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Abstract—In this article, a new motion-aware sampling strategy
(MASS) is presented to speed up the measurement of radiation
patterns around cylindrical surfaces. Differently from preexisting
sampling techniques, the MASS directly chooses positions that
reduce the overall travel time of the field antenna, rather than
minimizing the total number of samples. The proposed strategy
employs a Gaussian process model that is adapted to the field
over a cylindrical surface. Moreover, a new acquisition function
for Bayesian active learning is developed in order to efficiently
search the peaks of the measured field and predict their values.
Next, the proposed strategy is tested on the experimental data from
a radiation pattern of a comb generator. Finally, the results are
compared to standard grid sampling and Bayesian optimization
strategies.

Index Terms—Active learning, Bayesian optimization (BO),
design of experiments (DoE), electromagnetic (EM) compatibility,
radiation pattern.

I. INTRODUCTION

NOWADAYS, electronic devices with wireless capabilities
are ubiquitous and new ones are being produced at an

accelerating pace. Despite the availability of simulators, physi-
cal measurements are essential to check the device compliance
with radiated emission limits. In particular, the main peaks
of the emitted field need to be identified by measuring the
emitted electromagnetic (EM) waves on a cylindrical surface
in a semianechoic chamber (SAC) using a receiving antenna. In
order to accelerate this operation, the device under test (DUT)
is usually moved with software-controlled motors. Thereby, the
consecutive positions of the receiving antenna can be selected
via a sampling strategy.

In recent years, several adaptive sampling strategies have been
presented to reduce the time cost of near-field measurements on
planar surfaces [1]–[3]. These techniques aim at minimizing the
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total number of samples by selecting the positions that carry the
most relevant information about the field. Their efficacy lies in
the assumption that the main contribution to the total time cost is
the measurement time introduced by the instrumentation, rather
than the travel time of the antenna. Unfortunately, the travel time
is substantially high when the antenna speed is low, relative to
the scanning area. This is often the case when sampling 3-D
cylindrical surfaces around the DUT.

The problem of reducing the travel time has been addressed
by line-based sampling strategies such as [4]–[6]. In particular,
an active learning strategy built on Bayesian optimization (BO)
has been proposed in [5]. This approach updates a Gaussian
process (GP) model of the emitted field in a sequential manner
and selects new positions that are most likely to present a
field maximum. Then, additional positions are sampled along
the way of the antenna, thus increasing the number of sam-
ples without adding travel delay. This contribution presents a
new Bayesian active learning policy denoted as motion-aware
sampling strategy (MASS). Firstly, this strategy employs a GP
model that is adapted to cylindrical sampling surfaces. Secondly,
time efficiency is improved over [5] by selecting positions that
present the best tradeoff between travel cost and the probability
of finding the field maximum. As a result, the new strategy
minimizes the total sampling duration while focusing on peaks
of the measured field.

The rest of the article is organized as follows. Section II
states the main goal of the sampling and provides an overview
on the different types of strategies. Subsequently, Section III
analyzes the learning model adopted in the new motion-aware
strategy. Section IV describes the MASS procedure and its main
functional blocks. Then, suitable sampling metrics are defined
in Section V, while Section VI demonstrates the effectiveness
of the MASS compared to other sampling strategies. Finally,
Section VII concludes the article.

II. GOAL STATEMENT

Let X ⊂ R2 be the domain of all possible sampling
positions. Let the vector x = [h, φ] ∈ X define the position
of the antenna on a cylindrical surface around the DUT,
where h, φ ∈ R are the height and the azimuth of the antenna,
respectively. The radiated field can be described by a function
f over X: f = f(x). Then, measuring the field of interest
means collecting a set of positions in cylindrical coordinates
P = {pn = [hn, φn], pn ∈ X}Nn=1 and a set of measured field
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values V = {vn = f(pn), pn ∈ P}, where n is the sample
index and N is the total number of samples. Additionally, let
T = {tn : x(tn) = pn, tn ∈ R+, x ∈ X}Nn=1 be the set of
sampling instants, where tn represents the time at which the
antenna reaches the position pn. In the considered measurement
setting, the main goal of the sampling strategy is to choose P
that maximizes the information about the absolute maximum
and the local maxima of f , while limiting the total duration of
the sampling tN .

