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Gaussian random field (GRF) models for EUV lithography (EUVL) exposure and resist process address the randomness of the EUVL process
outcomes manifested as line edge roughness, line width roughness or catastrophic failures of pinching, bridging or missing vias. The paper
presents the background of GRF models for EUVL processes and discusses the application of such models for fast calculation of success or failure
probability of the lithographic process or various stochastic metrics quantifying the stochastic variability of the EUVL process outcome. The paper
further concentrates on the approaches to calibration of GRF models. The presented results demonstrate the accuracy of GRF models by
comparing the failure probabilities calculated using fast methods against the same probabilities estimated using Monte Carlo trials. The
approaches to calibration of GRF EUVL models are demonstrated on experimentally measured data for one of the EUVL processes implemented
at IMEC, Belgium. © 2022 The Japan Society of Applied Physics

1. Introduction

1.1. Motivation and purpose
The resist patterns defining the geometries of the vias, metal
interconnects and transistors in modern integrated circuits
form as a result of photochemical processes occurring in the
resist film during the exposure, post exposure bake and
development steps of optical or EUV lithography. For such
patterns of more advanced lithographic nodes, especially the
ones formed by EUV lithographic processes, each feature
forms as a result of a limited number of photochemical
reactions between the randomly placed molecular compo-
nents of the photoresist, triggered by EUV photons absorbed
at random locations. Continuing shrinkage of characteristic
dimensions of integrated circuit features leads to the stronger
dependence of the lithography process outcome on a pro-
gressively smaller number of such stochastic photo-chemical
events shaping each of these features,1–3) manifesting itself as
line edge roughness, CD non-uniformity or catastrophic
failures of pinching or bridging between the lithographic
features. Predicting and mitigating the magnitude of the
random stochastic fluctuations in the outcome of the EUVL
resist exposure and processing is one of the challenges of
EUV lithography.1–3)

This paper proceeds by describing one stochastic model of
EUVL exposure and resist process leading to a Gaussian
random field (GRF) deprotection. We will briefly explain,
referencing the previously published work,4,5) how such model
can be used to efficiently predict the failure probabilities of
EUVL process, as well as to calculate the stochastic metrics, the
quantities quantifying the stochastic variability of the EUVL
process, for instance, pixNOK2,3) or num_Microbridges2,3) or
others. We will also present examples showing the EUVL
process failure probabilities calculated and compared against the
same probabilities estimated from brute force Monte Carlo
simulations.
Following that, the paper will concentrate on the methods

presently used to calibrate the parameters of the GRF

stochastic model, based on experimental measurements, for
instance the calibration methods using line edge roughness
(LER) or line width roughness (LWR) or the methods using
the stochastic contours of 2D features.
1.2. Stochastic model for EUV exposure-resist
process
One approach4,5) to modeling and efficiently quantifying the
random stochastic fluctuations is based on the fact that, under
certain reasonable assumptions, the deprotection in the
stochastic model of the exposure and resist process is a
GRF, when viewed in a certain simulation region, or a
Gaussian random process, when viewed along a certain line
or a curve, e.g. along a metrology gauge.
Such approach is based on a consideration1,6) of the fact

that the coordinates ( )nxi
h of the absorption point of each EUV

photon (e.g. the ith photon out of a total of nNh absorbed
photons) in the simulation volume of the resist, V , form a
random variable (a random vector) with a probability density
function given by

( ) ( ) ( ) ( )( ) b a=nf Ix x x , 1.1h

where ⎛
⎝

⎞
⎠

( ) ( )òb a=
-

I dx x x
V

1

is a normalization coefficient, ( )a x
is absorbance coefficient of the resist material (usually
assumed to be constant and cancelling in (1.1)), and ( )I x is
the EUV image intensity in resist. The latter image intensity
is the square of amplitude of electromagnetic field, a
deterministic, “non-random,” function, as usually simulated
by optical imaging models, accounting for partially coherent
illumination, photomask diffraction, diffraction-limited
image formation by projection optics, and also the reflection,
refraction and light absorption in the wafer film stack
(including the resist film).
One may proceed further using a simplified resist process

model,1,6) operating in terms of the deprotection function,
( )n x . Such deprotection function may represents, e.g. a

concentration of the species affecting the removal of the
resist material during the development step of the process. In
the simplified resist model1,6) under consideration, the
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deprotection from the above single ith photon is given by

( ) ( ) ( )( )= - nn Gx x x , 1.2i i
h

where the averaged result of the complex resist process
resulting from this EUV photon is modeled by a single
deprotection kernel, G, leading to the total deprotection from

nNh absorbed photons:

( ) ( ) ( ) ( )( )å å= = - n

= =

n n

n n Gx x x x . 1.3
i

N

i
i

N

i
h

1 1

h h

In this simplified resist model,1,6) given a scalar model
parameter t, the deprotection threshold, the development
step of the resist process results in the removal of the resist
material at all points in the simulation volume V, where

