018. “Time‐contrastive networks: self‐supervised learning
from video.” In 2018 IEEE International Conference on Robotics
and Automation (ICRA), 1134–1141. IEEE.

Seyler, Sean L, Avishek Kumar, Michael F Thorpe, and Oliver
Beckstein. 2015. “Path similarity analysis: a method for
quantifying macromolecular pathways.” PLoS Comput Biol
11 (10): e1004568.

Shi, Haobin, Xuesi Li, Kao‐ShingHwang,Wei Pan, andGenjiu Xu.
2018. “Decoupled Visual Servoing With Fuzzy Q‐Learning.”
IEEE transactions on industrial informatics 14 (1): 241–252. htt
ps://doi.org/10.1109/TII.2016.2617464.

Siciliano, Bruno, Oussama Khatib, and Torsten Kröger. 2008.
Springer handbook of robotics. Vol. 200. Springer.

266

https://arxiv.org/abs/2012.03385
https://doi.org/10.1109/TII.2016.2617464
https://doi.org/10.1109/TII.2016.2617464

Bibliography

Silver, David, Aja Huang, Christopher Maddison, Arthur Guez,
Laurent Sifre, George Driessche, Julian Schrittwieser, et al.
2016. “Mastering the game of go with deep neural networks
and tree search.”Nature 529 (January): 484–489. https://doi.o
rg/10.1038/nature16961.

Singh, Avi, Larry Yang, Kristian Hartikainen, Chelsea Finn, and
Sergey Levine. 2019. “End‐to‐end robotic reinforcement
learning without reward engineering.” Robotics: Science and
Systems.

Smith, Russ. 2001. “Opendynamics engine.”AccessedOctober 10,
2021. https://www.ode.org/.

Spectrum, I. 2015. “A compilation of robots falling down at the
DARPA robotics challenge.” Accessed December 10, 2021. w
ww.youtube.com/watch?v=g0TaYhjpOfo&feature=youtu.be&t
=26.

Srivastava, Nitish, Geoffrey Hinton, Alex Krizhevsky, Ilya
Sutskever, and Ruslan Salakhutdinov. 2014. “Dropout: a
simple way to prevent neural networks from overfitting.”
The journal of machine learning research 15 (1): 1929–1958.

Staranowicz, Aaron, and Gian Luca Mariottini. 2011. “A survey
and comparison of commercial and open‐source robotic
simulator software.” In Proceedings of the 4th International
Conference on PErvasive Technologies Related to Assistive
Environments, 1–8.

Stoppa, Matteo, and Alessandro Chiolerio. 2014. “Wearable elec‐
tronics and smart textiles: a critical review.” sensors 14 (7):
11957–11992.

Sukhbaatar, Sainbayar, Zeming Lin, Ilya Kostrikov, Gabriel Syn‐
naeve, Arthur Szlam, and Rob Fergus. 2017. “Intrinsic mo‐
tivation and automatic curricula via asymmetric self‐play.”
arXiv preprint arXiv:1703.05407.

Sun, Chen, Abhinav Shrivastava, Saurabh Singh, and Abhinav
Gupta. 2017. “Revisiting unreasonable effectiveness of data
in deep learning era.” In Proceedings of the IEEE international
conference on computer vision, 843–852.

267

https://doi.org/10.1038/nature16961
https://doi.org/10.1038/nature16961
https://www.ode.org/
www.youtube.com/watch?v=g0TaYhjpOfo&feature=youtu.be&t=26
www.youtube.com/watch?v=g0TaYhjpOfo&feature=youtu.be&t=26
www.youtube.com/watch?v=g0TaYhjpOfo&feature=youtu.be&t=26

Bibliography

Sun, Li, Gerardo Aragon‐Camarasa, Simon Rogers, and J. Paul
Siebert. 2015. “Accurate garment surface analysis using an
active stereo robot head with application to dual‐arm flat‐
tening.” In 2015 IEEE International Conference on Robotics and
Automation (ICRA), 185–192. https://doi.org/10.1109/ICRA.2
015.7138998.