A. Related Work

The definition of the sampling strategy is in essence a design
of experiments (DoE) problem [7]. In fact, a sampling strategy
has to identify which positions are most relevant for the char-
acterization of the function under test. The first task of DoE is
to gather some information over the entire measurement space,
known as exploration in literature. Exploration focuses on filling
the function domain as evenly as possible for a given amount of
sampling points.

The most immediate way to perform exploration is using a
one-shot strategy, such as simple grid search or Latin hypercube
design [8]. In one-shot strategies, a predefined number of sam-
ples is spread across the domain, without considering any obser-
vation of f . On one hand, this approach allows to compute all the
positions upfront, thus saving computation time. On the other
hand, the number of samples has to be estimated in advance:
Too many data samples lead to excessive measurement time
(oversampling), while too few data samples may be insufficient
to characterize the function (undersampling). Thus, one-shot
strategies lack flexibility and may require multiple reiterations.

The second task of DoE is exploitation, i.e., selecting sam-
pling positions where the most desirable outcome of f is pre-
dicted. This task can be performed by training a surrogate model
to predict the outcome of f from the available samples. Indeed,
surrogate models allow to define a sequential sampling strategy,
also known as active learning: The surrogate model identifies
the next sampling point according to an optimum criterion; next,
the new sample is used to update the model. In this way, samples
are collected one-by-one at consecutive iterations.

Depending on the goal of the sampling, exploration and ex-
ploitation can be balanced by selecting a proper surrogate model.
If the function maximum is requested, a local surrogate model
is sufficient to estimate the maximum position, thus ignoring
exploration. Conversely, if the goal is to obtain an accurate
approximation of f over the whole domain, a global surrogate
model can be constructed from points where the prediction
is most uncertain. Such points are typically spread across the
domain, leading to a good exploration. Sequential sampling
strategies like local linear approximation (LOLA)-Voronoi [9],
[10] are based on the latter approach. In fact, the LOLA-Voronoi
algorithm selects new sampling locations that deviate most from
the linear approximation of the function, thus focusing where the
estimated model error is the largest.

However, radiation pattern measurements exhibit an addi-
tional challenge for defining a proper sampling strategy. In fact,
the measurement process is inherently sequential and the cost of
sampling at one position is not constant, but it depends on the

travel time from the previous position. For this reason, line-based
strategies have been proposed to identify the optimal trajectory
through the sampling points. Available line-based strategies are
based on one-shot approaches, such as [4], [11], or sequential
approaches such as [1], [6], [12]. As alternative, line-based
samplings like [6], [12] follow a hybrid approach: They compute
sampling points in different batches rather than singularly, thus
generating a new trajectory for each iteration.

BO has already been successfully employed in DoE for EM
devices design [13]–[15]. In fact, BO relies on the statistical
uncertainty of a GP model in order to automatically balance
exploration and exploitation. Thus, BO constitutes a good can-
didate for DoE in the context of radiation patterns sampling.
The MASS strategy proposed in this work is fully sequential
and line-based. Additionally, its Bayesian approach matches the
purpose of sampling: The surrogate model combines global and
local accuracy to best locate multiple maxima of the function,
that are spread over the domain.