( ) >n tx . At the points where ( ) <n tx , the resist is retained,
and the points where ( ) =n tx form the edges of the
developed features in the resist.
The exact physical nature of the deprotection function, ( )n x ,

and the threshold parameter, t, may be dependent on the type of
the photoresist (e.g. chemically amplified photoresist (CAR),
metal-oxide photoresist (MOx), or other type of a photoresist) and
also the underlying rigorous or empirical model of this resist
exposure, processing and development. For models of many
types of photoresists, the deprotection function can be thought of
as a spatially-varying concentration of certain species defining the
removal or the retention of the surrounding infinitesimal volume
during the development. For CAR resists, such species are the
activated (reacted with acids) deprotection functional groups on
the polymer chains. For MOx resists, they are ligands of the metal
nano-particles, reacted with the photoelectrons or secondary
electrons during the exposure. On the other hand, in empirical
OPC resist models and in the cases when the underlying rigorous
model of the resist process includes the development model, the
deprotection function may be an abstract mathematical level-set
function, immediately lacking any physical interpretation or
physical units of measurements and serving, along with the
threshold value, t, to define the edges, interiors and exteriors of
the resist features formed by exposure, processing and develop-
ment of the photoresist film. In the current work, to cover various
possible physical and chemical mechanisms employed in existing
and future photoresists, we view the deprotection function as the
latter abstract mathematical level-set function, resulting from a
deprotection kernel, ( )G x , with the latter determined in a
calibration procedure, based on the experimental measurements
of exposed and developed resist patterns, as described and
illustrated in Sects. 2.1, 2.2, 3.1 and 3.2 below.
Application of multidimensional Central Limit Theorem

and using the statistical laws of total expectation and total
covariance to account for the randomness of the number, nN ,h

of EUV photons absorbed in the simulation volume, as
detailed in Ref. 4, leads to total deprotection, ( )n x , being a
GRF7) with its mean function, ( )m x , and its covariance
function, ( )C x x, ,1 2 given by4)

( )( ) ( ( )) ( ) ( ) ( )òm b a= = - ¢ ¢ ¢ ¢n 1.4n N G I dx x x x x x xE ,h
V

( ) ( ( ) ( ))

( ) ( ) ( ) ( ) ( )òb a

=

= - ¢ - ¢ ¢ ¢ ¢n

C n n

N G G I d

x x x x

x x x x x x x

, Cov ,

, 1.5h
V

1 2 1 2

1 2

where (·)E and (· ·)Cov , denote, respectively, the statistical
operators of expectation (i.e. mean or average) and

covariance, ( )=n nN E Nh h is the average number of photons
absorbed in V ,8) for the given exposure dose and the given
image in resist, ( )I x .
One can see from (1.4) that the mean function ( )m x of the

deprotection GRF ( )n x is nothing but the average absorbed
photon density convolved with the deprotection kernel, as
one would expect. The covariance function, ( )C x x,1 2 given
by (1.5) provides, for ¹x x ,1 2 a quantification of statistical
dependence between the stochastic fluctuations of ( )n x at two
given different points in V . For =x x ,1 2 ( )C x x,1 1 is a value
of variance of stochastic fluctuations of ( )n x at the point x .1

The mean function, ( )m x , and the covariance function,
( )C x x, ,1 2 completely define the deprotection GRF, ( )n x , and

the statistics of its spatial variation inside the simulation
volume V, including the statistics of various geometrical
shapes formed by applying the deprotection threshold t to the
deprotection ( )n x , that is the statistics of the shapes of the
features formed in resist as a result of the EUV lithography
process. This fact allows to apply many methods7) developed
by statisticians for calculating of statistical properties of such
shapes to the practical tasks of calculation of line edge
roughness (LER), line width roughness (LWR), pixNOK,
num_Microbridges, pinching or bridging probabilities and
many other stochastic metrics or probabilities of interest to
lithographers. The description of some of such methods,
applicable to practical tasks considered in this paper, can be
found in Sect. 3.3. More extensive discussion of such
methods and more examples can be found in Refs. 4 and 5.
In many practical applications, we use a discretization of

the GRF, ( )n x , by considering its values sampled at a certain
number, M, of pre-specified sampling points, x x, ..., .M1 Such
sampling points, for instance, may be the centers of pixels
positioned along the metrology gauge, along which we are
interested to measure the result of the lithography process, e.
g. a CD of a certain feature. It follows from the above
considerations that the random vector [ ( ) ( )]= n nn x x,..., M

T
1

formed from the values of deprotection sampled at the above
sampling points, is distributed accordingly to a multivariate
normal (MVN) distribution

( ) ( )m S~n N , , 1.6

where the entries of the parameters of this MVN distribution,
the mean vector, m, of length M and the M-by-M symmetric
positive semi-definite covariance matrix, S, are given by

( )mm = xi i and ( )S = C x x, .ij i j

While the presented derivation uses a simplified resist
model (1.2)–(1.3), more general EUV stochastic models
accounting for chemical stochastic or species depletion
(non-linearity) during the exposure and post-exposure bake
as well as contributions to EUVL stochastics from the causes
other than exposure-resist stochastic, can be derived and
used. For instance, Ref. 5 presents a generalization of the
above derivation to account for a depletion of reacting
species during exposure and resist process. The same
Ref. 5 also discusses and demonstrates one approach for
accounting for defocus and delta dose process parameters
random variations, in addition to the exposure-resist sto-
chastic.
The background of the stochastic model presented in this

section applies to the treatment of the resist film as a 3D
volume. Such model can be used to both simulate the 3D
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phenomena in the resist film and to calculate the probabilities
of essentially 3D outcomes of the resist process of interest to
an EUV lithographer—for instance, the probability of the
given via to fully develop across the resist film, resulting in
an opening extending from the top surface of the resist film to
the substrate. However, in many practical applications
dealing with “full chip” layouts, following the established
practice of OPC and OPC verification, a faster 2D version of
this stochastic model, based on the averaging of the resist
process outcome across the resist film, may be preferable. It
can be demonstrated by a direct calculation, that the mean
and covariance for the deprotection GRF in such a 2D model
can be calculated using the same formulae (1.4) and (1.5) as
in the 3D case, with the 3D deprotection kernel replaced with
its 2D version, obtained from the 3D deprotection kernel by
its averaging across the resist film.