Sundaresan, Priya, Jennifer Grannen, Brijen Thananjeyan,
Ashwin Balakrishna, Michael Laskey, Kevin Stone, Joseph
E Gonzalez, and Ken Goldberg. 2020. “Learning rope
manipulation policies using dense object descriptors
trained on synthetic depth data.” In 2020 IEEE International
Conference on Robotics and Automation (ICRA), 9411–9418.
IEEE.

Sünderhauf, Niko, Oliver Brock, Walter Scheirer, Raia Hadsell,
Dieter Fox, Jürgen Leitner, Ben Upcroft, et al. 2018. “The
limits and potentials of deep learning for robotics.” The In-
ternational Journal of Robotics Research 37 (4‐5): 405–420. http
s://doi.org/10.1177/0278364918770733. eprint: https://doi.or
g/10.1177/0278364918770733. https://doi.org/10.1177/02783
64918770733.

Sutton, Richard S, and AndrewGBarto. 2018.Reinforcement learn-
ing: an introduction. MIT press.

Sutton, Richard S, Andrew G Barto, and Ronald J Williams. 1992.
“Reinforcement learning is direct adaptive optimal control.”
IEEE Control Systems Magazine 12 (2): 19–22.

Tagliabue, Eleonora, AmeyaPore, DiegoDall’Alba, EnricoMagna‐
bosco, Marco Piccinelli, and Paolo Fiorini. 2020. “Soft tissue
simulation environment to learn manipulation tasks in au‐
tonomous robotic surgery*.” In 2020 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 3261–3266.
https://doi.org/10.1109/IROS45743.2020.9341710.

Tan, Jie, Tingnan Zhang, Erwin Coumans, Atil Iscen, Yunfei Bai,
DanijarHafner, Steven Bohez, andVincent Vanhoucke. 2018.
Sim-to-Real: Learning agile locomotion for quadruped robots.
arXiv: 1804.10332 [cs.RO].

268

https://doi.org/10.1109/ICRA.2015.7138998
https://doi.org/10.1109/ICRA.2015.7138998
https://doi.org/10.1177/0278364918770733
https://doi.org/10.1177/0278364918770733
https://doi.org/10.1177/0278364918770733
https://doi.org/10.1177/0278364918770733
https://doi.org/10.1177/0278364918770733
https://doi.org/10.1177/0278364918770733
https://doi.org/10.1109/IROS45743.2020.9341710
https://arxiv.org/abs/1804.10332

Bibliography

Tanaka, D., S. Arnold, and K. Yamazaki. 2018. “EMD net:
an encode–manipulate–decode network for cloth
manipulation.” IEEE Robotics and Automation Letters 3,
no. 3 (July): 1771–1778. ıſſN: 2377‐3766. https://doi.org/10.1
109/LRA.2018.2800122.

Taylor, Russell H., Arianna Menciassi, Gabor Fichtinger, Paolo
Fiorini, and Paolo Dario. 2016. “Medical robotics and
computer‐integrated surgery.” In Springer Handbook of
Robotics, edited by Bruno Siciliano and Oussama Khatib,
1657–1684. Cham: Springer International Publishing. ıſBN:
978‐3‐319‐32552‐1. https://doi.org/10.1007/978-3-319-32552-
1_63. https://doi.org/10.1007/978-3-319-32552-1_63.

Tian, Stephen, Frederik Ebert, Dinesh Jayaraman, Mayur
Mudigonda, Chelsea Finn, Roberto Calandra, and Sergey
Levine. 2019. Manipulation by feel: touch-based control with
deep predictive models. eprint: arXiv:1903.04128.