III. GP MODELING OVER CYLINDRICAL SURFACES

A. GP Regression

As discussed in the previous section, a surrogate model can
drive the sampling process by predicting which points in the
domain space are most informative for the purpose of the ex-
periment. For this purpose, several machine learning methods
have been used as surrogate models in DoE for EM devices,
such as artificial neural networks [17], support vector machines
[18], and GPs [19]. In this study, a GP is selected to model
the measured field: f ∼ GP (X). Compared to other models,
the GP can be trained on a low amount of data, thanks to its
self-regularizing capability. At the limit, it can be updated with
one sample at a time, allowing for the definition of a fully sequen-
tial strategy. Moreover, unlike classical interpolation techniques,
the GP model estimates the uncertainty on the predicted values,
which is crucial to define an efficient sampling strategy. The
GP represents each available data point x as a random Gaussian
variable with meanm and covariance k with respect to any other
point x′ ∈ X

m(x) = E[f(x)] (1a)

k(x,x′) = E[(f(x)−m(x))(f(x′)−m(x′))] (1b)

where E is the expectation operator. While the mean can ini-
tially be set at zero, the covariance function has to be carefully
chosen. Indeed, a well-designed covariance function, which is
generically called kernel, is crucial for the GP model to achieve
high accuracy. Section III-B describes how to construct a suitable
kernel for the considered experimental setting.

Once the kernel is specified, Gaussian process regression
(GPR) [19], also known as Kriging, can be executed. The GPR
exploits Bayesian inference to compute the posterior distribu-
tion, i.e., the probability distribution of values conditioned to
the available data points. At any test point x∗, the posterior
is Gaussian and it is fully determined by the mean μ and
variance σ2

μ(x∗) = KT
xx∗(Kxx + σ2

rI)
−1f(x) (2a)
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σ2(x∗) = Kx∗x∗ −KT
xx∗(Kxx + σ2

rI)
−1Kxx∗ (2b)

where the matrix K contains the covariance function computed
between pairs of points specified by the subscript. Additionally,
the tunable variance σ2

r accounts for an additive Gaussian noise
on the measured data points. On one hand, the meanμ represents
the prediction of the GP for one particular test point. On the other
hand, the varianceσ2 of the posterior indicates the uncertainty of
the model on the function value. Thus, in the setting of radiation
pattern measurements, the field value at any position can be
predicted by applying the GPR on the positions that have been
sampled so far.

B. Cylindrical Kernel

The predictive accuracy of the GP depends on a suitable kernel
k. The assumptions made about the function f are reflected in the
choice of the kernel [19]. In fact, the kernel defines how strong
the correlation is between a pair of points in the domain. Many
kernels have been designed for GPR and other machine learning
applications [22]. A popular choice is the squared exponential
kernel

kSE(x,x
′) = exp

(
−

2∑
d=1

(xd − x′
d)

2

2�2d

)
(3)

where d is the dimension, while � is the tunable length-scale
parameter. Since this kernel is stationary, it enforces a correlation
among the f values that depends on the absolute distance among
two sampling positions. In other words, the GP model will
assign similar probability of values to positions that are close to-
gether. Additionally, being infinitely differentiable, the squared
exponential function assumes a high smoothness of f . These
properties are appropriate for a radiated EM field at sufficiently
low frequencies.

However, this kernel is not suitable for a function defined
on a cylindrical surface. In fact, the right-hand side of (3)
depends only on the Euclidean distance between two points in
X , such that the periodicity of f along the azimuthal coordinate
is not reproduced. Thus, independently from the trajectory of
the measuring antenna, the squared exponential would lead to
a discontinuity of the GP model between the values at φ = 0
and at φ = 2π in the cylindrical reference frame, even though
they correspond to the same positions in the physical space. To
overcome this issue, a new cylindrical kernel is constructed as
follows. First, a 1-D periodic kernel is chosen for φ, i.e., the
azimuthal component of x

kφ(φ, φ
′) = exp

(
2 sin2 (|φ− φ′| · π/p)

�2φ

)
(4)

where p is the period length parameter and �φ is the length scale
parameter over φ. If p = 2π is assigned, kφ acquires the same
periodicity of f over φ. Second, the 1-D squared exponential
kernel is chosen for h, i.e., the vertical component of x

kh(h, h
′) = exp

(
− (h− h′)2

2�2h

)
(5)

Fig. 1. Flowchart of the MASS.

where �h is the length scale parameter overh. Then, by executing
the tensor product between kernels [20], kφ and kh can be
combined into a single 2-D kernel kcyl, defined over both the
dimensions of x

kcyl(x,x
′) = kh(h, h

′)kφ(φ, φ′). (6)

The resulting kernel preserves the stationarity and the smooth-
ness properties of the squared exponential, while being periodi-
cal over φ. Thus, it is suitable for the GP modeling of functions
defined over cylindrical surfaces.