2. Experimental methods

In Sects. 2.1 and 2.2 below we review some of the practiced
methods to calibrate the stochastic model described in the
previous sections using the experimentally measured scan-
ning electron microscope (SEM) images of certain calibration
patterns exhibiting the effects of the exposure-resist sto-
chastic. Section 2.3 below describes the ways the calibrated
stochastic model may be used for practical purposes,
concentrating on computation of success or failure probabil-
ities and stochastic metrics.
2.1. Method for calibration of GRF stochastic model
based on experimentally measured line edge rough-
ness or line width roughness of lines and spaces
patterns
The calibration of the stochastic model is preceded by the
standard procedure of OPC model calibration, which typi-
cally includes a calibration of non-stochastic optical and
resist models based on SEM-measured mean (average)
dimensions (CDs) of a variety of calibration patterns.
Following the OPC model calibration, the stochastic model

is calibrated. Some parameters of the stochastic model can be
straightforwardly calculated from the given values of the
EUV lithography process parameters. For instance, assuming
that the resist absorbance coefficient is constant, ( )a a=x ,0

it is convenient to introduce the stochastic model parameter
called resist efficiency as the product a h,0 where h is the
thickness of the resist film. The value of resist efficiency can
be straightforwardly calculated from the known thickness of
the resist film and the extinction coefficient of the resist
material, using the Beer–Lambert’s law, as illustrated in
Sect. 3.1 below. When the stochastic model (1.4)–(1.5) is
applied to a certain 3D simulation volume or a 2D simulation
area, another parameter that needs be calculated from the
given values of the EUV process parameters is the average
number of photons, nN ,h absorbed during the exposure. This
parameter can be straighforwardly calculated8) given the
EUV exposure dose (a known parameter of the EUV
process), the image intensity in resist, ( )I x , and the above
resist absorbance, a .0

In the current approach to calibration, the deprotection
kernel, ( )G x , of the resist model is assumed to be a Gaussian
function, parameterized by a single scalar parameter, a
standard deviation, which we call a diffusion length of the
deprotection kernel.

It should be kept in mind, that the diffusion length of the
deprotection kernel, introduced this way, parameterizes the
combined diffusion effect in the resist process due to all
diffusion mechanisms present, accounting for the spread of
the deprotection from an absorbed photon with respect to the
site of its absorption. Such parameter should not be confused
with acid diffusion length frequently used as one essential
parameter of DUV or EUV CAR processes. The acid
diffusion length in DUV CARs is usually studied and used
since it parameterizes the principal diffusion mechanism in
the DUV CARs process—the diffusion (as well as deprotec-
tion and quenching reactions) of acids during the post
exposure bake (PEB) step of the process. In other families
of the resists, the physical mechanism of propagation of the
deprotection from the site of photon’s absorption may not
involve acids at all (MOx resists), or it may involve the
propagation mechanisms additional to the acid diffusion
(photoelectron and secondary electron propagation through
the resist during exposure in addition to the acid diffusion
during PEB in EUV CARs).
One current approach to the calibration of this latter

parameter is based on exposing and patterning a certain
family of lines and spaces patterns and experimentally
measuring 3-sigma standard deviations of the lines or spaces
CDs (line width roughness, LWR) or 3-sigma standard
deviations of the straight edge positions (line edge roughness,
LER). Following that, the diffusion length parameter of the
deprotection kernel is selected to optimally match the
experimentally measured LWR or LER values to the simu-
lated LWR or LER values, for the set of calibration patterns.
Such optimization requires the use of the stochastic model
described in Sect. 1.2 to calculate the simulated LER or LWR
values for each of the calibration patterns and each value of
diffusion length parameter tested in the optimization proce-
dure. The methods that can be used to calculate LER or LWR
using the stochastic model are described in Sect. 2.3 below.
One example of such calibration procedure is detailed in
Sect. 3.1 below.
2.2. Method for calibration of GRF stochastic model
based on experimentally measured contours of scan-
ning electronic microscopy images
A more generic way to calibrate the stochastic model on the
more complex 2D patterns (e.g. via arrays) is based on using
SEM measurements to obtain the multiple 2D contours,
representing multiple instances of the edges of the same
feature, by measuring and processing the SEM images from
multiple instances of the same feature patterned at different
locations on the wafer. Figure 1(a) shows the contours
extracted from a single SEM image, manifesting the rough-
ness of these 2D edges. Such 2D contours are then aligned
and overlapped over a single instance of the feature (a unit-
cell position), as illustrated in Fig. 1(b), at the top. To extract
the stochastic variation “bands” from the overlapped con-
tours, the average contour is calculated from the multiple
SEM contours of the feature. Following that, for each cross
section, normal to the average contour, the standard devia-
tions (sigmas) of the edge position are calculated from the
cross sections of the SEM contours. Following that, the
borders of the +/−3 sigma variation stochastic bands are
defined by stepping by 3 sigma, respectively, outward and
inward from the average contour, in the direction of its
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normal. This way, the +/−3 sigma variation stochastic bands
are calculated, as the bands bounded by +3 sigma and −3
sigma contours interpolated from the experimentally mea-
sured contours [Fig. 1(b), bottom].
The stochastic model calibration procedure then proceeds,