Tobin, Josh, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech
Zaremba, and Pieter Abbeel. 2017. “Domain randomization
for transferring deep neural networks from simulation to
the real world.” In 2017 IEEE/RSJ international conference on
intelligent robots and systems (IROS), 23–30. IEEE.

Todorov, Emanuel, Tom Erez, and Yuval Tassa. 2012. “MuJoCo: A
physics engine formodel‐based control.” In IROS, 5026–5033.
IEEE. ıſBN: 978‐1‐4673‐1737‐5. http://dblp.uni-trier.de/db/co
nf/iros/iros2012.html#TodorovET12.

Tomo, Tito Pradhono, Massimo Regoli, Alexander Schmitz,
Lorenzo Natale, Harris Kristanto, Sophon Somlor, Lorenzo
Jamone, Giorgio Metta, and Shigeki Sugano. 2018. “A new
silicone structure for uSkin—A soft, distributed, digital 3‐
Axis skin sensor and its integration on the humanoid robot
iCub.” IEEE Robotics and Automation Letters 3 (3): 2584–2591.
https://doi.org/10.1109/LRA.2018.2812915.

269

https://doi.org/10.1109/LRA.2018.2800122
https://doi.org/10.1109/LRA.2018.2800122
https://doi.org/10.1007/978-3-319-32552-1_63
https://doi.org/10.1007/978-3-319-32552-1_63
https://doi.org/10.1007/978-3-319-32552-1_63
arXiv:1903.04128
http://dblp.uni-trier.de/db/conf/iros/iros2012.html#TodorovET12
http://dblp.uni-trier.de/db/conf/iros/iros2012.html#TodorovET12
https://doi.org/10.1109/LRA.2018.2812915

Bibliography

Tormene, Paolo, Toni Giorgino, Silvana Quaglini, and Mario
Stefanelli. 2009. “Matching incomplete time series with
dynamic time warping: an algorithm and an application to
post‐stroke rehabilitation.” Artificial Intelligence in Medicine
45 (1): 11–34. ıſſN: 0933‐3657. https://doi.org/https://doi.org
/10.1016/j.artmed.2008.11.007. http://www.sciencedirect.com
/science/article/pii/S0933365708001772.

Tsurumine, Yoshihisa, Yunduan Cui, Eiji Uchibe, and Takamitsu
Matsubara. 2019. “Deep reinforcement learningwith smooth
policy update: Application to robotic cloth manipulation.”
Robotics and Autonomous Systems 112:72–83. ıſſN: 0921‐8890.
https://doi.org/https://doi.org/10.1016/j.robot.2018.11.004.
https://www.sciencedirect.com/science/article/pii/S092188901
8303245.

Twardon, Lukas, and Helge Ritter. 2015. “Interaction skills for
a coat‐check robot: Identifying and handling the boundary
components of clothes.” In 2015 IEEE International Confer-
ence on Robotics and Automation (ICRA), 3682–3688. https://d
oi.org/10.1109/ICRA.2015.7139710.

Urbain, Gabriel, Victor Barasuol, Claudio Semini, J. Dambre, and
Francis wyffels. 2021. “Effect of compliance on morpholog‐
ical control of dynamic locomotion with HyQ” [in eng]. AU-
TONOMOUS ROBOTS 45 (3): 421–434. ıſſN: 0929‐5593. %7Bht
tp://dx.doi.org/10.1007/s10514-021-09974-9%7D.

van den Oord, Aäron, Sander Dieleman, Heiga Zen, Karen
Simonyan, Oriol Vinyals, Alexander Graves, Nal
Kalchbrenner, Andrew Senior, and Koray Kavukcuoglu.
2016. “WaveNet: A generativemodel for raw audio.” In Arxiv.
https://arxiv.org/abs/1609.03499.

van den Oord, Aäron, Yazhe Li, and Oriol Vinyals. 2018. “Repre‐
sentation learning with contrastive predictive coding.” arXiv
preprint arXiv:1807.03748.