IV. MASS

After constructing the adequate GP model, the MASS adopts
the scheme in Fig. 1. The first step is to collect the initial position
for the antenna P0 = {p0} and measure the corresponding field
value V0 = {v0}. These initial sets are extended iteratively with
one sample at a time, such that at each iteration i the sets
become Pi = {pn}in=0 and Vi = {vn}in=0. The second step is
building the GP model on the collected samples Pi, Vi using
the cylindrical kernel defined in Section III-B. At this point, it
is possible to compute the posterior for the field values at any
position, by executing the GPR as described in Section III-A.
Next, the stop condition is checked: If the condition is met, the
sampling process is ended. Otherwise, the acquisition function
is computed on the GP model posterior to determine the next
sampling position pi+1. Then, a new field value vi+1 is acquired
by moving the antenna and measuring at the next position.
Finally,pi+1 and vi+1 are added to the corresponding setsPi and
Vi, respectively. These steps are repeated until the stop condition
is met.

A. Motion-Aware Expected Improvement

The task of identifying the next position for the antenna
is delegated to the acquisition function. Thus, the acquisition
function has to be designed in accordance with the goals of the
sampling strategy, balancing the exploration and exploitation
tasks. If the only objective is to find the absolute maximum of the
modeled function f , the proposed scheme corresponds to a BO.
In BO, the acquisition function α estimates the probability of
finding the maximum of f for each point in the domainX . Thus,
the next point to sample is chosen by solving an optimization
problem

pi+1 = argmax
x∈X

α(x). (7)
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Standard acquisition functions for BO, such as the expected
improvement (EI) [21], rely on the GP posterior to achieve
a good balance between exploration and exploitation. How-
ever, they do not take into account the time cost required to
sample at different positions. Consequently, in this problem
setting, choosing a standard acquisition function would produce
a sampling strategy that is not optimized for time efficiency. In
order to minimize the total sampling duration, a new acquisition
function called motion-aware expected improvement (MEI) is
constructed. First, let EI(x) be the standard EI [21] over the
sampling domain X

EI(x) = E[max(GP (x)− f(x̂), 0)] (8)

where x̂ is the position corresponding to the highest value of f
sampled so far

x̂ = argmax
x∈Pi

f(x). (9)

The maximum of EI(x) corresponds to the highest expected
increase over the current maximum f(x+). Based on the idea
of cost-aware modeling in [24], the MEI is obtained from the
normalization of the EI(x) by a specific cost function C

MEI(x) =
EI(x)

1 + C
. (10)

The purpose of the normalization is to penalize the points that
require higher time to be reached by the antenna. Therefore, the
cost function is based on the minimum travel time between any
position x and the current position of the antenna pi

C = Δtmin(x,pi). (11)

In general, the travel time can be derived from the mechanical
characteristics of the measurement setup. For instance, consider
the motion of the antenna on the cylindrical surface as a su-
perposition of a motion along the azimuth and a motion along
the vertical axis. Then, assuming that the antenna can switch
between zero and constant speed instantaneously, moving across
each direction takes the following time intervals:

Δtphi =
min [|φ− φi|, 2π − |φ− φi|]

sφ
(12a)

Δth =
h− hi

sh
(12b)

wherex = [φ, h] andpi = [φi, hi], while sφ and sh are the max-
imum angular speed along φ and the maximum vertical speed
alongh, respectively. Note that themin operation in (12a) selects
the shortest path between a clockwise and a counterclockwise
revolution on the cylindrical surface. However, in some settings,
the motion of the measuring antenna is limited to only one
revolution around the device such that, in order to reach the
next position only one azimuthal direction is allowed. In this
case, (12a) can be modified in