similarly to the procedure described in Sect. 2.1, by using the
physical exposure dose value known from the process
parameters and by calculating the resist efficiency from the
known thickness of the resist film and the value of the EUV
light extinction coefficient of the resist material (the ima-
ginary component of the resist material complex refraction
coefficient). Following these calculations, the diffusion
length parameter of the deprotection kernel, ( )G x , is cali-
brated by matching the areas of the +/−3 sigma variation
stochastic bands calculated for multiple features from the
experimental data to the areas of the same stochastic bands
simulated using the stochastic models, parameterized by the
calibrated parameter, the diffusion length. The current
approach to a calculation of the simulated +/−3 sigma
variation stochastic bands is based on using the fact that
the standard deviation of deprotection at any point x in the
resist is /( ( ))C x x, ,1 2 where ( )C x x,1 2 given by (1.5) is a
covariance function of the GRF deprotection. The outer and
inner boundaries of the simulated +/−3 sigma variation
stochastic bands are then approximated by the contours of the
fields /( ) ( ( ))m  Cx x x3 , 1 2 corresponding to the value of the
stochastic model threshold, t.
One example of such calibration procedure is presented in

more detail in Sect. 3.2.
2.3. Methods for calculation of failure probabilities
and stochastic metrics
After the calibrated GRF deprotection model is available, a
lithographer may use it in several possible ways. In one
example, on which this paper will concentrate, a lithographer
may be interested in deploying the GRF deprotection model
to quantify in a reasonably fast simulation the effects of

exposure-resist stochastic in order to verify that the given
mask layout of the layer, the illumination mode and other
process parameters will satisfy the specifications allowed for
exposure-resist stochastic effects. Another, more ambitious
example may be the use of the stochastic model in an
automated exposure-resist stochastic aware optimization
algorithm to select the mask layout, the illumination mode
and other process parameters to minimize the undesirable
exposure-resist stochastic effects. Yet another potential ex-
ample of application of the GRF deprotection stochastic
model is the use of its analytical form (1.4)–(1.5) or some of
the analytical results4,5) stemming from it to gain under-
standing of the trends driving the stochastic effects to aid the
human decision making about the selection of the litho-
graphic process parameters mitigating the undesirable effects
of exposure-resist stochastics.
In this section, we will review several options to calculate

the failure probabilities and stochastic metrics, with the
emphasis on a calculation of gauge-based failure probabilities
further illustrated in examples presented in Sect. 3.3.
The calculation of failure probability requires a definition

of what exactly the failure is, in terms of the deprotection
function. One generic approach to such a definition was
proposed in Ref. 4, based on the observation that the purpose
of the traditional optical or EUV lithography can be described
as removal of certain pre-defined volumes of the resist film
(integrity sets, N), while retaining its other pre-defined
volumes (isolation sets, S).4) For instance, for a typical metal
layer process, the areas in the resist film where the resist is
removed will be transformed into metal wires in the
subsequent steps of the process, while the areas where the
resist is retained will transform into the isolation between
these wires. Accordingly, one can define the integrity sets, N ,
as the interiors of the target polygons obtained from the target
polygons by application of a certain small negative bias to
them. The isolation sets, S, can be defined as the exteriors of

(a)

(b)

Fig. 1. (Color online) (a) An example of the contours in green which are extracted from one top-down SEM image. (b) A heat map of overlapped contours
from average to +/−3 sigma variation. The stochastic +/−3 sigma band is calculated by finding the standard deviation (sigma) at each contour’s crossection
and plotting the stochastic band boundaries at +/−3 sigma distances from the average contour.
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the polygons formed by application of a certain small positive
bias to the target polygons. The probabilities of success,
Psuccess, and failure, Pfailure, can then be defined in terms of
the deprotection function as follows:4)




{( ( ) )
( ( ) )} ( )

= Î
Î

P n t N
n t S

x x
x x

Pr , for all
and , for all , 1.7

success

( )= -P P1 . 1.8failure success

Another family of methods to define success or failure is
based on considerations of the outcome of the lithographic
resist process along a certain gauge, placed at the critical
location of interest by the user or an automated algorithm.
For instance, if the gauge is placed across a line feature or a
tip-to-tip gap, with a target width equal to CD, such success
definition may require that the positions of both edges
sampled by this gauge are within a +/−ΔCD tolerance
from their target positions, leading to the success probability
defined as:

 
 

{( ( ) ∣ ∣ ( ))
( ( ) ∣ ∣ ( ))} ( )

= - D
+ D

P n x t x CD CD
n x t x CD CD

Pr , 0.5
and , 0.5 , 1.9

success

where x is the coordinate varying along the gauge, and x = 0
corresponds to the center of the line feature or the center of
the tip-to-tip gap.
Similarly, if the gauge is placed across the likely bridging

or pinching locations, the probabilities of pinching or
bridging at this gauge can be defined as

( ( ) ) ( )=P n x t xPr , for all at the gauge , 1.10bridging

or, respectively,

( ( ) ) ( )=P n x t xPr , for all at the gauge . 1.11pinching

In computational algorithms, one may consider a discretiza-
tion of the deprotection function by sampling its values at the
centers of the regular pixel grid or the pixels spaced along the
metrology gauge, resulting in a random vector n distributed
accordingly to a multivariate normal (MVN) distribution
(1.6). Calculation of a success or failure probabilities like
(1.7)–(1.11) above then reduces to a calculation of a
probability that certain components of this random vector
are simultaneously above or below the threshold value, t.
Such probability, in turn, can be shown to be equal to a
certain value of a cumulative distribution function (CDF)
associated with a certain MVN distribution. Calculation of
the value of CDF for a given MVN is a well-studied problem
in statistics, for which many efficient algorithms have been
designed and implemented.9,10)