VanHasselt, Hado, Arthur Guez, andDavid Silver. 2016. “Deep re‐
inforcement learning with double q‐learning.” In Proceedings
of the AAAI conference on artificial intelligence, vol. 30. 1.

270

https://doi.org/https://doi.org/10.1016/j.artmed.2008.11.007
https://doi.org/https://doi.org/10.1016/j.artmed.2008.11.007
http://www.sciencedirect.com/science/article/pii/S0933365708001772
http://www.sciencedirect.com/science/article/pii/S0933365708001772
https://doi.org/https://doi.org/10.1016/j.robot.2018.11.004
https://www.sciencedirect.com/science/article/pii/S0921889018303245
https://www.sciencedirect.com/science/article/pii/S0921889018303245
https://doi.org/10.1109/ICRA.2015.7139710
https://doi.org/10.1109/ICRA.2015.7139710
%7Bhttp://dx.doi.org/10.1007/s10514-021-09974-9%7D
%7Bhttp://dx.doi.org/10.1007/s10514-021-09974-9%7D
https://arxiv.org/abs/1609.03499

Bibliography

Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polo‐
sukhin. 2017. “Attention is all youneed.” InAdvances in neural
information processing systems, 5998–6008.

Vecerik,Mel, ToddHester, Jonathan Scholz, FuminWang, Olivier
Pietquin, Bilal Piot, Nicolas Heess, Thomas Rothörl, Thomas
Lampe, and Martin Riedmiller. 2018. Leveraging demonstra-
tions for deep reinforcement learning on robotics problems with
sparse rewards. arXiv: 1707.08817 [cs.AI].

Verleysen, Andreas,Matthijs Biondina, and Franciswyffels. 2020.
“Video dataset of human demonstrations of folding clothing
for robotic folding.” The International Journal of Robotics Re-
search, ıſſN: 0278‐3649. http://dx.doi.org/10.1177/027836492
0940408.

. 2022. “Learning self‐supervised taskprogressionmetrics:
a case of cloth folding.” Applied Intelligence, Accepted, https:
//doi.org/10.1007/s10489-022-03466-8.

Verleysen, Andreas, Thomas Holvoet, Remko Proesmans, Cedric
Den Haese, and Francis wyffels. 2020. “Simpler learning of
robotic manipulation of clothing by utilizing DIY smart tex‐
tile technology.” APPLIED SCIENCES-BASEL 10 (12): 10. ıſſN:
2076‐3417. http://dx.doi.org/10.3390/app10124088.

Verleysen, Andreas, and Francis wyffels. 2022 (expected).
“Learning to fold cloth: a survey.” The International Journal
of Robotics Research, Submitted, under review.

Vinh, Trinh Van, Tetsuo Tomizawa, Shunsuke Kudoh, and
Takashi Suehiro. 2012. “A new strategy for making a knot
with a general‐purpose arm.” In 2012 IEEE International
Conference on Robotics and Automation, 2217–2222. https://d
oi.org/10.1109/ICRA.2012.6224852.

Wang, Ping Chuan, Stephen Miller, Mario Fritz, Trevor Darrell,
and Pieter Abbeel. 2011. “Perception for themanipulation of
socks.” In 2011 IEEE/RSJ International Conference on Intelligent
Robots and Systems, 4877–4884. https://doi.org/10.1109/IROS
.2011.6095013.

271

https://arxiv.org/abs/1707.08817
http://dx.doi.org/10.1177/0278364920940408
http://dx.doi.org/10.1177/0278364920940408
https://doi.org/10.1007/s10489-022-03466-8
https://doi.org/10.1007/s10489-022-03466-8
http://dx.doi.org/10.3390/app10124088
https://doi.org/10.1109/ICRA.2012.6224852
https://doi.org/10.1109/ICRA.2012.6224852
https://doi.org/10.1109/IROS.2011.6095013
https://doi.org/10.1109/IROS.2011.6095013

Bibliography

Wang, Tuanfeng Y., Duygu Ceylan, Jovan Popović, and Niloy J.
Mitra. 2018. “Learning a shared shape space for multimodal
garment design.” ACM Trans. Graph. (New York, NY, USA) 37,
no. 6 (December). ıſſN: 0730‐0301. https://doi.org/10.1145/3
272127.3275074. https://doi.org/10.1145/3272127.3275074.