Δtphi =
|φ− φi|

sφ
. (13)

Furthermore, two different situations may occur. In case the
antenna can move along the two dimensions simultaneously, the

minimum moving time is approximately

Δt
(1)
min(x,pi) ≈ max [Δtphi,Δth] . (14)

Indeed, in this condition, it is necessary to wait for the slowest of
the motions to complete. Conversely, if antenna can only move
along one direction at a time

Δt
(2)
min(x,pi) ≈ Δtphi +Δth (15)

as the two motions are executed consecutively. Note that, given
sφ and sh, Δt

(1)
min ≤ Δt

(2)
min, ∀(x,pi). (14) and (15) provide sim-

ple approximations for a wide variety of setups. Nonetheless,
the physical derivation of Δtmin should be adjusted to the setup
that is actually in use. Finally, having obtained the cost function
C, the next position in the proposed sampling scheme is located
by optimizing the MEI acquisition function

pi+1 = argmax
x∈X

MEI(x). (16)

By employing both the cylindrical kernel and the MEI ac-
quisition function, the resulting strategy aims at the positions
that present a good tradeoff between the chance of finding the
maximum and the time cost required to reach them.

Following the flowchart in Fig. 1, the collection of sam-
pling points continues until a stop condition is met. The most
straightforward implementation of the stop condition is fixing
a maximum amount of samples or a maximum duration for the
sampling. Since collecting different samples requires different
amounts of time, the latter criterion is chosen for the MASS.

V. EVALUATION METRICS

In order to evaluate the performance of the MASS, it is
necessary to measure a large set of samples at test positions
Xs. Thereby, sampling metrics can be defined by comparing the
GP model prediction with the actual field values. Since the first
goal of the sampling is to search for the field maximum, the
primary sampling metric is the regret R

R = max
x∈Xs

f(x)−max
x∈Pi

f(x). (17)

The regret denotes the discrepancy between the measured maxi-
mum of f and the highest value sampled so far; thus, a low regret
suggests that the antenna has come near the main peak of the
emitted field. Unfortunately, the regret may drop significantly
when sampling near a local maxima, even if the absolute maxi-
mum is far from the collected samples. For this circumstance, it is
useful to evaluate the overall predictive accuracy of the surrogate
model by computing the root-mean-square error (rmse) overXs.
Although, in radiation patterns, lower field values are often close
to the background noise. Hence, as suggested in [1], it is more
relevant to consider only the positions where the field is high

Xf = {xj ∈ Xs : f
∗(xj) > γ ·max[f ∗(x)]} (18)

where γ is a chosen threshold and f ∗ is the field function scaled
to the range [0, 1]. Then, a constrained rmse indicator can be
computed over the test positions

γ-rmse =

√∑
x∈Xf

(GP (x)− f(x))2

|Xf | . (19)
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Fig. 2. Procedure for the evaluation of sampling strategies on a common test
set Xs.

The most immediate way to test a sampling strategy is to
execute the measurement at the indicated positions and compute
the metrics of interest. However, noise or other time-dependant
fluctuations could alter the emitted field, compared to the test
data. In this condition, the sampling metrics would return incon-
sistent values. This problem is exacerbated if several strategies
are tested consecutively. Therefore, rather than performing mul-
tiple sets of measurements, sampling strategies are simulated by
using the test set as ground truth for the function f(x). Then, the
sampling metrics can be computed for each strategy by following
the procedure of Fig. 2. First, test values are collected through
physical measurement at the position Xs. Second, the strategy
is simulated by computing the next sampling position pi+1. For
each new position, the corresponding value f(pi+1) is obtained
via a Delaunay interpolation over the test samples. Once the sim-
ulation is concluded, a final interpolation of the sampled values
of Xs is performed. By definition, GP already constitutes an
interpolation model for the MASS and other strategies based on
BO. Similarly, the samples from one-shot strategies can be inter-
polated with an additional GPR. Finally, the GP model prediction
and the test values can be used to compute the validation metrics
over the same positions Xs. This procedure allows to directly
compare the metrics from the MASS with any other sampling
strategy.