Along with the calculation of probabilities of successes or
failures, the lithographers have been traditionally interested
in calculation of other quantifications of the stochastic-caused
variability, that can be referred to as stochastic metrics. For
instance, line edge roughness (LER), line width roughness
(LWR) and local CD (non)uniformity (LCDU) are tradition-
ally used for this purpose. While the values of LER, LWR
and LCDU are dominated by the effects of small and modest
deviations of the measured characteristic (e.g. an edge
position or a CD of a feature) from their average values, a
new family of stochastic metrics has been introduced2,3) to

quantify the likelihood of large, “catastrophic,” deviations
from the mean measured values, including bridging or
pinching between the lithographic features. This family
includes “number of defects,” num_Microbridges, NOK or
pixNOK metrics introduced2,3) and used to quantify the
likelihood of disappearing vias or bridging trenches.2–4)

One important practical consideration for methods to
calculate failure probabilities or stochastic metrics defined
above is the computational cost of their calculation. In the
following we will review three approaches to calculation of
success/failure probabilities or stochastic metrics in the
framework of the stochastic model described in Sect. 1.2:
brute Monte Carlo methods, fast methods (FM) and very fast
methods (VFM), originally described and illustrated in more
detail in Ref. 4.
2.3.1. Brute force Monte Carlo methods. In principle, a
sufficiently accurate estimate for failure probability or a
stochastic metrics can be obtained from brute force Monte
Carlo simulations utilizing the photon absorption statistical
model (1.1) combined with the simplified resist model (1.3)
to generate the deprotection functions within the entire
simulation domain for a sufficiently large number of Monte
Carlo trials.4) As described in Ref. 4, such method requires
running a Poisson random number generator for every
simulation pixel or voxel to determine the absorbed photon
density,4,8) for the current trial. The absorbed photon density
is then convolved with the deprotection kernel, ( )G x , to
obtain the deprotection, ( )n x , for the current trial. This
procedure is then repeated for each necessary trial. Every
trial is then post-processed to establish if the event of interest
(e.g. pinching or bridging) has happened during it, and the
total count of the events is calculated for the large number of
trials, to arrive to the estimate of probability of such an event.
To calculate some statistical metrics, e.g. LER, LWR,
pixNOK or num_Microbridges , for 1D lines and spaces
patterns, instead of running multiple trials, one may simulate
a very long line using a single trial with a Poisson random
number generator, as described above, and, for instance, use
the long meandering edges of such long simulated line to
obtain the estimates of LER or LWR necessary for calibration
methods described in Sect. 2.1. Generally, although brute
force Monte Carlo method can be used for verification of
other algorithms, it is expected to be too slow for the practical
purpose of evaluating the failure probabilities as small as 1 ×
10–6 to 1 × 10–9 at least for the most critical of billions of
diverse features present on a typical layer of an integrated
circuit.
2.3.2. Fast methods (FM). FM are the methods for a
calculation of success/failure probabilities or stochastic
metrics that still use Monte Carlo trials but run them only
for the pixels or voxels involved in the definition of success
or failure or the definition of the stochastic metrics. Running
Monte Carlo trials for a smaller set of pixels (compared to all
pixels in the simulation domain in case of brute force Monte
Carlo methods) allows to achieve considerably faster simula-
tion times compared to brute force Monte Carlo trials. The
possibility to limit the computations in trials to only a small
subset of pixels follows from noticing that a normal
distribution with known mean and covariance can be
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obtained by linear scaling from the standard normal distribu-
tion, i.e. a normal distribution with a mean of zero and a unity
variance. For instance, one can easily obtain the samples of
the scalar random variable u with a given mean ū and a
variance s ,2 ( ¯ )s~u uN , ,2 given the samples (e.g. outputs
from a standard normal random number generator) of a
standard normal scalar random variable, ( )~e N 0, 1 , by
performing a trivial scaling as m s= +u e. More generally,
and more relevant to the discretization of the GRF deprotec-
tion, if n is a random vector distributed accordingly to MVN
distribution (1.6), and S = AA ,T where A (“a square root
matrix of S”) is a square matrix of the same dimensions as
the covariance matrix S, and ( )~e 0 IN , is a standard
normal vector of the same length as n, then m= +n Ae.
The validity of this statement can be verified by noticing that
m + Ae follows an MVN distribution and by calculating the
expectation vector and the covariance matrix of the vector
m + Ae to verify that they are equal to, respectively, m and
S. This vector analogue of the obvious scalar case allows one
to efficiently run the Monte Carlo trials by calculating the
trial values of the deprotection n only at the pixels essential
for the definition of success or failure (e.g. only for the pixels
located at a certain metrology gauge),4) or the pixels involved
in the definition of stochastic metrics. Reference 4 documents
the results of the pixNOK stochastic metrics calculated using
one of such FM and compared to the experimental measure-
ments of the same stochastic metrics, demonstrating a good
agreement. The paper also presents the failure probability
calculation performed using one of FM and compared to the
same probability estimated by brute force simulation. More
of the latter comparisons are also shown in Sect. 3.3 below.
FM can be used to calculate LER or LWR needed in

calibration methods described in Sect. 2.1, e.g. by consid-
ering the pixels positioned along the nominal positions of the
edge of a line, running FM trials as described above to
calculate the deprotection along the nominal position of the
edge, and then using the linearized dependence of the edge
deviation from the deprotection to obtain the random edge
displacement at each pixel.
2.3.3. Very fast methods (VFM). Yet another family of
methods for calculation of stochastic metrics are VFM.4) We
use this term to refer to the methods where the calculation of
the value of stochastic metrics can be accomplished ac-
cording to an exact analytical formula or a sufficiently well
approximating analytical formula, without any Monte Carlo
trials. For instance, the average number of defects occurring
along the centerline of the given part of the 1D trench,
num_Microbridges, can be calculated using exact analytical
formula based on Rice’s formula.4) Average printed Area
(APA)5) is the stochastic metric useful for assessing the
stochastic sidelobe printability, usually caused by SRAFs.
Standard deviation of printed area (stdPA)5) is the stochastic
metric quantifying the stochastic variability of the printed
feature, e.g. a via. Both APA and stdPA can be calculated
using exact analytical formulae, without a need for Monte
Carlo trials.5) In the framework of a simplified model for
electrical performance of a via, the ratio of stdPA and APA
for the via is equal to the relative standard deviation of its
electric conductivity.5)