Wang, Xue Z. 2012.Datamining and knowledge discovery for process
monitoring and control. Springer Science & Business Media.

Warneken, Felix, and Michael Tomasello. 2006. “Altruistic help‐
ing in human infants and young chimpanzees.” science 311
(5765): 1301–1303.

Watkins, Christopher JCH, and Peter Dayan. 1992. “Q‐learning.”
Machine learning 8 (3‐4): 279–292.

Wen, Long, Xinyu Li, Liang Gao, and Yuyan Zhang. 2018. “A New
Convolutional Neural Network‐Based Data‐Driven Fault Di‐
agnosisMethod.” IEEE Transactions on industrial electronics 65
(7): 5990–5998. https://doi.org/10.1109/TIE.2017.2774777.

Willimon, B., S. Birchfield, and I. Walker. 2011. “Classification
of clothing using interactive perception.” In 2011 IEEE In-
ternational Conference on Robotics and Automation, 1862–1868.
May. https://doi.org/10.1109/ICRA.2011.5980336.

Willimon, Bryan, Stan Birchfield, and Ian Walker. 2011. “Model
for unfolding laundry using interactive perception.” In 2011
IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems, 4871–4876. https://doi.org/10.1109/IROS.2011.6095066.

Wu, Yilin, Wilson Yan, Thanard Kurutach, Lerrel Pinto, and
Pieter Abbeel. 2020. Learning to manipulate deformable objects
without demonstrations. arXiv: 1910.13439 [cs.RO].

Wuest, Thorsten, Daniel Weimer, Christopher Irgens, and Klaus‐
Dieter Thoben. 2016. “Machine learning in manufacturing:
advantages, challenges, and applications.” Production &
Manufacturing Research 4 (1): 23–45.

Xiang, Lingzhu, Florian Echtler, Christian Kerl, Thiemo Wiede‐
meyer, Lars, hanyazou, Ryan Gordon, et al. 2016. libfreenect2:
release 0.2, April. https://doi.org/10.5281/zenodo.50641. https
://doi.org/10.5281/zenodo.50641.

272

https://doi.org/10.1145/3272127.3275074
https://doi.org/10.1145/3272127.3275074
https://doi.org/10.1145/3272127.3275074
https://doi.org/10.1109/TIE.2017.2774777
https://doi.org/10.1109/ICRA.2011.5980336
https://doi.org/10.1109/IROS.2011.6095066
https://arxiv.org/abs/1910.13439
https://doi.org/10.5281/zenodo.50641
https://doi.org/10.5281/zenodo.50641
https://doi.org/10.5281/zenodo.50641

Bibliography

Xiao, Han, Kashif Rasul, and Roland Vollgraf. 2017. “Fashion‐
mnist: a novel image dataset for benchmarking machine
learning algorithms.” arXiv preprint arXiv:1708.07747.

Yamaguchi, Akihiko, and Christopher G. Atkeson. 2017. “Imple‐
menting tactile behaviors using FingerVision.” In 2017 IEEE-
RAS 17th International Conference on Humanoid Robotics (Hu-
manoids), 241–248. https://doi.org/10.1109/HUMANOIDS.20
17.8246881.

Yamakawa, Yuji, Akio Namiki, and Masatoshi Ishikawa. 2011.
“Motion planning for dynamic folding of a cloth with two
high‐speed robot hands and two high‐speed sliders.” In 2011
IEEE International Conference on Robotics and Automation,
5486–5491. https://doi.org/10.1109/ICRA.2011.5979606.