Furthermore, in order to evaluate the metrics in a function of
time, the sampling instants ti can be estimated as

ti =

i−1∑
n=0

[
Δtmin(pn,pn+1) + tmeas + tcomp

]
(20)

where Δtmin is approximated as described in Section IV-A and
the term tmeas models the delay introduced by the measuring
instrumentation. Additionally, tcomp is the delay caused by the
software control of the antenna. For one-shot strategies, tcomp is
negligible since all the sampling positions are computed before-
hand. On the contrary, for sequential strategies, tcomp accounts
for the computation of pi+1 at each iteration. In particular, for
the proposed motion-aware sampling, both the GPR and the ac-
quisition function optimization contribute to the computational
time.

VI. APPLICATION EXAMPLE: COMB GENERATOR RADIATION

PATTERN

A. Experimental Setup

The proposed MASS is applied to a DUT, which is a comb
generator fed by a resonator and powered by a regular lab

Fig. 3. Electrical field magnitude for the vertical polarization, @740 MHz at
3 m from the DUT. On the left: Plane view of the field in cylindrical coordinates;
on the right: 3D view of the field in Euclidean coordinates; the red dot indicates
the position of the maximum recorded value (92.21 dB μV/m).

dc power supply. The electric field emitted by the device is
measured in a SAC with an R&S broadband antenna (HL562)
and electromagnetic interference (EMI) receiver (ELS6). The
antenna scans a cylindrical surface around the device as a result
of two simultaneous motions: 1) the translation of the antenna
along the vertical axis and 2) the rotation of the device around
its own vertical axis. The vertical position of the antenna is
restricted to the range [1 m, 1.75m] from the ground, while the
DUT can perform a full rotation, such that its angular position
covers the range [0, 2π]. The maximum speeds along the axes
are determined by the stepper motors employed: The maximum
vertical speed is sh = 0.10 m/s, while the angular speed is
sφ = 0.16 rad/s. The instrumentation introduced a measurement
delay of tmeas ∼ 1 s. Note that, in this setup, the antenna takes
almost 20 s to shift to the opposite side of the device. Since the
motions over the two axes are simultaneous, Δtmin is approx-
imated with 14 for both the MEI acquisition function and the
estimation sampling instants.

The antenna is placed at 3 m distance from the device, which
is sufficient to measure in far field conditions, while its orien-
tation is adjusted to the vertical polarization of the electrical
field. Then, the magnitude of electrical field is measured at
a frequency of 740 MHz on a uniform 91x16 grid on the
cylindrical surface. The measured samples are collected in a
test set Xs for the evaluation of the metrics. The contour plot in
Fig. 3 represents the measured values over the two cylindrical
coordinates. Note that the maximum value of field of 92.21 dB
μV/m is recorded in proximity of the lower boundary of h. In
addition, the field presents several peaks scattered across the
space.

B. Results and Discussion

Following the procedure described in Section V, the dif-
ferent sampling strategies are simulated on the test set. The
simulation is performed by assuming no limit on the number of
revolutions around the DUT. Thus, the trajectories are allowed
to cross the 2π boundary and the azimuthal time intervals are
approximated with (13). Note that the test values in Xs are
converted to a linear scale (mV/m) for the execution of the
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Fig. 4. Evolution of sampling metrics among different strategies. The solid lines show the metric values for sequential strategies, averaged across ten runs. The
colored bands represent the deviation between the minimum and the maximum recorded metric among ten runs. Each blue dot represents a complete run of grid
sampling for random step sizes in the ranges: Δφ ∈ [0.1, 2.0] and Δh ∈ [0.03, 0.50]. Starting position is chosen randomly on the cylindrical surface.