3. Results and discussion

3.1. Results for calibration of GRF stochastic model
based on experimentally measured line width rough-
ness of lines and spaces patterns, and the discussion
The IMEC first test case adopted a chemical amplified
photoresist (CAR) spin-on along with positive tone develop-
ment (PTD) lithography process and exposed with NXE3300
EUV scanner with 70 nm thickness Ta-based absorber dark
field mask on Mo/Si multilayers mirror. The illumination
mode is picked as a 45-degree quasar source. The sampling
plan of this stochastic modeling is based on 1D line-space of
various pitches (36–80 nm) and feature sizes through dif-
ferent dose-focus combinations. SEM images are measured
with the field of view (FoV) 900 nm and 1024 pixels
resolution. Therefore, line-width roughness (LWR) data are
extracted from in-line Hitachi CG5000 with this specific
FoV. The edge detection is set to 60% threshold in Hitachi
SEM algorithm to extract the CD from the resist trenches.
CDs and LWRs are measured from SEM images which are
smoothed by averaging 4-lines scan signals in the image.
We first calibrated a non-stochastic OPC model of the

process, using standard methods for this purpose. This non-
stochastic model calibration includes sampling the depen-
dency between the pitches and mask linewidths of 1D
structures and real measured mean wafer CD values for
better compact resist model prediction. An optical and mask
3D model were applied to well describe the scanner optics
and mask topography.11) Also, on top-down mask SEM
image, the mask manufacture error was inspected and the
2 nm bias on absorber size is used to mimic the reality.
Therefore, the focus-CD curve can be well matched between
simulation data and experimental data.
To calibrate the stochastic model, we first calculate the

resist efficiency /p k lh4 = 0.2925, where κ is the extinc-
tion coefficient of the chosen photoresist and λ is the EUV
exposure wavelength, 13.5 nm. Following that, the optimiza-
tion algorithm was run to select the value of the diffusion
length providing the best fit between the simulated and
experimentally measured LWR values. To conservatively
estimate the magnitude of the residual error corresponding to
the best fit, we quantified the latter by the LWR error range
over all lines and spaces patterns used in calibration. Such
LWR error range was found to be 1.73 nm at the center
process conditions of the calibration dataset. If the wider
range of the process conditions (+/−2.5% delta dose and 0,
20, 40 nm defocus) is used to quantify the residual LWR
error range the observed error range is 2.18 nm—see
Figs. 2(a) and 2(b). Since the considerable improvement of
the error range was observed in the process of fitting the
diffusion length, we considered these LWR error ranges
values to be satisfactory. The resulting fitted diffusion length
in this calibrated case is 2.08 nm.
3.2. Results for calibration of GRF stochastic model
based on experimentally measured contours of
scanning electronic microscopy images, and the
discussion
In the IMEC second test case also uses a CAR spin-on with
PTD lithography process and exposed with NXE3300 EUV
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scanner with 70 nm thickness Ta-based absorber dark field
mask. However, the modeling target designs are 2D shapes
which contain finite length of polygons, corner-to-corner, and
tip-to-tip environments with the minimum pitch of 46 nm.
Furthermore, in experimental metrology tool of this test case,
TASMIT NGR3500 Die to Database metrology system is
used. The large FoV (LFoV) of 8um*8um with 1 nm pixel
size resolution can be set and also post-measurement 2D
contours upon the SEM images can be extracted from the
same system.12) The major benefits of introducing LFoV are
that the experimental data can be acquired rapidly and also
the flexibility to do stochastic modeling in any shape of 2D
patterns with local edge deviations of each contour sites.
Therefore, it enables users to play around the different
weights in between of each site to have better balance in
the calibration input data set.
In experimental data, we first extracted experimental 3

sigma variation bands from 25 repetitive sub-cells in one
LFoV in this test case. Also, the theoretical resist efficiency
in this test case is /p k lh4 = 0.17267 and the physical dose

is 58.6 mJ cm−2. The fitting procedure described in Sect. 2.2,
was used to calibrate the diffusion length parameter of the
stochastic model. The calculation of the +/−3 sigma varia-
tion stochastic bands using the experimental data is based on
the 52906 sampling sites around all wafer contours that are in
the calibration data set. Furthermore, the verification of
through process window conditions (+/−30 nm, +/−60
nm defocus and +/−5% energy latitude) over 205 752
sampling sites were also conducted. The calibrated diffusion
length for the stochastic model of the process in this test case
was found to be 4.03 nm with good agreement between
simulation and experimental 3 sigma variation bands histo-
gram, as illustrated in Figs. 3(a) and 3(b). The Bhattacharyya
Coefficient (BC) values illustrated in these figures are
calculated according to the formula:

å=
=

BC p q .
i

n

i i
1

This coefficient provides a certain metric of the similarity
between two distributions where there are samples of p and q,

(a)

(b)