Yamakawa, Yuji, Akio Namiki, Masatoshi Ishikawa, and Makoto
Shimojo. 2008. “Knotting manipulation of a flexible rope by
a multifingered hand system based on skill synthesis.” In
2008 IEEE/RSJ International Conference on Intelligent Robots
and Systems, 2691–2696. https://doi.org/10.1109/IROS.200
8.4650802.

Yan, Mengyuan, Yilin Zhu, Ning Jin, and Jeannette Bohg. 2020.
“Self‐supervised learning of state estimation for manipulat‐
ing deformable linear objects.” IEEE Robotics and Automation
Letters 5 (2): 2372–2379. https://doi.org/10.1109/LRA.2020.29
69931.

Yan, Wilson, Ashwin Vangipuram, Pieter Abbeel, and Lerrel
Pinto. 2020. “Learning predictive representations for
deformable objects using contrastive estimation.” CoRL.

Yang, Pin‐Chu, Kazuma Sasaki, Kanata Suzuki, Kei Kase, Shigeki
Sugano, and Tetsuya Ogata. 2016. “Repeatable folding task by
humanoid robot worker using deep learning.” IEEE Robotics
and Automation Letters 2 (2): 397–403.

Yin, Shen, Steven X. Ding, Xiaochen Xie, and Hao Luo. 2014. “A
review on basic data‐driven approaches for industrial pro‐
cess monitoring.” IEEE Transactions on Industrial Electronics
61 (11): 6418–6428. https://doi.org/10.1109/TIE.2014.230177
3.

273

https://doi.org/10.1109/HUMANOIDS.2017.8246881
https://doi.org/10.1109/HUMANOIDS.2017.8246881
https://doi.org/10.1109/ICRA.2011.5979606
https://doi.org/10.1109/IROS.2008.4650802
https://doi.org/10.1109/IROS.2008.4650802
https://doi.org/10.1109/LRA.2020.2969931
https://doi.org/10.1109/LRA.2020.2969931
https://doi.org/10.1109/TIE.2014.2301773
https://doi.org/10.1109/TIE.2014.2301773

Bibliography

You, Banseok, Chul Jong Han, Youngmin Kim, Byeong‐Kwon Ju,
and Jong‐Woong Kim. 2016. “A wearable piezocapacitive
pressure sensor with a single layer of silver nanowire‐based
elastomeric composite electrodes.” J. Mater. Chem. A 4
(27): 10435–10443. https : //doi . org/10 . 1039/C6TA02449A.
http://dx.doi.org/10.1039/C6TA02449A.

Yuan, Wenzhen, Siyuan Dong, and Edward H. Adelson.
2017. “GelSight: high‐resolution robot tactile sensors
for estimating geometry and force.” Sensors 17 (12). ıſſN:
1424‐8220. https://doi.org/10.3390/s17122762. https://www
.mdpi.com/1424-8220/17/12/2762.

Yuan, Wenzhen, Yuchen Mo, Shaoxiong Wang, and Edward H
Adelson. 2018. “Active clothing material perception using
tactile sensing and deep learning.” In 2018 IEEE International
Conference on Robotics and Automation (ICRA), 4842–4849.
IEEE.

Yuen, Michelle C., Henry Tonoyan, Edward L. White, Maria Tel‐
leria, and Rebecca K. Kramer. 2017. “Fabric sensory sleeves
for soft robot state estimation.” In 2017 IEEE International
Conference on Robotics and Automation (ICRA), 5511–5518. h
ttps://doi.org/10.1109/ICRA.2017.7989649.

Zambelli, Martina, and Yiannis Demirisy. 2016. “Online multi‐
modal ensemble learning using self‐learned sensorimotor
representations.” IEEE Transactions on Cognitive and Develop-
mental Systems 9 (2): 113–126.