Fig. 5. Example of GP model prediction and traveled trajectory for different strategies after 60 samples. Red crosses indicate the sampling positions, while the
white and black dots are the initial and the last sample, respectively. (a) Grid. (b) LOLA-Vornoi. (c) BO. (d) MASS.

TABLE I
SIMULATION SETTINGS FOR EACH SAMPLING STRATEGY

GPR and the computation of the sampling metrics. Table I
summarizes the settings employed for each simulated strategy.
A random position is chosen to initialize each sampling strategy.
The sampling instants are obtained by recording the computation
time for a computer with an Intel(R) Core(TM) i7-9850H CPU

and 16 GB of RAM. Specifically for the grid strategy, the grid
spacing across the azimuthal and vertical directions is drawn
from uniform distributions with ranges: Δφ ∈ [0.1, 2.0] and
Δh ∈ [0.03, 0.50], respectively. Then, the samples are sorted
according to a horizontal scanning trajectory [Fig. 5(a)], also
known as Boustrophedon [11].

The evolution of the performance metrics over the iterations
is shown in Fig. 4, which compares MASS with preexisting
sampling strategies. Here, each blue dot represents a complete
run of the grid sampling for specific step sizes. The bottom half
of the figure reports the rmse at 80% of the field maximum. It
is apparent from the plot that the MASS has the lowest 80%-
rmse over time, while its regret is comparable with the standard
BO. In other words, the GP interpolator of the MASS reaches a
high accuracy for both the global and the local maxima of the
field. Note that the performance of grid sampling across multiple
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Fig. 6. Comparison of performance metrics for strategies with and without cylindrical kernel and MEI.

TABLE II
SAMPLE- AND TIME-EFFICIENCY FOR THE SIMULATED SEQUENTIAL STRATEGIES, FOR A FIXED THRESHOLD ON THE EVALUATION METRICS

runs is inconsistent and strongly depends on the chosen step
sizes.

The differences among sampling approaches are evident
from Fig. 5, which provide an example of the travelled tra-
jectory for 60 samples. Since grid strategy is purely ex-
plorative, the sampling positions look evenly scattered in
the domain. Conversely, BO and the MASS sampling fo-
cus near few regions of interest, near the maxima of the
function.

Furthermore, Fig. 6 analyzes separately the effect of the cylin-
drical kernel and the MEI, when employed in the standard BO
strategy. Interestingly, the regret presents no substantial decrease
with either the new kernel or the new acquisition function. On the
contrary, the two modifications contribute to the reduction 80%-
rmse across time, thus making the MASS more efficient in iden-
tifying the local maxima compared to the standard BO. Finally,
Table II compares the sample efficiency and the time efficiency
of the sequential strategies for a fixed threshold on the recorded
metrics. What stands out is that the MASS, which uses both the
cylindrical kernel and the MEI acquisition function, reaches the
same level of 80%-rmse much faster than standard BO, while it
locates the field maximum in a similar amount of time. In fact,
8 min, equivalent to 39 samples, are sufficient for the MASS to
decrease the error to 74 dBμV/m around the local maxima of the
field.

VII. CONCLUSION

In this work, the new MASS has been presented for the
measurement of radiated patterns on a cylindrical surface around
the device under test. Based on active learning, the new strategy
sequentially collects data and trains a GP model of the emitted
field which is highly accurate near the maxima. Moreover, the
MASS identifies the sampling positions with the best trade-
off between the probability of finding the maximum and the
required travel time. In cases where the antenna movement is
slow relative to the sampling area, this approach shows better
time efficiency than minimizing the number of samples. The
experiment indicates that MASS effectively reduces the total
sampling time, compared to preexisting explorative sampling
strategies and standard BO.

Further studies are needed to extend the presented approach to
the field measurement over multiple frequencies. An additional
challenge for the research is the design of a stop condition that
automatically terminates the sampling based on the surrogate
model, without the need of a prefixed time budget.
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