Fig. 2. (Color online) (a) The experimental LWR (LWR), simulated LWR (Sim_LWR) and difference between them (LWR_error) at nominal condition.
(b) The fitting data with multiple process window conditions, we considered +/−2.5% delta dose and 0, 20, 40 nm defocus.
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and n is the number of partitions. The pi and qi are the
numbers of sub-group in the ith partition of p and q
distributions. To calculate the BC, the interval of those
partitions needs to be defined first, and it is set to 0.5 nm in
this case.
3.3. Results for calculation of failure probabilities
using FM, comparisons against their values estimated
from brute force Monte Carlo simulations and the
discussion
In this section, we present the results of calculations of failure
probabilities for certain representative patterns. These failure
probabilities are calculated using two methods. First, we use
the FM (as outlined in Sect. 2.3 above) to calculate the
appropriate value of MVN cumulative distribution function
(MVNCDF). The algorithm described in Ref. 10 is used for
this purpose. Second, the same failure probability is esti-
mated by using the brute force Monte Carlo trials, also
described in more details in Sect. 2.3 above.
The typical values of the EUV optics imaging parameters

(λ = 13.5 nm for wavelength, NA= 0.33 for numerical aperture

of the projection optics and demagnification factor of 4) are used
in these simulations. A simplified coherent diffraction-limited
imaging model with a Kirchhoff mask model (absorber reflec-
tance of 0.35 (dark areas on the mask) and the multilayer layer
reflectance of 0.67 (bright areas on the mask)) is used. Such
model does not account for the physical effects of the partially
coherent illumination, diffraction on the 3D features of the
reflective EUV photomask, reflections and refractions in the
wafer film stack. Nevertheless, such simplified imaging model
produces the light intensity fields with the spatial frequencies
dictated by the resolution of the EUV projection optics, and,
when used with representative values of incident dose, this
model produces the distributions of the absorbed photons typical
for the considered exposure scenarios, as needed for the test
cases considered below.
The EUV absorbance coefficient of the photoresist mate-

rial is assumed to be constant across the 30 nm thick resist
film and set to a typical value8) ( )a a= = -x 4 um .0

1 The
resist model kernel, ( )G x , is assumed to be a Gaussian
function with its standard deviation parameter set to 4.5 nm.

(a)

(b)

Fig. 3. (Color online) (a) Overlapping histograms of simulated and experimentally measured (“wafer”) +/−3 sigma variation stochastic for the calibration
data set. (b) The same overlapping histograms for the verification data set. The Bhattacharyya Coefficient (BC) value is calculated as å=

=

BC p q .
i

n

i i
1
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The simulations are performed for the 3 values of the
exposure dose, 30 mJ cm−2, 60 mJ cm−2 and 90 mJ cm−2.
For every value of the dose the threshold of the stochastic
resist mode, t, is scaled proportionally to the dose value, thus
ensuring that each exposed features prints at the same
nominal average dimension for every value of the dose,
while the resist-exposure stochastic effects scale appropri-
ately to the dose value.
3.3.1. Gauge CD-based success or failure probability
for the gauge placed across the tip-to-tip gap of the
lines and spaces pattern. The test case illustrated in Fig. 4
is set up to calculate the probability of the gauge CD based
successes or failures. The patterns used are 1:1 lines and
spaces array with a tip-to-tip gaps of various width
[Fig. 4(a)]. The pitch of these 1:1 lines and spaces patterns
is 44 nm. A vertical metrology gauge is placed across one of
the tip-to-tip gaps. The one-parametric family of patterns is
parameterized by the width of the tip-to-tip gap, measured

along this metrology gauge and varying between 10 nm and
42 nm with a step of 4 nm, on the wafer. The probabilities of
the gauge CD based success or failures (Sect. 2.3) are
calculated for two values of CD tolerance, DCD = 2 nm
and 4 nm as follows:

 
 

{( ( ) ∣ ∣ ( ))
( ( ) ∣ ∣ ( ))}

( )

= - D
+ D

P n y t y CD CD

n y t y CD CD

Pr , 0.5
and , 0.5 ,

1.12

success

( )= -P P1 , 1.13failure success

as illustrated in Fig. 4(b).
The success probabilities calculated for DCD = 2 nm are

presented in Fig. 4(c). The low success probabilities resulting
from the tolerance parameter DCD = 2 nm should not be
surprising. This value of the tip-to-tip CD gap tolerance
implies that each edge of the gap needs to be confined to the
interval (−1 nm; +1 nm) for this exposure to be successful,

(a)
(b)

(c)
(d)

Fig. 4. (Color online) (a) 1:1 lines and spaces array with tip-to-tip gaps, the metrology gauge placed across one of the gaps and the parameters of the gauge
CD based success or failure definition; (b) deprotection, ( )n y , sampled along the tip-to-tip gauge and the illustration of the gauge CD based definitions of
success or failure; (c) success probability, as a function of the tip-to-tip gap CD, for tolerance DCD = 2 nm, for three values of exposure dose, solid lines—
calculated using a fast method (MVNCDF10)), markers—calculated using brute force Monte Carlo trials (d) failure probability, as a function as a function of the
tip-to-tip gap CD, for tolerance DCD = 4 nm, for three values of exposure dose, solid lines—calculated using a fast method (MVNCDF10)), markers—
calculated using brute force Monte Carlo trials.
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according to this criterion. For the currently used resist
processes, a typical value of one standard deviation of the
edge position resulting from the exposure-resist stochastic is
about 1 nm. As can be seen from the plot in Fig. 4(c), for the
smaller tip-to-tip CD of 10 nm, where the exposure-resist
stochastic effects are further amplified by the lower values of
the ILS (image log-slope), and for the typical EUV dose of 30
mJ cm−2, the gap CD based success probability for theDCD
= 2 nm tolerance can be as low as about 15%.