Zhang, Fangyi, Jürgen Leitner, Michael Milford, Ben Upcroft,
and Peter Corke. 2015. “Towards vision‐based deep
reinforcement learning for robotic motion control.” arXiv
preprint arXiv:1511.03791.

Zhang, Richard, Phillip Isola, and Alexei A Efros. 2016. “Color‐
ful image colorization.” In European conference on computer
vision, 649–666. Springer.

274

https://doi.org/10.1039/C6TA02449A
http://dx.doi.org/10.1039/C6TA02449A
https://doi.org/10.3390/s17122762
https://www.mdpi.com/1424-8220/17/12/2762
https://www.mdpi.com/1424-8220/17/12/2762
https://doi.org/10.1109/ICRA.2017.7989649
https://doi.org/10.1109/ICRA.2017.7989649

Bibliography

Zhang, Tianhao, Zoe McCarthy, Owen Jow, Dennis Lee, Xi
Chen, Ken Goldberg, and Pieter Abbeel. 2018. “Deep
imitation learning for complex manipulation tasks from
virtual reality teleoperation.” In 2018 IEEE International
Conference on Robotics and Automation (ICRA), 5628–5635.
https://doi.org/10.1109/ICRA.2018.8461249.

Zhao, Rui, Ruqiang Yan, Zhenghua Chen, KezhiMao, PengWang,
and Robert X. Gao. 2019. “Deep learning and its applications
to machine health monitoring.” Mechanical Systems and Sig-
nal Processing 115:213–237. ıſſN: 0888‐3270. https://doi.org/h
ttps://doi.org/10.1016/j.ymssp.2018.05.050. https://www.scie
ncedirect.com/science/article/pii/S0888327018303108.

Zhao, Wenshuai, Jorge Peña Queralta, and Tomi Westerlund.
2020. “Sim‐to‐real transfer in deep reinforcement learning
for robotics: a survey.” In 2020 IEEE Symposium Series on
Computational Intelligence (SSCI), 737–744. https://doi.org/10
.1109/SSCI47803.2020.9308468.

Zhu, Heming, Yu Cao, Hang Jin, Weikai Chen, Dong Du, Zhangye
Wang, Shuguang Cui, and XiaoguangHan. 2020. “Deep Fash‐
ion3D: a dataset and benchmark for 3D garment reconstruc‐
tion from single images.” In European Conference on Computer
Vision, 512–530. Springer.

Zhu, Yuke, Ziyu Wang, Josh Merel, Andrei Rusu, Tom Erez,
Serkan Cabi, Saran Tunyasuvunakool, et al. 2018.
“Reinforcement and imitation learning for diverse
visuomotor skills.” In Proceedings of Robotics: Science and
Systems. Pittsburgh, Pennsylvania, June. https://doi.org/10.1
5607/RSS.2018.XIV.009.

Zou, Liang, Chang Ge, Z. Jane Wang, Edmond Cretu, and Xiaoou
Li. 2017. “Novel tactile sensor technology and smart tactile
sensing systems: A review.” Sensors 17 (11). ıſſN: 1424‐8220.
https://doi.org/10.3390/s17112653. https://www.mdpi.com/1
424-8220/17/11/2653.

275

https://doi.org/10.1109/ICRA.2018.8461249
https://doi.org/https://doi.org/10.1016/j.ymssp.2018.05.050
https://doi.org/https://doi.org/10.1016/j.ymssp.2018.05.050
https://www.sciencedirect.com/science/article/pii/S0888327018303108
https://www.sciencedirect.com/science/article/pii/S0888327018303108
https://doi.org/10.1109/SSCI47803.2020.9308468
https://doi.org/10.1109/SSCI47803.2020.9308468
https://doi.org/10.15607/RSS.2018.XIV.009
https://doi.org/10.15607/RSS.2018.XIV.009
https://doi.org/10.3390/s17112653
https://www.mdpi.com/1424-8220/17/11/2653
https://www.mdpi.com/1424-8220/17/11/2653

Zou, Xingxing, Xiangheng Kong,WaikeungWong, CongdeWang,
Yuguang Liu, and Yang Cao. 2019. “FashionAI: a hierarchical
dataset for fashion understanding.” In 2019 IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition Workshops
(CVPRW), 296–304. https://doi.org/10.1109/CVPRW.2019.00
039.

https://doi.org/10.1109/CVPRW.2019.00039
https://doi.org/10.1109/CVPRW.2019.00039

	Dankwoord
	Summary
	Samenvatting
	List of Figures
	List of Tables
	Acronyms
	Introduction
	Deformable object manipulation and robotic laundry
	Traditional control pipelines do not work for folding clothes
	From engineered pipelines to end-to-end learning
	Accelerating learning of robotic manipulation of deformable objects
	Datasets
	Simulation
	Instrumentation
	Understanding task intent

	Research outline
	Publications

	Background and review of related work
	Manipulating deformable objects
	Manipulating rigid objects
	Deformable objects: definition, categorization, tasks and solutions

	Engineered cloth folding pipelines
	Grasping
	Pose estimation
	Unfolding
	Flattening
	Folding
	Full pipeline

	Learning robotic manipulation tasks with labels
	Supervised learning
	Artificial Neural networks
	Supervised learning and neural networks in robotic manipulation research

	Learning robotic manipulation tasks without user-provided labels
	Unsupervised learning
	Self-supervised learning

	Learning robotic manipulation tasks from interaction
	Reinforcement learning
	Reward learning

	Datasets for robotic learning
	Simulation environments to accelerate learning
	Deformable object simulation methods
	Transferring simulation results to the real world

	Deformable object state perception through instrumentation
	Conclusion

	Robotic folding in simulation
	Digital twins
	Robotic simulation
	Qualitative comparison of popular robot simulation technologies

	Cloth simulation using particle systems
	Representing cloth with particle systems
	Advancing the particle simulation
	Topology constraints
	Collision
	Rendering
	Implementation results

	Learning to fold in simulation
	Deep reinforcement learning setup for cloth folding in simulation
	Results

	Conclusion

	Learning to fold through cloth instrumentation
	Vision-based state estimation of cloth
	Dual-arm robotic setup
	Smart cloth
	Tactile sensing technologies
	Cloth sensing using piezoresistive rubber
	Learning a smart cloth

	Results on learning to fold an instrumented cloth
	Discussion
	Grippers for cloth manipulation
	Future improvements

	Conclusion

	Dataset for robotic folding through crowdsourcing
	Crowd-sourcing folding demonstrations
	Folding demonstrations dataset
	Folder structure
	Data format
	Project website and helper scripts

	Conclusion

	Learning reward functions from demonstrations
	Rationale and related work
	Applications of process monitoring
	Data-driven process monitoring in smart manufacturing systems
	Learning manipulation skills from demonstration

	Overview of the proposed framework to learn reward functions
	Methodology for unsupervised learning of reward functions
	Learning semantic meaningful embeddings using TCNs
	Aligning expert video embeddings with query videos
	Extracting task progression from embeddings

	Results on folding clothing
	Training results
	Reward function results

	Discussion
	Semantic Meaning of Learned TCN Embeddings
	Case-based examples for post hoc interpretability

	Conclusion

	Towards learning robotic manipulation of clothing
	Improving sample efficiency
	Decouple end-to-end learning
	Curriculum learning
	Learning from demonstrations

	Datasets
	Simulation
	Sim2Real
	Grippers for robotic folding
	Sensing
	Representations
	Future outlook on the field of robotic cloth manipulation

	Conclusion
	Research conclusions
	Future research directions
	Extending cloth folding dataset
	Instrumentation
	Learning reward functions from demonstrations

	Cloth simulation and training parameters
	Bibliography