The success probabilities calculated using the FM (the
MVNCDF algorithm10)) shown as solid lines agree well with
the same success probabilities estimated using 1000 trials of the
brute force Monte Carlo method, shown as markers in Fig. 4(c).
The failure probabilities calculated using the tolerance

DCD = 4 nm are shown in Fig. 4(d). Besides increasing the
value of the tolerance parameter, we calculate the failure
probabilities for the range of the gap CD resulting in a more
benign image near the gap, resulting in a higher success

(a)

(b)

Fig. 5. (Color online) (a) Bridging at the gauge probability, as a function of the trench CD, for the metrology gauge placed across the semi-isolated
(pitch = 132 nm) trench at the center of the simulation domain, for the three values of exposure dose, solid lines—calculated using a fast method
(MVNCDF10)), markers—calculated using brute force Monte Carlo trials; (b) dose = 90 mJ cm−2, trench CD = 14 nm, 3 bridging events detected in 1 million
Monte Carlo trials.
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probabilities (or lower failure probabilities). Again, the
failure probabilities calculated using the FM (the MVNCDF
algorithm10)) agree very well with the same probabilities
estimated in 105 trials of the brute force Monte Carlo method.
3.3.2. Probability of bridging across a trench at the
gauge location. In this family of test cases, we consider a
family of quasi-isolated trenches patterned in the same
simulated EUV process as used in the previous section.
This patterning of the family of quasi-isolated trenches is
simulated with a pitch of 132 nm, within a 132 nm-by-
132 nm simulation domain, with the widths of the trenches
varying from 10 nm to 18 nm. We simulated this family of
trenches patterned with the same 3 values of EUV doses as in
the previous section. These rather narrow trenches were
selected in order deal with the higher bridging probabilities
that can be verified by a manageable number of Monte Carlo
trials.
For each trench width value, the bridging at the gauge

probability is defined according to (1.10), and it is calculated
using the MVNCDF algorithm10) and verified using either
105 or 106 brute force Monte Carlo trials.
The results of these calculations are shown in Fig. 5(a), again

demonstrating a good agreement between the bridging prob-
abilities predicted by the FM MVNCDF algorithm10) and the
estimates in the verification brute force Monte Carlo trials.
Figure 5(b) provides a further illustration to these test

cases. As can be seen from Fig. 5(a), for the case of a trench
width CD= 14 nm and the exposure dose of 90 mJ cm−2,
106 (one million) brute force Monte Carlo trials resulted in 3
trials with bridging occurring at the gauge locations.
Figure 5(b) shows the details of these 3 trials—the absorbed
photon density map and the colormaps of the deprotection,

( )n x , within the simulation domain, overlapped with the edge
(the contour ( ) =n tx ) and the horizontal black line repre-
senting the gauge.
3.3.3. Discussion. The results for the test cases presented
in Sects. 3.3.1 and 3.3.2 show a good agreement between the
probabilities calculated using FM and brute force Monte-
Carlo trials, both for probabilities of the gauge CD based
success (edge position is within the prescribed range) and for
bridging probabilities evaluated using a single gauge.
It should be noted here that this good agreement is demon-

strated between two approaches to calculation of probabilities,
both utilizing the simplified resist model (1.3). The comparison
between the results of these two approaches, by itself, cannot
answer the question of whether the stochastic model based on
this simplified resist model, is sufficiently accurate. The latter
question has been addressed in Ref. 4 where the pixNOK and
num_Microbridges stochastic metrics calculated using one of the
FM are compared against their values measured experimentally
using scanning electronic microscopy and optical metrology,
demonstrating a good agreement.
Nevertheless, the good agreement between the FM

MVNCDF calculation and the brute force Monte Carlo trials
demonstrated in Sects. 3.3.1 and 3.3.2 can be viewed as an
assurance that, for the typical EUV exposures as considered
above, the number of absorbed photons is sufficient to
guarantee a good accuracy of approximation by a normal
distribution (1.6), following from the Central Limit Theorem.
The practical importance of the ability to use the approxima-

tion by a normal distribution (1.6) is that it allows to apply the

FM and the analytical VFM (Sect. 2.3) enabling applications in
SMO and full chip OPC and OPC verification. In our experience
with the presented examples, the use of the FM improved the
runtime of the probability calculation by 100 to 1000 times,
compared to the brute force Monte Carlo method.

4. Conclusions

The exposure-resist stochastic model of the EUV lithography
process is presented. Application of the Central Limit
Theorem to the simple exposure-resist model results in a
GRF deprotection stochastic model.
Two approaches to the calibration of such stochastic

models are presented. The first approach uses the values of
LER or LWR for the family of 1D lines and spaces patterns
and ensures the selection of the stochastic model parameters
ensuring the best fit of the simulated LER or LWR values to
their experimentally measured values.
The 2nd approach uses a family of 2D patterns and ensures

the optimal selection of the calibrated parameters ensuring
the best fit of the areas of the simulated +/−3 sigma variation
stochastic bands to the measured areas of the same bands.
Both approaches are illustrated using the measured data

from IMEC EUV lithography processes.
The use of the calibrated stochastic models to efficiently

calculate the success or failure probabilities of EUVL process
or the values of the stochastic metrics characterizing the
stochastic variability of the EUVL process, is also discussed.
The examples of calculation of the success or failure
probabilities using efficient methods and the comparison
against the same probabilities calculated using brute force
Monte Carlo trials, are presented.
The potential directions of the future work include more

advanced and accurate stochastic models and their calibration
and the use of the calibrated stochastic models in OPC and
SMO algorithms in order to mitigate the effects of exposure-
resist stochastics in EUVL.
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